Math. Res. Lett.
Volume 30, Number 3, 945-968, 2023

A theorem on Hermitian rank and
mapping problems

MING XIAO

In this paper, we first prove a Huang’s lemma type result. Then we
discuss its applications in studying rigidity problems of mappings
into indefinite hyperbolic spaces and bounded symmetric domains.

1. Introduction

It is a classical problem in several complex variables to understand proper
holomorphic maps between complex unit balls since the pioneer work of
Poincaré and Alexander (see [Al]). The classical result of Alexander as-
serts that any proper holomorphic self-mapping of the unit ball B" in C"
must be an automorphism if n > 2. Since the work of Webster [W], much
effort has also been made to study proper maps between unit balls of dif-
ferent dimensions. See [Fr|, [CS], [St], [Hu|, [HJY], [DX] and many refer-
ences therein for research along this line. A seminal step toward under-
standing this problem was made by Huang in [Hu|. Huang proved when
n < N < 2n — 2, any proper holomorphic map F from B" to B is totally
geodesic with respect to the Bergman metrics if F extends C?—smoothly up
to some open piece of the boundary 0B". One crucial ingredient in his proof
is an algebraic lemma (Lemma 3.2 in [Hu|), which is nowadays known as
Huang’s lemma in the field due to its wide applications. This lemma reveals
the deep connection between the mapping problem in CR geometry and
the rank problem in real algebraic geometry. Here we recall the definition
of the rank of a real polynomial or more generally a real-valued real ana-
lytic function R(z,%) at some point zg € C. Suppose R(z,Z) can be written
as R(2,z) = > b |fi(2)]? — ;1-:1 19;(2)|%,p, ¢ € Z>o, where f/s and g;s are
holomorphic functions near zg, and fi,---, fp,91,--- ,gq are linearly inde-
pendent over C. Then we say R(z,Z) is of finite rank and r = p + ¢ is called
the rank of R(z,%z). We remark that the rank of R(z,%) is independent of
the choices of f/s and g’s. The rank of R(z,%) is zero if and only if R(z,%)
is identically zero.
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Huang’s lemma can be stated as follows. Write z = (z1, -+ , zp,) for the
coordinates in C™,m > 2. Write |z| for the Euclidean norm of z. Let A(z,%)
be a real analytic function near 0 such that

(1.1) (2,2)|2]* = 21/1]

where 1)j(z) and ¢;(z) are holomorphic functions near 0 € C™. Then A(z, %)
must be identically zero. In the particular case when A(z,Z) is real-valued,
Huang’s lemma implies the rank of A(z,Zz)|z|? cannot be less than m unless
A(z,Zz) is of rank zero. The importance of Huang’s lemma lies in the fact
that it provides an effective tool to detect the degeneration of CR second
fundamental form of a CR maps between spheres (see [Hu] for more details).
For more discussion on various versions of Hermitian rank problems and their
connections to mapping problems, see [DL], [E1], [E2] and references therein.
Recently, Ebenfelt systematically studied a rank problem (i.e., the sums of
square problem introduced in [E2]. See also [E1]) in real algebraic geometry
and discussed how it is related to a gap rigidity phenomenon (see Huang-Ji-
Yin [HJY]) for proper maps between unit balls. Huang’s lemma also plays
an important role in the study of mapping problems into generalized balls
or hyperquadrics. Recall the generalized ball B}',0 <1 < n — 1, is defined as
the following open subset of P™ :

B = {[z0, - -, 2n] € P": \z0|2 + -+ \zl|2 > |zl+1|2 4+ -+ \zn|2}.

The generalized ball has an important geometric feature as it inherites a
canonical metric that is invariant under the action of its automorphisms:

l n
wpp = —v/—100log( Y |17 = 3 1z
j=0

j=l+1

When [ = 0, the metric is identical with the (normalized) Poincaré metric
on the unit ball. The generalized ball equipped with the metric wg; is often
called the indefinite hyperbolic space. See [BH], [EHZ], [BEH]| for many
deep results on mappings into generalized balls or hyperquadrics, as well as
various different versions of Huang’s lemma and their applications. See also
recent papers [HLTX1, HLTX2] and references therein. Roughly speaking,
the complexity of proper holomorphic maps from B;' to B{Y depends heavily
on [ and !’. We mention the following result of [HLTX2]. Here we say a
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holomorphic map F' from an open subset V' of B}’ to IB%l]Y is isometric if
F*(wpy) = wpp on V.

Theorem 0.1 (Huang-Lu-Tang-Xiao [HLTX2])  Let N>n>3 ,
1<1<n—-2,1<U'<N-—1. Let U be an open subset in P" containing
some p € OB and F be a holomorphic map from U into PN, Assume
UNBY is connected and F(UNBY) CBY, F(UNOBY) C OBY. Assume
one of the following conditions holds:

(0. I'<2l,l'<n—1;
(2). I'<2l,N -1 <m
(3). N-l'<2n—-2-1,I'"<n—1;
(4). N=I'<2n—-2l—-1,N-1'<n.

Then F is an isometric embedding from (U NB},wg;) to (ny,wﬁlz\/).

The main result of the paper is a Huang’s lemma type theorem, i.e.,
Theorem 1. To explain our result, we first introduce some notations. Fix
0 <1< m, we denote by ¢;; the symbol which equals —1 when 1 < j <1
and equals 1 otherwise. In particular, if [ = 0,0, is identically one for all
j > 1. Write z = (21, - , 2, for the coordinates in C™. For z,w € C™, we
write (z,w); = 77", d;2w; and |z|? = (2,Z);. If | = 0, we have |2|3 = |z|°.
Denote by I; ,,, the diagonal m x m matrix whose first [ diagonal entries are
—1 and the rest are 1. We are now at the position to introduce our main
theorem.

Theorem 1. Let m >3 and 0 <1 <m. Let {¢;(2)}]L; and {¢;(2)}]L; be
holomorphic functions in z € C™ near 0. Assume there is a real-analytic
function A(z,z) near 0 such that

(1.2) Az, 2)|2l] =D ¢5(2)95(2).
j=1

If A(z,%Z) £ 0, then there exist holomorphic functions hy, hy near 0, and
B,C € GL(m,C) with BC' = 1), such that A(z,Z) = hi(2)ha(2), and

(¢17"’ ﬂpm) = hl(z)('zl?"' ,Zm)B; (¢17‘ e 7¢m) = hQ(Z)(Zh' o 7Zm)C‘

Remark 1.1. Ifin addition A(z,%) is real-valued in Theorem 1, then we can
choose in such a way that hy = hy or hg = —hy, and thus A(z,%) = +|h1(2)|?
for some holomorphic function h; near 0.
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The following result is an immediate consequence of Theorem 1.

Corollary 1.1. Let m and l be as in Theorem 1. Let 0 < 7,77 < m such
that 1 < 1% 4+ 77 <m. Let A(z,Z) be a real-valued real analytic function
near 0, and {a;(2)}1_4, {bj(z)};;1 be two sets of holomorphic functions near
0 such that

Az 22l = = lai(2))> + ) Ibi(2)*
i=1 j=1

Then one of the following three mutually exclusive cases must hold:

1) A(z,z) =0.

2) A(z,%) = |h(2)|?> for some nonzero holomorphic function h(z) and
=Lt =m-—1L.

3) A(z,2) = —|h(2)|? for some nonzero holomorphic function h(z) and
T =m-1,7" =1

Moreover, in case (2) and (3), {ai(2),bj(2) hi<i<r— 1<j<r+ must be linearly
independent over C.

We remark that Theorem 1 and Corollary 1.1 both fail if m = 2. For
example, let 2z = (21, 22) € C% and A(z,%) = |21]2 — |22|%. Then A(z,%)|2|? =
|21|* — |22/, and A(z,%) does not satisfy the conclusions of Theorem 1 and
Corollary 1.1. See also the following more general examples.

Example 1.1. 1) Let 2= (21,22) €C? and A(z,2) =[x 2+
1222+ 4 |22 for n>2. Then A(z2)|z[2=
|21’2n _ |2’2‘2n.

2) Let 2z = (21, 22) € C% and let k > 2. Note that there exists a unique real
polynomial A(z,%) such that A(z,%)[z|2 = |21]?" — |22|*", and A(z,%)
does not equal #|h(2)|? for any holomorphic function h(z).

We remark that, when 0 <! < m, one can also directly prove Corol-
lary 1.1 by using the result of [BH] or [BEH]. Indeed, if 0 <[ < m, the
map (a1(z), -+ ,ar-(z),b1(2), -+ ,by+(2)) induces a holomorphic map send-
ing the quadric {|z|? = 0} to another quadric. Then similarly as in the proof
of Lemma 2.3 in [BEH], one can reduce it to a mapping problem between hy-
perquadrics and so that the rigidity result in [BH] or [BEH] can be applied.
This approach, however, does not work for the cases | =0 and [ = m.
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We will prove Theorem 1 by reducing it to a mapping problem. One will
see that the proof of Theorem 1 breaks down when m = 2 due to the failure
of Poincaré type result in one dimensional case (see §2). Note Corollary 1.1
implies that, if m > 3 and the rank of A(z,%)|z|? is less than or equal to
m, then A(z,Z) must be of rank either zero or one. We expect Theorem 1
and Corollary 1.1 to be useful in the future study of mapping problems in
CR geometry. In particular, in this paper we will apply them to establish
rigidity theorems (see Corollary 1.2 and 1.3) for mappings into indefinite
hyperbolic spaces and bounded symmetric domains.

Corollary 1.2. Letn>4,0<1<n—1and0<10'<2n—2. Let U be an
open subset of P" containing some p € OB} such that U "B} is connected.
Let F : U — P?L be a holomorphic map such that F(U NBY) C B! and
F(UNOBY) CoB* . Ifl' # 21 and I' # n — 1, then F is an isometric em-
bedding from (U N B}, wey) to (]Bl%nil,(JJBlQ/n—l).

We have the following remark and example regarding Corollary 1.2.

Remark 1.2. 1) Corollary 1.2 is optimal in the sense that the conclu-
sion fails if either I’ = 2] or I’ = n — 1. Indeed, there is the well-known
Whitney map if I’ = [ = 0. More generally, see Example 1.6 in [HLTX2]
for the generalized Whitney maps in the case I’ = 2 > 0, and Example
1.7 in [HLTX2] for the generalized Whitney maps in the case I’ =n — 1
with 1 <[ <n —1, and the following Example 1.2 for the generalized
Whitney maps in the case I’ =n —1 with 0 <1 <n — 2.

2) In the special case 1 <[ <n — 2, Corollary 1.2 follows also from The-
orem 0.1 (i.e., Theorem 1.1 in [HLTX2]). Indeed, the assumption of
Corollary 1.2 yields one of the four conditions holds in Theorem 0.1.
It however does not cover the cases | =0 and [ =n — 1. We also re-
mark that to prove for these two cases, we don’t need to use the full
generality of Theorem 1 (or Corollary 1.1).

Example 1.2. Let [ >0,k > 2. Write [w, z] = [wg, w1, -+ ,wy, 21, , 2k]
for the homogeneous coordinates of P'** and

l k
B = {[w, 2] € PF* D i > ) |z}
i=0 j=1



950 Ming Xiao

Let V =PHF\ {21 = 2, = 0} and H : V — P?+2~1 be defined as follows:

H([w7 ZD = [w()zk, W1Rk,y ", WRE, Z%u 2122y 3 R1Rk—1,

2
2Ry R3Zfy t 1t 5 Ry, WORL, W1RL, " " ,'UJlZl].

Notice that [H|?,, = (|z[* — [21*) (= Xig [wil> + 35, 25[%). Thus H

maps V N OBITF to 815312_122_]“1*1. In particular, set V4 := {[w,z] € V 1 |z]| >

|z1|}. Then H maps Vi N IB%%HC to Blzlj,ikl_l and maps Vi N 8B§+k to
(9183?5,?_’“{1. Hence the conclusion in Corollary 1.2 fails if I’ =n — 1.

Corollary 1.2 can be applied to study proper maps from the unit ball
to classical domains. The study of holomorphic maps from the unit ball to
higher rank classical domain was initiated by Mok [M] and later investigated
in [CM], [Ch], [UWZ], [XY1], [XY2] and [X], etc. In particular, Yuan and
the author [XY1] studied holomorphic proper maps from the unit ball to
the type IV classical domains (also called the Lie ball). Recall the Lie ball
DLV in CN(N > 2) is defined by

_ — 1
DV ={Z=(21,,2n)eCN:2Z <2 and 1 —ZZt+Z\ZZt\2 > 0}

We normalize the Bergman metric on B"™ and D]IVV so that the minimal
disc is of constant Gaussian curvature —2. Denote by wg- and wpry the
two normalized Bergman metrics of B™ and D]I\,V, respectively. We say a
holomorphic map F :B" — D]IVV is an isometric embedding or simply an
isometry if F*(w D}zvv) = wpgn. The following result follows from the work in
[XY1] and [X]: Let F be a holomorphic proper map from B" to the Lie ball
D]IVV(E) <n+1< N <2n-—3) that is CN=+ _smooth up to some open
piece of OB"™. Then F is an isometric embedding with F*(wp1y ) = wp». Fur-
thermore, counterexamples were given in [XY1] to illustrate such rigidity
result fails if N > 2n, no matter what boundary regularity is assumed. Yuan
and the author thus raised the question to understand whether the rigidity
still holds in the remaining cases N = 2n — 2 and N = 2n — 1. In the last
part of the paper, we apply Corollary 1.2 to give an affirmative answer to
this question in the case N = 2n — 2.

Corollary 1.3. Let F be a holomorphic proper map from B"(n > 4) to
DéX_Q that extends C™~'—smoothly across some open piece of OB"™. Then F
is an isometric embedding (with respect to the normalized Bergman metrics).

The paper is organized as follows. Section 1 includes the proof of The-
orem 1 and Corollary 1.1, except that a technical lemma (i.e., Lemma 2.2)
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will be established in Section 4. We prove Corollary 1.2 and Corollary 1.3
in Section 3.

2. Proof of Theorem 1

In this section, we give a proof of Theorem 1. As was mentioned, we will
reduce it to a mapping problem between complex quadrics in P x P™. We
recall the following result (Lemma 2.1) due to Chern-Ji (see [CJ1], [CJ2]),
which is a well-known generalization of Poincaré type theorem to Segre
families. Let [2] = [20,---,2™] € P™ and [¢] = [€o, - ,&m] € P™. Let M C
P™ x P™ be defined by

m

M= {([2], 1) €P™ x P72 " 2%, = 0},

J=0

Lemma 2.1. (Lemma 3.1 in [CJ2]) Let U,U and V,V be connected open
subsets of PI' and P{*(m > 2), respectively. Assume (U x V)NM # 0. If
f:U— U and g:V— V are biholomorphic maps such that

fxg((UxV)NnM)C M,
then f and g are restrictions of elements of PGL(m + 1, C).

This result is, however, not sufficient for our application to prove Theo-
rem 1. We will need Lemma 2.2, which is a more general version of Lemma
2.1. It proves a Poincaré type result for holomorphic maps from a degenerate
complex quadric. See other types of generalization of Lemma 2.1 in [Zh] and
references therein.

Write w = (wp, -+ ,wm—1) € C™, and n = (o, ,Mm-1) € C™. And
define

My =< (w,n) e C™ x C™: win; +1=0 3

Mp =< (w,n) e C™ xC™: WM + Wm—1+ Mg =0

m—1
j=1
m—2
j=1

Note My and M are degenerate in the sense that their defining functions
do not depend on wq, ny. Write x = (X1, , Xm—1) and 7 = (71, , Tin—1).
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Set
m—1
Mg = (x,7) eC™ L x ¢t X;T;i+1=0p;
j=1
m—2
M1 =< (x,7) € cmlxomt. XjTj + Xm—1+Tm-1=0
j=1

We are now in a position to formulate Lemma 2.2.

Lemma 2.2. (a). Let U C C},V C C*(m > 3) be connected open subsets
of © with (U x V)N Mo #0. Let f(w) = (fi(w), - , frm1(w)), g(n) =
(g1(n), -+ ygm-1(n)) be holomorphic maps in U and V respectively. Assume
f,g are nondegenerate in (w1, -+ ,Wp—1) and (N1, - - ,nm_l), respectively.

That 1is, the matrices (gg;) and E)
i/1<i<m—1,1<j<m~1 "J 1<i<m—1,1<j<m—1
are nondegenerate everywhere mU and—‘]/ respectively. Assume [ X g sends

Mon (U xV) to M. Then f,g do not depend on the variables wo and no,
respectively. Moreover, f,g extend to holomorphic linear fractional maps in
(wi, - ,wm—1) and (N1, ,Nm—1), respectively.

_ (b). The statement in part (a) still holds if Mo is replaced by My or
My is replaced by M;.

We will postpone the proof of Lemma 2.2 to Section 4 and concentrate
on the proof of Theorem 1 here. For that we first need to establish the
following key proposition for the polynomial case.

Proposition 2.1. Let z = (21, - ,2m),m > 3. Let ¥(2) = (Y1, - ,%m)

and ¢(z) = (¢1,--+ , ¢m) be holomorphic polynomial map from C™ to C™.
Assume A(z,Z) is a polynomial in (z,Z) such that

(2.1) Az, 2)|2lF = Y 9i(2)¢5(2)
j=1

If A(z,Z) #0, then there e:mst holomorphic polynomials hi(z),ha(z) and
B,C € GL(m,C) with BC' = Ijm, such that A(z,%Z) = h1(2)ha(2), and

(22)  ¥(E) =Mz, mm) B d(2) = ha(2)(21, 00 2m)C
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Proof. We first prove Proposition 2.1 under the following additional assump-
tion.

Assumption (*):  Suppose 1;(0) =0 and ¢;(0) =0 for all 1 < j < m.

Recall a holomorphic map ¢ = (¢1,---,¢m) defined near p € C™ is

called nondegenerate at p if the Jacobian matrix ( 52 e ie is invertible
7 <t,7<m

at p. We will proceed in two different cases.

Case I: We first suppose either v or ¢ is degenerate everywhere. Without
loss of generality, assume v is degenerate everywhere. Then it follows from
Huang’s proof of his original lemma (see Lemma 3.2 in [Hu]) that A(z,Z) =0
. For the self-containedness of this paper, we sketch a proof here. Write
&= (&, -+ ,&n). We first complexify (2.1) to obtain

m

(2.3) Az, 02,81 = > 1i(2)9;(9), vz,£ € C™.

Jj=1

Note we can assume 1; # 0 for every j (Otherwise, it is reduced to
the case of Huang’s original lemma, i.e., Lemma 3.2 in [Hu]). Then by the
degeneracy of 1, we can find some point z = p near 0 such that

(1). ¥;(p) = € # 0 for at least one j; and

(2). Vp ={2~=p:9ij(2) = ¢j(p),V 1 <j < m} defines a complex variety
of dimension at least 1 near p.

Since 1;(0) = 0 and €; # 0, we see V}, cannot contain any complex line
passing through the origin. Hence there is a point p* € V}, such that V),
contains a complex curve C* near p* which is parametrized by an equation
of the form:

(2.4) z(t) = p* + vt + o(t).

Here {p*,v} are independent vectors and [t| < 1. Note for each 2z € C* and
¢ with (z,£); = 0, by (2.3) we have >, €¢;(£) = 0. Also (2.4) implies all
such ¢ fill in an open subset of C™. We see >, €¢;(2) = 0. Then (2.1) is

reduced to
m—1

A2l = X (416 - Lom2)) 5560

j=1
Then it follows from Lemma 3.2 in [Hu] that A(z,%Z) = 0. This contradicts
with the assumption.
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Case II: We then suppose both ¥ and ¢ are of generically full rank.
Equivalently, at a generic point z* (respectively, a generic point &*),
(respectively, ¢) is a local biholomorphism. Assume A(z,Z) has bidegree
(do,dy) in (z,%Z) i.e., the highest degree in z (respectively, in Z) equals
do (respectively, equals dj). Write do = max{dp,d;}. Assume the high-
est degree of 1;(z) and ¢;(z),1 < j <m, is da. Then dy > dy + 1. Write
d = dy — 1. Write 2 = (29, 2) € C x C™ and set A(Z,2) = |z[>A(%, Z) and

$(2) = 25 T(£), 05(F) = 2T $(£) for all j. Note A(Z, Z) and ¢5(3), ¢;(2)
are all homogeneous polynomials. Moreover, by homogenizing (2.1), we ob-
tain

AZ 2=l =) 95(2)95(3)-
j=1

Writing gz (£0,€) = (€0,&1, - ,&m) € Cx C™, we complexify the
above equation to get

~ ~

(2.5) AZ (8= Y 0(Dd;(6),  FEeCm
j=1

Write ¢ = (1, ;1) and ¢ = (1, , dm)- Since ¢(2) and (&) are

~

of generically full rank, we see that 1) and ¢ have the following property.

Nondegeneracy Property : For any fixed zj5 # 0, 1&(26‘, z) is of generically

~

full rank in z near 0; for any fixed £ # 0, ¢(&, €) is of generically full rank
in &.

In particular, the nondegeneracy property implies every 1[;]- and qASj are
not identically zero. Write N = {(Z,¢) € C™*! x C™+1 . (z,§)1 = 0}. Pick
some small open subsets G C (C;”H, W C C?’H such that ,,(2) # 0 in G

and ¢, (€) £ 0 in W, and N N (G x W) # 0. We can also assume G does
not intersect with {zpz,, =0} and W does not intersect with {{p&,, = 0}.
Moreover, by the nondegeneracy property, shrinking G and W if necessary,
we can assume the following hold:

The map (;b—l, ,¢$‘1,1@m)(2) is of full rank in z = (21, - ,2;,) ev-
erywhere in GG; and the map ((f—l, cee ;*l,ngm)(g) is of full rank in £ =

(&1, ,&n) everywhere in W. )
Consequently, writing ; = ;L for 1<i<m—1, the rank of

m

(gwj ) equals m — 1 in G. Hence, shrinking G if necessary,
2k ) 1<i<m—1,1<k<m
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there exists some 1 < j; < m, such that
0
2.6
(2.6 ( -
I 4

Similarly, We write ¢

) is nondegenerate everywhere in G.
1<i<m—1,1<k#j<m

for 1 <i¢ <m — 1. By shrinking W if necessary,
there is some 1 < jy < m,msuch that

o (2

) is nondegenerate everywhere in W.
1<j<m—1,1<k#j2<m

0z,
Now set
U(Z) = (1(2), ++ ,¥m-1(2),1), for Z € G;
CI)(f) = ((bl(g)v T 7¢m—1(§)71>7 for f ew

We have the following claim:

Claim. The maps ¥ (2) and ®(&) are independent of the variables zy and &,
respectively. Moreover, they are linearly fractional in z and &, respectively.

Proof of Claim. We have two cases depending on whether j; and jo are
equal. We will only prove for the case j; = jo and the proof of the other
case is similar. Without loss of generality, assume j; = jo = m. By rescaling
G and W, we can assume {z, = 1} x {&;, = 1} intersects N'N (G x W).
Write Go = {[z] = [20," " , 2m] € P™ : (20, ,2m) € G}, and Wy = {[{] =
€0y, &m] €P™ 2 (&, ,&m) € W Notice by homogeneity, ¥ (respec-
tively, ®) induces a map [¥] (respectively, [®]) from G (respectively, from
Wp) to P™. Moreover, by (2.5) we see

AZ,€)(2,801 = Yu(2)om(€)(¥(2), ®(Q)) for Z € G,E € W.

Consequently, [¥] x [®] maps an open piece of H to :M Here H =
{([2],[€]) e P™ x P™ 2 (2,&)1 = 30711 0502;& = 0}, and M ={([x],[7]) €
mel X mel : ZT:l X]ﬁ: O} with [X] = [le co 7Xm]7 [T] = [7-17 o 7Tm]'

_Note G and Wy are contained in the affine cells {[z] : 2, # 0} C P and
{[€] : &m # 0} C P, respectively. We will use the standard nonhomogeneous
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coordinates on these affine cells:

(20, Zm—1) = [20,- -+ Zm—1,1];
and (507"' agm—l) — [505" : )fm—lu]-]'

Moreover, the images of Gy and Wy under [¥] and [®], are contained in the
affine cells {[x] : xm # 0} and {[7] : 7, # 0}, respectively. We again use the
standard nonhomogeneous coordinates on these affine cells:

(X17' o 7Xm—1) — [Xla” : 7Xm—171];
and (71, , Tm—1) = [T1, "+ s Tm—1, 1].

We still denote the maps by ¥ and & in these local coordinates.
Then (¥, ®) maps (an open piece of) Ho = {(z0, , 2m-1), (§0,"** , &Em—1) :
Zﬁjl 6j,lzj§7j+ Om,i = 0} cC™xC™ to Mo = {Z;n:fll X7 +1= 0} C
Cm=1 x C™~L. Moreover, by (2.6) and (2.7), ¥ and ® are nondegenerate in
(21, y2m—1) and (&1, -+ ,&m—1), respectively. Then it follows from Lemma
2.2 (Note we can apply a linear change of coordinates in z to transform Hg
into My and therefore reduce it to the setting of Lemma 2.2) that ¥ and &
are independent of the variables zy and &y, respectively, and they are linear
fractional in z and €. Hence we obtain the desired conclusion. If j; # ja, say
j1 =m —1,jo = m, a similar argument together with Lemma 2.2 will also
yield the conclusion. This finishes the proof of the claim. O

It follows from the above claim and the nondegeracy condition (2.6) that
there are some matrix B € GL(m;C) and a (nonzero) linear function L;(z)

in z such that (¢1(2),- - ,¥m-1(2),1) equals (21, ,2m)B (By the
above claim, ¥ does not depend on zp). Consequently, we have

(2.8)  Li(2)(®1(2), - s pm(2) = bm(®) (21, 2m)B, VZe C™HL

Similarly, there exists some matrix C' € GL(m;C) and some nonzero linear
function Lo(&) in & such that

(2.9)  La(@)(@1(6)s - m(€) = dm(E)(&1s- -+ &n)C,  VE € CMHL

It then follows that
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By (2.5), the above quantity vanishes on (z,&); = 0. This implies BC? =
My, for nonzero A. By choosing a different L, we can make A = 1. Conse-
quently,

m
~ ~ ~ ~ ~ —

Li(2)L2() Y ¥ ()5(E) = tom(2)m(E) (2, 1.

J=1

Combining this with (2.5), we obtain for all Z,£ € C™*1,

Li(2) L@ A &)(2, 81 = Y (D) (D) (2, EN.

The above is then reduced to

(2.10) Li(2) L2 () AG €) = $n(B)dm (), VEEeCmL,

Note (2.10) implies that t),,,(Z) vanishes on {L;(z) = 0}. This further
implies there is some holomorphic polynomial p;(2) such that @@m(@ =
L1(2)p1(2). Similarly, we have ¢m (&) vanishes on {L2(§) = 0}, and bm(E) =
Lo(&)p2(€) for some holomorphic polynomial po(€). Then it follows from
(2.10) that A(Z,2) = p1(2)p2(2). Finally we let z = 1 and write hy(z) =
p1(1,2), ha(€) = p2(1,€) to obtain that A(z,Z) = hi(z)ha(z). Furthermore,
(2.8) and (2.9) are reduced to

~

(P (3), - ,z/?m@) =13z 2m) By
(61(8),++ , om (&) = p2(E) (&1, -, &m)C.

We again let zg = 1 and & = 1 to get

(1(2), -+ bm(2)) = ha(2) (21, -, 2m) B
This finishes the proof of Proposition 2.1 under the additional assump-
tion (*).
To prove Proposition 2.1 in the general case, we multiple |z1|? to both
sides of (2.1) and obtain:

A (2 2)|2l = Y W5 (2) 5 (2)-
j=1

Here A*(z,%) = |21]?A(2,%) and Vi(2) = 2195(2), ¢} (2) = 219;(z) for all
1<j<m. Then ¢* and ¢* satisfy the assumption (*). By what we
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have proved, we see there eX1st holomorphic polynomials h*( ), h3(z) and
B*,C* € GL(m,C) with B =1, .m» such that A*(z,€) = hi(2)h3(€), and

W) = B(2)2B% ¢°(z) = h3(2)20",

Since A*(2,6) =0 on {z; =0} and on {& =0}, we have hi(z) =
z1h1(z) and h3(z) = z1ha(z) for some polynomials h; and hy. Consequently,
A(z,€) = hi(2)h2(§), and

¥(z) = hi(z)2B%; d(2) = ha(z)zC™.

This proves Proposition 2.1 in the general case.

Finally we apply Proposition 2.1 to derive Theorem 1.

Proof of Theorem 1: We first fix some notations. We set, for k,j > 0,
AW3)(2,%) to be the truncated Taylor polynomial of A(z,%) to the order
(k,7) in (z,%). More precisely, writing A(z,%) = >4 15120 aapz®zP near 0,
let A7) (2, %) equal to the sum of terms anz2%2# with |a| < k,|8| < j. Sim-
ilarly for k > 0, we set 9*)(2) and ¢(*)(z) to be truncated Taylor polyno-
mials at degree k of ¥(z) and ¢(z), respectively. Then it follows from the
assumption (1.2) that

(2.11) AD (2 7)|2)? = Zz/z D ()l (2).

Since A(z,%) # 0, we have A(®4(z %) £ 0 for sufficiently large d. We
conclude by Proposition 2.1 that, for every sufficiently large d, there are
holomorpihc polynomials hj 4 hog, and By, Cy € GL(m,C) with B;Cy =
I}, such that

(2.12) AD (2. 7) = hy g(2)ho.a(2);

P () = by g(2) (21, 2m) Ba

(2.13) ¢V (2) = hy.a(2)(21, -+, 2m)Ca.

We pick a small open ball U centered at 0 in C™ such that A(d’d)(z,g)
converges uniformly to A(z,€) in U x U, and @t (2) (respectively,
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91 (2)) converges uniformly to v(z) (respectively, ¢(z)) on U. Conse-
quently, {A@D (2, €)}5°, is uniformly bounded on U x U. Since A(z,%) is
not identically zero, there exists some z* € U such that A(z*,2%) = ¢y # 0.
We can normalize hy g and hg 4 such that |hy g(2*)| > @ and hg 4(2%) =1
for every sufficiently large d. We complexify (2.12) to obtain

(2.14) AD (5 €) = by 4(2)hea(€), for (2,6) € U x U.

We set { = 2* in the above equation to see {hjq4(2)}32, is uniformly
bounded on U. Similarly, {hs4(2)}52, is also uniformly bounded on U. By
Montel’s theorem, passing to a subsequence if necessary, we can assume
hi4(z) and hg4(z) converge uniformly on compact subsets of U. Denote
their limits by hi(z), ha(z), respectively, which are holomorphic functions
on U. We then let d — oo in (2.12) to see A(z,Z) = h1(2)h2(2) near 0. Note
by normalization, ho(z*) =1 and h;(2*) = ¢o # 0.

Next since hj g, ho 4 converge to hi, ha, respectively, uniformly on com-
pact subsets of U, we can then find a small ball B(z*,r) CC U of radius
r centered at z* such that |h; 4(2)] > @ and |hog(z)| > 5 in B(z*,r) for
all sufficiently large d. Since 1(4t1)(z) also converges to t(z) uniformly on
B(z*,r), we see {¢(@+1)(2)}52, is uniformly bounded on B(z*,7). It then
follows from (2.13) that {2Bg = (21, ,2m)Ba}32; is uniformly bounded
on z € B(z*,r). This implies { B4}, is bounded in GL(m,C). A similar ar-
gument yields that {Cq}32, is also bounded in GL(m,C). Thus by passing
to subsequences if necessary, we can assume By, Cy converge to B, C, respec-
tively. Since B4Cq = I 1, we have BC' = I ,,, and thus B, C € GL(m,C). We
finally let d — oo in (2.13) to obtain the last two equations in Theorem 1.
This finishes the proof of Theorem 1. O

To see the conclusion in Remark 1.1, we assume A(2,%) is real-valued
and need to show that hyhy = +|h|? for some holomorphic function h near
0. This follows easily from the elementary lemma:

Lemma 2.3. Let hy, hao be holomorphic functions on an open connected set
U C C". Assume hihs is real-valued in U, then hy = 0 or ho = chy for some
real number c.

Proof of Lemma 2.3: Note by the assumption h1ho = hiho. If hy is
not identically zero, then we can divide by |h1|? to obtain (%) = Z—"l’ around
a generic point z € U. Then the conclusion follows from the open mapping

theorem. 0
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3. Proof of Corollary 1.2 and Corollary 1.3

We will apply Corollary 1.1 in [HLTX1] to prove Corollary 1.2. Recall The-
orem 1 in [HLTX1] implies that, under the setting of Corollary 1.2, F' is
an isometric embedding if and only if F' is CR transversal at F'(¢q) for some
point ¢ € U N OB}’ and F' has zero geometric rank near ¢ along U N JB}'. See
[HLTX1] for the definition of the geometric rank of a CR transversal map
from OB} to 8183{,\7 . Note by the assumption of Corollary 1.2, we have either
I'<n—1or2n—2—1 <n—1. Then it already follows from Lemma 4.1
of [BH] (or Theorem 1.1 in [BER]) that F' is CR transversal at F'(q) for a
generic point ¢ € U N IB}'. Fix such a point ¢ = qo. By the proceeding ar-
gument, to establish Corollary 1.2, it suffices to show F' has zero geometric
rank near qg.

Proposition 3.1. The map F' has zero geometric rank near qy along U N
OB}

We first recall certain notations and terminologies which will be used
in the proof of Proposition 3.1. Let §;, and |- |7 be as defined in §1 (see
the paragraph above Theorem 1). Assume !’ > [. We denote by 0, the
symbol which takes value -1 when 1 < j<lorn<j<n+0l'—1l—1and 1
otherwise. When I' = 1,0, ,, is the same as d,;. For 0 <1 < n — 1, we define
the generalized Siegel upper-half space

n—1
P ={(z,w) €C"' x C:Im(w) > > _ 5%}
j=1

The boundary of S} is the standard hyperquadrics H}' given by Im(w) =
Z?z_ll 8512 We also define for [ <1’ < N — 1,

N-1
Sty ={(Z,W) e CN"Lx C:Im(W) > > §ju0.al2Z5°}.
j=1
We similarly define S{Y’H{Y’Hm’,n' Now for (z,w) = (21, -+, 2n—1,w) € C",

let U(z,w) =[i + w,2z,i —w| € P". Then ¥ is the Cayley transformation
which biholomorphically maps the generalized Siegel upper-half space S
and its boundary H}* onto B} \ {[20,- - -, zn] : 20 + 2, = 0} and 9B} \ {[20, - -
‘s Zn] t 20 + zn = 0}, respectively.



A theorem on Hermitian rank and mapping problems 961

Proof of Proposition 3.1: By composing F' with automorphisms
of B} and IB%lQ/" Lif necessary, we assume ¢o = [1,0,---,0,1] € OB} and
F(q ) [1,0,---,0,1] € B} *. Recall ¥ is the aforementloned Cayley
transformation from S; to B w1th U(0) = qo, and we denote by ® the
Cayley transformation from SIQ’;, L to IB%?,” 1. Write F:= ® !0 FoU. By

the definition of the geometric rank (see Section 3 in [HLTX1]), F is of ge-
ometric rank zero at p if and only if F' is so at W(p). Thus it suffices to
prove the new map F' has zero geometric rank near 0. To make the nota-
tions simple, we still write the new map as F' instead of F'. That is, F' is
now a holomorphic map from a neighborhood V' of some point py = 0 € Hy’
to C2~1, satisfying F(V NS}) CS7p ! and F(V NH}) CH;p L Shrink-
ing V' if necessary, we additionally assume M; := V NH}' is connected and
F is CR transversal on M;. Next for each p € M7, we associate it with a
map Fj, defined as in [BH, HLTX1]. See (3.2) in [HLTX1]. Furthermore, we
normalize F, into F;, F* as defined in (3.9) and (3.13) of [HLTX1], respec-
tively. As in [HLTXl] F * sends 0 to 0, and maps HJ' (respectively, S}') to
H%,}n(respectlvely, Sl? 1p) near 0.

We now pause to recall some notations for functions of weighted degree
from [Hu, BH] We parameterize H}' by (z,%Z,u) through the map (z,%,u) —
(z,u+d> 707 85.1|2j|%). We assign the weight of 2 to be 1, and assign the
weight of u (and thus w) to be 2 . For a smooth function h(z7 Z,u) defined
in a neighborhood W of 0 in H*, we say it is of quantity Oy (s) for 0 <
se N, if M is bounded for (z,u) on any compact subset of W and ¢
close to 0. Moreover, for a smooth function h(z,z,u) on W, we denote by
h(k) (z, Z,u) the sum of terms of weighted degree k in the Taylor expansion of
h about 0. And h(*) (z, Z,u) also sometimes denotes a weighted homogeneous
polynomial of degree k, if h is not specified. When h*¥)(z, z,u) extends to
a holomorphic polynomial of weighted degree k, we write it as h(*)(z, w) or
h¥) () if it depends only on z.

Write F;* = (f;", ¢3", g;"), where f;*, ¢7* both have n — 1 components,
and g;" is a scalar function. Under the notations above, F;* satisfies the
following normalization by [BH].

Lemma 3.1. (Lemma 2.2 in [BH]) Write (z,w) = (21, -+ , 2n—1,w) for the
coordinates of C". For each p € My, F;* satisfies the normalization condi-
tion:
y_z+ %“k)w+om@)

= 6,77 (2) + Oun(3)
95" = w+ Ou(5),
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with

(3.1) (a5 O nla = |65 D ()2, 7 =1 — 1.
If we write a;*(l)(z) = zA(p) for an (n — 1) x (n — 1) matrix A(p), then
by [HLTX1] the geometric rank of F' at p is defined as the rank of the matrix
A(p). Set Ay(z,%) = (Z,a;*(l)(z)>l, which is a real polynomial. By (3.1), we
have
A2, D)2 = 65O () 2

Note ¢;*(2)(2) has n — 1 components and by the assumption of Corollary

1.2, 7# 1l and 7 #n — 1 — 1. Then by Corollary 1.1, we have A,(2,Z) =0
and thus F' has geometric rank zero at p. Since p is arbitrary, we conclude F
has zero geometric rank near 0, and finish the proof of Proposition 3.1. [

Remark 3.1. When!=0o0r!=mn — 1, we indeed don’t need to use the full
generality of Corollary 1.1 to conclude A,(z,%) = 0 in the above. Instead it
suffices to use a much weaker version of Corollary 1.1 where as and b;-s are
assumed to be quadratic homogeneous polynomials. For that the readers are
referred to the proof of Lemma 3.1 in [HJ] and we omit the details here.

Proof of Corollary 1.2. The result follows from Theorem 1 in [HLTX1]
and Proposition 3.1. (I

We next prove Corollaries 1.3.

Proof of Corollary 1.3. First since F extends C"~'—smoothly up to some
open piece of the boundary, we conclude by Theorem 3 in [X] that F is alge-
braic. Consequently F' extends holomorphically across a generic boundary
point p € OB”. And we can find a small neighborhood U of p such that
U NB" is connected, F(U NB") C DIV , and F(UNOB") C 9DV ,. Then
Corollary 1.3 follows from Corollary 1.2 and an identical argument as in the
proof of Theorem 1.1 in [XY1]. This establishes Corollary 1.3. O

4. Proof of Lemma 2.2

We prove Lemma 2.2 in this section. We first note the following linear frac-
tional map gives a local biholomorphic map from My to My :

. V2w

~ [ . N
Wy =wy, Wj=—"-71<i<m-—2, Wp1=——"o
’ wm71+1’ ’ wm71+1’

1 —wpm
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2 -1
L1<Z<m_277m 1—L

Mo = 7o, nz—nm1+1 nm_1+1

Similarly, Mo and M; are locally biholomorphic by a linear frac-
tional map. Thus it suffices to prove Lemma 2.2 only for the map
fxg from M; to My. We fix a point (p,q) e MiN (U x V). Note
that (0,0) € M; and there is a biholomorphic map (¢i1(w),¢2(n)) in a
neighborhood of (0,0) that sends (0,0) to (p,q) and maps an open piece
of My near (0,0) to My N (U x V). Indeed, writing p = (po,p’, pm—-1) =
(Po, P15+ Pm—2,Pm—1),4 = (90,4 gm—1) = (90,91, ** s Gm—-2,4m-1), and

w' = (Wi, s wm—2),7" = (M, ,Mm—2), We can take
p1(w) = (wo + po, w' + s wm—1 + pm—1 — (W', ¢));

©2(n) = (Mo + q0.1" + ¢, -1+ @m-1 — (', D).

Hence, by composing f,g with ¢1, @9 if necessary, we can just assume
(p,q) = (0,0). For n=(no, -+ ,Nm-1), write L] = 82; — mawm -, 1<i<
m — 2. Then {L?}Z"l_lg gives a set of holomorphic tangent vector fields along

M. Set

[
U
Dy(w) = |
Ly of
Here |- | denotes the determinant of a square matrix. Note D, (w) is inde-

pendent of 79. We will show the following nondegeneracy property of D, (w).

Lemma 4.1. There exists (p*, q*) € My N (U x V) such that D, (w) # 0 at
(w,n) = (p*,q").

Proof. By the definitions of D, (w) and L}, 1 <i < m — 2, we see Dy(w) is
linear in each 7;. More precisely, Dy (w) = —> /"] 2 Bi(w )771 + Bo(w). Here

s
(4.1 Bow)=| 0™

0
awn{—? (w)

and for each 1 <1i < m — 2, Bj(w) equals the determinant in (4.1) with the
(j + 1)—st row (i.e., %fig"",)) replaced by 8f(w)
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Recall by assumption of Lemma 2.2, if we write B(w) = e ,

then B(w) is everywhere nonzero in U.
Claim. There is some 0 < jo < m — 2, such that Bj, (w) # 0.

Proof of Claim. Suppose Bj(w) =0 for all 0 < j < m — 2. Then by the
fact that B(w) # 0 in U and Lemma 4.7 in [BX], we conclude f =0 in U.
This is a contradiction. g

By the claim, we can find some 0 < jo<m —2, and some p* =
(s -+ ,py,—1) near 0 such that Bj (p*) #0. If jo#0, then we can
find a number nj ~0 such that Bj (p*)nj, + Bo(p*) #0. Set ¢ =
(0,0, -- :0,m5,0,0++,0,—pp, 4 —p}'fon;o) € C™, where n; is at the (Jo +
1)—st position. Then we have (p*,¢*) € My and Dg-(p*) # 0. If jo =0,
then we can find some p* = (p§, - - - , p};,_1) near 0 such that By(p*) # 0. Pick
q* = (0,---,0,—p¥ ), sothat (p*, ¢*) € M; and we have D,-(p*) # 0. This

proves Lemma 4.1. O

By Lemma 4.1, we can shrink U,V and assume D,(w) is everywhere
nonzero in U x V. By assumption, we have

(4.2) (f(w),g(n)) =—=1on My N (U x V).
We then apply L7,1 <1i < m — 2, to (4.2) and obtain
(4.3) (L7 f(w),g(n)) =0on MyN (U xV),1<i<m-—2.

Fix p=(po, -+ ,pm—1) € U near p*. Write Q, ={neC™: ZT:_fpj?Tj%-
Pm—1 + Tm—1 = 0}. Putting together equations (4.2) and (4.3) and evalu-
ating at w = p, we get

n .
(4.4) Ll.f(p) gt(n) = 0 ., MEQRNV.
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Here g denotes the column vector-valued function obtained by taking
the transpose of g. Note ai% is tangent to @Q,. We apply ai% to (4.4) to get

o\ [
Lif(p g 1 0
v M= ... [ mE@NV
L?n—?f(p) 0

Since D,(p) # 0, the matrix on the left hand side of the above equation
is nondegenerate. Hence we must have (%90(77) = 0 for n € @, N V. Note that
we can vary p near p* and p will fill in an open subset of C7* . This implies
(%go =0 in V and thus ¢ is independent of 7. Similarly, we can prove f is
independent of wg. Once we know that f and g only depende on the variables
Wi, , Wm—1 and 01, -+, Pm—1, respectively, it is reduced to the case where
the original result of Chern-Ji (Lemma 2.1) can be applied. We thus see the

fractional linearity of f and g. This proves Lemma 2.2.
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