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Abstract

Map Space Exploration is the problem of finding opti-

mized mappings of a Deep Neural Network (DNN) model on
an accelerator. It is known to be extremely computationally

expensive, and there has been active research looking at

both heuristics and learning-based methods to make the

problem computationally tractable. However, while there are
dozens of mappers out there (all empirically claiming to

find better mappings than others), the research community
lacks systematic insights on how different search techniques

navigate the map-space and how different mapping axes

contribute to the accelerator’s performance and efficiency.
Such insights are crucial to developing mapping frameworks

for emerging DNNs that are increasingly irregular (due to
neural architecture search) and sparse, making the corre-

sponding map spaces much more complex. In this work,

rather than proposing yet another mapper, we do a first-of-
its-kind apples-to-apples comparison of search techniques

leveraged by different mappers. Next, we extract the learnings
from our study and propose two new techniques that can

augment existing mappers — warm-start and sparsity-aware —

that demonstrate speedups, scalability, and robustness across
diverse DNN models1.

1. Introduction

Deep Neural Network (DNNs) have become an indis-
pensable tool in the solution toolbox for a variety of complex
problems such as object detection, machine translation,
language understanding, autonomous driving, and so on.
There is growing demand for specialized DNN accelerators
(also called Neural Processing Units or NPUs)2 pursuing high
performance with high energy, power, and area efficiency.

The performance and energy-efficiency of a NPU depends
on how a DNN is mapped over the accelerator’s hardware
(compute and memory) resources [35, 44]. Specifically, a
mapping (aka schedule) includes the computation order,
parallelization strategy and tile sizes [35, 44], as shown
in Fig. 1. In order to achieve high efficiency across a wide
range of DNNs that include diverse layer shapes and sizes,
state-of-the-art DNN accelerators are often designed with

1. Code avaliable at https://github.com/maestro-project/gamma-timeloop.

2. In this paper, we use the terms DNN Accelerator and NPU interchange-
ably.

flexibility to support different mapping strategies [9, 36, 48].
This flexibility imposes a unique challenge for deployment:
finding a high-quality mapping between a DNN and the
flexible accelerator from the space of all legal mappings
(i.e., the map space) during compile time. This is crucial to
unlock the full potential of the DNN accelerator.

As a result, prior work has clearly defined map space

exploration (MSE) [19, 23, 28, 44], as a critical problem for
NPU design and/or deployment, cleanly separating it from
the hardware architecture design space exploration (DSE)
problem. DSE includes identifying the right compute and
memory configurations for the NPU within constraints such
as total FLOPS, area, and power. MSE, meanwhile, takes
the hardware configuration and DNN workload as input
and finds optimized mappings, optimizing some objective
(e.g., latency or energy-efficiency). To perform MSE, various
search algorithms (i.e., mappers) have been proposed within
the past few years [2, 3, 7, 12–15, 23, 25, 41, 44, 49, 50,
54, 55, 57–60, 63, 64, 66, 67, 70, 73, 75, 76, 79].

Despite the success achieved by these prior efforts, MSE
remains a computationally challenging problem. This is
because the search space for legal mappings for even a
single layer of a modern DNN (e.g., ResNet-50) on a
typical edge class accelerator [9] is ∼ O(1024) [19, 28]
which would require more time than the age of the earth to
search exhaustively (assuming 1ms to evaluate each mapping
sample). This gets exacerbated as newer and ever larger
DNN models are being created with increasing frequency,
especially thanks to the success of neural architecture search
techniques [4, 5, 39, 47, 61]. Furthermore, the advent of
compressed-sparse DNNs [16, 38, 40, 51, 68, 69, 80], whose
mappings are not performance-portable across sparsity levels
(a key finding in this paper), further increases MSE burden.

Researching more sophisticated scalable and sparsity-
aware MSE techniques is at least partially hampered by
the fact that even though prior approaches have empirically

shown that their techniques work, none of them demonstrate
why they work and the insight behind their optimization
techniques.

It is these very insights that we wish to extract in this
paper, and in the process demystify MSE as a problem.
We cover both heuristics and learning-based optimization
approaches, analyze their behavior, and learn from their best
traits. We then use these learnings to scale MSE to more
complex workloads.
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Fig. 1: The overview of DNN Workload, Accelerator, and a (NVDLA-like [1]) Mapping.

Specifically, our contributions are two-fold.

(1) This is the first work, to the best of our knowledge,
to quantitatively compare three wide categories of map-
pers: random-based [44] (i.e., heuristic pruning), feedback-
based [28] (i.e., blackbox optimization and reinforcement
learning), and gradient-based [19] (i.e., surrogate models),
and analyze their trade-offs. We conduct a sensitivity analysis
of different mapping axes to understand the contribution
of each axis. We then perform case studies that reveal
distinguishing characteristics of good and bad mappings.
Our analysis reveals that: (i) random search is inefficient,
(ii) gradient-based search converges fast but requires prior
knowledge of the accelerator architecture, and (ii) feedback-
based search is more adaptable and sample-efficient, but
requires higher cost to acquire each sample. Our analysis
also shows that optimality of a dense DNN mapping does
not port over to a sparse DNN.

(2) Based on our findings, we propose two novel heuristic
techniques to advance the state-of-the-art in MSE: (i) We
propose a warm-start technique to initialize the MSE with
prior optimal solutions from previous layers in a replay buffer
based on a similarity metric, enabling the mapper to start at
a better point and converge faster. In our evaluations, we find
that warm-start can help the mapper converge to a similar
performance point 3.3x-7.3x faster. (ii) We also propose a
sparsity-aware technique to search for a mapping that can
perform well across a range of target activation sparsities.
A fixed mapping found by our sparsity-aware approach can
achieve 99.7% of the performance of each of the mappings
specifically tailored to the various density levels.

2. Background: DNN Accelerators

2.1. DNN Workloads

In this work, we use individual DNN layers/operators
as our target workload. The workloads vary across different
DNN models because of different types of operations such as

CONV2D, Depth-wise CONV, Point-wise CONV, Attention,
Fully-Connected (FC), and so on, and different tensor shapes
for the layers (i.e., batch, input, weight kernel sizes), as
shown in Fig. 1. All these operations can be represented with
a loop-nest of computations. For example, a CONV2D can
be represented as 7 for-loops, and GEMM can be represented
as 3 for-loops.

2.2. Accelerator Hardware Configuration

A canonical NPU often houses a spatial array of Process-
ing Elements (PEs), as shown in Fig. 1. Each PE has one to
several ALU units to compute partial sums, and private local
(aka “L1”) buffers to store weights, input activations and
partial sums. The accelerator also houses a global shared
(aka “L2”) buffer to prefetch activations and weights from
DRAM for the next tile of computation that will be mapped
over the PEs and L1 buffers. Networks-on-Chip are used
to distribute operands from the global L2 buffer to the L1
buffers in the PEs, collect the partial or full outputs, and
write them back to the L2 buffer.

2.3. Accelerator Map-Space

Given a DNN workload, there exist several choices for
mapping it on the accelerator’s PEs and buffer hierarchy
over space and time. The mapping includes the following
components [34, 44], shown in Fig. 1:

(1) Tile sizes: The ability to change bounds and aspect
ratios of data tiles from one or more operand tensors per
level of the buffer hierarchy [46].

(2) Loop order: The ability to change the loop orders
iterated per tiling level.

(3) Loop parallelization: The ability to change which
tensor dimensions are parallelized per tiling level. This
represents the spatial partitioning of data (i.e., across PEs).

Fig. 1 shows an example of the mapping used by the
NVDLA [1] accelerator. Choices for (2) and (3) together
are often referred to as dataflow [34] which has been
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Fig. 2: A canonical Map Space Exploration framework.

informally classified by prior work into weight-stationary,
output stationary and input-stationary [8]. The design-space
of all possible mappings (i.e., dataflows + tile-sizes) that an
accelerator can support is called its Map-Space [44].

Flexible DNN accelerators [9, 36] allow a mapping
optimizer within a compiler to explore tile sizes, loop
orders and parallelization independently for each layer. This
mapping flexibility is crucial for accelerators to adapt to
growing diversity in DNNs [34]. The overall runtime and
energy-efficiency of an accelerator depends on both the
hardware configuration and the mapping, making it crucial
to find an optimized mapping3, [34, 44, 75], as we discuss
next.

3. Map Space Exploration (MSE)
A canonical MSE framework is shown in Fig. 2. MSE

takes the NPU’s HW configuration (§2.2) and target DNN
workloads (size, shape, and additional features such as
sparsity level of weight and/or activations) as input and
finds optimized mappings given an objective (e.g., latency,
throughput, energy, energy-delay-product (EDP), and so
on). MSE may be run at compile time within a mapping
optimizer [6] after the NPU is deployed, or at design-time
in conjunction with DSE for co-optimizing the mapping and
HW configuration [31, 73].

The MSE process often includes three parts: Represen-

tation of search space, Evaluation method, and Exploration

method. The representation will define the scope of the
searching problem and the size of the search space. An
optimization loop that includes exploration and evaluation
performs the actual search. The optimization continues till
the MSE converges, or reaches a given sampling budget or
wall-clock run time budget.

3.1. Representation of Map Space
While recent work has proposed various representations

(MAESTRO [35], UNION [24], and Ruby [22]) to increase
mapping diversity in the map space, in this work we leverage
the canonical Timeloop representation, which is loop-nests

3. In this paper, we focus on finding optimized mapping for individual
DNN layers/operators, which has been the target of most Map-Space
Exploration tools. We leave Inter-layer mappings via operator-fusion as
future work.

to represent each tiling level (e.g., NVDLA-like mapping in
Fig. 1). We ensure that all the candidate mappings generated
by various mappers during MSE are legal.

3.2. Evaluation Method (Cost Model)
MSE relies on a DNN accelerator cost model to estimate

the performance of a certain mapping on a given accelerator
for a given workload. These cost models are typically
analytical, enabling rapid evaluation of different design-
points in a matter of ms. Some widely used cost models
include Timeloop [44], MAESTRO [34], dMazeRunner [12],
Interstellar [75], SCALE-sim [52] and others [32, 42].
These cost models can model different kinds of acceler-
ators (systolic arrays [52], flexible spatial arrays [12, 34,
44], sparse accelerators [71], and so on) and capture each
accelerator’s map space in different formats. In this work,
we use Timeloop [44] as our cost model4 which is validated
against real chips [10, 54].

3.3. Exploration Method (Mapper)
The exploration algorithm in MSE (Fig. 2) is called a

mapper. Dozens of different DNN mappers have been pro-
posed, which we categorize into random search based [12, 44,
54, 63, 75], feedback-based (including reinforcement learning
and black-box optimization) [7, 25, 27, 28, 73, 79], gradient-

based [19], and others (including mathematical optimization,
MCMC, polyhedral transformations, and heuristics) [3, 15,
23, 25, 49, 64] (Fig. 2). The random search-based either apply
random sampling on the search space or apply pruned random
search [6, 44], which prunes off the redundant search space
to increase the sampling efficiency. The feedback-based use
a learning algorithm to interact with the cost model and keep
improving its solution. The run time of both random search-
based and feedback-based depend heavily on the run time of
the cost model, potentially becoming the bottleneck of the
MSE run time. Gradient-based methods uses a differentiable

surrogate model, which eliminates this bottleneck and can
update the solution directly by the gradient of the loss. We
do a deeper dive within these three types in §4.3.

4. Timeloop includes both a cost model and mappers. Throughout this
paper, we refer to the former as Timeloop and the latter as Timeloop-mapper.
Timeloop-mapper itself supports a variety of search heuristics, with the
default being Random-Pruned which we use. We also run other mappers
using Timeloop as the cost model.



3.4. Why MSE Matters

MSE bridges the gap between two active trends: (1)
efficient DNN model design [11, 53, 62] (which has led to a
huge diversity in layer shapes/sizes and emergence of sparsity
in state-of-the-art DNN models) and (2) flexible hardware
accelerators that support diverse mappings (dataflows + tile
sizes) via configurable buffer hierarchies [46] and on-chip
interconnect topologies [36, 48] as an answer to the first
trend. MSE is crucial for extracting performance and energy-
efficiency from the accelerator as there can be multiple
orders of of difference in performance and energy-efficiency
between good and bad mappings, as prior works have
demonstrated [19, 28, 44].

While several mappers are being actively developed [2,
3, 7, 12–15, 23, 25, 41, 44, 49, 50, 54, 55, 57–60, 63, 64, 66,

67, 70, 73, 75, 76, 79], there is no work, to the best of our

knowledge, that has focused on understanding how different

mappers navigate the map-space, how different mapping
axes contribute to the performance, and trade-offs between

search approaches, which is the focus of this work.

4. Quantitative MSE Analysis

In this section, we perform a quantitative analysis of
the three classes of mappers described in §3.3 to identify
when and why one works better than the other. The goal of
this analysis is to educate the DNN accelerator research
community on Mapper design, rather than propose yet
another mapper.

4.1. Methodology

Workload. We consider workloads from different models:
Resnet [18], VGG [56], Mnasnet [61], Mobilenet [53], and
Bert-large [65]. Some frequently referenced workloads across
different experiments are described in Table 1.

Hardware Accelerator. We model the NPU using
Timeloop [44]. We assume three-levels of buffer hierarchies:
DRAM, a 64KB shared global buffer, and 256B private local
buffer for each of the 256 PE. Each PE houses 4 ALU units
(Accel-B in Table 1). We also model the NPU the Mind
Mappings paper [19] uses (Accel-A), whose configuration
is similar but with different sizing as shown in Table 1.

For analyzing sparse mappings (§4.5), we use
TimeloopV2, aka Sparseloop [71, 72], as the cost model to
explore the map space in a flexible sparse accelerator, and
leverage Gamma as the mapper. Besides tiling, orderering and
parallelism, Sparseloop also models hardware and software
optimizations (e.g., power gating and compressed tensors)
in sparse DNN accelerators.

Objective. We use multi-objective – Energy and Latency
(Delay), throughout the optimization process. When opti-
mization finishes, we select the solution with the highest
Energy-Delay-Product (EDP) on the Pareto frontier. We use
EDP as the performance criteria of found mapping. Note
that any formulation of the objective can also be used such
as power, area, performance-per-watt, performance-per-mm2,
and so on.

TABLE 1: The description of the relevant workloads and
accelerator configurations used across evaluations.

Workload (B,K,C,Y,X,R,S)

Resnet Conv_3 (16,128,128,28,28,3,3)

Resnet Conv_4 (16,256,256,14,14,3,3)

Inception Conv_2 (16,192,192,27,27,5,5)

Workload (B,M,K,N)

Bert-Large KQV (16,1024,1024,512)

Bert-Large Attn (16,512,1024,512)

Bert-Large FF (16,4096,1024,512)

Accelerator 
Configuration

Accel 

A

512 KB shared buffer, 
64 KB private buffer 
per PE, 256 PEs, 1 

ALUs per PE

Accel 

B

64 KB shared buffer, 
256 B private buffer 
per PE, 256 PEs, 4 

ALUs per PE

Experiment Platform. We run experiments using a
desktop with a 12-core Intel I7-6800K CPU and a Nvidia
GTX1080 to train the surrogate model in Mind Mappings.

4.2. Size of Map Space

The size of the map space heavily depends on represen-
tation. In this paper, we follow the efficient representation
used by Timeloop to represent the three mapping axes. We
use CONV2D (7 for-loop) as workload and 3-level of buffer
hierarchy (DRAM, L2, L1) as architecture configuration as
an example to guide the discussion of map space.

Tile sizes. Buffers at each level of the scratchpad memory
hierarchy will have a dedicated tile size for each of the
dimensions, as shown by the different tile sizes within
the 7 for-loops of the L2 mapping in Fig. 1 The total
possible combination depends on the tensor shape of each
workload and increases exponentially with the number of
buffer hierarchies.

Loop Order. Each buffer level would have a dedicated
permutation of loop order. E.g., in Fig. 1, the loop order in
L2 mapping from outer to inner loop is (B,K,C,R,S,Y,X).
The total combinations become (7!)3 (we have 3 buffer levels
in our example).

Parallelism. Parallelism happens across levels of com-
pute units (2-level of compute units in Fig. 1, i.e., across PEs
and ALUs). At each level of the compute unit, we can choose
to parallelize from 0 (no parallelism) to 7 (all parallelism)
dimensions. The total combination becomes 27×2.

Map-Space. The Cartesian product of these sub-spaces
leads to the size of the entire map space, which is at the
level of O(1021) for the workloads discussed in §4.1.

4.3. Understanding Mapper Sampling Efficiency

Recall from §3.3 that we categorize state-of-the-art
mappers into three major techniques (Fig. 2). We select
state-of-the-art mappers out of each category - Timeloop’s
Random-Pruned [44] from random-based, Gamma [28] from
feedback-based, and Mind Mappings [19] from gradient-
based methods5. - and compare their characteristics with
respect to search speed and sampling efficiency6.

5. Random-Pruned and Mind Mappings both natively work with the
Timeloop cost model. Gamma was originally demonstrated with MAESTRO,
and we extended it to use the Timeloop cost model. We leave the task of
porting representative mappers from the others category (§3.3 to a common
cost model and analyzing them as future work.

6. The performance improvement over number of sampled points.
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Fig. 3: Comparisons of different types of mappers. Top figures show the converge curve across number of samples. Bottom
figures show the converge curve across wall clock time.

Fig. 4: (a) shows the sampled points by exhaustively sampling
the search space of (Resnet Conv_4, Accel-A). The 3D
visualization is projected by PCA dimension reduction. (b)
shows the sampled points of different types of mappers in
this search space.

• Random-Pruned (random-based): Random-
Pruned [44] uses random sampling on a pruned
search space. The pruning strategies are based on
heuristics, e.g., permutations do not matter for the
innermost tiling level and for tile sizes that are one [44].

• Gamma (feedback-based): Gamma [28], a genetic al-
gorithm (GA) based method, keeps a population of
candidate solutions, uses specifically designed mutation
operators to perturb populations to explore different map-
ping axes (tile, order, parallelism), and uses crossover to
create next generations of populations. Gamma has been
shown to beat other optimization techniques, including
reinforcement learning [28, 30].

• Mind Mappings (gradient-based): Mind
Mappings [19] trains a neural-network-based surrogate
model via offline sampling of millions of data points
collected from the cost model. It uses the loss gradient
to update its solution. During MSE, it utilizes gradient-
descent on this surrogate model to find mappings,
instead of searching.

In the following evaluation case study, we show two sets
of NPU configurations (Table 1) : Accel-A, on which the

surrogate model is trained for MindMappings, and Accel-B,
an unseen accelerator configuration for the surrogate model.

4.3.1. Trained Accelerator Configuration (Accel-A). Iso-
sampling points Comparisons. We set the sampling budget
to 5,000 points and compare the sampling efficiency of

algorithms in the top figures of Fig. 3(a)(b). The random-
based method progresses the slowest over number of samples.
Among the gradient-based and feedback-based, the gradient-
based method progresses faster at the start owing to its direct
gradient feedback. However, with more number of samples,
the feedback-based method starts to perform better. It is
because the gradient-based method is more prone to fall
into local optimum (discussed later) while the feedback-
based methods typically work well for global optimization
problems.

Iso-time Comparisons. We set a tight time budget, 20
seconds, and track the performance to wall clock time in the
bottom figures of Fig. 3(a)(b). Despite their better sampling
efficiency, the feedback-based and gradient-based methods do
not show a clear edge over the random-based method within
tight wall-clock run time budget. Random-based methods do
not have costly built-in learning algorithms as the other two
and hence can run more number of samples given the same
time budget, which is essential when the run time budget
is strictly tight. Specifically, the run time of the searching
algorithm in Gamma and Mind Mappings is about 10x larger
than Random-Pruned.

4.3.2. Accelerator configuration not in the Training
Dataset (Accel-B). We use the same set of workloads as in
Fig. 3(a)(b), but change the accelerator configuration to Accel-
B, which is not in the training dataset of the surrogate model
of the gradient-based method. As shown in Fig. 3(c)(d), the
gradient-based method cannot perform as well as it did for the
trained accelerator configuration, Accel-A. It demonstrates
that the trained surrogate model does not generalize across
accelerator configurations. Note that we can also re-train
the surrogate model for the new accelerator configuration,
which will recover the performance. However, it will require
another full-fledged DNN training. Besides, we also need to
collect 1 - 5 million of new training data to achieve quality
results [19].

Variance of Accelerator Configurations. The random-
based and feedback-based method take workloads and ac-
celerator configurations as inputs and therefore are agnostic
to variance in accelerator configurations. In contrast, the
gradient-based method train its surrogate model based on
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Fig. 5: Mapping axes sensitivity analysis using the mutation operators in Gamma [28]. E.g., Tile (blue): means mutating tile
only, i.e, only tile is explored, and other mapping axes are fixed, similarly for (mutate-)Order and (mutate-)Parallelism.
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Fig. 6: Crossover (blending two mappings) sensitivity analysis using operators in Gamma [28]. Standard-GA uses the
standard mutation and crossover (without domain-specific operators along each mapping axes designed in Gamma [28]).

a collected training dataset. The training dataset includes
collected workloads and collected accelerator configurations.
While surrogate model can generalize the workload encoding
across different DNNs models [19], the generalization of
accelerator configurations is more challenging since arbitrary
buffer levels, buffer sizes, PE sizes, and other details (Fig. 2)
can be made. Thus the surrogate model is tied to one or few
accelerator configurations.

4.3.3. Visualization of the Sampling Points. To better
understand how different algorithms behave in the map
space, we plot their sampling points in Fig. 4 using the
workload and accelerator configuration in Fig. 3(a). Fig. 4(a)
shows the entire map space while dark red represent higher-
performance points. There is a large low-performing region at
the center while some small clusters of the high-performing
points (green circle) scatter across the space. Fig. 4(b) shows
the points different algorithms actually sampled. Given the
limited 5,000 sampling budget, The Random-Pruned method
only samples around the lower-performing region because
most of the design points sit here. Mind Mappings starts
with the lower-performing region and gradient-updates to the
higher-performing regions at the right. However, it sits at the
local optimum. Gamma also starts with a lower-performing
region but can explore a wider region faster because of
its population-based method (which is common in many
feedback-based algorithms [17, 20, 21, 33]). Gamma reached
one of the high-performance regions, as shown in Fig. 4(b).

Takeaway of comparing different mappers:

• Learning-based methods, including gradient-based and
feedback-based, can keep improving the quality of the
sampling function over searching iterations, leading to
better sampling efficiency.

• When the time constraint is strictly tight so that the
learning-based methods cannot yet gather adequate data
to improve their sampling function (i.e., still at explo-

ration phase instead of exploitation), the random-based
method is the most cost-effective choice.

• The surrogate model of the gradient-based method is
trained on a collected training dataset, where the accel-
erator configuration is often fixed. The trained surrogate
model cannot generalize across different accelerator
configurations.

We pick Gamma, the feedback-based method, as our main

mapper for the rest of the discussion in this paper.

4.4. Understanding Mapper Search Operators

Recall that there are three mapping axes in the map
space, tile, order, and parallelism. Gamma has dedicated
genetic operators to explore along these axes, i.e., mutate-
tile, mutate-order, and mutate-parallelism. It also houses a
crossover operator to blend two high-performant mappings
to create the next candidate mapping samples. Note that
each genetic operator is specifically tuned to adapt to this
map space as shown in the Gamma paper [28], which is
the key source of sampling efficiency over other black-box
optimizers, including RL and standard GA. As Fig. 6 shows,
full-fledged Gamma (dotted orange line) performs an order of
magnitude better than standard GA across the three evaluated
workloads.

4.4.1. Mapping Axis Sensitivity Analysis. In Fig. 5, we
explore each mapping axis individually (keeping the other
two fixed) via the mutation operator in Gamma [28] such
as mutate-tile for tile exploration, mutate-order for order
exploration and so on. We find mutate-tile to have the highest
impact on EDP compared to the other components.

4.4.2. Crossover Sensitivity Analysis. Gamma has
crossover operator which blends two mapping points to
create the next candidate mapping points. We execute a
sensitivity analysis of crossover in Fig. 6. We find that
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Fig. 7: The EDP difference of the same mapping with differ-
ent loop order. We sweep through all 7! order combinations
assuming all the buffer level utilize the same order. The 7!
different mapping leads to 16 different EDP performance,
with the best and the worst EDP differs by 14.4x times
(under Resnet Conv_4, Accel-B).

disabling crossover (light green) can hugely impact the po-
tential performance compared to full-fledged Gamma (dotted
orange). However, crossover-only without other operators
(dark blue) is also not adequate. Crossover working with all
the dedicated mutation operators for the three maxing axes
(dotted orange) can maximize the sampling efficiency of the
mapper (Gamma) and ends up giving the most optimized
performance.

Takeaway of comparing operators in a mapper:

• If one were to incrementally implement different explo-
ration functions along the mapping axes, starting with the
tile exploration would be the most cost-effective option.

• Blending two high-performance mappings (crossover) can
effectively create another high-performance mapping.

• The ability to explore different order and parallelism di-
mensions choices is not as critical as tile size exploration
to optimize EDP performance.

• Note that even when fixing the order or parallelism
throughout the optimization process, at the initialization
stage, we still randomly initialized order and parallelism
for the initial populations (a groups of initial sampling
points). It implies that few explorations of order and
parallelism are often adequate to give competitive map-
ping. It is owing to the fact that many combinations of
order or parallelism will lead to similar latency or energy
performance, as we discuss later in §4.4.3.

• The performance difference of two mapping for the
same problem can be as large as 3 orders of magnitude
difference, consistent with prior works [19, 28, 34, 44].

4.4.3. Loop Order Sensitivity Analysis. We perform a
sweep of loop order permutations to demonstrate our ob-
servation that many order permutations lead to similar
performance as observed above. We use the found mapping
in the experiment setting in Fig. 6(a) and swap out the order
permutation by enumerating through all the possibilities.
The search space is as large as (7!)3=1.28E+11. We add a
constraint that each level of the buffer will use the same order

TABLE 2: MSE for workload with weight sparsity. In
each columns, the blue cell shows the performance of the
optimized mapping for the sparse workload; the rest of the
cells shows the performnace of the same mapping tested with
the workload with different sparsity. We highlight the best-
performing cell of each row by green text. We can observe
that the blue cells overlap with green texts, indicating that
different workload with different sparsity levels do require
different mapping to optimize the performance.

Density 1.0 0.5 0.1 0.01

Density

1.0 3.7E+10 3.9E+10 5.8E+10 1.6E+12

0.5 1.0E+10 4.9E+09 9.1E+09 3.9E+11

0.1 8.0E+08 6.6E+07 6.4E+07 8.3E+08

0.01 5.0E+07 3.1E+04 4.8E+04 1.6E+04

Density

1.0 3.1E+10 3.6E+10 1.0E+11 4.3E+11

0.5 8.3E+09 4.9E+09 1.4E+10 9.6E+10

0.1 5.5E+08 9.1E+07 2.3E+07 3.7E+08

0.01 3.0E+07 7.0E+05 6.4E+03 5.4E+03

Density

1.0 1.1E+13 1.3E+13 1.5E+13 5.9E+14

0.5 3.4E+12 2.0E+12 2.3E+12 1.5E+14

0.1 3.5E+11 1.3E+10 5.1E+09 4.0E+10

0.01 3.3E+09 9.4E+06 3.3E+06 6.2E+05
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TABLE 3: The optimized EDP performance of inner and
outer product style mapping on sparse-dense GEMM work-
loads in Bert-large model [65]. The workload density indi-
cates the density of the sparse matrix. Bert-large KQV: the
key/ query/ value projection operations. Bert-large Attn: the
attention operation, Bert-large FC: the FC operations at the
end of attention blocks.

Workload

Density

Inner

Product

Outer

Product

Inner

Product

Outer

Product

Inner

Product

Outer

Product

1.0 7.6E+11 9.8E+11 1.9E+11 2.5E+11 7.8E+14 9.1E+14

0.5 1.1E+11 1.4E+11 2.8E+10 3.6E+10 1.5E+14 1.5E+14

0.1 9.0E+08 1.6E+05 3.4E+08 3.6E+08 1.4E+12 1.1E+08

0.01 1.9E+05 1.6E+05 2.0E+05 8.0E+04 1.8E+08 1.1E+08

Bert-large  KQV Bert-large Attn Bert-large FC

EDP (cycles uJ)

to relax the complexity, which becomes 7!=5,040 choices.
Fig. 7 shows that there are only 16 different EDP values out
of 5,040 different mappings. We can observe some patterns
in each of the same performance mapping groups, as shown
in Fig. 7. For example, “XY..” means the permutation starting
with XY. The loop order at the DRAM buffer level of the
original mapping found by Gamma (XB..) also falls in the
high-performance order group.

Takeaway. Many order permutations will lead to similar
energy or latency performance. This is why various loop
orders can be placed into large "stationarity" buckets (such
as weight/ input/ output/ row) [8, 34, 44] or inner/ outer
product [71].



4.5. Understanding Sparse Accelerator Mappings

4.5.1. Need of MSE for Flexible Sparse Accelerator.
There is a series of research proposing ways to prune DNN
models [16, 38, 40, 51, 68, 69, 80]. However, the pruned
models often cannot achieve as much performance gain in
hardware as proven by the algorithmic analysis because of
the increase complexity to find efficient mapping. There are
several sparse accelerators [26, 29, 37, 45, 48, 74, 77, 78]
for efficiently running sparse workloads, skipping zeros in
the weights and/or activations. However, they often employ
a fixed mapping (or a limited set of mappings). Given the
nascent domain, MSE for flexible sparse accelerators is
relatively unexplored, with one study looking into it [71] in
contrast to several MSE studies for flexible dense accelera-
tors [3, 7, 12, 15, 19, 23, 25, 27, 28, 49, 64, 73, 79]. This
leaves MSE for sparse accelerators and workloads an area
with plenty of opportunity to explore.

4.5.2. Mapping Search for Sparse Weights. For model
pruning, we often focus on pruning out the weight of the
models, essentially some weight becomes zero. Density 1.0
means dense weight, and density 0.5 means 50% of the
weights are zero. In Table 2, we use workloads with different
weight densities and use MSE to search for optimized
mappings. The performance of found mappings are recorded
in the blue cell. For example, the mapping found for Resnet
CONV_3 with 0.5 density has EDP performance of 4.9E+9
(cycles uJ).

Do we need different mappings for different sparsity?
We take the optimized mapping targeting a specific workload
with a specific density (blue cell) and test it with the same
workload with different densities. For e.g., at the top-left blue
cell (Table 2), we have an optimized mapping for the dense
workload (density 1.0). Then we use the same mapping and
test its performance under 0.5, 0.1, 0.01 density degrees,
whose performance is recorded in the bottom cells. We
perform the same experiment for the other three columns.
We mark the best-performing cell across each row with
green text. We can observe that the best-performing ones
always located in the blue cell, meaning to optimize mapping
for specific sparsity of the workload is needed to pursue
the best performance. Takeaway. A dense mapping cannot
generalize across sparsity workloads. Different sparsity levels
of the workload require different mappings to maximize the
performance.

4.5.3. Sparse Inner and Outer Product. An observation
that many sparse accelerators papers have made is that inner
product accelerators often perform better for low sparsity
workloads and outer product accelerators perform better at
high amounts of sparsity [43, 45]. We study this general
observation using the MSE framework. We assume the
underlying sparse accelerator is flexible to support both
inner and outer product style mapping. Inner and outer
products are essentially affecting the loop order. Therefore,
we fix the loop order and perform MSE for the other two
axes (parallelism and tile sizes). Table 3 shows that the
inner product style with optimized mapping consistently

outperforms the outer product counterparts for workload
density larger than 0.5, while the outer product style has an
edge over the inner product style at densities smaller than
0.1. Takeaway. From the viewpoint of MSE, we are able to
validate the observation that inner product style mappings
are better for denser workloads while outer product style
works better at high sparsity.

4.6. Lessons Learnt
We summarize two key takeaways from our analysis:

• The feedback based mapper has the highest
sampling efficiency and can directly work for any
workload and accelerator configurations. How-
ever, it has the highest wall-clock time to acquire
one sample (10x more costly than random-based
mappers, e.g., Random-Pruned [44]). Neural ar-
chitecture search is leading to new DNN mod-
els coming out frequently with highly irregular
tensor shapes, increasing the demand for sample-
efficient MSE.

• MSE needs to consider sparsity. While the spar-
sity of the weight is often fixed for a trained DNN
models, the sparsity of activations is dynamic.
When facing activation sparsity, we would either
under-utilize the hardware because of inefficient
mapping or would need to re-launch the MSE
again and again for every input-activation.

5. Improving MSE

From our analysis and takeaways from §4, we focus on
the two open-challenges identified above for next-generation
mappers: search speed and sparsity. We propose two heuris-
tics - “warm start" and “sparsity-aware" to address these.

5.1. Warm-start
5.1.1. Motivation. We introduce warm-start to reduce the
search time. This method is inspired by two observations. (1)
Informed by the study in §4.4 and §4.4.3, we know that order
and parallelism are often less sensitive from workload to
workload. (2) Because of the nature of the DNN operations
(CONV, FC, and others), consecutive layers often have some
dimensions the same or similar to each other. Therefore
potentially the mapping of the later layers can be inspired
by the found mapping of the previous layer.

5.1.2. Proposed Warm-start Search Mechanism. Fig. 8
shows our warm-start flow. We introduce a replay buffer

within the MSE framework which stores the optimized
mapping of each workload (i.e., DNN layer) that has been
run so far. We initialize the algorithm with the solution of
the highest-similarity workload in the replay buffer.

MSE Flow. Warm-start works via the following flow.
Step-1: When the new workload comes, we compare the
workload similarity to the workloads in the replay buffer. We
use editing distance as the similarity metric. Step-2: Initialize
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Fig. 10: The performance convergence curve with random
initialization and warm-start (by similarity) initialization at
the (a) first layer and (b) a later layer of VGG16.

the algorithm with the mapping with the highest-similarity
by (i) Inherit the order and parallelism parts of the solution,
and (ii) Scale the tile sizes to match the tensor dimensions
of the current workload. Step-3: Run the search algorithm.

Walk-Through Example. In Fig. 8 as an example, there
are two workloads that are finished with their final optimized
mapping stored in the replay buffer. The next workload,
workload-3, comes and will go through warm-start block
before entering optimization loop. In the warm-start block,
we use editing distance to compare the similarity between
the current workload and the workloads in the replay buffer.
E.g., workload-3 is only differ from workload-1 in the C-
dimension, leading to editing distance of 1; similarity, editing
distance with workload-2 is 3 (K, Y, X). Therefore, we pick
the stored optimized mapping for workload-1 (Map1), scale
it to match the tensor shape of workload-3 (i.e., multiply C
tile size by 2 at the outer-most tiling level (L3 mapping)),
and use it as the initialized mapping for the optimization.

Similarity. Typically, for most DNNs we find that previ-
ous layer has the highest-similarity score. However, there are
some exceptions: 1) the layers can come out-of-order because
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Fig. 11: The benefit of warm-start (by similarity) when
executing MSE. Warm-start MSE achieves comparable EDP
performance to default MSE, but converges 3.3-7.3x faster.
Different colors represent different layers of the DNN models.

of other compiler decisions or 2) irregular tensor shapes of
the workloads created by neural architecture search.

5.1.3. Evaluation. Impact of Warm-start Initialization.
Warm-start is an initialization technique. In Fig. 9, we show
the performance of the initialized mapping of warm-start
by similarity (yellow bar), warm-start by previous layers
(red bar), and the default random initialization (blue bar).
We evaluate workloads from two DNN models, VGG [56]
and Mnasnet [61]. Many DNN models are made by human
experts, where the shape of each layer are often designed
with high regularity such as VGG [56] and Resnet [18]. In
these models, warm-start by previous layers and warm-start
by similarity make no difference, since the highest-similarity
layers are almost always the previous layers, as shown in
workload ID 1 - 4. However, the shape of the workloads
in the Mnasnet, a network found by neural architecture
search, are more irregular. Therefore warm-start by similarity
becomes essential, providing 2x better performance than
warm-start by previous layers. However, both warm-start
strategies are effective and are 2.1x and 4.3x better than
random initialization.

Impact of Warm-start Search. Warm-start reduces the
time to converge. Fig. 10 shows the converge curve of the
first layer and a later layer to perform MSE on VGG16 [56].
For the first layers (VGG Conv_1), there are no previous



solution in the replay buffer. Therefore, searching with
random initialization or with warm-start initialization has no
difference. However, for the later layers (VGG Conv_13),
searching with warm-start initialized with better points and
converges faster.

We perform MSE for all layers in 4 DNN models with
and without warm-start. Fig. 11(a) shows that searching
with warm-start does not affect the quality of the found
solutions, i.e., the EDP values are as low as the default
algorithm. Meanwhile, warm-start can converge 3.3x-7.3x
faster (we define time-to-converge as the time to reach
99.5% of performance improvement. In the figure we use
the number of generation-to-converge, an equivalent index
of time-to-converge.). We observe that Mnasnet [61] enjoys
the least speedup. It is because Mnasnet is a result of neural
architecture search, with irregular tensor shapes in each layer.
Therefore scaling from previously-seen solutions will perform
not as close to the optimized solutions as in regular networks
such as Resnet [18], VGG [56], Mobilenet [53], which are
manual designed. Nonetheless, warm-start for Mnasnet can
still converge 3.3x faster.

5.2. Sparsity-aware MSE

5.2.1. Motivation. In §4.5.2 we identified the need different
mappings for different sparsity of workloads. While tackling
weight sparsity is straightforward because weight sparsity is
often fixed at model deploy time, tackling activation sparsity
is challenging. Since the activation sparsity is not known a
priori before runtime, and it differs per each input data, rather
than asking MSE to search for the optimal mappings for all
layers and all runtime dynamic sparsity levels, we ask MSE
to search for “a sparsity-aware mapping” that is efficient
across a range of sparsity levels. The only information the
MSE relies on is what is the typical “range” of sparsity
level for a given workload, e.g., 1.0 - 0.1 for a typical DNN
workload.

It is not practical to search for an optimal mapping for
each new input-activation. We want to seek out if we can

discover a mapping that can generalize across a range of

sparsity levels to tackle the dynamic sparsity in activations?

5.2.2. Proposed Sparsity-aware Search Mechanism. We
propose sparsity-aware mapping search, which works as
follows. When executing MSE, we don’t look at the actual
density level of each activation (since it is dynamic). Instead,
we assume and impose sparsity in the workload when
executing MSE. We impose the activation to have a density
from 1.0 to 0.1, which is the typical range of activation
density in DNN [37, 45, 48, 74, 77, 78]. Next, when executing
MSE, we score the mapping by the performance of this
mapping on workload across the sweep of density levels
(Fig. 8).

Scoring a Mapping. We score a mapping by the
weighted sum of the performance. We use a heuristic that “the
hardware performance (e.g., latency, energy) is with positive
correlation to the density of the workload” to decide the

TABLE 4: Comparisons of sparsity-aware technique and
static-density heuristic when tackling the activation sparsity.
The static-density heuristic searches mapping for a fixed
density level (1.0, 0.5, or 0.1). At search time, the sparsity-
aware technique are enabled to see the performance of
a mapping on a limited sets of density levels, which are
randomly picked, e.g., 1.0, 0.8, 0.5, 0.2, and 0.1 in this
experiments (marked as blue cells). We highlight the best-
performing one in each row with green text. Sparsity-aware
will find one fixed mapping solution. We test the found
mapping with a range of density (1.0 - 0.05) and record their
performance. Note that many of the density levels (in 1.0
- 0.05) are never seen by MSE at search time. The result
indicates that sparsity-aware technique can find mapping with
comparable performance to the static-density ones across a
range of sparsity.

Workload

Density

Sparsity-

aware

Static density

1.0

Static density

0.5

Static density

0.1

1.0 2.40E+13 2.39E+13 2.41E+13 2.46E+13

0.9 1.75E+13 1.94E+13 1.76E+13 1.79E+13

0.8 1.23E+13 1.54E+13 1.24E+13 1.26E+13

0.7 8.26E+12 1.18E+13 8.30E+12 8.46E+12

0.6 5.21E+12 8.69E+12 5.24E+12 5.34E+12

0.5 3.02E+12 6.06E+12 3.02E+12 3.10E+12

0.4 1.55E+12 3.90E+12 1.56E+12 1.59E+12

0.3 6.59E+11 2.21E+12 6.63E+11 6.77E+11

0.2 1.98E+11 1.00E+12 1.99E+11 2.04E+11

0.1 4.78E+10 2.65E+11 4.81E+10 4.78E+10

0.05 1.28E+10 7.34E+10 1.29E+10 2.67E+10

1.0 7.77E+15 7.77E+15 7.93E+15 7.83E+15

0.9 5.67E+15 6.33E+15 5.79E+15 5.71E+15

0.8 3.99E+15 5.00E+15 4.08E+15 4.02E+15

0.7 2.67E+15 3.84E+15 2.74E+15 2.69E+15

0.6 1.69E+15 2.82E+15 1.73E+15 1.70E+15

0.5 9.78E+14 1.97E+15 9.78E+14 9.83E+14

0.4 5.02E+14 1.26E+15 5.21E+14 5.05E+14

0.3 2.13E+14 7.16E+14 2.23E+14 2.14E+14

0.2 6.39E+13 3.22E+14 8.64E+13 6.38E+13

0.1 1.55E+13 8.37E+13 4.49E+13 1.53E+13

0.05 4.12E+12 2.25E+13 2.53E+13 3.98E+12

Resnet Conv_3, Accel-B

Inception Conv_2, Accel-B

EDP (Energy uJ)

weighting. We pick the weighting by the factor of density7

For example, assuming we have two density levels, 0.5 and
1.0, with hardware performance Perf0.5 and Perf1.0, then the

(weighted sum) score is:
Perf0.5

0.5
+

Perf1.0
1.0

.

5.2.3. Evaluation. We compare the “sparsity-aware” (§5.2.1)
with “static-density” in Table 4. Both “sparsity-aware”and
“static-density” are agnostic to the actual workload density.
“Static-density 1.0” always assumes the workload is dense
when searching. “Static-density 0.5” searches the mapping
assuming the workload has 0.5 density, and “Static-density
0.1” assumes 0.1 density. “Sparsity-aware” searches the
mapping assuming the workload density range from 1.0
- 0.1. Specifically, we use 5 density levels: 1.0, 0.8, 0.5, 0.2,
and 0.1 (blue cells in the first column), which are picked
by heuristics. That is, when evaluating the mapping in the

7. We pick the weighting linear to density, since we experiment only
with activation sparsity (not weight) in our evaluation.



optimization loop, we scored the mapping by the performance
of this mapping under workload density levels of 1.0, 0.8, 0.5,
0.2, and 0.1, and used the weighted sum of the performance
as the final scores for the mapping. The scores are used to
select which mappings proceed to the next iteration of the
optimization loop.

We test the found mappings of the four strategies
(columns) in Table 4 by workload with density from 1.0
to 0.05. The performance of each is recorded in the corre-
sponding rows. We make two observations: 1) The “sparsity-
aware” can reach comparable performance to the “static-
density” ones at the density levels, for which the “static-
densities” are specifically optimized. For example, “static-
density 1.0” found a mapping with EDP 2.39E+13 (cycles uJ)
at density level 1.0. The mapping found by “sparsity-aware”
can perform at a comparable EDP of 2.40E+13 (cycles uJ).
2) Aware of a range of sparsity (1.0 - 0.1), “sparsity-aware”
can successfully find a mapping that can generalize across a
range of sparsity. A fixed mapping found by “sparsity-aware”
can achieve (in geomean) 99.7% of performance to the
performance of each of the mappings specifically searched
for different density levels.

6. Related works

Map Space Exploration. Many mappers (search algo-
rithms) with different algorithmic techniques are proposed to
tackle the MSE problem. Timeloop-mapper [44], Simba [54],
dmazeRunner [12], Interstellar [75], and others [13, 14, 41,
55, 57–60, 63, 66, 67, 70, 76] use random sampling on a
raw or pruned search space. Gamma [28], Autotvm [7], and
others [30, 60, 64] use genetic algorithms. Tiramisu [3] and
Tensor Comprehensions [64] use constrained optimization.
HASCO [73] and Reagen et. al [50] uses Bayesian optimiza-
tion, RELEASE [2], ConfuciuX [27], and FlexTensor [79]
uses reinforcement learning. Mind Mappings [19] uses a
neural network-based surrogate model to replace the cost
model and directly uses backpropagation to learn a solution
that maximizes the objective. There are also other techniques
such as mixed-integer programming in CoSA [23], MCMC
search in FlexFlow [25], and others [3, 15, 49, 64]. While
there have been plenty of mappers proposed, a deeper
analysis of how the MSE works and how different mapping
axes contribute to the performance is often lacking, which
this work performs.

7. Conclusion

MSE for NPUs is a computationally expensive problem
with active ongoing research. There is, however, no work, to
the best of our knowledge, that has focused on understanding
how different state-of-the-art mappers navigate the map-
space across different axes. This work performs a deep-
dive analysis on MSE using heuristic and learning-based
mappers and identifies their strengths and weaknesses. We
also propose two new techniques - warm-start and sparsity-
aware - to enable scalability to emerging large, irregular and
sparse DNNs. We hope that by our analysis, we can make
MSE more approachable and understandable to a broader

community, and propel the invention of advanced mapping
search techniques.
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