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Novel Uncertainty Quantification through
Perturbation-Assisted Sample Synthesis
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Abstract—This paper introduces a novel Perturbation-Assisted
Inference (PAI) framework utilizing synthetic data generated
by the Perturbation-Assisted Sample Synthesis (PASS) method.
The framework focuses on uncertainty quantification in complex
data scenarios, particularly involving unstructured data while
utilizing deep learning models. On one hand, PASS employs a
generative model to create synthetic data that closely mirrors
raw data while preserving its rank properties through data
perturbation, thereby enhancing data diversity and bolstering
privacy. By incorporating knowledge transfer from large pre-
trained generative models, PASS enhances estimation accuracy,
yielding refined distributional estimates of various statistics via
Monte Carlo experiments. On the other hand, PAI boasts its
statistically guaranteed validity. In pivotal inference, it enables
precise conclusions even without prior knowledge of the pivotal’s
distribution. In non-pivotal situations, we enhance the reliability
of synthetic data generation by training it with an independent
holdout sample. We demonstrate the effectiveness of PAI in ad-
vancing uncertainty quantification in complex, data-driven tasks
by applying it to diverse areas such as image synthesis, sentiment
word analysis, multimodal inference, and the construction of
prediction intervals.

Index Terms—Uncertainty Quantification, Diffusion, Normal-
izing Flows, Large pre-trained Models, Multimodality, High-
dimensionality.

I. INTRODUCTION

Uncertainty quantification is pivotal in scientific explo-
ration and drawing reliable conclusions from data, especially
working with complex modeling techniques such as deep
neural networks. Despite recent advancements showcasing the
potential of Artificial Intelligence in facilitating data-driven
discoveries, a reproducibility crisis has emerged in various
fields, including biomedicine and social sciences, occasionally
leading to false discoveries [1]. A key issue contributing to
this crisis is the lack of methods for quantifying uncertainty
in over-parametrized models, like neural networks, prioritizing
predictive accuracy using many non-learnable parameters such
as hyperparameters. As a result, these studies may become
exaggerated and irreproducible. To address these challenges,
we develop a generative inference framework designed to
provide uncertainty quantification for data of any type.

Diverse methodologies for uncertainty quantification are
prevalent in the literature. Approaches such as those in [2],
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[3], [4], [5] evaluate the predictive model’s outcome uncer-
tainty, with broad applications spanning adversarial attacks to
anomaly detection [6], [7]. Furthermore, studies [8], [9] inves-
tigate uncertainty within large language models for question-
answering tasks. Nevertheless, prevailing metrics like negative
log-likelihood often forgo solid statistical foundations, such as
confidence or probability assertions, within the framework of
statistical inference.

In statistical inference, the quantification of uncertainty
is imperative. Classical techniques like Bootstrap [10] solve
conventional statistical problems. Yet, uncertainty in complex
models, particularly those involving deep networks and un-
structured data, as indicated by [3], remains less explored. The
conformal inference method [11], [12] offers a practical tool
for valid uncertainty quantification. However, its effectiveness
is significantly influenced by the underlying prediction model
and the selection of the conformal score, which can lead to
overly cautious inferential outcomes. With recent progress,
such as [13]’s introduction of hypothesis testing for fea-
ture significance using asymptotic methods, a comprehensive
examination of statistical uncertainty quantification becomes
imperative. Our focus herein is statistical inference, specifi-
cally hypothesis testing, which quantifies the uncertainty of a
hypothesis test’s outcome or conveys a confidence declaration
concerning prediction uncertainty, as detailed in Section V.

This paper introduces the novel Perturbation-Assisted In-
ference (PAI) framework that employs Perturbation-Assisted
Sample Synthesis (PASS) as its core generator, ensuring
validity as if we had conducted Monte Carlo (MC) simulations
with a known data-generating distribution. To clarify the core
concept of our approach, envision statistics computed via a
machine learning or statistical technique on a training data
set. These statistics may embody a predicted outcome in
supervised learning or a test statistic in hypothesis testing. By
generating multiple iterations of these statistics on synthetic
data that emulate the original data’s distribution, we gauge
the variability of these statistics across data sets with an
analogous distribution to the original by applying the same
analytical method. PASS generates these synthetic data sets,
while PAI procures reliable inferences from them, employing
Monte Carlo techniques.

PASS synthesizes data that mirrors the original data closely,
encompassing both tabular and unstructured data such as gene
expressions and text. Its distinct edge is in harnessing pre-
trained generative models to heighten generation precision.
With an emphasis on inference, PASS augments synthetic data
diversity and privacy through data perturbation, retaining the
original sample’s ranks, which supports personalization and
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data amalgamation [14]. Through neural networks, PASS maps
a base distribution into a target one, drawing from the round-
trip transformation strategy used in normalizing flows [15],
[16] or diffusion models [17], [18], and broadens the con-
ventional univariate data generation approach by transposing
the cumulative distribution function from a uniform base to
preserve the original data’s univariate ranks.

The PAI framework is a significant advancement in sta-
tistical inference, particularly for unstructured, multimodal,
and tabular data. It exceeds traditional methods in relia-
bility and breadth of application, chiefly through synthetic
data created by PASS to emulate any statistic’s distribution
and properties via Monte Carlo testing. This framework,
in contrast to classical methods requiring bias corrections,
deduces the distribution of a test statistic via an approximated
data generation distribution, thereby facilitating finite-sample
inference. Additionally, it trumps resampling methodologies
by producing independent synthetic samples for inference.
This function promotes broader applications, including data
integration, sensitivity analysis, and personalization, thereby
widening the gamut of statistical inference into new domains.
Specifically,

(1) Inference for Unstructured and Multimodal Data.
The PAI framework broadens the scope of statistical
inference from numerical to unstructured and multi-
modal data through synthetic data generation. Section
V demonstrates the validity of PAI when PASS esti-
mates the data-generating distribution via pre-trained
generative models such as normalizing flow or diffusion
models.

(2) Pivotal Inference. PAI offers exact inference for any
pivotal while controlling the Type-I error, which sur-
passes classical methods that necessitate knowledge of
a test statistic’s distribution, as supported by Theorem
2.

(3) General Inference. The PAI framework enables approx-
imate inference for non-pivotal statistics while maintain-
ing control over Type-I errors. It achieves this by using
an estimated distribution well approximating the data-
generating distribution, as illustrated in Theorem 1.

(4) Accounting for Modeling Uncertainty. PAI distin-
guishes itself from conventional methods by incorpo-
rating modeling uncertainty into the Monte Carlo ex-
periments for uncertainty assessment, leading to more
credible conclusions.

To demonstrate PAI’s capabilities, we address statistical
inference challenges in three previously untapped areas: (1)
image synthesis, (2) sentiment analysis using DistilBERT [19],
and (3) multimodal inference from text to image generation
based on text prompts. Moreover, we also contrast PAI with the
conformal inference approach [11] for prediction uncertainty
in regression problems. In these scenarios, PAI quantifies
uncertainty for generative models that involve hyperparameter
optimization, considering the statistical uncertainty of such
tuning in the inference process and leveraging pre-trained
models to refine the accuracy of learning the data-generating
distribution. Contemporary research underscores the signifi-

cance of sample partitioning in inference to avert data dredg-
ing [20], [21]. Demonstrated through these applications, PAI
conducts innovative hypothesis testing for image synthesis,
word inference in sentiment analysis, and generated images
from varying text prompts via stable diffusion techniques,
thus providing uncertainty quantification for numerical and
unstructured data where tests are not analytically tractable.

This paper comprises the following sections: Section II
establishes the foundation of PASS, enabling the estimation of
any statistic’s distribution through Monte Carlo simulations.
Section III introduces the PAI framework and the PASS
generator. Section IV offers a statistical validation of the PAI
framework. Section V develops tests for comparing synthetic
images generated by diffusion models [17], [18] and other
deep generative models such as GLOW [22] and DCGAN [23],
also addressing the evaluation of word significance in senti-
ment analysis using DistilBERT, multimodal inference from
texts to images. Section VI presents numerical experiments.
This section additionally contrasts the PAI methodology with
the conformal inference approach in quantifying prediction
uncertainty in regression problems. Supplementary materials
include implementation details for the numerical examples,
technical specifics, multivariate ranks, and learning theory for
normalizing flows.

II. PERTURBATION-ASSISTED SAMPLE SYNTHESIS

Given a d-dimensional random sample Z = (Z;)}_; from
a cumulative distribution function (CDF) Fiz(:) = Fz(- ;0),
or data-generating distribution, Z; ~ Fz; i = 1,...,n,
we estimate a statistic H(Z)’s distribution, where 6 is a
vector of unknown parameters and H is a vector of known
functions that may be analytically intractable. Here, Z could
be an independently and identically distributed sample or its
continuous latent vector representation obtained through, for
example, a latent normalizing flow ([15], [16]) and VAE [24]
for images and a numerical embedding such as BERT-style
transformer for texts. Subsequently, we assume that F is
absolutely continuous and use the continuous latent vectors of
unstructured data or a continuous surrogate of non-continuous
data [25] for a downstream task.

A. Sample Synthesis

Generation via Transport. To generate a random sample
Z' = (Z])?_, from a cumulative distribution F'z, we construct
a transport G mapping a base distribution of U to that of
Z, preferably simple, like the Uniform or Gaussian, where
U = (U;)I, is a sample from the base distribution Fy;. In
the univariate case, we generate Z; = G(U;) by choosing
G =F, 1 with U; sampled from the Uniform distribution
Ul0,1]; i = 1,...,n. However, this generative method is no
longer valid in the multivariate case as the multivariate analogy
of Fgl does not exist. In such a situation, the reconstruction
of G mapping R? to R? is challenging.

Linkage between Generated and Original Data. Sample
Z' generated from the base distribution of U may not accu-
rately represent Z if they are unrelated to Z. When d = 1,
Z' retains the ranks of Z if U retains the ranks of Z, by
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the non-decreasing property of G = Fz. As argued in [25],
Z' connects to the original sample Z by rank preservation.
This aspect is crucial for personalized inference, outlier de-
tection, and data integration. To generalize this concept of
rank preservation to the multivariate situation, we consider a
transport 7" mapping from Fz to Fy;, which is not necessar-
ily invertible. However, the invertibility ensures a round-trip
transformation between F'z and Fy is uniquely determined.
We then align the multivariate ranks of (U;)?_; with those of
(T'(Z;))?_,, which preserves the ranks of (Z;)!_; using its
representation (7'(Z;))I_, in the space of the base variables
U. The reader is directed to the supplementary materials for
detailed information on multivariate ranks. In other words, this
alignment preserves the ranks of (Z;)!_; by (U;)?_; when T
is invertible and recovers the univariate case. In practice, we
may reconstruct G with 7' = G~! as in the case of normalizing
flow or treat a non-invertible 7' separately as in a diffusion
model; see subsequent paragraphs for examples.
Perturbation for Diversity and Protection. Recent re-
search in denoising diffusion models ([26], [17], [27]) has
demonstrated that adding Gaussian noise in the forward diffu-
sion process and subsequent denoising to estimate the initial
distribution F'z in the reverse process can effectively improve
the diversity of generated samples. Moreover, adding noise in
a certain form of data perturbation [14] can allow Z’ to satisfy
the differential privacy standard [25] for privacy protection.
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Fig. 1. Flowchart illustrating the PASS approach with rank matching and
distribution-preserving perturbation. PASS generates a synthetic sample that
closely retains the multivariate ranks of the original sample, ensuring privacy
protection. The transport G is applied to align the base distribution with the
target distribution (for example, the original distribution).

This discussion leads to the generation scheme of PASS,
which comprises three components, transport estimation, rank
preservation, and data perturbation:

(1) Sample U = (U;)?_, from the base distribution Fys;

(2) Compute the permutation map r(-) on {1,...,n} to

align the multivariate ranks of (U, ;))j_, with those of
(T(Z;))r_,, where T is a transport map from Fz to Fy.
Please see Section III in the supplementary materials for
additional details regarding r(-).

(3) Generate Z' =
zZ;=G(Vy),

(Z;)™_, by adding noise (e;)7_, ~ Fe:
‘/i = W(UT(’L)7 € ) 1, (1)

where W is a known perturbation function that injects
noise to U while preserving the base distribution, that
is, (V;)™_; will still be random sample from Fy = Fy,
and G is a transport map that pushes Fy to Fz. An
illustration is provided in Fig 1.

i);izl,...

Notable is that the equation (1) can be applied to embed-
dings of original data for dimension reduction, as demonstrated
in studies such as [26], [17], [27]. In (1), G and T represent
generation and rank preservation, respectively. For simplicity,
we estimate G by assuming its inevitability. However, in
certain cases, it is advantageous not to impose the invertibility
on G while estimating 7" separately, as in diffusion models. As
for perturbation, we can select W to preserve the multivariate
ranks of (U,(;))j=; by Vi, even after adding noise (e;)7, (see
Theorem 1). For example, Section IV in the supplementary
materials presents an additive form of W. Regarding the noise
distribution F,, we typically parametrize it as e = 7€, with
7 > 0 denoting the perturbation size and € ~ F¢ representing a
standardized noise distribution. When privacy is not a concern,
we can conveniently set 7 = 0 and select W as the identity
map. Additionally, when personalization and data integration
are not the primary focus, as in Section V, we can choose
r@i)=1dii=1,...,n.

Separation of (G,7) from a Downstream Task. Ide-
ally, we can repurpose the original sample Z to estimate
the transports G and T while executing a downstream task.
However, this approach is debatable regarding the validity of
the downstream analysis [28]. Whereas it offers valid inference
for a pivotal statistic H(Z), as demonstrated in Theorem 2,
it may yield overly optimistic conclusions in post-selection
inference [28]. To circumvent this problem, we recommend
using an independent holdout sample, usually available from
other studies on the same population. For example, training
examples for similar images could serve as holdout data to
learn the data-generating distribution for inference, as illus-
trated in Section VI. By separating downstream analysis from
estimating G and T, we guarantee the validity of an inference
even with finite sample size; see Theorem 2. If holdout data
is unavailable, a possible alternative is sample splitting, with
one subsample acting as a holdout sample. This method can
yield valid conclusions but may compromise statistical power
[29].

B. Data-Generating Distribution

Given a holdout sample S;, = (Z;);",, our objective is
to construct Fz, or equivalently é, in order to estimate the
data-generating distribution Fiz = Fy, o G~!. Building on this
foundation, PASS generates Z' = (Z!)_, following Fz, as
detailed in Lemma 1. Subsequently, we propose employing
generative models to reconstruct Fy, either explicitly by
approximating G with an invertible G, as in Fiz = Fy 0 G~*
as in normalizing flows [22], [30], [31], or implicitly through
sampling as in diffusion modeling [17], [18]. Consequently,
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large pre-trained generative models can enhance the estimation
accuracy of the data-generating distribution.

Explicit Estimation. We suggest estimating G by maximiz-
ing a likelihood function L(G;Sy), which is parameterized
through the distribution of V. Specifically, we obtain an
estimated transport G by

G = argmin (L(G;Sy) + A\P(G)), (2)
GeF

where F is a predefined function class, such as normalizing
flows, P(G) is a nonnegative penalty function, and A > 0 is
a regularization parameter. In (2), its constrained version can
serve the same purpose, as described by [32]. Furthermore,
due to the nature of G, we can explicitly obtain the analytical
form of Fz and the corresponding density, for example, in
normalizing flows [22], [30], [31].

Distribution Estimation of a Statistic H(Z) by PASS.
Given an estimate C;‘, we can obtain an estimated distribution
Fz = Fy o G™! when G is invertible. Notably, PASS
can generate synthetic samples using Z' = G(V) ~ Fy
derived from (1). Based on this, we propose a Monte Carlo
method for estimating the CDF F'y(z) of any statistic H(Z).
Specifically, we generate D independent synthetic samples
(Z'@N)D_ using (1), and construct the PASS estimate as an
empirical CDF: Fyy(zn(z) = D™ Z(?zl I(H(Z'Y) < x)
for estimating Fy, where each Z'(49) is from Fy by PASS.
Refer to Section IV for statistical guarantee and justification
of this approach.

C. Sampling Properties of PASS

Lemma 1 presents the sampling properties of Z’ generated
by PASS.

Lemma 1. (Sampling properties of PASS) Given Z' =

(Z)™, generated from (1) using G, assume that Fy is
independent of Z = (Z;)?_,. Then,

1) (Within-sample) Z' = (Z!)_, is an independent and
identically distributed (iid) sample of size n according
to Fy when Z is independent and identically distributed.

2) (Independence) H(Z') is independent of Z for any
permutation-invariant H in that H(Z) = H(Z,) with
Zx = (Z (i)}, where T represents any permutation
map on {1,...,n}.

Lemma 1 highlights the two advantages of a generated
PASS sample Z'. First, its iid property is unique and not
shared by any resampling approach. Second, the conditional
distribution of the PASS statistic H(Z') given Z is the same
as its unconditional distribution, a property not shared by ex-
isting resampling methods. This aspect is somewhat surprising
because the permutation invariance of a test statistic H allows
for rank preservation of Z’ without imposing dependence
between Z’ and Z. Note that a common test statistic H
is invariant concerning the permutation of the sample order
for an iid sample [33]. These two aspects ensure that the
PASS sample H(Z') accurately represents H(Z), leading to
a reliable estimate of the distribution of H(Z).

III. PERTURBATION-ASSISTED INFERENCE

For inference, data scientists often use a statistic H(Z) for
hypothesis testing or a confidence interval concerning 6 or its
functions. Based on the PASS framework described in Section
II, we estimate the distribution of H(Z), which permits a
valid inference through Monte Carlo simulation. We introduce
a generative inference framework called Perturbation-Assisted
Inference (PAI). PAI involves two independent samples: an
inference sample S = (Z;)"_, via H(Z) and a holdout sample
Sy = (Z;);", for estimating the generating distribution via
PASS. However, if H(Z) is pivotal, then holdout and inference
samples can be the same, as suggested by Theorem 2.

PAIL: MC inference with PASS generator

Hy P-value
PASS generator )
1. Base sample generation :>
- -
2. Rank matching F\:j
— [— T
3. Data perturbation — ¥4
riginal d

Fig. 2. Estimating the distribution of the test statistic under the null hypothesis
(Hp) through Perturbation-Assisted Inference (PAI) using the PASS generator:
A Monte Carlo (MC) approach.

To perform a hypothesis test, we proceed as follows:

(1) Estimation of Null Distribution of H(Z). Under the
null hypothesis Hy, we use the holdout sample Sy, for the
data-generating distribution of PASS in (1) to estimate
the null distribution of a test statistic H(Z), which
avoids sample reuse. Specifically, we generate D inde-
pendent copies of synthetic samples Z'(¥;d=1,..., D
via (1), where Fz(-) = Fz(- ;0°) with 8° being an
estimate of 6 under Hy. Then, we compute the empirical
distribution Fpy(zn(z) = D' 20 I(H(Z'D) < )
for any real  as the PASS estimate of F given D
independent copies of synthetic samples {Z'(9}D_ via
(1), where each sample Z'(?) is from Fy by PASS.

(2) Inference. We use the empirical null distribution F z")
to compute the rejection probability based on a trained
machine learner evaluated on an inference sample S; to
draw an inference. Moreover, we can convert a test into
a confidence set.

Connection with Other Generative Models. PASS is
compatible with various generative models for estimating the
transport GG in (1), which can utilize large pre-trained models
to enhance the accuracy of distribution estimation. Unlike
other generators, PASS maintains the ranks of an inference
sample and incorporates noise to diversify or safeguard the
original data.

Connection with Resampling. The resampling approach
tailors for low-dimensional numerical data [10], where Fz
can be accurately estimated based on Z. However, these
methods struggle with high-dimensional data due to the
curse of dimensionality. Additionally, the resampled data is
only conditionally independent, even when Z is independent.
For example, in the parametric bootstrap, conditioning on
Z ~ N(u,I), a sample ZZ ~ N(j1,I) assuming known
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identity covariance matrix I and g is the estimated mean
vector from Z. However, for its unconditional distribution,
EZP = Ep and Var ZB = Varji + I. This approach
can lead to overly optimistic conclusions in post-selection
inference as [t depends on a selected model [34], [11], [29].

In contrast, PASS produces an independent sample when a
holdout sample is independent of Z, as discussed in Lemma
1, which enables valid inference. Moreover, a PASS sam-
ple preserves the ranks of an inference sample, facilitating
personalization and data integration. Crucially, PASS can
generate numerical, unstructured, and multimodal data, such
as image-text pairs, allowing PAI to transcend the traditional
inference framework and tackle complex problems involving
unstructured and multimodal data inference.

IV. STATISTICAL GUARANTEE AND JUSTIFICATION

Given PASS samples Z'(¥) from Fy estimated on an
independent holdout sample, we provide a guarantee of va-
lidity of PAI by investigating PASS’s estimation error of
FH( z), as measured by theNKolmogorov—Smirnov Distance:
KS(Fr(zy, Fu) = supg |[Fr(zy(x) — Fu(x)|. Next, we
perform the error analysis for non-pivotal inference and pivotal
inference.

A. General Inference with Holdout

Theorem 1. (Validity of PAI) Assume that the estimated data-
generating distribution by PASS on a holdout sample Sy, of
size ny, is independent of an inference sample S. Moreover, H
is a permutation-invariant statistic calculated on S. Then, the
reconstruction error of FH(Z/) with the MC size D by PASS
satisfies: for any small 5 > 0, with probability at least (1—90),
% + |S‘ : TV(FZ7FZ)7
where TV(Fy, F,) is the total variation distance between the
distributions of F, and F,. Hence, PAI yields a valid test on S
provided that |S|-TV(Fy, F) — 0 as nj, — 0o and D — .

KS(Fpy(zy, F) < 3)

Remark 1. Note that |S|- TV(Fy, F;) — 0 requires that the
holdout size ny, = [Sy| should be larger than the inference
size n = |S| as TV(Fy, F,) — 0 at a rate slower than n;, .

Remark 2. For a diffusion model defined by a d-dimensional

Brownian motion, Theorem 5.1 of [35] establishes the error

bound between F, and F: under regularity conditions:
E[TV(F,, Fz)] = O(n, " @ (logny)

5(12#;181' )’

where the data-generating distribution F; belongs to the
Besov ball By, ([—1,1]%,C) with radius C > 0 and the L,-
modulus of smoothness r > d(1/p — 1/2), as measured by
the Lg-norm (p,q > 0).

Remark 3. For normalizing flows, Proposition 1 in the
Supplement Material provides an error bound for TV(F 2, Fz)
expressed in terms of the estimation and approximation errors
of a flow, which implies that TV(F,, F,) — 0 as nj, — 400
when the approximation error tends to zero, which we expect

as a flow serves as a universal approximator for complex
distributions [36].

Theorem 1 suggests that the estimation error of the PASS
estimate, F7(z/), is governed by two factors: the Monte Carlo
(MCO) error, %, and the estimation error of the data-
generating distribution, TV(Z, Z). The MC error diminishes
to 0 as the MC size, D, increases, while the latter depends on
the estimation method of G in (1) applied to a holdout sample,
Sy, which in general goes to 0 as n;, — 400. Moreover, PASS
can utilize large pre-trained models to boost learning accuracy
via knowledge transfer, which we may regard as an increase
in ny.

B. Pivotal Inference without Holdout

This subsection generalizes the previous result to a pivotal
H(Z) = T(8, 8) for parameter @, where T is a transformation
and 0 is an estimate of @ based on Z. In this situation, PAI
does not require a holdout sample, Fz(-) = Fz(- ;0) is
parametrized by 6, and Fz(-) = Fz(- ;:0) = Fy oG~1(- ;6),
where 6 can be any estimator of 6 due to the pivotal
property and (2) is no longer required. Moreover, given PASS
samples {Z’(d)}d’?:1 from Fz using PASS, the PAI pivotal is
H(Z'®) = T(8®,0), where 0D is an estimate of 6 on
Z'D.qd=1,...,D.

Theorem 2. (Validity of PAI for Pivotal Inference) The con-
clusion of Theorem 1 holds with TV(Z, Z) = 0 provided that
H(Z) is pivotal for 6. Hence, PAI yields a valid test on S
provided that D — .

Theorem 2 establishes that the PASS estimate FH( z’) can
exactly recover Fiy without any estimation error of the data-
generating distribution, provided that H(Z) is pivotal, even
though the estimation error occurs when estimating F'z. This
result improves the previous findings in [14] and justifies using
an inference sample S alone to estimate F'z for making pivotal
inferences.

V. APPLICATIONS
A. Image Synthesis

In image synthesis, deep generative models have been
popular due to the quality of generated synthetic images from
original images. Recently, researchers have demonstrated that
cascaded diffusion models [37] can generate high resolu-
tion with high-fidelity images surpassing BigGan-deep [38]
and VQ-VAE2 [39] on the Fréchet inception distance (FID).
However, such a comparison lacks uncertainty quantification.
Subsequently, we fill the gap to draw a formal inference with
the uncertainty quantification for comparing two distributions.

Given two multivariate Gaussian distributions Py =
N(po,X0) and P = N(u,X), the FID score is defined as
FID(Py, P) = ||po — |3 + tr (20 S (220)%), where
I - || is the Lo-norm, and tr denotes the trace of a matrix.
For measuring the quality of generated images, we usually
calculate FID on the feature maps extracted via Inception-V3
model [40], a pre-trained vision model that has a great capacity
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for extracting visual signals. In our case, Py and P would be
the original and generated distributions of those feature maps.
Here, we test

Hy :FID(Py,P) =0, H,:FID(P,,P) > 0. 4)

Then, we construct a test statistic as follows: T = FID(PO, ]5)
the empirical FID score between the empirical distribution of
test images P, and that of synthesized test images P using a
trained model, on feature maps from the Inception-V3 model.

To train PASS for PAI inference, we create two independent
sets of images denoted by Sy, = (Z;)""; and S = (Zl-);;h;h"+1
for holdout and inference, where Z; represents the ¢-th image.
For image generation, we further split the inference sample
S into training and test sets for training and evaluating a
generator, which is a common practice. Then, we proceed in
three steps. First, we train a PASS generator on a holdout
sample S, to generate the null distribution under the null that
there is no difference between the PASS and the candidate
generators under Hy. Second, we train a candidate generator
on the training set, with which we evaluate its performance us-
ing the test statistic 7 = FID(P,, P) on the test set, where P,
and P are the estimated distributions from the baseline and the
candidate generator. Third, we generate D independent copies
of synthetic images (Z;(d))?zl from the null distribution using
PASS;d =1,...,D. Then, we compute the corresponding test
statistics (7?)2_, to obtain the empirical null distribution of
T on S, where T(9) = FID(P,, P(9) evaluated on S, and P(9)
is obtained on (Z;(d>);’:1. Finally, we compute a two-sided'
P-value using (7?)2_, and T based on S. For detailed steps
of this computation, refer to Algorithm 1 in the supplementary
materials. An illustrative representation of this procedure can
be found in Figure 3.

PAI: Assess generative models

H, : Candidate generator generates high-fidelity samples (d(Py, P) = 0)

Reject H

Fail to reject H,
——"x

Fig. 3. Illustration of assessing generative models using PAL d(-, -) represents
distributional distance. A test statistic in the tails (red) suggests statistical
evidence against the candidate model generating high-fidelity samples. Con-
versely, a test statistic near the mode (blue) indicates the opposite. For further
details, see Algorithm 1 in the supplementary materials.

Test statistic
T = d(Py, Py)
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B. Sentiment Word Inference

Given the unstructured nature of data and the complexity of
modeling techniques such as transformer-based models, infer-
ring important words for a learning task can be challenging.
In this section, we perform a significance test for the feature
relevance of a collection of positive, negative, and neutral
words for sentiment analysis of text reviews labeled as positive
or negative.

!Given that the knowledge is unknown concerning the performance of a
candidate generator over the PASS generator, we perform a two-sided test to
avoid Type-III error.

Let W) be the words of interest. Consider the null hypoth-
esis Hy and its alternative hypothesis H,:

Ho: R(f°) = R(fv,,) =0, Ha:R(f°) = R(fiv,,) <0, (5)

where R represents the risk under the data distribution, and

f° and fSVM are two population risk minimizers of decision
functions on all words W and those with masked words of
W, respectively. The masked words of VW are those highly
attended words of W by transformer-based models such as
BERT [41] on training samples. It is important to note that
masking highly attended words of W is crucial since state-of-
the-art embedding models such as BERT can infer words that
other embedding models such as Word2Vec [42] are incapable
of. For more details, refer to Section VI-B.

PALI constructs a test statistic 7" using the empirical risk R,,
evaluated on an inference sample that is independent of the
training sample:

_ Rn(f) _Rn(fWM)
SE(Ru(f) = Bu(fwi))’
where f and fWM are the corresponding trained decision
functions, R,, is the empirical risk evaluated on an independent

inference sample, and SE(-) denotes the standard error. Refer
to Figure 4 for a visual representation of the test statistic.

(6)

Wi

Hy : Positive-sentiment words do not contribute to the classification (R(f") — R(fyy,,) = 0)

Fig. 4. Illustration of the black-box test statistic [13] employed for assessing
feature significance within sentiment classification. If the tested words hold
importance for the classification, the risk associated with the masked classifier
is expected to be elevated.

For sentiment analysis, we further split the inference sample
S into training and test sets for training and evaluating a
classifier, as in Section V-A. Then, we proceed in three steps.
First, we train normalizing flows on S;, to generate the joint
null distribution of masked embeddings and sentiment labels
under Hy. Second, we train sentiment classifiers f and fWM
respectively on the training set and its masked version to
get test statistic (6). Third, we generate D datasets on the
embedding space E(%) (XD v/ from the null
distribution estimated by PASS to compute corresponding test
statistics (7®)2_, on the test set to obtain the empirical null
distribution of T, where X z{(d) and Yi/(d) represent embedding
and corresponding sentiment label, T(?) = R(@ /SE(R()
and R = R,(f@D) — R,( A‘%L) are calculated on S(%).
Finally, we obtain the P-value of T' evaluated on the test
set by comparing its value with the empirical distribution of
(T)P_,, cf., Algorithm 2 in the supplementary materials
for details and Figure 5 for an illustration of this procedure.
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PAL: Sentiment words inference

PAI: Multimodal inference

H, : Positive-sentiment words do not contribute to the classification (R(f°) — R(f‘L,'V”) =0)

Movie reviews
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Fig. 5. Depiction of sentiment words inference using PAI. Words under test
and their contextual surroundings are masked according to attention thresholds
to compute the test statistic; detailed explanation in Section VI-B. PAI operates
within the embedding space formulated by DistilBERT; see Algorithm 2 in
the supplementary materials for comprehensive steps.

C. Text-to-Image Generation

Stable Diffusion, a latent diffusion model [26], can generate
detailed images given a text prompt. This subsection performs
a conditional inference to quantify the statistical certainty of
text-to-image generation. Given two text prompts x(!) and
x(?), we construct a coherence test for corresponding gen-
erated images Y(") and Y by contrasting their conditional
distributions P(y|z™) and P(y|z(?).

For uncertainty quantification, we use the Inception-V3
embeddings e(®) [43] for images Y®): k= 1,2. Under the
Gaussian assumption [44], we define the FID score FID( Py, P»

between the distributions of two embeddings e k= 1,2,
as a coherence measure for hypothesis testing:

Hy : FID(Py, P;) =0, H, :FID(P,, P,) > 0. ©)

Moreover, we construct 7' = FID(Pl, ]52) as a test statistic,
where Py is the corresponding empirical distribution of image
embeddings on an inference sample of size ny; k=1, 2.

For PAI inference, we use the pre-trained Stable Diffusion
model [26], a state-of-the-art text-to-image generative model,
as our PASS generator. Then, we apply PASS to simulate the
null distribution of test statistic 7". Given prompt x(*), for d =
1,..., D, PASS generates synthetic samples from P, resulting
in synthetic embeddings (el(-k))?:lfnz, of which (ez(-k))?:l1 and
(egk))?:lifjl are used to calculate FID score T,Ed), which
then renders a sample of the test statistic (Ték))kzl}g;dzl’m’D
of size 2D, under the null hypothesis. Under the null that
P, = P, there is no difference between the distribution of egl)
and that of e§2), and thus T,gd) would be a good estimate for
the FID score under H, using synthetic samples from PASS.
Additionally, T,Ed) also accounts for the symmetry between
P, and P, when calculating FID score. By randomly mixing
them, we obtain an estimated null distribution for 717; c.f.,
Algorithm 3 in the supplementary materials for details and
Figure 6 for an illustration of this procedure.

H) : Two prompts share the same visual signals (d(Py, Py) = 0)

Tz =[]
GInaats

~ P} ~P;

Original data P-value

Fig. 6. Illustration of performing multimodal inference using PAI. Simulated
test statistics from both prompts using PASS under Hg are mixed to obtain the
estimated null distribution; See Algorithm 3 in the supplementary materials
for details.

VI. NUMERICAL RESULTS
A. Image synthesis

This subsection applies PAI in Section V to hypothesis
testing (4) on the quality of image synthesis using the CIFAR-
10 benchmark [45]. This dataset consists of 60,000 images of
size (3 x 32 x 32) in 10 different classes, with 50, 000 training
and 10,000 and test images.

To synthesize images, we use the CIFAR-10 training set
while we use a randomly selected subset of size n of the
CIFAR-10 test set for inference. Additionally, we split the
CIFAR-10 training set equally into a holdout sample of size
np = 25,000 and another sample of size n; = 25,000,
respectively for training a PASS generator (reference) and
training competitor generators. In (1), we use a diffusion
model (DDPM, [18]) as our baseline generator, denoted by
PASS-DDPM. We compare the FID scores of three candi-
date generators against the baseline generator PASS-DDPM,
including DDPM, deep convolutional GAN (DCGAN, [23]),
and generative flow (GLOW, [22]); see Fig 7 for samples of
the generated images by these generators. To compute the FID
scores, we use a 2048-dimensional feature map extracted from
an intermediate layer of a pre-trained Inception-V3 model [43]
on generated images.

For the hypothesis test in (5), we use PASS-DDPM with
D = 500 to estimate the null distribution of the FID score
and then compute the corresponding P-value for an inference
sample, as shown in Table I. Fig 8 illustrates that the empirical
null distribution of the FID score varies with the inference
sample size n and becomes more concentrated as n increases.
This observation highlights the importance of performing un-
certainty quantification for the FID score since relying solely
on the numerical score could be misleading. Furthermore,
we find that DDPM, a generator similar to PASS-DDPM,
has a P-value of .78, indicating no significant deviation from
the baseline PASS-DDPM. However, DCGAN and GLOW
exhibit substantial differences from PASS-DDPM, with P-
values of .00 at a significance level of a = .05. We confirm
this conclusion as the inference sample size increases from
n = 2,050 to n = 10, 000.

The experiment result shows that DDPM generators are
comparable to the baseline PASS-DDPM, but DCGAN and
GLOW show significant differences. It underscores the need
to account for uncertainty in the FID score to avoid drawing
incorrect conclusions about the generation performance.
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Fig. 7. Generated CIFAR-10 images with dimensions (3, 32, 32), using PASS,
DDPM, GLOW, and DCGAN methods (from top to bottom), trained on a
dataset of 25,000 images.

TABLE 1
FID SCORES AND THEIR P-VALUES FOR TESTING (4), COMPARING THREE
GENERATORS, DDPM, DCGAN, AND GLOW, AGAINST THE BASELINE
PASS-DDPM. HERE FID SCORES ARE COMPUTED ON
2048-DIMENSIONAL FEATURE MAPS OF THE INCEPTION-V3 MODEL [43]
WITH n TEST AND n SYNTHESIZED IMAGES, AND DIST-AVG DENOTES
THE AVERAGE FID SCORES OF PASS-DDPM.

Inf size/Generator DDPM DCGAN GLOW DIST-AVG

n=2.050 FID 49.55 92.93 76.37 49.75

T P-value 78 .00 .00
FID 36.83 80.11 64.32 37.04

n=5,000 Pvalue .65 00 00
FID 32.57 76.17 61.01 32.58

n = 10,000 P-value 72 .00 .00

B. Sentiment Word Inference

This subsection applies PAI to construct a significance
test for quantifying the relevance of sentiment collections
of positive, negative, and neutral words, in the context of
sentiment classification on the IMDB benchmark [46]. This
dataset comprises 50,000 movie reviews labeled as positive or
negative. The goal is to determine whether each collection of
words contributes significantly to sentiment analysis.

To perform sentiment analysis, we use a pre-trained Dis-
tilIBERT model [19] to generate text embeddings. Then, we
estimate the null distribution of a test statistic using a nor-
malizing flow with a holdout sample of size n;, = 35,000,
followed by the test (4) in Section V-B with an inference
sample of size n = 5,000 with a sentiment classifier trained
on an independent training set of size 10, 000.

Extraction of Sentiment Words. We extract positive and
negative sentiment words of IMDB reviews while treating any
remaining words as neutral words based on the opinion lexicon
provided by [47]. Then, we extract |Wj;| = 600 most frequent
positive and negative, and neutral words in each collection for
inference. Table II displays subsets of these words.

Masking Contexts of Sentiment Words. One main chal-
lenge is that BERT-like models [41] have the capability of
inferring the context information of sentences via unmarked
words due to the use of masked-language modeling for
training. As a result, simply masking uni-gram sentiment
words does not impact sentiment analysis. To solve this issue,
we propose to mask the context of each target word by
thresholding attention weights from a pre-trained transformer

Estimated null distribution of FID scores using reference DDPM

s n = 2050
Test-stat-DDPM
Test-stat-DCGAN
Test-stat-GLOW
0.8 n = 5000

N 0.059 Test-stat-DDPM
= Test-stat-DCGAN
506 0.025 7 Test-stat-GLOW
e 0,000, * n = 10000
Test-stat-DOPM
X Test-stat-DCGAN
+ Teststat-GLOW

nmn
+ X *
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Fig. 8. Empirical FID score distributions with inference sizes n =
2050, 5000, 10,000 based on D = 500 PASS samples from our PASS-
DDPM, represented by colors blue, orange, and green. The FID score is
computed using 2048-dimensional features extracted from the Inception-V3
model [43].

encoder such that 2% of the context words are masked.

Training via Transfer Learning. To perform sentiment
analysis, we construct a classifier by appending a classification
head to a pre-trained uncased base DistilBERT model [19], a
lighter version of BERT, which permits efficient comprehend-
ing of the context. We then fine-tune the model using IMDB
review data and obtain fine-tuned embeddings for subsequent
tasks. As a result, the model achieves high test accuracy with
only a few epochs of fine-tuning.

Learning Embedding Distribution by Normalizing
Flows. To train a PASS on the embedding space, we train
a RealNVP [31] with affine coupling layer on an independent
holdout sample np, = 35,000 to learn the joint distribution of
the pair of text embedding and sentiment label. Specifically,
we first learn the marginal distribution of sentiment labels and
then use normalizing flows to learn the conditional distribution
of text embeddings given a sentiment label. The learned flow
will be used to emulate the null distribution of the test statistic.
For more training details, please refer to Section II-B in the
supplementary materials. As Fig 9 suggests, PASS produces an
accurate joint null distribution of the word-label pair, evident
from the corresponding marginal and conditional distributions
given the label.

PAI. We apply PASS to generate D = 200 synthetic sam-
ples from the null distribution learned from the normalizing
flows. Then, we use a training sample of size n; = 10,000 to
train a classification model while computing the test statistic
on the inference sample of size n = 5,000, with the same
splitting ratio for all synthetic samples.

Table II and Fig 10 show that positive and negative words
have significant P-values of .045 and .015, while neutral words
are insignificant with a P-value of .715, at a significance level
of a = .05. In other words, positive and negative sentiment
words, particularly their contexts, are important predictive
features for sentiment analysis.

To understand the contribution of PASS for simulating the
test statistic null distribution, we note that the joint null
distribution of positive, neutral, or negative words does not
follow the standard Gaussian with an MC size of D = 200, as
indicated by Table III. Their distributions differ significantly
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TABLE 11
DEGREE OF THE IMPORTANCE OF THREE COLLECTIONS OF 600 OF
POSITIVE, NEGATIVE, NEUTRAL WORDS, AS MEASURED BY THE P-VALUE
AGAINST THE IRRELEVANCE OF EACH COLLECTION BY PAI WITH AN MC
SIZE D = 200.

Selected sentiment words P-value

“gratitude, radiant, timely, robust, optimal, thoughtfully, cooperative,
calming, assurance, oasis, elegant, remarkable, restored, fantastic, 045
diplomatic, fastest, excellence, precise, brisk, warmly, ...”

Positive

“cringed, vomit, excuse, vomiting, fails, ashamed, boring, limp,
ridiculous, aground, scrambled, useless, snarl, annoying, bland, 015
unnatural, incorrectly, dire, idiot, leaking, ...”

Negative

“administering, reorganized, curving, gleamed, relinquished, circled,
seeded, streamed, curved, scholastic, canning, acc dated, voluntary, 715
cooled, rained, defected, regulated, ousted, straightening, renaming, ...”

Neutral

Unconditional DistIIBERT embeddings Conditional embeddings (Positive) Conditional embeddings (Negative)
(Posi iegative)

Fig. 9. Two-dimensional projections from null distributions by PASS (blue)
from an affine coupling flows trained on a holdout sample of size n; =
35,000 versus the true distribution (red) via 768-dimensional DistilBERT
embeddings. The marginal distribution of combined words and conditional
distributions for positive and negative reviews are from left to right.

from their asymptotic distributions [13], despite their smooth
curves resembling the Gaussian distribution, as shown in Fig
10. As a result, the asymptotic test in [13] is not appropriate in
this situation. This result demonstrates the usefulness of PASS
when a test statistic’s distribution significantly deviates from
its asymptotic distribution.

— KDE - Mean std Dev

Comparison of Three Null Distributions

X Test statistic

(Negative) p value = 0.015

A

% 4 —2 0o 2 4 6 -8 -6
Test statistic

(Positive) p value = 0.045 (Neutral) p value = 0.715

030

Density
Density

4 270 2 4
Test statistic

% 6 -4 —2 0 2 4 6 -8
Test statistic

Fig. 10. Empirical null and their kernel smoothed distributions of the test
statistic 7" for positive (blue), negative (orange), and neutral (green) sentiment
words, based on PASS with an MC size D = 200 for the hypothesis (5).
Here, red crosses represent the test statistic’s values calculated on an inference
sample, while the dashed line and two dotted lines represent the empirical
mean and standard error.

C. Text-to-Image Generation

Consider four prompts as follows: Prompt 1 - “The sun sets
behind the mountains”, Prompt 2 - “The sun sets behind the

TABLE III
THE KOLMOGOROV-SMIRNOV TEST FOR THE DISCREPANCY BETWEEN
THE TEST STATISTIC’S DISTRIBUTION AND THE STANDARD GAUSSIAN.

Empirical mean Std Err  KS test statistic  P-value (two-sided)

Positive -.028 1.530 124 .004
Negative -.083 1.659 128 .002
Neutral -.137 1.749 157 .000

mountains”, Prompt 3 - “The mountains with sunset behind”,
and Prompt 4 - “The mountains with a night sky full of
shining stars”. The four prompts have different levels of
similarities: Prompts 1 and 2 are identical, Prompt 1 (or 2)
is similar to Prompt 3, and Prompt 4 differs from all three
above, with the Cosine similarity of 1, .891, .590, and .607
in Table IV. Visually, images from Prompts 1 (or 2) and 3
appear very similar with only slight differences, whereas those
from Prompt 4 display stars and look dramatically different,
as illustrated in Fig 11. Next, we will confirm the visual
impressions through our coherence test in (7).

Py 2
“The sun sets behind the mountains.”

Prompt 3
“The mountains with sunset behind."

Prompt 4:
*The mountains with a night sy full of shining stars.”

Fig. 11. Generated images given different prompts by Stable Diffusion. The
image size is cropped from (512, 512) to (299, 299) to accommodate the input
shape for the Inception-V3 model [43].

TABLE IV
COMPARISON OF FOUR PAIRS OF PROMPTS WITH THE COSINE SIMILARITY
ON THE CLIP TEXT EMBEDDINGS, THE FID SCORE TEST STATISTIC, AND
THE P-VALUE BY PASS WITH D = 200, ON 192-DIMENSIONAL
EMBEDDINGS FROM THE INCEPTION-V3 MODEL.

Cosine similarity FID score P-value
Prompts 1 and 2 (same) 1.000 .544 .990
Prompts 1 and 3 (similar) .891 1.010 124
Prompts 1 and 4 (different) .590 14.250 .000
Prompts 3 and 4 (different) .607 14.172 .000

To apply PAI for testing in (7), we construct a PASS
generator using a pre-trained stable diffusion model to generate
two image sets given two prompts. This pre-trained model is
a well-trained state-of-the-art text-to-image model (equivalent
to np — +00). Then, we compute the FID score of 192-
dimensional Inception-V3 embeddings between the two sets
of images. To simulate the null distribution, we apply PAI to
the test statistic with an MC size of D = 200 for both image
sets, where the effective size of a sample is 400.

Images generated under Prompts 1 and 2, and Prompts 1 and
3, are statistically indistinguishable, given the corresponding
P-values of 0.99 and 0.124 at a significance level a = .05 in
Table IV. In contrast, Prompts 1 and 4, and Prompts 3 and 4
significantly differ in image generation as they have different
implications. Moreover, we construct more pairs of prompts to
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obtain a spectrum of cosine similarity versus FID score, along
with the corresponding test results. As illustrated in Fig 12, a
small FID score and a large Cosine similarity imply that two
prompts are conceptually equivalent or similar, which can be
captured by the test under different significance levels.

Text cosine similarity vs. Image FID score

Under level 0,01 Under level 0.10:
+ Reject . Reject

i
Fail to reject Fail to refect

Fig. 12. Pairs of FID score and Cosine similarity on embeddings generated
from CLIP versus the FID score (test statistic) computed based on 192-
dimensional features from the Inception-V3 model [43], under different
significance levels a = .01, .05, .1. Each point in the plot represents a pair
of prompts.

D. Prediction Interval

We perform a simulation study to evaluate the accuracy and
precision of prediction intervals created using PAI with a PASS
generator and compare them to those obtained through the
conformal method [11]. We use a simulation model where the
ground truth is accessible for assessment:

Y =8+ X7 + X2X3 + cos(X4) 4+ exp(XsXe) +0.1X7 + €, (8)

where X = (X1, ..., X7) follows a uniform distribution over
[0,1]7 (Uniform(0,1)7), and € is normally distributed with
zero mean and standard deviation 0.4 x X;. We generate 3, 200
samples from (8), dividing them into 3,000 for training and
200 for testing.

To generate a conditional generative model of Y|X, we
employ a method suggested by ([48], [49]). Initially, we train
a TabDDPM ([50]) as our PASS generator on the training data
to model the joint distribution of (Y, X). Then, we adjust
the reverse process of the diffusion model for conditional
generation without re-training. A predictive interval with a
coverage level of 1 — « can be defined as (I, u), with [ and u
being the lower 5 and upper 1— $ quantiles of the conditional
distribution, estimated using the MC approach with PAIL

In our experiments, we set « = 0.05 and compare the PAI
prediction intervals against those from conformal inference.
Specifically, for the latter, we split the training dataset further
into a modeling sample of 2,400 and a calibration sample of
600. The former is used to train a CatBoost predictive model
[51], while the latter helps construct conformal scores for
uncertainty quantification. We evaluate the prediction intervals
of both methods on the test sample.

Here, we highlight that the sizes of perturbations do not
compromise the validity or accuracy of the learned distribu-
tion, due to using distribution-preserving perturbation func-
tions, c.f., (1). This claim is reinforced by the results depicted
in Figure 13, demonstrating that the distribution learned by
the PASS algorithm remains consistent across various pertur-
bation sizes 7 € {0,0.2,0.5,1}, closely matching the true
underlying distribution. Additional validation comes from the
data presented in Table V, which shows negligible variation

10

in distributional distances under the 1- and 2-Wasserstein
distances 2, and Fréchet Inception Distance (FID)? for different
perturbation sizes, all suggesting comparable generative error
rates. In conclusion, the perturbation size only does not affect
PAI, which utilizes the MC simulation method.

About 68% of the intervals using PAI are found to be shorter
than those obtained via conformal inference, as depicted in
Figure 14, where PAI intervals are contrasted with those
from conformal inference and the actual values on randomly
selected test points. PAI intervals also show a better alignment
with the true values, highlighting PAI’s effectiveness as a non-
parametric inference method.

Furthermore, PAI prediction intervals maintain accurate
coverage probabilities. As illustrated in Figure 15, while
conformal inference intervals tend to be wider and more
conservative, PAI intervals achieve nearly exact coverage:
their median coverage probability is 0.95, consistent with the
specified level. However, PAI’s average coverage probability
is slightly lower at 0.9 due to outliers in the underlying model
with small variance and some bias in the PASS generator,
which slightly mis-aligns the prediction intervals’ centers,
despite the estimated lengths being close to the actual values.

Fig. 13. Kernel density estimates (KDE) of marginal distributions for (Y, X)
as learned by PASS for perturbation sizes 7 € 0,0.2,0.5,1, compared
with those from an independent evaluation sample of size 3,000 from the
underlying true distribution (blue).

TABLE V
DISTRIBUTIONAL DISTANCES BETWEEN THE SYNTHETIC SAMPLE AND AN
EVALUATION SAMPLE FROM THE UNDERLYING TRUE DISTRIBUTION, EACH
OF SIZE 3,000. PARENTHETICAL NUMBERS REPRESENT THE STANDARD
ERRORS DERIVED FROM REPEATED EXPERIMENTS.

7=20.0

0.024 (0.005)
1.238 (0.004)
1.298 (0.005)

T=0.2

0.023 (0.005)
1.237 (0.004)
1.296 (0.004)

7=0.5

0.023 (0.005)
1.238 (0.005)
1.289 (0.005)

7=1.0

0.024 (0.005)
1.238 (0.005)
1.298 (0.006)

FID
1-Wasserstein
2-Wasserstein

VII. CONCLUSION

This paper introduces PAI, a novel inference framework
grounded in a generative scheme, PASS, which facilitates
statistical inference from complex and unstructured data types
such as images and texts. PAI addresses the lack of effective
uncertainty quantification methods in black-box models like
deep neural networks.

Zhttps:/pythonot.github.io/quickstart. html#computing- wasserstein-distance
3Note that FID is 2-Wasserstein distance under Gaussian assumption.
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Fig. 14. Comparison of the 95% prediction intervals obtained using PAI
(depicted in green), conformal inference (depicted in orange), and the actual
observed values (depicted in blue), for a randomly selected subset of 15 data
points from the test set.
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Fig. 15. Comparison of the coverage probability distributions obtained using
PAI (in green) and conformal inference (in orange), based on 200 test points.
The plot is divided into two sections for each method: the upper section
displays the Kernel Density Estimate (KDE) of the probabilities, while the
lower section presents the boxplot of the distribution. Additionally, an inset
within the plot highlights the prediction intervals for outliers identified by
PAL

The PAI framework, building on PASS, specializes in esti-
mating the distribution of statistics through Monte Carlo exper-
iments, offering a robust method for statistical inference. A key
strength of PAI is its theoretical guarantee of inference validity,
even in scenarios of scarce data. This paper demonstrates its
broad applicability.

Nonetheless, PAI has its limitations. Its primary challenge
is the computational demand during Monte Carlo experiments.
Also, PAI’s performance and accuracy largely depend on the
effectiveness of PASS.

On the other hand, PASS utilizes generative models, such as
diffusion models and normaliing flows, to mirror the raw data
distribution. It can also harness large pre-trained generative
models to enhance estimation accuracy. PASS’s generator sup-
ports data integration and personalization through multivariate
rank matching on latent variables, maintaining privacy via
data perturbation. Theoretically, we explore PASS’s sampling
properties, confirming the approximation of latent variable
ranks post-data perturbation. Experimental results highlight
PASS’s superior generation quality.

Our primary goal is to provide researchers with tools
that foster reliable and reproducible conclusions from data.
These tools have the potential to enhance the credibility and
reliability of data-driven discoveries and statistical inferences.
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