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Neuromorphic cognitive computing offers a bio-inspired means to approach
the natural intelligence of biological neural systems in silicon integrated circuits.
Typically, such circuits either reproduce biophysical neuronal dynamics in great
detail as tools for computational neuroscience, or abstract away the biology by
simplifying the functional forms of neural computation in large-scale systems
for machine intelligence with high integration density and energy efficiency.
Here we report a hybrid which offers biophysical realism in the emulation of
multi-compartmental neuronal network dynamics at very large scale with high
implementation efficiency, and yet with high flexibility in configuring the functional
form and the network topology. The integrate-and-fire array transceiver (IFAT)
chip emulates the continuous-time analog membrane dynamics of 65 k two-
compartment neurons with conductance-based synapses. Fired action potentials
are registered as address-event encoded output spikes, while the four types
of synapses coupling to each neuron are activated by address-event decoded
input spikes for fully reconfigurable synaptic connectivity, facilitating virtual wiring
as implemented by routing address-event spikes externally through synaptic
routing table. Peak conductance strength of synapse activation specified by the
address-event input spans three decades of dynamic range, digitally controlled
by pulse width and amplitude modulation (PWAM) of the drive voltage activating
the log-domain linear synapse circuit. Two nested levels of micro-pipelining in
the IFAT architecture improve both throughput and efficiency of synaptic input.
This two-tier micro-pipelining results in a measured sustained peak throughput
of 73 Mspikes/s and overall chip-level energy efficiency of 22 pJ/spike. Non-
uniformity in digitally encoded synapse strength due to analog mismatch is
mitigated through single-point digital offset calibration. Combined with the
flexibly layered and recurrent synaptic connectivity provided by hierarchical
address-event routing of registered spike events through external memory, the
IFAT lends itself to efficient large-scale emulation of general biophysical spiking
neural networks, as well as rate-based mapping of rectified linear unit (ReLU)
neural activations.

KEYWORDS

neuromorphic cognitive computing, integrate-and-fire array transceiver (IFAT), address
event representation (AER), conductance-based synapse, dendritic computation, log-
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1. Introduction

Neuromorphic systems implementing spiking neural networks
are promising research platforms for investigating and emulating
the computational abilities of the brain (Mead, 1990; Indiveri
et al, 2011; Thakur et al, 2018). The compactness and low-
power consumption of neuromorphic circuits make them highly
suited for robotic and mobile applications emulating the dynamics
of complex brain circuits in real-world environments (Badoni
et al., 2006; Indiveri et al., 2006; Silver et al., 2007; Schemmel
et al, 2010; Merolla et al, 2011; Ramakrishnan et al., 2012;
Sharp et al., 2012; Imam and Cleland, 2020). Such complex real-
life tasks require large-scale neuromorphic systems, and there
are various approaches for their implementation. They range
from implementations using microprocessor cores integrated with
specialized network-on-chip routers (Furber et al., 2012; Sharp
et al., 2012; Painkras et al,, 2013), fully digital implementations
with quasi-asynchronous elements to maintain synchrony (Merolla
etal, 2011, 2014; Imam et al., 2012; Akopyan et al.,, 2015), SRAM-
based implementations for programmable precision of neural and
synaptic dynamics and connectivity in a core and supporting local
learning rules (Davies et al., 2018; Detorakis et al., 2018; Frenkel
etal,, 2019), implementations using amplifier-based neuron circuits
with wafer-scale integration and connectivity (Schemmel et al,
2010; Millner et al., 2011; Schmitt et al., 2017), analog quadratic
integrate-and-fire neurons sharing synapses, axons, and dendrites
with neighboring neurons implementing a diffusive neural network
as layered in the cortex (Lin et al.,, 2006; Benjamin et al., 2014;
Neckar et al,, 2019), and subthreshold CMOS analog neurons
with digitally controlled conductance-based synapses (Yu et al,
2012b; Park et al., 2014). Despite the success of large-scale
implementations, the required synaptic density of the scale of
the brain with neuronal dynamic representations at low power
consumption remains a challenge.

All these neuromorphic systems are built from basic neural
computation units, that is neurons and synapses, which are
also the basic computational elements in the biological brain.
A neuron processes incoming information and transmits its
outputs using an electrical signal represented by an action
potential to other neurons via synapses. A basic principle for the
emulation of neural and synaptic dynamics is the integration of
synaptic currents into the membrane potential and generation
of action potentials. There are various models for emulating
these principles (Destexhe et al, 1998). Some neuron models
emulate neural dynamics in more biologically plausible ways,
ranging from a model of ion channel kinetics with hundreds of
differential equations and parameters (Hodgkin and Huxley, 1952)
to models of simplified conductance-based differential equations
for computational efficiency (Izhikevich, 2003; Mihalas and Niebur,
2009). However, the hardware complexity for the implementation
of these neuron models limits the large-scale integration of neurons
in a silicon die. Conversely, the leaky integrate-and-fire neuron
model is a popular choice for large-scale implementation because
of its relative simplicity and ability to emulate many dynamic
features of biological neurons (Brette and Gerstner, 2005). The
integrate-and-fire neuron models the synaptic current integration
and the generation of the action potential. A neuron generates an
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action potential when the membrane potential exceeds a certain
threshold voltage. This basic principle can be implemented using a
comparator and an integrator; thus, this simplicity makes it suitable
for large-scale implementation in a silicon die.

When a presynaptic neuron generates a spike, it releases
neurotransmitters to the synapses connected to postsynaptic
neurons. In the biological brain, a neuron is connected to 10,000
neurons on average. Achieving hard-wired synaptic connections
to the level of the biological brain is highly challenging
in neuromorphic hardware. This challenge can be addressed
using the asynchronous address event representation (AER)
protocol in neuromorphic systems. AER facilitates spike event
communication between arrayed neurons using address events,
each of which represents a target neuron address with synaptic
parameters (Sivilotti, 1991; Lazzaro et al., 1993; Mahowald, 1994;
Deiss et al., 1999; Boahen, 2000). When a neuron fires in an
array, the spike is encoded as an address event representing the
address of the neuron in the array. The event is translated to
synaptic events through a synaptic routing table implemented in
random access memory (RAM) or read-only memory (ROM), and
these synaptic events are sent to postsynaptic neurons. In each
postsynaptic neuron, an incoming synaptic event accumulates the
membrane potential of the postsynaptic neuron.

An integrate-and-fire array transceiver (IFAT) is proposed
and developed as a promising system platform for large-
scale power-efficient neuromorphic processing. In our previous
studies, integrate-and-fire neurons were arranged in a 2 k-
neuron core (with 2,048 neurons), and each neuron used a
simple analog-switched capacitor architecture to model membrane
dynamics, resulting in a discrete-time version of synaptic current
integration (Goldberg et al, 2001; Vogelstein et al, 2007).
This demonstrated the ability to emulate a model of attractor
dynamics and neural activity in the rat hippocampus. For a
more compact form of synapses while further extending the
linearity of the synaptic dynamics in continuous time, a single-
transistor realization of a conductance-based synapse emulating
the log-domain encoding of first-order linear dynamics of synaptic
conductance was presented (Yu and Cauwenberghs, 2010). In
addition, large-scale integration incorporating a hierarchical AER
architecture has been realized (Yu et al., 2012a; Park et al., 2017).
For address event routing, a synchronous AER circuit was placed
for each 2 k-neuron core. In this scheme, an event holds the AER
circuit until the event is delivered, thus resulting in a limited input
event throughput. In this study, the AER protocol is implemented
fully asynchronously, implying that there is no synchronized
system clock. The AER protocol is only activated by address
events with a “handshaking” protocol. When a sender and receiver
are ready to communicate, they send and receive a request and
acknowledge signal to deliver an event. This event-driven activation
reduces the dynamic power consumption significantly (Martin and
Nystrom, 2006), achieving sub-nanojoule energy efficiency for an
asynchronous microcontroller (Martin et al., 2003), and it is also
applied to neuromorphic systems for energy-efficient address event
communication (Vogelstein et al., 2007; Merolla et al., 2011, 2014;
Millner et al., 2011; Benjamin et al., 2014; Davies et al., 2018).

In this paper, we present a 65k-neuron IFAT as a computational
building block for large-scale neuromorphic systems. An IFAT
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FIGURE 1

the membrane potential of

proximal compartment Viyem1.

(A) Biological neural systems illustrating neural synaptic transmission. Incoming action potential induces that a presynaptic neuron releases
neurotransmitters to synapses stimulating a postsynaptic neuron. (B) Emulation of the biological neural systems in electronics. Dynamic
reconfigurable synaptic connectivity across IFAT arrays using virtual synaptic connections represented in neural spike events through a RAM/ROM
synaptic routing table. (C) Block diagram of two-compartmental leaky integrated-and-fire neuron model with conductance-based synapses. (D)
Block diagram and schematic of two-compartment conductance-based leaky integrate-and-fire neuron circuit with AER interface circuits. The
proximal and distal compartments, each comprising a conductively leaky membrane with two single-transistor conductance-based synapse circuits,
are conductively coupled. A three-transistor dynamic latch holds Vs, to active low to select one synapse in the selected neuron while a pulse width
modulated synaptic input at voltage V) activates the synapse. An axon hillock circuit generates action potential and registers output events resetting

neuron comprises two conductively coupled compartments,
each with two single-transistor conductance-based synapses. The
compact form of single-transistor conductance-based synapses
enables the dense integration of 65,536 neurons in a single chip. The
TFAT neuron is suitable for continuous-time dynamical emulation
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of biologically realistic neuronal networks. We demonstrated the

such as multi-compartmental

neuronal computation and boundary detection with orientation
tuning curves. The synaptic connectivity and event communication
in the IFAT rely entirely on the proposed fully asynchronous AER
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FIGURE 2

(A) Block diagram of the IFAT chip including identical four quadrants each with eight 2 k-neuron IFAT cores, an asynchronous splitter, and an
asynchronous merger for event communication. (B) Chip micrograph of the IFAT chip. One quadrant, each comprising eight 2 k-neuron IFAT cores
and asynchronous AER merger and splitter, is indicated. (C) 2 k-neuron IFAT core and (D) two-compartment integrate-and-fire neuron cell layout.

circuits, resulting in low-power consumption owing to its event- 2 k-neuron cores. This two-tier micro-pipeline scheme designed
driven operation. To maximize the parallelism of the input event  using the asynchronous design principle results in a sustained peak
streams, an additional pipeline stage was added per row in the  throughput of 73 Mspikes/s at 22 pJ/spike power efficiency.
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(A) Implementation of a single-transistor log-domain
conductance-based synapse (Yu and Cauwenberghs, 2010) and a
three-transistor dynamic latch. (B) Timing diagram of the synapse
and dynamic latch operation with two events. When the
three-transistor dynamic latch is selected by a Row and cot, it holds
Vse, to active low for selection of one synapse in the neuron while
the pulse width (At) modulated input with the amplitude modulated
voltage (V;) at V)y, which defines the update of synapse
conductance (AGsy,) according to Equation (6), drives the activated
synapse.

This paper extends a previous preliminary report Park et al.
(2014) which showed the characterizations of a single neuron
to the complete characterizations of the entire array of neurons.
Additionally, this paper presents the calibration process and
mapping of a rate-based neural network onto the architecture with
an example of a boundary detection application. The remainder
of the paper is organized as follows. In Section 2, we describe
the circuit implementation and theoretical motivation behind the
implementation. Section 3 presents the measurement results. We
show the analysis of a single neuron response and the variability
of the response across 2,048 neurons in one core. In addition,
we demonstrate a potential application, that is image boundary
detection, using IFAT neurons. Section 4 summarizes the related
and prior works in a table and discusses potential extensions of
the IFAT chip with emerging non-volatile memory devices. Finally,
Section 5 concludes the contributions of the IFAT chip.

2. Implementation details

2.1. Two-compartment integrate-and-fire
neuron model

The proposed IFAT chip emulates the detailed biological
dynamics of neurons and synapses in integrated circuits. Figure 1A
illustrates the neural synaptic transmission between neurons.
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When a presynaptic neuron generates an action potential,
it releases neurotransmitters to the synapses, which integrate
charges on the membrane of the postsynaptic neuron. When the
membrane potential exceeds the firing threshold, the postsynaptic
neuron generates an action potential. This neural activation and
synaptic communication were emulated in the IFAT chip with a
representation of connectivity information in address events, as
shown in Figure 1B. Based on such address events using a synaptic
routing table, which can be implemented with external memory,
such as RAM or ROM, dynamically reconfigurable synaptic
connectivity is supported across the IFAT chips in hierarchical
address-event routing (HiAER-IFAT) architecture (Park et al,
2017). When a presynaptic neural spike is revieved, synaptic
connection information between the presynaptic neuron and its
connected postsynaptic neurons is read out from a synaptic routing
table, and these address events are routed to the postsynaptic
neurons with other synaptic information, which is encoded in the
address events, such as synapse type and synaptic weight.

In the IFAT chip, each neuron is implemented using a
two-compartment leaky integrate-and-fire neuron model, as
shown in Figure IC. In the neuron model, there are two
compartments, called “distal” and “proximal” each with a
membrane capacitor, leak conductance. Each compartment also
contained two synapse circuits, which are configured as excitatory
or inhibitory synapses by programmable reversal potentials. The
synaptic weight modulates the synaptic conductance, defining
the amount of current injected into a membrane capacitor in
a compartment. Each compartment capacitor is conductively
coupled using configurable conductance. When the proximal
membrane potential exceeds the threshold voltage, the axon hillock
circuit triggers an action potential, similar to the biological system.
The dynamics of a two-compartment leaky integrate-and-fire
neuron are formulated as follows:

AVimem1
Cmeml% = Iﬂ; + Z Gsyn,j(Erev,j = Vinem1)
=23
+Gieak1 (Eteak1 — Vimem1)
+Gcomp(Vmem0 - Vmeml) (1)
AVmemo
CmemO% = Z Gsyn,j(Erev,j = Vinemo)

j=0,1
+Gleak0(Eleak0 = Vinemo)
+Gcomp(Vmeml - VmemO) (2)

where Cpemo and Cpemi are the distal and proximal membrane
capacitances, respectively; Viemo and Vien are the distal and
proximal membrane voltages, respectively; Iy is the nonlinear
positive feedback current due to the spiking mechanism; Gy
is the synapse conductance; E,., is the reversal potential; Gjeux
is the leak conductance; Ejqy is the leak potential; Geomp is the
inter-compartment conductance.

The input and output of a neuron are encoded as address
events. A decoder routes an incoming address event to a destination
postsynaptic neuron using the information on the synapse type
and synaptic weight. Subsequently, an input AER circuit (AERin)
stimulates the synapse in the destination neuron with a synaptic
weight. On the output side, when an axon hillock circuit registers
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FIGURE 4
(A) Circuit implementation, (B) schematic symbol, and truth table of the C-element, which is also called a Muller circuit. (C) Schematic of n-bit
asynchronous pipeline stage. A one-bit latch with C-elements in dual-rail encoding is shown in the bottom-left box. When the ack is active low, the
current stage can latch an input bit. A completion tree (C-tree), which is a tree of C-elements, determines the completion of latched data lines and
enables active high to the previous state for the acknowledge signal, ACKpge. The current stage holds the latched data until the next stage
acknowledges, via the active high ACK signal.

an event, the output AER circuit (AERout) raises the request
signal. An encoder takes the request signal and converts it into an
address event, indicating the address of the neuron in the arrayed
neurons.

of the
implementation of the two-compartment conductance-based

Figure 1D shows a transistor level schematic

integrate-and-fire neuron. Two conductance-based synapse
circuits are tied to a compartment with programmable reversal
potentials E,,, defining the synapse type and synaptic time
constants controlled by V:. In the AERin circuit, an incoming
event selects one of the four synapses using pairwise complement
signals: ROWA, ROWB, and COLA, COLB. Each compartment
integrates currents from the synaptic conductance and discharges
to continuously leak conductance. In addition, the coupling
conductance, which is controlled by the Vcomp, couples the
electrical charges between the proximal and distal compartments.
When the proximal membrane potential exceeds the threshold
voltage Vipean» a self-timed axon hillock circuit (Vogelstein et al.,
2007) generates an action potential and registers a neural spike
event on the AERout circuit to the output AER bus while resetting

the membrane potential.
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2.2. Overall architecture

Figure 2A shows the overall architecture of the IFAT chip,
which is equipped with 65 k integrate-and-fire neurons in a single
chip. The 65 k neurons are divided into four independent and
identical quadrants, each of which contains eight 2 k-neuron IFAT
cores. Each quadrant has independent input and output ports for
address event communication. Asynchronous splitters and mergers
are placed at the center of each quadrant to control the address
event streams from and to the eight 2 k-neuron IFAT cores.
Each 2 k-neuron IFAT core comprises 2 ktwo-compartment leaky
integrate-and-fire neurons and periphery circuits, such as row and
column decoders, pulse width and amplitude modulation (PWAM)
circuits, asynchronous AER communication circuit, linear feedback
shift register (LFSR), and row and column arbiters. The input
and output AER buses are implemented by fully asynchronous
communication circuits using a four-phase dual-rail encoding
communication protocol. An address event is encoded in the
address of the neuron location in the quadrant of the IFAT chip.
A previous synchronous pulse-width modulation circuit (Yu and
Cauwenberghs, 2010), which incurs a long waiting time between

frontiersin.org
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(A) Schematic of the arbitration circuit comprising two cross-coupled NAND gates. Two request signals, REQO and REQ1, compete to activate one of
two cross-coupled NAND-gate paths. The selected request signal enables a path to deliver an acknowledge signal (ACK) to the selected previous
stage. (B) Block diagram of the asynchronous merger circuit comprising an arbitration circuit and n-bit asynchronous pipeline stage (shown in

Figure 4C). N-1 bits are transferred from the selected previous stage, and the selected request signal (REQOsg, or REQOsg;) is added to the transferred

data as the MSB to indicate the source of the data.

consecutive events, is improved by an additional pipeline stage,
row-wise PWAM circuits, which improves the throughput to the
2 k-neuron IFAT core, while the additional amplitude modulation
extends the dynamic range of synaptic strength exponentially.

Figure 2B shows a micrograph of the 4 x 4 mm? IFAT chip,
which was fabricated using a 90-nm CMOS process. The chip
has 436 staggered 1/O pads and is packaged in a 35 x 35 mm?
Fine Ball Grid Array (FBGA) package. The layouts of the 2 k-
neuron IFAT core and neuron cell are shown in Figures 2C, D,
respectively. A 2 k-neuron IFAT core occupies 415 x 810 um? and
a two-compartment neuron occupies 12.15 x 11.5 um?.

2.3. Conductance-based synapse

Figure 3A  shows the single-transistor implementation of
a conductance-based synapse (Yu and Cauwenberghs, 2010)
incorporating a three-transistor dynamic latch, and Figure 3B
shows the timing diagram for its operation. An incoming event
drives cOL and ROW and sets RSTyarcn high, holding Vgg to
active low to select one active synapse in a neuron selected by
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coL and ROW. Its pMOS diode-connected input is then driven
by the source voltage Vi. It increases the gate voltage of the
synapse V,, increasing the synaptic conductance of Gy, in the log-
domain while implementing a linear dynamical synapse with a time
constant controlled by V; (Yu et al., 2012a). After a pulse width
At, Vg returns to Vpr, RSTy arcp 1S activated to release Vg, passive
high, and the synapse is ready to receive the next synaptic input
event.

The synapse
conducted in the subthreshold operating regime of the MOS

single-transistor ~ conductance-based was
transistor. As explained above, synaptic input events change the
conductance of synapse transistors. The synaptic conductance
modification in the log domain is formulated from the drain
current of the nMOS transistor operating in the subthreshold

regime as follows:

“Vg Vs V4
Iy=1loe T (7T —¢7T) 3)

where I is the dark current of the transistor, Vg is the gate voltage,
V; is the drain voltage, V; is the source voltage, « is the back gate
parameter, and Vr is the thermal voltage. This equation can be
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comparator Vger, which defines the pulse width of the synaptic stimulus.

transformed to “log-domain” or “pseudo-voltage domain,” with the
definition of a pseudo-voltage and pseudo-conductance (Fragniere
etal., 1997).

Iy = Gsyn(Erev = Vinem) (4)

ﬂ

where the pseudo-parameters of conductance Gy, = é—"Te Vr,
_Va

reversal potential E,,, = —VTe( VT), and membrane potential

_ (=)
Vinem = —Vre V1.
From the pseudo-parameters of conductance, we can derive the

synaptic conductance update with respect to time.

d I, d %
—G = — —e'r
dat 7" T Vpdt
Kk Ve
=1 V%eVT (Evg)
K K—Ipmos
I,—eV (5)
nV% Csyn

where the back-gate coeflicient « is the same for nMOS and pMOS,

I, and I, are the subthreshold pre-exponential current factors of
Vs «Vg

nMOS and pMOS, respectively, Ippuos = Ipe"re 71, and Cyyy, is
the synapse capacitor.
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Timing diagram for the input asynchronous AER distribution
(Figure 6A) and single-row PWAM (Figure 6B) circuits when two
consecutive events address neurons on the same row.

The synaptic strength is encoded in pulse width At and
amplitude Vs modulation, and the resulting step in synaptic
conductance AGgy, is approximately given by:

I, Vs w
= ——eTAt x (1+ R)ZA (6)

where:
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synaptic strength. The input events address neurons in the same
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Measured activity-dependent power consumption.

e W is the relative pulse width of the stimulus, which is the
mantissa of the given synaptic strength, in integer units [0,
15], and four least significant bits (LSBs) of eight-bit synaptic
strength.

e A is the pulse amplitude in the log-domain, which is the
exponent of the given synaptic strength in integer units [0,
15], and four most significant bits (MSBs) of eight-bit synaptic
strength.

2.4. Asynchronous interface with
four-phase dual-rail encoding

The AER circuits in the IFAT chip operate in a fully
asynchronous way. Asynchronous circuits do not have a master
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clock for system synchronization. Instead, a “handshaking”
protocol is used for reliable data communication between the
sender and receiver. Handshaking protocols are implemented
with two signals: request and acknowledge. A request signal
indicates the sender’s readiness to send a data packet. In response
to the request signal, the receiver sends an acknowledgment
signal back to the sender if available. The sender then sends
a data packet. This is an event-driven process. Among various
handshaking protocols (Martin and Nystrom, 2006), the IFAT chip
uses a four-phase dual-rail encoding protocol for more reliable
asynchronous handshaking communication. “Four-phase” means
that the whole process of request and acknowledge handshaking
comprises four signal-transition phases. “Dual-rail” means that two
complementary bit-lines are used to represent one-bit information.

A basic building block for the protocol is a C-element
circuit (Muller circuit; Muller and Bartky, 1957). The circuit
implementation, schematic symbol, and truth table of the C-
element are presented in Figures 4A, B, respectively. It accepts
inputs when the inputs are the same; otherwise, it holds its
output value until it receives the same value for both inputs.
Such an operation is required for delay-insensitive operations in
asynchronous design. Figure 4C shows a schematic of the n-bit
asynchronous pipeline stage for the four-phase dual-rail encoding
protocol. This pipeline stage holds its data until one of the next
pipeline stages is ready to collect the data. It is a function similar
to a register in the synchronous design principle. The four-phase
dual-rail handshaking protocol does not have an explicit request
signal, but it is embedded in the dual-rail. Each bit of the data is
encoded in two complementary lines: TRUE and FALSE. The TRUE
bit represents the actual value of the data and the FALSE bit is
complimentary. If TRUE and FALSE indicate different values, a valid
value is loaded into the dual-rail properly, as in TRUE. However, if
both are the same, the bit lines are transitioning. The completion
tree, the C-tree block shown in Figure 4C, validates that all the
bit lines are properly latched. Upon validation, the output of the
C-tree is used as an acknowledge signal, ACKpgg, to the previous
pipeline stage. The properly lathed dual-rail-encoded output bits
are considered as a request signal to the next pipeline stage.

2.5. Asynchronous splitter and merger

Owing to the limited number of I/O pads on the chip,
the input and output buses need to be shared by eight 2 k-
neuron IFAT cores in a quadrant. The input bus is designed to
communicate 24-bit input synaptic address events. Each event
comprised a three-bit destination core address, an 11-bit neuron
address in the destination core, a two-bit synapse type, and eight-
bit synapse strength. Asynchronous splitters are implemented to
locate an input synaptic address event to a destination core. The
asynchronous splitter has a binary tree structure of cascaded
asynchronous pipeline stages. There are three stages from the input
IOs to the destination 2 k-neuron core. At each stage, the MSB of
the input synaptic address events is decoded as a request signal to
the next pipeline stage.

On the shared output bus side, an asynchronous merger
is designed to multiplex address events that are generated
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Neural activation functions measured with input spike trains, each comprising Poisson (green) and regular spike trains (blue) with varying input event
rates. Measured representative membrane potential, which is shown in the log-domain, from Poisson and regular inputs are plotted on the top left
and bottom right insets, respectively. In the insets, input and output spikes are indicated by bars at the top and middle rows, respectively.
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blocks the upstream synaptic excitation

Time (ms)

Measured example of shunting inhibition, which blocks the upstream synaptic excitation effect. The distal compartment of the neuron is strongly
excited by excitatory synaptic input events, which results in excitatory compartmental inputs coupled through compartmental conductive
interactions to the proximal compartment and generation of neuron spike. From 50 to 80 ms, the proximal compartment is inhibited, and then it

100 150

IFAT The
asynchronous merger comprised an arbiter and asynchronous

simultaneously from multiple neuron  cores.
pipeline stage. Figure 5 shows the schematics of Figure 5A the
arbiter and Figure 5B asynchronous merger circuit. The arbiter
circuit receives request signals REQO and REQI1 from two paths
in the previous stage. Two cross-coupled NAND gates select a
path that prioritizes the sending of a request signal to the next
signal. The selected request signal, either REQOsg;, or REQIsgy,, is
encoded in the dual-rail encoding scheme. The dual-rail encoded
bit is the MSB of the address event that is selected at the current
stage. Additionally, the data from the selected path are properly
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latched at the asynchronous pipeline stage and acknowledged
to be ready for the next event. There are eight 2 k-neuron
IFAT cores in each 16 k-neuron quadrant and two paths can be
merged using an asynchronous merger. Hence, there are three
stages of asynchronous mergers in each quadrant, which are
binary-tree structured. When a neuron fires at a 2 k-neuron IFAT
core, it is encoded as an 11-bit address event that represents
the address of the neuron in the 2 k-neuron IFAT core. One
MSB is added to the address event when it passed through each
stage, resulting in a 14-bit address event at the output bus of
the chip.
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(A) Measured input-output transfer function of neural responses.
The input spike rate is varied from 500 to 10,000 Hz where the
interspike intervals are distributed in the Poisson distribution. (B)
Measured gain of input-output transfer function of the neuron
defined as a ratio of the output and input spike rates.

2.6. Two-tier micro-pipelining scheme

The communication of each address event at a 2 k-neuron IFAT
core is implemented using on-chip asynchronous request (REQ)
and acknowledgement (ACK) signals. To increase the throughput
of the input events, an input asynchronous AER distribution
network on a 2 k-neuron IFAT core is pipelined in two stages
with an asynchronous AER communication circuit (shown in
Figure 6A) and single-row PWAM circuits (shown in Figure 6B), as
shown in Figure 2A. A 2 k-neuron IFAT core receives a 21-bit AER
event, which comprises the information of an 11-bit postsynaptic
neuron address ([20:10]), a two-bit synapse type ([9:8]), and an
eight-bit synapse strength ([7:0]). If a 21-bit AER event is received,
the asynchronous AER communication circuit coordinates the
AER event to the destination neuron address via column and row
decoders and to the synapse type, which is determined by the two-
bit synapse type ([9:8]). The asynchronous AER communication
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circuit then requests a selected PWAM circuit with eight-bit
synapse strength. If the PWAM circuit is available, the eight bits for
synapse strength are latched onto an eight-bit bus, which selects a
comparator reference voltage (Vrgr) defining the pulse width over
the baseline by pulse amplitude (Vi) in the log-domain. If the
PWAM circuit is held by a previous address event, the event is not
acknowledged and waits until it is serviced.

Figure 7 shows a handshaking timing diagram of the two-
tier micro-pipelining scheme when two consecutive events address
neurons in the same row. It shows asynchronous handshaking
timing from a destination neuron address selection via column
and row decoders to a selection of synapse types and data
packet requests. Tigency is the latency of handshaking from an
asynchronous AER circuit in a 2 k-neuron IFAT core to the
destination neuron. If an event is input to the same row as the latest
input event, which holds a PWAM circuit, it waits until the event
is served to a destination neuron. Tuir represents the additional
latency induced by consecutive input events.

3. Measurement results

In this section, we present the experimental results of the
system on throughput, system-level energy efficiency, neural
activation with respect to input spike strength, and variability
due to transistor mismatches across a 2 k-neuron IFAT core. In
addition, we present a linear synapse response model with a simple
application of orientation tuning curves for boundary detection.

3.1. Event throughput

In the presented architecture, the throughput can be defined as
follows:

Throughput = (7)

Tlatency + Tait

where Tigency is the average event handshaking latency, and Tyqi
is the average waiting time in cases where an incoming event
addresses a neuron in the same row as the previous event as
shown in Figure 7. Ty, is proportional to At/Niyserieave> Where
At is the input pulse width, and Njyereare is the number of
interleaved rows. Figure 8 shows the measurement results for event
throughput. A spike input stream, which has the maximum pulse
width for each input, addressing the 32 neurons in a single row
results in 70.6 kevents/s throughput. When the input event stream
interleaves multiple rows, the waiting time in a row-wise PWAM
circuit is avoided, resulting in higher throughput, as predicted by
Equation (7). With this interleaving scheme by the two-tier micro-
pipelining stage, we measured 18.2 Mspikes/s per quadrant, and the
total throughput of the IFAT chip is thus 73 Mspikes/s.
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(A) Measured output frequency response curves as a function of eight-bit synaptic digital weight, which were measured from 32 neurons in the
representative row. The input spike train was a 10,000 Hz mean-rate Poisson spike train in 1 s measurement. The result shows the offset of neuron
activation caused by the threshold voltage mismatch of the transistor in the axon hillock circuit. (B) Offset compensated neuron responses aligned to
the mean response. The slope is defined as the ratio of the output spike rate increments in a decade and the unit of digital weight. (C) Histogram of
the offsets across a representative 2 k-neuron core. It shows the normal distribution with a wide variance across sample counts, while the inset
shows a colormap representing the spatial distribution of offset; the brightest dot represents the most positive offset and the darkest dot represents
the most negative offset. (D) Histogram of the slopes across the representative 2 k-neuron core. It has a normal distribution with a mean of 0.0185
and standard deviation of 0.0068, and its spatial distribution is drawn in the inset.

3.2. System-level spike event energy
efficiency

In the brain, each neuron is connected to ~10,000 neurons
on average and fires spikes at an average firing rate of 5-
10 Hz. Therefore, the power consumption and energy efficiency
of biologically inspired neuromorphic systems are primarily
determined by synaptic inputs. We then measured the system-
level spike event energy efficiency as a function of the synapse
input event rate, as shown in Figure 9. This shows that the
power consumption increases linearly with the synaptic event
input rate. We measured power consumption until the input event
rate reached its maximum throughput capability (73 Mevents/s).
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At the maximum throughput, we measured a current draw of
1.31 mA from a 1.2 V power supply. This resulted in a total power
consumption of 1.572 mW. The slope of the graph, which indicates
the overall energy efficiency for a spike operation, is measured to be
22 pJ/spike.

3.3. Neural activation function
Figure 10 shows the neural activation functions, which are
defined as the output event rates in response to the input event

rates, measured using Poisson and regular spike trains from one
representative neuron. The two cases exhibited different activation
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(A) Measured and (B) modeled output frequency while varying the excitatory and inhibitory input frequencies from 0 to 2,000 at digital weight of 80
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function shapes. The shape of the function measured using regular
input spikes is threshold-linear. This is consistent with the leaky
integrate-and-fire neuron model. In the leaky integrate-and-fire
neuron model, the threshold originates from the leak conductance
of the membrane. In contrast, fluctuations in the Poisson spike
trains tend to smooth the activation function, which is expected
from studies of noisy integrate-and-fire neuron models (Fusi
and Mattia, 1999). In addition, the activation function has a
characteristic similar to that of the rectified linear unit model (Nair
and Hinton, 2010), which has been widely used in deep neural
networks, particularly in convolutional neural networks (CNNs),
owing to its faster computation and ability to avoid the vanishing
gradient problem.

3.4. Multi-compartmental neural

computation

A distinguishing feature of the implemented neuron
model in the IFAT chip compared to most existing leaky
integrate-and-fire neurons is its multi-compartmental neuron
implementation. Dendritic computation with proximal and distal
compartments in neuroscience exhibits various mechanisms
implementing elementary computation units for spatiotemporal
information processing (Koch, 1999; London and Hausser,
2005). It has a multiplication-like effect of two time-varying
signals in a single neuron resulting in fewer transistors for the
implementation, reducing energy and area footprint. Moreover,
shows various

such neuromorphic dendritic computation

applications ranging from configurable multi-layer neural
network computation (Ramakrishnan et al., 2013), spatiotemporal

input pattern classification by temporal coincidence detection
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(Wang and Liu, 2013), to efficient learning for event-based
sequential data (Yang et al., 2021).

The IFAT neuron comprises two compartments: distal
and proximal compartments, each with two conductance-based
synapses. The compartmental conductances are configurable,
implying that the strength of the interaction between the
compartments is configurable. Figure 11 shows such interactions
as examples of shunting inhibition, which is an important feature
of dendritic computation (Nelson, 1994; Mitchell and Silver, 2003;
Groschner et al., 2022). Excitatory and inhibitory synaptic inputs,
indicated by red and blue bars, respectively, are applied to a
neuron, as shown in the schematic. The distal compartment is
strongly excited by excitatory synaptic inputs from a regular input
spike train. This results in an excitatory compartmental input
coupled through the compartment conductance to the proximal
compartment of the neuron and the firing of the neuron indicated
by green bars in the figure. From 50 to 80ms, the proximal
compartment is inhibited at the reversal potential near rest, which
blocks the effect of upstream excitation.

3.5. Input-output transfer function of
neural response

To characterize the input-output transfer function of the
neural response, we measured the output spike rates from one
representative neuron over digital weights from 0 to 255 for varying
input spike rates from 500 Hz to 10 kHz. To generate Poisson
input spike trains, the interspike intervals of the input spike trains
were generated using the Poisson process with a constant mean
rate. Figure 12A shows the output spike rate of a representative
neuron in response to varying digital weights and input spike rates.
Figure 12B shows the gain of the neuron, which is the output spike
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rate normalized by the input spike rate. At a low input spike rate,
the membrane potential leaks faster than the synaptic integration,
resulting in rare responses at lower digital weights (weak synaptic
inputs). At high input strengths, because each input spike produces
an output spike, the gain of the input-output transfer function
saturates to one.

3.6. Neuron mismatch variability

Analog-based neuron circuits designed with transistors in the
subthreshold regime emulate biologically plausible neural systems
efficiently with low power consumption, but they intrinsically
exhibit large variations in neural responses owing to transistor
mismatches. In the IFAT chip, one of the major sources of variation
is the mismatch of the threshold voltage of a transistor in the axon
hillock circuit. This mismatch results in a digital weight offset of
the neural activation. Figure 13A shows the measured output spike
rate responses from representative 32 neurons in the same row
when the digital weights were varied from 0 to 255. Here, the
input spike rate was 10,000 Hz, and the interspike intervals were
distributed in the Poisson distribution. The offset is monitored
as the digital weight at which the gain of the neural response is
0.1 (with an output spike rate of 10®). The digital weight offset
can be compensated by synaptic weight learning in the address
event domain (Park and Jung, 2020). Figure 13B shows the output
spike rate responses when the weight offsets are compensated. The
response curves are aligned to the mean of the 32 neural responses.
The slope of the output spike rate increment over a decade to the
digital weight shows the linearity of the synapse responses in the
input-output transfer function in the linear response regime. For
further analysis, we conducted measurements on a representative
2 k-neuron IFAT core, and the histograms of the offset and slope
are shown in Figures 13C, D, respectively. The colormaps for 2 k-
neurons (64 rows and 32 columns), drawn in the insets, represent
the spatial distributions of the offset and slope in the array.

The
accommodate the relatively large variations in the subthreshold

calibration process shown above is effective to
regime. However, it constitutes no hardware and software overhead
at the inference. It is because the calibration is done offline, and
the pre-distortion digital coefficients are stored externally, with
the synapses dynamically instantiated (Park et al., 2017). In any
case, the instantiation needs to be done as part of the HIAER-IFAT
operation, and there is no cost for changing the digital entries in

the lookup table based on the calibrated characteristics.

3.7. Linear synapse response model

The current injection into the leaky integrate-and-fire neuron
model is formulated as follows:

av,
Iinj = Cinem (Zem

= gext(Eext — Vinem)
+ ginh(Einh - Vmem)
+ gleak(EL - Vmem) (8)
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FIGURE 15

Measured tuning curves from the representative neuron with 15 x
15 pixel bar stimulus rotating orientation from 0 to 180° by 5° per
each and four 15 x 15 pixel Gabor filters, each with 0, 45, 90, and
135°. Pixel intensity of the stimulus is translated as a synaptic input
frequency ranging from O (darkest) to 63 (brightest). Pixel intensity of
the filter is translated as a synapse weight. Each data point is the
mean of 30 measurements each with 1 s stimulation. The solid lines
show simulation models from the output frequency response model
show in Figure 14.

where Cper is the membrane capacitance, Vyep, is the membrane
voltage, gexr and gj,; are the conductances of the excitatory and
inhibitory synapses, E,y; and E;,;, are the reversal potentials of the
excitatory and inhibitory synapses, respectively, gj.qx is the leak
conductance, Ey, is the leak voltage, and Ve, is the membrane
voltage. Using a mean-rate approximation on a time scale of
multiple action potentials, we can approximate the above terms to
a simple linear neural response model, as follows:

linj = gextEext + ginhEinn )

With a first-order approximation, we assumed that the conductance
is equal to the nominal synapse weight multiplied by the total
number of spikes in the input spike trains:

Zsyn X Zfin,nwn =fin,eﬁwnom (10)
n

where g, is the conductance of the synapse, fin,, is the frequency
of the ny, input spike train, w, is the synapse weight of the ny,
input spike train, f;, g is the sum of all the input spike train
frequencies, and wy,, is the nominal synapse weight. Given a
first-order approximation, the output frequency is the sum of the
excitatory and inhibitory synaptic input spike trains times the
nominal synapse weight.

fout = [Gwy,umﬁn,eﬁwnam]+ = [Gwmm (fext,eﬁwnam _finh,eﬁwnom)]+
(11

where G denotes the gain-scaling factor at wy,,. The gain-

Wnom

scaling factor, which is the frequency response gain, is defined as
the ratio of the frequency response gain to the digital weight.
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FIGURE 16

(A) Raw input image with a size of 113 x 75 pixels. (B) Boundary detection with simulated model and measurement results. The 15 x 15-pixel kernels
used for the boundary detection are shown in the first column. For a simulation and measurement, a kernel presented at the same row is used. The
simulation results and measured outputs are shown in the second and third columns, respectively.

Measured
output

Figure 13 shows the measured (in Figure 14A) and modeled (in
Figure 14B) output frequency response colormaps, while the
excitatory and inhibitory synapse input frequencies are varied from
0 to 2,000 Hz at a nominal digital weight of 80. We used it as the
model of the neuron response for the orientation tuning curve and
boundary detection shown in the following sections.

3.8. Orientation tuning curve

An orientation tuning curve shows the firing rate selectivity
of a neuron to stimuli with different orientations. It is a typical
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measurement used to characterize orientation selectivity in visual
cortical neurons. Figure 15 shows the measured tuning curves of
the IFAT chip. An output neural response is the measured result of
the convolution of a stimulus and an orientated filter. Each data
point is the mean of 30 measurements each with 1 s projection
to a neuron. We used 15 x 15-pixel bar stimuli with rotations
ranging from 0 to 180° in 5° steps. These stimuli were convolved
into four Gabor patch orientations (0, 45, 90, and 135°). The
pixel intensity of the stimuli is converted to input spike rates
ranging from 0 (darkest) to 63 (brightest). The pixel intensity of a
Gabor patch is translated into the synaptic strength of the input.
Using Equation (11), the output frequency can be calculated as
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TABLE 1 Comparisons with state-of-the-art works.

10.3389/fnins.2023.1198306

References  Stromatias Merolla Davies Schemmel Yuetal. Benjamin Qiao etal. This work
etal. etal. etal. etal. (2012b) et al. (2015)
(2013) (2014) (2018) (2010) (2014)
Technology 130 28 14 180 130 180 28 90
(nm)
Die size (mm?) 102 430 60 50 25 168 7.28" 16
Neuron type Digital Digital Digital Analog Analog Analog Analog Analog
Total number of | ~5,216 1M 130k 512 65k 65k 1k 65k
neurons
Neuron area N/A? 14.3¢ 400,000¢ 1,500 200 1,800 20 140
(um?)
Throughput 5 N/AP N/A 65 35 91 1,843¢ 73
(Mevents/s)
Energy (J/Spike) 8n 26p 23.6p N/A 55p 312p 50 pf 22p

“Software-instantiated leaky integrated and fire neuron. PInternal connectivity. °By multiplexing the neuron 256 times. “When a core emulates 1,024 neural units. ®Simulation results. {Reported

in Thakur et al. (2018). N/A, Not Available.

follows:

15 15
four =) fimywig) ™ (12)
i=1 i=1
where i and j are the indices of pixel positions, fo, is
the output spike rate, fi, is the input synaptic spike rate,
and w is the input synapse weight. Figure 15 shows that
the simulation results drawn in solid lines lie within the
range of the measured data points within one standard

deviation.

3.9. Boundary detection

Gabor-like local receptive fields are used to extract elementary
visual features, such as oriented edges and corners, from images.
This is an essential step for CNNs, which are a type of feed-
forward neural network inspired by the biological multilayer
perceptrons widely used in image recognition systems (Lecun
et al., 1998). The layers in a CNN comprise feature maps and a
subsequent spatial subsampling layer to down-sample raw image
data. Here, we present an example of image boundary detection,
which is an elementary component of a CNN. Image boundary
detection was performed with an input image with a size of
113x75 pixels, as shown in Figure 16A. We used four edge
detection kernels, each with a 15 x 15-pixel patch, as shown in
Figure 16B in the first column. The experimental procedure was
the same as that of the orientation tuning curve measurements.
The stimulus was a 15 x 15 patch of a region in the image,
and each pixel intensity of the patch was converted to an input
synaptic event rate. The pixel intensity of an edge detection
kernel is translated into synaptic weight. The convolution result
of the image patch and an edge detection kernel were projected
onto the representative neuron, and the output spike rate of the
neuron was measured to reconstruct the filtered image output.
Figure 16B in the second column shows the expected images,
which were simulated using Equation (11). Figure 16B in the third
column shows the measurement results for the IFAT neuron. The
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measurement results show that the reconstructed image from the
measured output matches the expected images well. This shows that
the IFAT neuron can be used as an essential unit for CNNG.

4. Discussion

Recently, many large-scale neuromorphic systems have
been presented using various design approaches ranging
from FPGAs and asynchronous digital to subthreshold analog
design (Thakur et al., 2018). Such diverse approaches with their
own design objectives make it difficult to compare large-scale
neuromorphic systems quantitatively. We tried to compare
neuromorphic processors, which are designed to extend to large-
scale neuromorphic systems with a multi-chip routing architecture.
Table I summarizes the measured characteristics of the IFAT chip
in comparison with state-of-the-art works. It shows the IFAT chip
has good area density and energy efficiency aspects.

The IFAT has been designed with an analog-based neuron and
synapse circuit implemented with subthreshold conduction CMOS
transistors. It achieved efficiency in power and area consumption
with biologically plausible continuous analog temporal dynamics.
However, the synaptic weight digitally encoded with an address
event is stored in synaptic routing tables implemented in external
memory, which is supported by HiAER-IFAT architecture (Park
et al., 2017). It requires additional memory access to instantiate
synaptic events, degrading energy efficiency. To address the issue,
the synapse can be replaced with various emerging non-volatile
memory devices such as ReRAM and magnetoresistive random
access memory, which are recently presented for potential synaptic
devices in analog neuromorphic hardware (Ielmini and Wong,
2018; Sun et al., 2018; Wang et al.,, 2018; Luo et al., 2020; Jang and
Park, 2022; Tang et al,, 2022; Wan et al., 2022). These emerging
memory devices typically feature low-power and high-density
compared to silicon-based CMOS logic circuits: a ReRAM device
consumes about 0.1 pJ per switching operation (Ielmini and Wong,
2018). ReRAMs can be integrated with Silicon-based CMOS logic
by using a monolithic 3D integration (Li et al., 2021). It means
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that synapses implemented by ReRAMs can be integrated on top of
IFAT neurons and HiAER architecture, resulting in higher density
and lower energy consumption.

5. Conclusion

In this paper, we presented a general-purpose neuromorphic
processor that can serve as a basic computational building block for
large-scale neuromorphic systems. The chip was fabricated using
a 90-nm CMOS process and occupied a 4 x 4 mm? die area.
It is equipped with 65-k two-compartmental leaky integrate-and-
fire neurons. Event-driven fully asynchronous circuits minimize
the event communication latency, which is not bounded to any
synchronized clock speed. In addition, the two-tier asynchronous
micro-pipelining scheme maximizes the parallelization of event
delivery to neurons in multiple rows; thus, resulting in a sustained
throughput of 18.2 Mspikes/s per quadrant and 73 Mspikes/s for
the chip. A high density of synapses and neurons was achieved by
the single transistor synapse implementation and virtual synaptic
wiring supported by the AER, resulting in 11.5 x 12.15 pum?
integration for a neuron and four synapse types. An activity-driven
asynchronous design enables the achievement of a system-level
energy efficiency of 22 pJ per spike event. The proposed processor
implemented biophysical details in compartmental conductance-
based dynamics without compromising in area density and energy
efficiency.
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