ARAKELOV INEQUALITIES IN HIGHER DIMENSIONS

SANDOR J KOVACS AND BEHROUZ TAJI

ABSTRACT. We develop a Hodge theoretic invariant for families of projective manifolds
that measures the potential failure of an Arakelov-type inequality in higher dimensions,
one that naturally generalizes the classical Arakelov inequality over regular quasi-
projective curves. We show that for families of manifolds with ample canonical bundle
this invariant is uniformly bounded. As a consequence we establish that such families
over a base of arbitrary dimension satisfy the aforementioned Arakelov inequality,
answering a question of Viehweg.
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1. INTRODUCTION

While numerical invariants play a central role in classification in all fields of mathemat-
ics, it is often very difficult to compute their exact value. As a result we opt for the next
best thing: try to give estimates by finding upper or lower bounds. In algebraic geometry,
and in particular in the construction of moduli spaces, giving bounds for certain invariants
provides a fundamnatal tool. Without such bounds it would be extremely difficult to find
reasonably-behaved moduli spaces; for example, we could not even hope for such spaces
to be of finite type.

One of the early examples of such bounds, with an eye towards the construction of mod-
uli spaces of higher dimensional varieties, is Matsusaka’s Big Theorem [Mat72]. Bounded-
ness questions are present in many other more or less related questions, such as Mordell’s
Conjecture, Lang’s Conjecture, or Shafarevich’s Conjecture. The latter, and its more
modern generalizations, are the most relevant to the present work.
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Shafarevich [Sha63] conjectured that there are only finitely many non-isotrivial families
of smooth projective curves of fixed genus (> 2) over a fixed curve. Parshin [Par68] and
Arakelov [Ara71] proved this conjecture in two steps: boundedness, that is, there are only
finitely many deformation types of such families, and rigidity; those families are actually
rigid, so each one is the only one in its deformation type.

Boundedness can be roughly translated to some associated parameter scheme being
of finite type. These parameter spaces are often constructed via an appropriate Hilbert
scheme and hence being of finite type is closely related to bounding the degree of an
ample line bundle. In fact, already Arakelov used this idea to prove boundedness in order
to prove Shafarevich’s conjecture in the curve case.

More generally, we consider a smooth projective family of canonically polarized varieties
m:U — V. Then V maps to a moduli space parametrizing the fibers. This target moduli
space is equipped with an ample line bundle cf. [Ko0l90,Fuj18, KP17]. The pullback of this
line bundle to V is det Ty (for some well-chosen m > 0 and up to a suitable power).
Therefore, in order to carry out the above sketched plan for the boundedness problem,
one would need to uniformly bound the degree of this line bundle.

This is exactly what Arakelov did. He established such a universal bound for all families
of curves of genus at least 2 over base spaces of dimension one [Ara71]. More precisely,
he showed that, for every sufficiently large m € N, there is a polynomial function b,, 4 €
Z~o|z1, z2], depending only on m and a fixed integer g € N, g > 2, such that the inequality

(%) deg(det f.wR/p) < bm.g(9(B), deg(D))

holds for any smooth compactification f : X — B of any non-isotrivial smooth projective
family fy : U — V of curves of genus g over a one dimensional base V', where D := B\ V.
In fact Arakelov showed that the coeflicients of b, , are themselves purely g-dependent
functions of m and 7, := rank(f,w'} /B)-

This result was partially generalized to the case of higher dimensional fibers in [Kov96,
Kov97,Kov00]. Subsequently, Bedulev and Viehweg [BV00] proved a further generalization
of Arakelov’s inequality for families of canonically polarized manifolds, still over curves.
Other, more Hodge theoretic analogues of (x) were also established by Deligne [Del87] and
Peters [Pet00] (see Subsection 1.C below or [Vie08] for a more detailed account).

The equation (x) became known as Arakelov’s inequality. To see its usefulness the reader
is invited to consult [Vie08] for a survey of related results available at the time and §8 of
that paper for several open questions. Based on [KL10], Viehweg and others speculated
that the inequality (%) should have analogues over higher dimensional base spaces. In
fact, at the end of his survey [Vie08] Viehweg explains how a higher dimensional Arakelov
inequality would be useful, and goes on to say that none of the known methods (at the
time) give any hope of obtaining it [Vie08, §8:IIL,IV].

Definition 1.2 provides a natural higher dimensional analogue of (*) and the main result
of the present paper is that under natural assumptions this inequality holds for canonically
polarized families.

Remark 1.1. Tt used to be customary to fix a Hilbert polynomial when one is discussing
moduli functors in order to have a finite type moduli space. Recently Kollar showed that
for families of stable varieties it is actually enough to fix the volume of the canonical divisor
(which appears as a coeflicient of the canonical Hilbert polynomial) [Kol22, 5.1,6.19]. As
this is now the standard, we will follow this approach and refer to the volume of the
canonical divisor as the canonical volume. More generally, we will follow the terminology
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of the [Kol22] on everything related to moduli spaces of stable varieties. In order to keep
the introduction manageable, we only address some of the details on moduli spaces in
Section 4.

Definition 1.2 (Higher dimensional Arakelov type inequalities). Let V' be a smooth
quasi-projective variety of dimension d and B a smooth compactification of V' such that
B\ D ~V, with D being a reduced divisor on B having simple normal crossing support.
Further let fy : U — V be a smooth family of projective varieties and let X be a smooth
compactification of U such that there exists a projective morphism f : X — B with f v =
fu. We will refer to these by saying that (the pair) (B, D) is a smooth compactification
of V and that f: X — B is a smooth compactification of fy : U — V.

Still working with the above notations, let H be an ample Cartier divisor on B and set
Smy, (V) to denote the class of smooth projective families, fy : U — V, of canonically
polarized varieties of relative dimension n and canonical volume v = vol(Ky, ):= K}, over
V. Members of a subclass of § C Sm, ,, (V) will be said to satisfy an Arakelov inequality, if
for all sufficiently large and divisible m € N, there exists a function by, ., € Zso[z1, Z2],
depending only on m, n, and v, for which the inequality

(1.2.1) degy (det f*w)"}/B) < by (degy (Kp + D),degy (D))

holds for any smooth compactification f : X — B of any family (fy : U — V) € §.
Here for any divisor A and line bundle .# on B, we define deg; (A): = A - H4™1 and
degy (L) :=c1 (&) - HI7L.

Theorem 1.3 (for a more precise version see Theorem 5.2). In the setting of Defini-
tion 1.2, if Kg + D is pseudo-effective, then all members of Sm, (V') satisfy an Arakelov
inequality.

Note that when d = 1, our Arakelov-type inequality in Theorem 5.2 fully recovers the
original one for curves in (x). In fact, in Theorem 5.2 we prove a more sophisticated
and precise version. In particular, we prove that there exist b;n,n,lﬂ a polynomial whose

coefficients are given by explicit functions of m and rank( frw¥) ) (see Theorem 5.2 and
(5.3.4)), and an integer ,, such that the polynomial b,, 5, in (1.2.1) can be written as

by = (dim V)b

m,n,v*

The dependence of by, on 7y, disappears in the case d = 1. Further note that the
integer 7y, is an upperbound for an invariant for members of Sm, ,,(V'), which we will refer
to as Viehweg number (cf. Definition 3.8).

For a non-isotrivial smooth family fi; : U — V of curves of genus at least 2 over a quasi-
projective curve V', by Arakelov and Parshin’s resolution of the Shafarevich hyperbolicity
conjecture, we know that Kp + D is effective (same is true when fibers are canonically
polarized manifolds by [Kov00], [Kov02]). Therefore, the pesudo-effectivity of Kp + D
in Theorem 1.3 is a natural assumption. In fact, for families in Sm, , (V') with maximal
variation (or equivalently those with a generically finite moduli morphism p: U — M, ,, to
the coarse moduli scheme M, ,,, see Section 4 for more details), by the culmination of the
works of [VZ02], [KK08], [KK10], [Pat12], [CP19] on Viehweg’s hyperbolicity conjecture,
we know that (B, D) = dim B. In particular, we have the following direct consequence
of Theorem 1.3:

Corollary 1.4. Let (B, D) be a smooth compactification of a smooth quasi-projective vari-
ety V' (as in Definition 1.2). Then each member fy of the subclass of Sm, (V') consisting
of the families of mazimal variation satisfies an Arakelov inequality as in (1.2.1).
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Finally note that when f is semistable, the inequality in Theorem 1.3 can be sharpened
by replacing deg (D) by zero, but because this case is not the focus of the current paper,
we omit additional references and details.

1.A. Bounding heights for substacks of stable varieties. By using fundamental
properties of the moduli stack of stable curves Arakelov and Bedulev-Viehweg introduced
a notion of a height function on canonically polarized varieties X of dimension n, with
fixed canonical volume v := K% € Q. That is, given any morphism p : V — M, , arising
from a smooth family over the curve V, let ® : B’ — M, , be its KSB-stable closure via
a finite surjective morphism 7 : B’ — B. For sufficiently large m, there is an ample line
bundle A, on M, , and a positive integer p,, such that deg(®*\,,)—which we think of as
a height function associated to y—has an upperbound by p,, - deg77~bm,n,,,(g(B)7 deg(D)).

Similarly, in higher dimensions we can think of vol(®*),,) as a height function which
can be uniformly bounded using Theorem 1.3 by the numerical properties of (B, D). In
fact, following Arakelov, one may go further and divide degn by deg ® to get a bound on
vol(A,) on the image of p, which, as deg ® > degn, is independent of deg.

Theorem 1.5. Using the notation introduced in Definition 1.2, we have that for a suf-
ficiently large m € N there exists a function ¢y = Cmn, € Z[r1,%2, 23], depending only
on m, n, and v, such that, for every u:V — M, ,, arising from some (fy : U — V) €
Smy, ,(V'), and the associated compactification ® : B' — M, ,,, we have

vol(®*\,,) < (degn)?em (Kp + D) - H* ', D - HY' HY) € Q.

1.B. Outline of the proof. As we will see in Section 5, using results from [CP19], [Taj21]
and others, one can establish a naive, fyy-dependent, upperbound for a smooth projective
family fy in the form of (1.2.1) (see (5.2.1)), as soon as Kp + D is pseudo-effective.
However, in order to obtain an inequality where this upperbound is independent of the
choice of the family—the aim of an Arakelov-type inequality—one needs a more careful
approach. We start by defining a local system via a prescribed global section s of line
bundle .#, which can be naturally defined on any compactification of a smooth (or stable)
projective family f. It turns out that to obtain the desired Arakelov-type inequality, it is
sufficient to find a uniform bound for the rank of this local system. We denote this rank
by as(f) and refer to it as the Viehweg number of f (cf. §§3.D).

The problem of proving an Arakelov inequality over higher dimensional base spaces is
then reduced to establishing the existence of a suitable global section s for which aj(f)
has an upperbound that does not depend on f, but only on fixed invariants. To achieve
this, we introduce what we call the twisted direct image sheaf. This is defined on B
and simultaneously encodes information about f*wﬁ/ p (for an appropriate m € N), its
determinant, and the semistable locus of f. This sheaf is closely related to the above .#
and, as we will show in Section 3, it is weakly positive (see Proposition 3.3). The latter
property is of particular importance for the construction of s in Theorem 4.11.

1.B.1. Deformation spaces of families of canonically polarized manifolds. A key compo-
nent of our argument is based on the results of [KL10] on finiteness of deformation classes
for members of Sm,, ,(V'). That is, by [KL10], there is a finite subset { f; }1<i<kx C Sty (V)
such that for any fy € Sm, ,(V), there is some 1 < ¢ < k, a connected scheme W and
a projective family fy : Uy — W X V of canonically polarized manifolds such that
(Uw){wyxv Zv Ui and (Uw){wyxv Zv U, for some closed points w,w’ € W, i.e., up to
an isomorphism Uy pulls back to U; and U.
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In fact, [KL10] goes further by showing that there is a finite type substack of the
stack of canonically polarized manifolds over a finite type scheme of the form W x V
whose connected components parametrize members of Sm, (V) (see Subsection 4.A for
more details). We use this latter result in two ways; to find a suitable section s, for all
members of Sm,, ,(V), with m being sufficiently large and divisible, and to use the (generic)
deformation-invariance property of as,  (f) to establish an upperbound for as , (f) that is
independent of the choice of f, proving the existence of v, as stated in Theorem 5.2 (see
also Theorem 4.11 and Corollary 4.12).

1.B.2. The role of stable reductions. As mentioned earlier, Viehweg numbers are closely
related to the twisted direct image sheaf (cf. §§1.B) The connection is through weak posi-
tivity of this sheaf. That is, as we will show, up to a twist by an ample line bundle, a large
enough symmetric power of this sheaf is generically globally generated. It turns out that
the problem of bounding Viehweg numbers can be traced to bounding the necessary expo-
nent for this symmetric power. Although the finiteness of deformation classes for Sm, ., (V)
proved in [KL10] is key to uniformly bounding it, as we will see in §§4.B, it is not enough
for finding such bounds for compactifications of members of Sm,, ,, (V). To accomplish the
latter, strict base change properties (in the sense of Proposition 3.2) are needed for the
twisted direct image sheaf that generally only holds for KSB-stable closures via stable re-
ductions. The required compactifications exist by [Kol22, Thm. 4.59] (cf. [KSB88,Kar00])
and play a significant role in our strategy to establish Arakelov inequalities over higher
dimensional base spaces.

1.C. Related results. As mentioned above, Arakelov type inequalities generally fall into
two related categories. The geometric one (%) goes back to Arakelov. This was later
generalized in [BV00]. Further refinements and generalizations over curves was established
in Viehweg-Zuo [VZ02]. There are also more Hodge theoretic Arakelov-type inequalities,
which are concerned with establishing universal bounds for the degree of direct summands
of Hodge bundles underlying (canonical extensions of) variation of Hodge structures (or
VHS for short) of geometric origin. When the fibers are of dimension 1, then one can
interpret this type of Arakelov inequalities for VHSs of weight one as essentially the same
as (%), with m = 1. Such inequalities were initiated by Deligne [Del87] and later extended
by Peters [Pet00] and Jost-Zuo [JZ02]. All of these results are restricted to the case
when the base of the family is 1-dimensional. Using Simpson’s nonabelian Hodge theory,
under rather strong positivity assumptions for QL (log B), some Arakelov-type inequalities
for VHSs of weight one were generalized to higher dimensional base spaces in [VZ07].
Topological counterparts of these inequalities were also studied by Bradlow, Garcia-Prada,
and Gothen [BGPGO06] and by Koziarz and Maubon [KMO08], [KM10]. A detailed review
of Arakelov inequalities can be found in [Vie08]. We also refer to the paper of Brotbek
and Brunebarbe [BB20] for some other recent developments in this area.

Acknowledgements. We thank Sho Ejiri and Sung Gi Park for helpful comments.

2. PRELIMINARIES AND BACKGROUND

Definition 2.1. In this article a variety means a reduced, finite type scheme, and every
scheme will be assumed to be defined over C. A pair (X, A) consists of a variety X and an
effective Q-Weil divisor A =Y a;A;, a; < 1. We say (X, A) is a reduced pair if a; = 1, for
each 7. An snc pair is a reduced pair (X, A) such that X is regular and A is an snc divisor.
A morphism of reduced pairs f : (X,A) — (B, D) is a dominant morphism f : X — B
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of schemes with connected fibers such that f~!(supp D) C supp A. Assuming that D is
Q-Cartier, we will use the notation f~'D:= (f*D),eq to denote the reduced preimage of
D. Using this notation, the above criterion can be replaced by A > f~'D. A morphism
of snc pairs is a morphism of reduced pairs f : (X,A) — (B, D) such that both (X, A)
and (B, D) are snc pairs.

Definition 2.2. [Kol22, 8.34] Let X be a proper scheme and .Z a line bundle on X. .% is
said to be strongly ample if it is very ample and H*(X,.#?) = 0 for i,q > 0. Note that by
[Laz04, 1.8.3], if this holds for all ¢ < dim X + 1 then it holds for all ¢ > 0. In particular,
strong ampleness is an open condition in flat families.

Similarly, let f: X — B be a proper, flat morphism and .Z a line bundle on X. We
say that £ is strongly f-ample or strongly ample over B, if £ is strongly ample on the
fibers. Equivalently, if Z is f-very ample and R f,.29 = 0 for i,q > 0. It follows that in
this case f..Z is locally free and we get an embedding X — Pp(f..Z). We will be mainly

interested in the case when f: X — B is stable and .¥ = wg?]/s for some g > 0. In this
case, if ¢ > 1 then R’ f,.£™ =0 for i,m > 0 by [Kol22, 11.34].

Definition 2.3 (Snc and strongly snc morphisms). Consider a morphism f : X — B
and a decomposition A = A, + Aj, into vertical and horizontal parts, i.e., such that
codimp f(A,) > 1 and that f|a, dominates B, for any irreducible component Ay C Ay,.
Using this decomposition, we call a morphism of snc pairs f : (X,A) — (B, D) an snc
morphism, if f is flat, A, = f~!'D and flx\a, is smooth.

An snc morphism f : (X,A) — (B, D) is called strongly snc, if f*D is reduced. Note
that this implies that then A, = f*D. Further note that an snc morphism with reduced
fibers is necessarily strongly snc. Semistable (see [AK00, 0.1] for a definition) and stable
snc morphisms (Definition 2.7) are the main examples to which this will be applied.

Notation 2.4. Given a reduced scheme X and a coherent sheaf .# of rank r, for any
m € N, we define Zl" .= (9®m)**, where (_)** denotes the double dual. We will apply
the same notation for all tensor operations. In particular, Sym!™ % := (Sym™ )" and
A™ .7 = (AN™.Z)". Furthermore, det.Z will denote \I"'.Z = (A"Z)"". Notice that
if X is regular, then det .Z is a line bundle.

Notation 2.5. Let f : (X,A) — (B, D) be an snc morphism. Consider the natural mor-
phism g : f*QL(log D) — Q% (log A) and define the sheaf of relative log differentials as
the cokernel of this morphism: QY / p(log A): = coker p. In other words, there exists a
short exact sequence:

0 —— f*QL(log D) —— Q% (log A) —— Qﬁ(/B(logA) —0.

The first two sheaves are locally free by definition and a simple local calculation shows
that so is the third one. In particular, the exterior powers of this sheaf, denoted by

QI;(/B(log A):= AP Qﬁ(/B(log A) for p € N, are also locally free and if dim X = d and
dim B = r, then we have the following isomorphism:
(2.5.1) Q% (log A) ~ 0% (log A) @ (f*Qp(log D)) ™" ~ wxp(A = f*D)

Observe that if f is strongly snc, then (using the notation from Definition 2.3) the last
sheaf is isomorphic to wx,g(Ap).

Notation 2.6. For a morphism of finite type f : X — B of relative dimension n we define
the relative canonical sheaf by wy,p := h™" (f!ﬁB). For an Sy and G; (Gorenstein in
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codimension one) scheme X, a canonical divisor is denoted by Kx (see [Kovl3, §5] for
more details). If X is Sy and Gy and B is Gorenstein, then wx,p ~ Ox(Kx — f*Kp) by
[Con00, (3.3.6)].

In this paper we only need the following slightly restrictive definition.

Definition 2.7 (Stable families). A projective variety Z is called stable, if it has slc
singularities [Kol22, 1.41] and wy is an ample Q-line bundle. Let B be a reduced scheme.
A projective morphism f : X — B is called stable, if X} is a stable variety for each b € B
and wg?}]B is invertible, for some m € N cf. [Kol22, 3.40].

Remark 2.8. Note that if B is not assumed to be reduced or if one considers families of
pairs, then the definition of a stable family is more complicated. The fact that in this case
the above definition suffices follows from [Kol22, 4.7].

Notation 2.9 (Pullback). Given morphisms of schemes f: X — B and Z — B we denote
the pullback of f by fz : Xz = X xg Z — Z and pr : Xz — X denotes the induced

natural projection.

Remark 2.10 (Base change properties). Let f: X — B be a family with slc fibers. Then
the relative canonical sheaf of f is flat over B with Sy fibers and compatible with arbitrary
base change by [KK10, KK20], cf. [Kol22, 2.67].

(m]

For a stable family f : X — B, the formation of w, /B commutes with arbitrary base
change for every m € N, by [Kol22, 4.33], cf. [Kol18, Prop. 16], that is, for any reduced
scheme Z and morphism v : Z — B, and any k € N, we have that z/&wyg]/B ~ wgl;]z/z,
that the isomorphism

(2.10.1) z/f*f*wgﬁ'}}g =~ (fz)*“’@/z

[m]

holds when Wy, p is strongly f-ample (cf. Definition 2.2), e.g., for all sufficiently large and
divisible m.

Note that a stable family as defined in Definition 2.7 is KSB-stable in the sense of
[Kol22, Def. 6.16], cf. [Kol22, 4.33].

Notation 2.11 (Discriminant locus). Let f : X — B be a dominant morphism of regular
schemes. Denote the divisorial part of the discriminant locus of f by disc(f). Setting
Dy = disc(f), we let Ay: = f~1Dy, a reduced divisor on X. This way the resulting
map f: (X,Ay) — (B, Dy) is a morphism of reduced pairs. If in addition, f : (X,Ay) —
(B, Dy) is strongly snc, then Ay = f* Dy and if dim X/B = n, then there is an isomorphism
(cf. (2.5.1))

(211.1) Q% log Af) = wx/p(Af — F*Dr) =~ wy,p.

We define a similar notion for morphisms of arbitrary schemes.

and

Notation 2.12 (Non-reduced locus). Let f : X — B be a morphism of schemes and denote
the divisorial part of the locus of non-reduced fibers on B by Ry, i.e., let

RJT:: {b € B | X} is not reduced},

and let B¢ be the reduced divisor corresponding to the union of those irreducible compo-
nents of R}“ that are codimension one in B.

Note that if f is an snc morphism of relative dimension n, then by (2.5.1),
(2.12.1) 0% p(log Ay) ~wx/p(f 'Ry — f*Ry)
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Further note that if f is strongly snc or stable, then R}“ = () and hence Ry = 0.

Lemma 2.13. Let f : X — B be a dominant morphism of regular schemes, T : X—>Xa
projective birational morphism, and let f: = for. Assume that Ay and Af7 defined in No-
tation 2.11, are snc divisors and that T is an isomorphism outside Ay. Then, over the lo-
cus where f and ]7 are strongly snc, there exists an injective morphism 7,.Q% ,_(log Af) —

X/B
Q?{/B(IOg Ay).

Proof. First, observe that Dy C Df~ and hence 771A; C Af~. Further we note that by
construction we have

Af~ S T*Af.
On the other hand, as X is non-singular, there exists another 7-exceptional effective divisor
Ey such that wg ~ 7*wx (E). Putting everything together we obtain that

wg, (A5 — f*D7) C 7" (wx/B(Af — f*Dy)) ® Ox(Er),
and hence _

T*w)?/B(Af_ f*DJ;) - wX/B(Af — f*Df) ® T*ﬁ;((El).
By [KMMS87, 1-3-2] 7.0%(E1) ~ Ox and hence the above containment combined with
(2.5.1) implies the desired statement. O

Notation 2.14. For a morphism of normal schemes f : X — B, for any r € N, we denote
the r-fold fiber product by
X" Z:XXB... XBX,
r times
with the induced morphism f” : X" — B. Furthermore, let 7 : X" — X" denote a
strong resolution of X", with the naturally induced map f) : X" — B. (Recall that a
strong resolution 7 : Y — X is a resolution of X for which 7|,-1(x,.,) is an isomorphism,

where X, denotes the regular locus of X.)
Proposition 2.15. Given a stable family f : X — B, f" is also stable. Furthermore, for
every m for which wg?}]B 1s invertible, wg?ﬂ/B is also invertible and, over the complement

of a subscheme of B of codimp > 2, we have

(2.15.1) Frol = Q) fwld.

Proof. An iterated application of [BHPS13, Prop. 2.12] shows that f” is stable. For the rest
of the claim we use induction on 7. Observe that X" = X xp X" ! and let pr: X" — X"~}
and pr, : X" — X denote the natural projections.

pr

X s X" 1
ol e

Then WE(T]/X ~ pr wgf,] /B by Remark 2.10 and hence (pr,. )*wXT/X ~ f*fr— wX, /B
by flat base change. Applying fI' = f.(pr, )« to

[m] [m]

~ [m]
Wxr/p = Wxr/x ® pr;. Wx/B>
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and using the induction hypothesis then yields
Fo(pr, ) v = s (f*fflw@—l/B @B) = (@f*w@3> ®f*w§'}}3. B

Corollary 2.16. Let f : X — B be a family which is stable in codimension one. Assume
[m]

that B is quasi-projective and that Wy B 18 invertible in codimension one. After removing
a subscheme of B of codimp > 2 if necessary, there exists an injection

(2.16.1) (det f*wg()B) — frrmuli) b
for any k € N where r,,, 1= rank(f*w[;/]B).

Proof. By removing a subscheme of B of codimp > 2 if necessary we may assume that
f is stable, w[;g;]B is invertible and that f*wgg}]B is locally free on B. Raising the natural
embedding

det, f*wX/B — ®f*wX/B
to the k*® power yields

krm

KRk T
(det fowlgfp) " — @ felip = el

where the last isomorphism is simply (2.15.1). |

2.A. Determinants of direct image sheaves and base change.

Definition-Notation 2.17. Let f : X — B be a morphism of finite type of normal schemes.
Assume that B is regular, and fix an m € N. We define the sheaf %, (f) as follows:

Win(f) = det (o) (—mRy)),
where Ry is as in Notation 2.12.

The following is a trivial observation, but we record it so we can easily cite it when
needed.

Lemma 2.18. Let f : X — B be a morphism of finite type of normal schemes. Assume
that B is regular, and fix an m € N. Then #;,(f) is a line bundle and

(2.18.1) Win(f) 2 det (fuol{)s(—mDy)).

Furthermore, if f has reduced fibers (e.g., it is strongly snc or stable), then
(2.18.2) Wi (f) = det f*wX/B

Lemma 2.19. Let f: (X,A) — (B, D) be an snc morphism of relative dimension n. Fix
an m € N. Then (using Notation 2.11),

Wil ) € det f. (O 5l0g 5)%™) .

Proof. This follows directly from (2.12.1). O
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Lemma 2.20. Let (X, A) and (B, D) be two reduced pairs. Assume that (B, D) is snc.
Let f: (X,A) = (B, D) be a morphism of reduced pairs, with dim X/B = n # 0. Further
let B' be a regular variety and n : B — B a flat surjective morphism. Letw:Y — X xgB’
be a resolution of singularities, D" = (1*D)req, and X a reduced divisor on'Y such that
g=flom: (Y,X) — (B, D) is an snc morphism. These objects and morphisms fit in the
following commutative diagram of morphisms of pairs:

m

(K E) = (XB'vAB') 4/>(X7A)

I

(B',D') —— (B, D).

(2.20.1) If f : (X,A) — (B, D) is an snc morphism, then there is a natural injective
morphism

0" fo (% p(log A)®™) — g. (5, (log £)*™)

which is generically an isomorphism over B'. N
2.20.2) If g is strongly snc, then for every projective birational morphism n : X — X
n
which is an isomorphism outside Ay and such that (using Notation 2.11) f =
fon: (X, Af~) — (B, D};) is an snc morphism, there exists a natural injection

N W (f) — det guw¥)

which is generically an isomorphism over B'.

Proof. First, note that there is a natural injective morphism
1y 5 (log A)™ — QY (log £)©™,
and hence another one
(220.3)  flmam () p(log AP = g, "% 5 (log A)F™ < g, Q% 1, (log B)™™,
which is an isomorphism over a dense open subset of B’.
On the other hand, there exists a natural morphism,
()" Q% p(log A)®™ — o™ (/)" Uy p (log A)E™

which is also an isomorphism over the preimage of a dense open subset of B’. This
morphism, combined with the one in (2.20.3) gives a morphism

Fuln' ) Q% p(log M) — fimm™ (i) Q) p(log A)™ — 9. QY (log X)*™,
which is again an isomorphism over a dense open subset of B’. By flat base change, the
left hand side is isomorphic to n* f, (Q?{/B(log A)®™) and hence (2.20.1) follows.

For (2.20.2), eliminate the points of indeterminacy of the birational map ¥ --» Xp, let
Y denote a resolution of singularities of the result and 7:Y — Y the induced projective
birational morphism. We may assume that the induced morphism g : (Y, Ay) — (B’, D)
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is snc (here we are using Notation 2.11), after removing a subset of B’ of codimp: > 2, if
necessary. We thus have the following commutative diagram:

? XB/:XXBB/ (X7Af)
g .
. l ;
g , n R
Y strong snc B (B’ Df)
According to (2.20.1) there is an injection
(2.20.4) 7" fs (Q"X/B(log Af)@)m) o %Q%/B, (log Az)®™.

Moreover we have the following isomorphisms and containment:

s (Q%/B, (log A7)®™) ~ g, (Q%/B,(log Az)®™)

Lemma 2.13
—

(2.20.5) o)
< g+ (5 (log Ag)®™) =" gt .
Combining (2.20.4) and (2.20.5) and taking determinants implies (2.20.2). O

Corollary 2.21. Under the assumptions and notation of Lemma 2.20 and (2.20.2), there
exists a natural injective morphism,

n* det ((ﬂwg/B)(—me)) — det gy’ .-

Furthermore, if in addition J?is strongly snc, then there exists a natural injective morphism,

n*(det f*wm

Proof. This follows directly from Lemma 2.18 and (2.20.2). O

Proposition 2.22. In the situation of the Definition-Notation 2.17, assume that X and
B are reqular and quasi-projective. After removing a subscheme of B of codimpg > 2 if
necessary, there exists an ingjection

krm m
(2.22.1) Wi ) s F g,
for any k € N where ry, == rank(f*w}?/B)~

Remark 2.23. Notice that by Corollary 2.16, we have that if in addition f is stable in
codimension one, then after removing a subscheme of B of codimp > 2 if necessary, there
exists an injection

(2.23.1) Wi (f)EF — ff’"mw&?tlrm)/Bv

for any k € N where r,, := rank(f*w[)?;]B).

Proof. Without loss of generality we may assume that (X,Af) — (B, Dy) is snc. Let
g : Y — B’ be a semistable reduction of f in codimension one, via the finite, flat, surjective
and Galois morphism 7 : B’ — B, (cf. [KKMSD73] and [BG71], and also [AK00, §5],
[ALT20], [Laz04, 4.1.6]). Let G := Gal(B’/B). By (2.20.2) we have

(2.23.2) 0 Win(f) — det guwy’) g,

which is generically an isomorphism over B’.
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By raising (2.23.2) to the power k we obtain the injections
L kru,
®
W Wi ()2 — (det guwi?y 5) =" R guwil) 0.
On the other hand, over the semistable locus of g we have

krm

m ~ (krm), m
®g*wy/3/ ~ g " Wy (krm) / B+

Furthermore, [Vie83, §3, p. 336] implies that

krm) m x p(kTm) m
gi )wy<krm)/B/ Cn fﬂE )wx(krm)/B
SO
* * krm m
(2.23.3) W W (1)EF — 0 5w

The required injection (2.22.1) follows from applying the functor v.(_)¢ to (2.23.3). O

2.B. Positivity notions for families of varieties.

Definition 2.24. An Oy-module % on a reduced scheme Y is called globally generated
over an open subset V- C Y, if the natural map

HY(Y,7)® Oy — F ® Oy

is surjective over V. When the open set V' is not specified, we say .# is generically generated
by global sections overY .

Recall that given a regular quasi-projective variety X and an open subset U C X, a
torsion free sheaf .# on X is called weakly positive over U, if |y is locally free and that
for any ample line bundle H on X, and every « € N, there exists a § € N such that

Sym[ak] F ® Hk

is globally generated over U, for any multiple k of 3.

By [Kaw81] and [Vie83] (see also [Fuj78|, [Zuc82] and [Kol86]) it is known that for
a projective morphism f : X — B of regular quasi-projective varieties X and B, with
connected fibers, f,w'@ /B is weakly positive over B\ disc(f), for any m € N. One can then
slightly generalize this to the case of mildly singular families as follows. For any projective

morphism f : X — B of quasi-projective varieties X and B, if B is nonsingular and X

[m/]B is weakly positive for

has only canonical singularities, then the torsion free sheaf f.wy

[m]

every m € N for which wy/, is invertible (see also [Fuj18]).

2.C. Singularities in linear systems of ample line bundles.

Definition-Notation 2.25. Following the definition of Esnault-Viehweg [EV92, Def. 7.4] for
a line bundle . on projective manifold X, with H°(X,.%) # 0, we define

e(2) ;zsupﬂlcttF)J +1 ’ re |.$|},

where lct(_) denotes the log-canonical threshold.
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If £ is very ample, then
(2.25.1) e(L™) < mey (L)X 1,

for every integer m > 0 by [EV92, Lem. 7.7]. Therefore, for the set of very ample line
bundles on projective manifolds with fixed Hilbert polynomial h, the number e(_) has an
upperbound depending on h. As the moduli functor of canonically polarized manifolds
with fixed canonical Hilbert polynomial h is bounded [Mat72] (see [Vie95, Def. 1.15 (1)]
for the definition), one can find an integer

(2252) ag = ao(h) eN

such that, for every integer multiple m of ag, the line bundle w% is strongly ample (cf. Def-

inition 2.2), and then by (2.25.1) there exists an e,,: = e,,(h) € N, depending only on m
and h, that satisfies the inequality

(2.25.3) e(wy) < ep

for every manifold as above.

As we mentioned in Remark 1.1, we will be following the terminology of [Kol22] with
regard to moduli functors and moduli spaces. In particular, instead of a Hilbert polynomial
we will be using the dimension, n, and the canonical volume v. So, we may rephrase the
above statement using (n,v) in place of h, and say that ag = ag(n,v) and e,, = e;,(n,v)
depend on these quantities.

Notation 2.26. For every projective morphism of normal schemes f : X — B whose general
fiber is a canonically polarized manifold, every sufficiently divisible m € N and any a € N,
we set ty g = M€ T, Where e, is as in (2.25.3) and ry, := rank(f*w[)?;]B).

3. TWISTED DIRECT IMAGE SHEAVES AND VIEHWEG NUMBERS

3.A. Generic global generation of twisted direct image sheaves in stable fam-
ilies. We define a notion of twisted direct images sheaves, which is closely connected to
our notion of Viehweg numbers, to be introduced later in this section.

Definition 3.1 (Twisted direct image sheaves). In the settings of Definition-Notation 2.17,
Notation 2.26, set V' := B\D and assume that for all v € V each fiber X, is regular of
dimension n and of canonical volume v. For each multiple m € N of ag(n,v) (cf. (2.25.2)),
we define the twisted direct image sheaf by the following (recall, that t,, > = m%e,,rm):

f:mﬂw[m] QW (f)~™ if f is stable, and

Kl () =3 ) P
m f T”"Q)w;(tm’Q)/B ® #,(f)~™ if f is not stable, but X is regular.

To avoid cumbersome notation, when there is no ambiguity, we omit f from %, (f) in the
notation.

3.B. The stable case.

Proposition 3.2 (Base change for J#"). Let f: X — B be a stable family with a normal
general fiber. Assume that B is a reqular quasi-projective variety and ¢ : B’ — B is a
morphism of finite type, with B' also reqular. Let Z be the main component of X gr,equipped

[m]

with the natural projection g : Z — B'. Finally, let m € N be such that Wy, p is a strongly
f-ample line bundle (cf. Definition 2.2). Then * 27 (f) = 22 (g).
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Proof. This directly follows from Remark 2.10. That is, we consider the two morphisms
ftm,2 : Xtm.2 — B , gtm,Z : Ztvn,Q — -B/7

and observe that by Proposition 2.15 and Remark 2.10 we have

* plm,2 [m] ~ tm,2 [m]
’(/} f* thTVL.2/B - g* th'm,2/B/'

On the other hand, if wg(n/]B is strongly f-ample, then ¥*%;,(f) = #7.(g), which gives the

desired isomorphism. O

Proposition 3.3. Let f : X — B be a stable family, where B is a reqular quasi-projective
variety. Assume that there is an open subset V. C B such that for every v € V, the fiber
X, is reqular of dimension n and canonical volume v. Then J&Y(f) is weakly positive for
every multiple m of ag(n,v) (cf. (2.25.2)).

Proof. Note that as B is regular, it follows that X;t}”’2 = (ftvaY1 V C X'm2 is regular.
Let p: X(#m2) 5 Xtm2 he a resolution which is an isomorphism over V' and let f(tm.2) =
ftm2op: Xtm2) — B denote the induced family. Next, let E be an exceptional divisor
on X(#n2) such that Ky, + E ~g 1" Kyt

Recall that by Corollary 2.16 (cf. Lemma 2.18) there is an injection

2 m tm)g [m]
(3.3.1) e — frralll L

Let I' ¢ X'm2 be the effective Cartier divisor corresponding to the global section of

g:i]m’z/B ® (ft’"*?)*?’/m_m2€m induced by the adjoint morphism of (3.3.1). In particular we

have

w

Oxtimo (T) ~ w[m] 1 ® (ftm,,2)*W—mzenl.
Setting .= wT leads to:

~ * m * _m2€m m . * —mzem
B2 Wl (1) ) (1059 e

Next, we define the invertible sheaf M on X (tm.2) by
-1

M = (wX(tm,z)/B([ED>m ® (f(t"“Z))* v

We thus have

~ mem ™ ~ , mlem(m—1)—1 -
M (=T ~ WXEW;/B ™D (meg(m — 1)[E] = mE) ~

~ wrwin T (me(m — 1)([E] - B)).

(3.3.2)

Notice that [F] — F is an effective (exceptional) divisor and hence

(333) M*wg’?’igjgfgfl)*l)] C %m,em(_f).

Recall that w;t is strongly ample for every v € V' by the choice of ag. Then, it follows

from Grauert’s theorem [Har77, Cor. 12.9] that the natural morphism

m,2

* ptm, m(m—1)—1 m(m—1)—1
(Fime)” ity Wl

=F
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is surjective over V. Note that by the choice of p, the p-exceptional divisor E, and hence
[E'] — E is disjoint from Xy, which implies that after pulling back by p and using (3.3.2),

the obtained morphism
/—\

(f(tm,z))*ﬁ M*w[m(eM(m_l)_l)] ( 5 %mem(_f)

Xtm.2 /B )

is surjective onto .2 ™em (=T) over V and hence generically surjective over B (cf. (3.3.3)).
On the other hand, for every v € V| we have

Mep, > e > e(wE{n])

v

= e(w;nt] ) by [Vie95, Cor. 5.21]

m,2

1 1
>l— = |4+1=]|—"|+1.
1et(T tm2) let(T gtm.2)

Now, as .% is weakly positive, by vanishing results due to Kollar and Kawamata-Viehweg
cf. [Vie95, §2.4] and more precisely by [VZ03, Prop. 3.3], we find that

(3.3.4) (702)) (wytnn p )

is weakly positive.

Claim 3.4. Let fy : U — V denote the restriction of f: X — B to V. There is a natural
injection

*

s (WX(tmyz)/B & :/\/2) — w[;;i]mz/B ® (ftm*"’) o,

that is an isomorphism over Utm.2,
Proof of Claim 8.4. By the definition of M we have
Wxtomr 3 & =W tomr) @ (xm o (D) @ () ot o
~ W (= DIE]) @ (f0n2) g
o i (Wl @ ) W ™) @ Oty ((m = 1)[E] = mE) €

C it (Wt ® I W ™) @ Oty (mUTE] = E)),

(3.4.1)

from which the required injection follows, because [E] — E is an effective p-exceptional

divisor and hence 'U/*ﬁX(t"'"vQ)/B (m([E] = E)) =~ Oxtmz g, cf. [KMM87, Lem. 1-3-2]. O

Now, using Claim 3.4 and the fact that (3.3.4) is weakly positive, it follows that so is

Fore (Wl © (P2 W) = A (f). O

Xtmz2/B

In the situation of Proposition 3.3, let H be any ample line bundle on B. Then, for
every m as in Proposition 3.3, there is a 3, € N such that, for every multiple k of 3,,,

(34.2) Sym* (Y (f)) @ H™" is generically generated by global sections.
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Remark 3.5. The conclusion of Proposition 3.3 also holds for any snc morphism f :
(X,Ay) — (B,Dy), with quasi-projective B and canonically polarized regular fibers.

More precisely, using Proposition 2.22, taking 0., . = Wt ) ® (f(tm=2))*7ﬂ,;m2em
and replacing .Z by
*
M = wmfl ® (f(tmz)) Wﬂ:m,

X(’/m,Q)/B

from the proof of Proposition 3.3 it follows that %, (f) is weakly positive.

3.C. The strongly snc case.

Lemma 3.6 (Twisted direct image sheaves under semistable reductions). In the setting
of Lemma 2.20, assume that X \ A is reqular. Let X > X bea strong resolution such that
I ()?,Af) — (B, Dj) is an snc morphism and g : Y — B’ a strongly snc morphism as
in (2.20.2). Then, there is an injection

14 tm, m —m * 14 3
‘%/m(g) :g£ 2)wy(tm,2)/B/ ®Wm (g) 1N ‘%/m(f)a

naturally defined by a generic isomorphism over B’.

Proof. By (2.20.2) there is an injection
(3.6.1) Wn(g) ™ — " W (F) .

For a suitable choice of strong resolutions X(tm2) and Y(tm2) there is a commutative
diagram

Y(tm,2) )A(:(tvrtﬂ)
g(fm,z)l lf(tm,z)
B’ u B.
By [Vie83, §3, p. 336] we have
tm m s p(tm, m
(3.6.2) g>$< ’2)wY(tm‘2>/B, Cn K Q)W)}(tm,z)/B~

This inclusion and (3.6.1), raised to the power m, gives the required injection. |

3.D. Viehweg numbers.

Definition 3.7. In the setting of Definition 3.1, assuming that B is quasi-projective, let
H be any ample line bundle on B. We define the line bundle .Z as follows.

(3.7.1) If f is stable and Wytm,2,p i a line bundle, e.g., if f is Gorenstein, then
M =Wtz p @ (ffrm2)y (#,  @H),

and
(3.7.2) if X is regular, but f is not stable, then

M= WX(tm,z)/B ® (f(tm’2))*(%n71 ® H)a

Now, for some 3 € N, assume that H°(.#™%) # 0. Fix a non-zero section 0 # s, €
HO(#™P). Let oy, : Z, — X'm2, respectively oy, : Z, — X(m2) be the cyclic
covering associated to sy, cf. [Laz04, Prop. 4.1.6], for .# as in (3.7.1) and (3.7.2).
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Let u: Zs,, — Z;,  be a resolution with the induced family gs,, : Z,,, — B and the
commutative diagram

K Osm

Z,. z Xtmz or X (m.2)

(3.7.3) l ;

Gsm

B.

Definition 3.8. With a fixed ample line bundle H on B, and using the notation of
Definition 3.7, we define the Viehweg number of f associated to the triple (m, 3, s,,) to be
the rank of the following local system

oy (1) = 5, () = wam (R 2B) (g ) €y i, ).

In the setting of Definition 3.7 assume in addition that the smooth and Gorenstein
fibers are canonically polarized. Then Proposition 3.3, (3.4.2) and Remark 3.5 imply that,
after removing a subset of B of codimpg > 2, if necessary, there exist m, and §,, € N
such that HO(.#™%) # 0 (on the respective varieties in the stable and the regular case).
Therefore Definition 3.8 is relevant for all such families.

Notation 3.9. In order to keep the notation manageable, we will suppress some of the
parameters in Definition 3.8 and use the notation «s,, (f) instead of a, g #,s,, (f), but will
keep in mind the choices that we have made to define s,,.

Remark 3.10. Let fyr : U' — V' be a subfamily of f: X — B, that is, fy» = f|y’. Then,
we clearly have (with the same m and ),

s, (f) = as, (fo)

where s, |pr = s,

Proposition 3.11. Let 4 and £, be two line bundles on a variety U and assume that
there is an isomorphism n : 1 — L. Let 0 # sy € HO(U, Z5"), for some m € N, and
set Sm,1 = N*Sm,2 € HO (U, 4™). Let o, , : Z{ — U and oy, , : Zh — U be the cyclic
coverings associated to Spm1 and spo. Then, there is a natural isomorphism Z] ~ Z},
induced by n, that commutes with o, , and o, ,.

Proof. This directly follows from the construction of Z/ cf. [Laz04, Prop. 4.1.6]. More
precisely, let

L; := Specg,, (Sym Z7"),
with the natural projection p; : L; — U, and set T; € HY(L;,p;%;) to be the global
section associated to the tautological map Oy, — p;.%;. Let 7 : Ly — L; denote the
natural isomorphism induced by 1. By construction we have Z! = (T)™ — pfs;)o, and that
T (T — pism,1) = 19" — p5sm 2, inducing the desired isomorphism. O

The next lemma now follows by combining Proposition 3.11 with Remark 3.10.

Lemma 3.12. Let f : X — B and .# be as in Definition 3.7 and let V.C B an open
set and fy : U = Xy — V the corresponding subfamily. Consider a line bundle A on
U that is equipped with an isomorphism n : A = M. Let sy :=n*splu, Zy = U a
resolution of singularities of the cyclic covering associated to sy, and gy : Zy — V the
induced morphism. Then,

rank (Rdim(x ™*/B) (Q:W)*CZW\AQW) = as,, (f)
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4. FINITE-TYPE SUBSTACKS OF THE STACK OF CANONICALLY POLARIZED MANIFOLDS
AND BOUNDEDNESS OF VIEHWEG NUMBERS

In this section we first recall the main results of [KL10] and [BV00] regarding parametriz-
ing spaces for canonically polarized families. As we have already mentioned in Remark 1.1
we will follow the terminology of [Kol22] and use the dimension and the canonical volume
instead of the Hilbert polynomial. The above papers used Hilbert polynomials, but by
[Kol22, 5.1,6.19] the two approaches are equivalent.

Subsequently, we will use these to establish certain uniform global generation results
for the twisted direct image sheaves JZ,"(f) of canonically polarized families introduced in
Definition 3.1. We start by reviewing numerical bounds arising from Arakelov inequalities
OVer curves.

Let M° be a connected and finite type scheme (not necessarily irreducible) with a
compactification M° C M as a subscheme of a projective scheme M, equipped with a
fixed line bundle .#, which is ample on M°. Depending on .Z, let by : Z%, — Z>o be a
function in two variables. B

Definition 4.1 (Weak bound, [KL10, Def. 2.4]). Let V be a regular quasi-projective
variety (of arbitrary dimension). Then a morphism py : V' — M° is called weakly bounded
with respect to by, if any regular curve C° equipped with a morphism ¢ : C° — V
satisfies the following property: Let C' be the regular compactification of C° of genus g
and d := deg(C \ C°). Then the extension uc : C — M of the naturally induced map
oo+ C° — MP° satisfies the inequality

deg(ugZ) < by(g,d).

Notation 4.2. Let n,v € N. Recall that Sm, , (V') denotes the class of smooth, projective
and canonically polarized families fyy : U — V of varieties of dimension n and of canonical
volume v = Ky . This is naturally a subclass of St, ., (V), the class of stable families of
varieties of dimension n and of canonical volume v. This class defines a good moduli theory
as defined in [Kol22, 6.10], cf. [Kol22, 6.16, Thm. 6.18] and admits a coarse moduli space
which is projective [Kol22, Thm. 8.1]. We will denote this coarse moduli space of stable
n-dimensional varieties X with canonical volume K% = v by M,, ,.

Definition 4.3 (Weakly bounded families). A family (fy : U — V) € Sm, (V) is called
weakly bounded, if there exists an ample line bundle . on M, , and a function by with
respect to which the induced moduli map py : V — M, , is weakly bounded.

By combining [Kol90, Thm. 2.5], [Vie95, Thm. 7.17], [Viel0, Thm. 5] and [BV0O,
Thm. 1.4] we have the following important fact.

Fact 4.4. There exist an ample line bundle . on M,, , and a function by for which every
fu € Sm, (V) is weakly bounded for any smooth quasi-projective variety V.

4.A. Parameterizing spaces of weakly bounded families.

Set-up 4.5. Let V be a smooth quasi-projective variety and (B, D) an snc compactificaiton,
that is B\ D ~ V, where D C B is a reduced divisor with simple normal crossing support.
Let Hp be an ample line bundle on B.

According to [KL10, Cor. 2.23, Thm. 1.6, Thm. 1.7] with fixed n (dimension) and v
(canonical volume) and a suitable choice of a weak bound b := by as in Fact 4.4, there
is a reduced, connected finite type scheme W := W? and a projective family f : 2~ —
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W x V =: Wy of canonically polarized manifolds such that every canonically polarized
family fy : U — V of relative dimension n and relative canonical volume v appears
in a fiber over W, i.e., for every such fy there exists a closed point w € W such that

fuw : '%|f71({w}xv) — {w} x V is isomorphic to fyy. The irreducible components of 2~ and

the corresponding families will be denoted by
{fwv s X, = Wy hi<ik
Note that fy,, ; is projective and there exists a closed subscheme W; C W such that
(4.5.1) Jwv. t Xwy, > Wix V
is surjective for each i € {1,...,k}.

Notation 4.6. We will write (fu : U — V) C Xy, ,, if there is a closed point w € W such
that (XWv,i){w}xV >y U.

By the above we have that
(4’6'1) fUESTn'n,V(V) = 3271 Sngvfl] gXWv’i'

Remark 4.7 (Regularity assumption for W;). Note that one may assume that W is smooth.
Indeed, given a resolution W; of W;, after replacing Xy, ; by

XWV,{, X(WiXV) (Wz X V)

and W; by Wi, and using the fact that W; is reduced, we can see that the property (4.6.1)
is preserved.

Notation 4.8. We will denote W; x V by Wy,.

4.B. Uniform exponents for global generation of twisted direct image sheaves.
We will follow the conventions and notation of the previous subsection.

Lemma 4.9. In the situation of and 4.A, for every 1 <i <k, there exist
(4.9.1) a quasi-projective subscheme W C W; with Wy, := WiV, Xwo | = (XWV,i)W‘[},i’
Wpg,i = W2 x B, surjective morphism fW\O/,i P Xwo, WY, and divisor Dy, , ==
W2 x D,
(4.9.2) an ample line bundle H on Wp; such that H|,0yxp ~ Hp, for any w) € WP,
and
(4.9.3) a positive integer mg = mg(n,v) such that for each multiple m of mg, there are
integers Bt,, B, and a;, where 8., = B a;, with the following properties:
(4.9.4) Wi is globally generated, for every fiber F of fwo -
(4.9.5) For every (fu : U = V) C Xy and any smooth compactification f : X — B,
the torsion free sheaf
a; . i
&) (Sym’= 22 (f) @ Hp'n
is generically generated by global sections.

(4.9.6) ®“ (Symﬂf" f/”i/n’{(fwgi)) ® H™Pm @ Oy , is generically generated by global sec-
tions. R !
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Proof. Let n = dim X/B. We may assume that dim W; # 0. Let W? C W; be an open
quasi-projective subset and let H:= 3 Hp, where 7p : Wg; — B is the projection. This
H is an ample line bundle on Wp ; satisfying (4.9.2).

Let fwy, @ Xwy,i — Wh,; denote a proper closure of fW‘?,i' After removing a subset
of Wg; of codimpy, , > 2, let

/
Mwg, WB,i ? WB,i

be the cyclic, flat morphism arising from a semistable reduction, cf. [KKMSD73] and
[KMO8, §7.17]. Set Y, i == Xwip.,i Xwy, Wp;, which is irreducible as ny, , is flat, with
Wi P Ywgi — WIB,i denoting the natural projection. Let Dy, = := 77;[,; Dwy

K3

For any fy C XW‘r}’l-, let w € W be a parametrizing closed point as in Notation 4.6.
Let B’ C Wpg,; be the subscheme defined by n;vé({w} x B) and 7 : B’ — B the induced
cyclic morphism. For a generic choice of w € W2, 7 is flat, ramified only along a very
ample divisor and supp D’, for some D’ > D, and with the same ramification indices as
those of ;. Denote the pullback of fy via n by fu,, : Upr — B’ \ n~Y(D).

Now, let fI//VB,i : X‘//VB,i — Wp ; be the stable reduction of fy, , through nw, ;, resulting
in the commutative diagram:

birational

’
XWB i ST T T T T T T T Ywg., XWB,i

\ J,gWB"i lfWB'i
"B Mwg 4

Wi, . i
Bi flat and Galois B

that is there is a resolution 7 : Zy, , — }A/WBJ of the normalization }/}WB.i of Y, , such
that Zw,, — Wpg; is semistable in codimension one, and that Xy, is the canonical
model of Zy, , over W, cf. Kolldr [Koll0, §3] and Hacon-Xu [HXlB, Cor. 1.4]. In
particular f{,VB . is stable in codimension one. With no loss of generality, after possi-
bly removing another subset of codimension two, we may assume that Zw,, — les,z'
is semistable and fy,, . is stable over W ;. Let ng be the smallest integer for which

wg?s‘jl sw, . is invertible and set mg := lem(mg, ng), with ag as in (2.25.2). Then (4.9.4)
B, Bt
holds for this choice of m, and Proposition 3.3 is applicable.
According to (3.4.2), for every multiple m of my, there is an integer E}n such that, for

every multiple 7 of 8¢,
(4.9.7) the sheaf Sym" J/ (fiy, ) ® (H')™" is globally generated over Wi ;,

where H' := nj;, M (vecall that we have removed a subset of W ; of codimy, = > 2).

We next consider the pullback (Xwy ;) {w}x B, Which gives a morphism of reduced pairs
f:(X,A) = (B,D). Define Y := X xx, Y, , with the natural projection g : ¥ — B’
and set X' := (Xjy, .)p/, with the induced family f': X’ — B’, which is stable. We
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summarize these constructions in the following commutative diagram.

birational
X/ - - DPirational ~Y X

Xiy, .
(4.9.8) \\

\B’ ! {w} x B

fWB,i /
. /

B,i

!
W, —— > Wa,.

Now, we consider the t2,-fold fiber product of (4.9.8) with the induced stable maps

2
(X")tm (X )
X' X{,VBJ
1! lf‘//vs'i
B’ ! WJ’B,Z-,

where i : B’ — Wg ; denotes the natural inclusion. According to Proposition 3.2, after
removing a subset of B’ of codimp: > 2, we have

(4.9.9) i Ky (fvy,) = A ()

Claim 4.10. After replacing W by an open subset, if necessary, for every multiple r of
i, the torsion free sheaf Sym” 7Y (f') @ H'5T is generically generated by global sections,
where Hp :=n*Hp.

Proof of Claim 4.10. We have already established that Sym" 2" (fiy, ) ® (H')™" is glob-
ally generated over Wp ; cf. (4.9.7). By pulling back and using (4.9.9) we find that

i (Sym" A2 (i, ) © (H)™) = Sym" 22 (F) © M

is generically generated by global sections, for the family f parametrized by a general
closed point w € W}. O

From now on we will replace W? by its open subset provided by Claim 4.10. We note
that by construction, for the general family f : X — B parametrized by w € W2, and for
every codimension one point ¥ € B’ Yy is reduced. With no loss of generality we will
assume that this holds for every w € W?. Thus, there is a strong resolution Y — Y of the
normalization of Y such that the induced morphism § : ¥ — B’ is semistable [KKMSD73].

Following the above construction, there is also a birational map X' --» Y. Let W X =
X’ denote the birational morphism obtained by eliminating the indeterminacy of that
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rational map. Let o : X — Y be the induced birational morphism, and let f’ X > B
denote the resulting family, all fitting in the following commutative diagram:

X
(4.10.1) / \ -

X —mm oo Sy — o X

S

B ——=B.

Now, as X’ has only canonical singularities [KS16], for every multiple m of mg, we have

(4.10.2) f;w[;gf]/B, ~ frw Sy

It follows that

(4.10.3) Winlf') = Hin(3).

Moreover, considering the ¢2,-fold fiber product of (4.10.1) we find that

X

/\

(X' — — — - — — = — — — Sy o x ()

n

B — > B.

Again, with (f/)'= : (X')'m — B’ being stable, (X')n has only canonical singularities
and therefore we have
(4.10.4) (f1) e ~ (F)fnwm ~ () m
T * (X’)f‘gn/B’ - )?(t’%n)/B’ = gx }7(%2,”)/3/'
Combining (4.10.3) and (4.10.4) now leads to
AU = HL@)

On the other hand, according to Lemma 3.6, for a log resolution ()?, ﬁ) = (X, A), we
have an injection

Koy (9) — 0" A (f),
that is an isomorphism over ~'V. With Hp: = n*Hp, this implies that for every multiple
r of Eﬁn we have

(4.10.5) Sym" 2 (9) @ HE — n* ( Sym" ) (f) ® "ng).
We saturate the image of the injection (4.10.5), call it ¥’ and consider @) 5 99", where
G = Gal(B'/B), with |G| = | Gal(Wp ;/Wp,;)|. By [HL10, Thm. 4.2.15] and by construc-
tion, after removing a subset of B of codimp > 2 if necessary, there is a locally free sheaf
with an injection

[e] _
(4.10.6) 7:9 —— Q) (Sym" 2 (f) @ HE")

on B such that
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%G ~o *cg!
(4.10.7) Y ~Q,9"Y’, and
(4.10.8) 7 is an isomorphism over V.

Now, as the functor v, (_) is exact, and since 4’ is globally generated over =V, we find
that &4 ~ ~, (n*%)G is generically generated by global sections and thus so is

|G| el
& (Sym’” () @ Hp") = @) (Sym” #5(1)) @ MM
We conclude the proof by setting a; := | Gal(Wg ;/Wg )| O

4.C. Generic deformation invariance and an upper-bound for a,, s, s, (_).

Theorem 4.11. In the situation of Set-up 4.5, for each m, Eﬁn and B, as in Lemma 4.9,
for each i, there exists an of, € N with the following property. For every fu C XW{}. and
smooth compactification f : X — B there is a section '

0% s, € H° (X(tzm) (wyz, s @ (FEN (7 @ Ha ))mﬁi”),

such that .
as,, (f) < ay,.

Proof. According to Lemma 4.9 there exists an mg(n,r) € N such that, for any multiple
m of mg, the two sheaves

a;

@ [Sym™ (7)), pw, &P G )] @, and
(4.11.1) o

a;

® [Sym (fx (tm )wmuz,)/B ® " ()] ®H%"m

are generically generated by global sections, for some for 8%, 81 and a; as in Lemma 4.9.

On the other hand, by the invariance of plurigenera [Siu98] and (4.9.4) the two natural
maps

t?n * tfn m m
R e
(4.11.2) e e

12 \* 2 m
(Pl B, v = “h v

are surjective. Therefore, by pulling back the sheaves in (4.11.1), and using the surjectivity
of the maps in (4.11.2), it follows that

B! m (t2)  \kayr—m (t2) \+2/B8: m
@Sy (s, UG )T )] (7 HPem =

2 BL.m
’1[ X W (féé’;)i)*(%_l(fwg,i)@@%)} ,

and similarly

(4.11.3) (x5 ® PO (7 () @ M) |
are globally generated over the (preimage of the) smooth locus of the family. Next, let

Brm

Br,m
(4.11.4) O#SWW‘(}J e H° (XV;;O ,[w WV . (f ) ( mﬁl(fwe,i)@’ﬁ”)} )
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be such that the intersection of Dy _, = (Sm,W{} o with the general subfamily fy C
Vi ot

Xyyo is smooth. Denote the (finite type) subscheme of W over which this intersection
is not smooth by T?. Next, for each fy as above, set
2 2
(4.11.5) 50 ¢ HY (Utfn, [w;”;gn/v @ (fi) (M (fo) @ HB)])
to be the section induced by the pullback Sm, WY, |Uf?n‘ Noting that the pullback of the

line bundle in (4.11.4) is isomorphic to the one in (4.11.5), by the construction of Viehweg
numbers Definition 3.8 and Lemma 3.12, we find that

(4.11.6) s, wo () = s, (fo).

Without loss of generality, we may assume that the sheaf in (4.11.3) is globally generated
over Utm. Consequently, there exists an

2 2 ﬁfnm
(4.11.7) Sm € H° <X(tm>, [qu%w/B @ (fU N (7 () ® HB)} )

such that s;[, ., = s9,. We have that as, (f) = aw (fu) (see Remark 3.10), so by

(4.11.6), for every family (fu : U — V) C Xy \fv;}) (T? x V), regardless of a choice of
)t V,i

compactification f : X — B over B, there exists a section s, as in (4.11.7) such that

As,, (f) = O‘Smﬁgn,wg ) (fW‘(}i)

After pulling back fi0 over each irreducible component T, x V of T? x V', and replacing
V,i J 1
W; in Lemma 4.9 by TZ%-, the conclusions of Lemma 4.9 are again valid and we can repeat

the above argument. As T? is of finite type, we can find an o!,, by induction on the
dimension of W, such that for every fy C XW‘(} ~ we have

aSm (f) S airm

with s, being as in (4.11.7). O

Corollary 4.12. In the situation of Set-up 4.5 there are integers mg and &, depending
only on n and v, with the following property. For every multiple m of mg and every
fu € Smy (V) and smooth compactification f: X — B we have

as,, (f) < @,

for some B, € N and 0 # s, € HO(X ) g™ (as defined in Definition 3.7).

Proof. By Theorem 4.11 we know that for each fixed i and every fy € Sm, (V) with
fu C XW{}i there are o!,, 8¢ € N and s,, such that

(4.12.1) s, (f) < g,

Now, for each irreducible component T;; of the scheme W;\ W}, we replace W; in (4.5.1)
by Ti;, 1 < j <, for some [ € N. Again, by Lemma 4.9 and Theorem 4.11 we find that,
for suitable choices of 3%, s,, and o, the inequality (4.12.1) is valid. As W; is of finite
type, by induction on dim(W;), the existence of @, such that a,,(f) < @, holds for every

fu € Xw, ;. We conclude the proof by setting @, := maxi<;<x{@,}. O
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5. HIGHER DIMENSIONAL ARAKELOV INEQUALITIES

5.A. Reflexive systems of Hodge sheaves containing #;,(—D). Following [Taj20,
Def. 2.2], given sheaves of &g-modules # and %, a # -valued system means a splitting
F = @ F; and a sheaf homomorphism 7 : # — # ® & that is Griffiths-transversal. If
we assume further that # = QL (log D), 7 is integrable and .Z is reflexive, then (%, 1) is
referred to as a reflexive logarithmic-system of Hodge sheaves.

Now, let V' be a smooth quasi-projective variety with a smooth compactification (B, D)
and let Hp be an ample line bundle on B. Fix h € Z[z]. According to Theorem 4.11
and Corollary 4.12 there are integers mg = mg(n,v), B, (suppressing the unnecessary
superscript 1), and @, such that, for every multiple m of mg, and every smooth compact-
ification f: X — B of any smooth projective family fy € Sm, . (V), over an open subset
BY C B, with codimp(B\B®) > 2, there exists an 0 # s,,, € HO(X(tm2) z™8m) where
(recall from (3.7.2))

(5.0.1) M= W (tm,2)/B @ (f(t’”’Q))*(%jl ®Hp),
for which we have oy (f) <@

Proposition 5.1. For every projective morphism [ : X — B as above there is a reflexive
system of Hodge sheaves (¢ = @;._,%,0) of weight w € N on B, with logarithmic poles
along D, satisfying the following properties.

(5.1.1) w < dim(X/B)ty. 2.

(5.1.2) rank(¥) < @y

(5.1.3) There is an injection #p,(—D) @ Hp' — 9.

(5.1.4) The torsion free sheaf N; = ker(0|y,) is weakly negative, for every 0 < j < w.

Proof. Following [VZ03], [Taj21, 2.2] and [Taj20, 2.2] (see also [KT21, §4] for a general
construction for flat families) we consider the O}, (log D)-valued system (% = @ %;, 1)
of weight equal to dim(X (*m2)/B), with each .%; being defined by

K,f(tm : ( m(tzm ;/B(l()g Af(tm,z)) ® ~///_1) .
With s,, as above, over By, there is a surjective morphism Z;  — X(tm2) agin (3.7.3). Let
VY denote Deligne’s extension of the C-VHS of weight dim(Z;,, /B) underlying the smooth
locus of g, , and set (§° = @ &, 0°) to be the associated Hodge bundle. By [Taj21, pp. 8-
9] there is a morphism of systems ® : (F,7) — (£°,6°) such that ® is injective and its
image (9° = @, 4?,6°) has the following property: the natural extension of (¢°,6°)**
to the reflexive system of Hodge sheaves (¢, 0) on B satisfies (5.1.4). The construction and
the injectivity of ® implies (5.1.3). Moreover, by the construction of ¢ and Definition 3.8,
we have that w < dim(X/B)t, 2, so (5.1.1) follows. Furthermore, rank(¥4) < o, g, .5, (f)
by construction, so (5.1.2) follows from Corollary 4.12. O

5.B. Proof of Theorem 1.3. We are now ready to prove the main theorem.

Theorem 5.2 (the precise version of Theorem 1.3). Let (B, D) be a smooth compacti-
fication of a smooth quasi-projective variety V of dimension d and H an ample Cartier
divisor on B. Further let n,v € N and assume that Kg+ D is pseudo-effective. Then, there
exists an mg = mo(n,v) € N, such that for every integer multiple m of mq, there exist
Gy by Ym € N with the following property. For each smooth compactifcation f: X — B
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of an arbitrary fu € Smy, (V) we have
(5.2.1) c1(det fow)p) - HF < (™ am(Kp + D) + by D) - H™' + HY,

Proof. Let #;, = det ((f*wQ/B)(—mDD (cf. Definition-Notation 2.17). Further let <7, :=
Win(=D — H). As before, set rp, := rank(fiw, ). We will distinguish cases based on the
sign of ¢1(ey,) - HI7L.

First, assume that ¢;(,) - H4~' < 0. Then

e1 (det( £kl ) (~(mr)D = H)) - HO™0 < D 17,

which implies that
(5.2.2) c1(det fuw)p) - H*H < (14 mry)D - H*' 4+ HY,

Next, assume that
(5.2.3) c1( ) - H71 > 0.

According to Proposition 5.1, there exists a reflexive system of Hodge sheaves (¥4 =
D, ¥, 0) such that «7,, — %. Now, define

0" := (id®0) o ... o (i[d@0) b : % — (Vs (log D))* @ %.

(I — 1)-times

Claim 5.3. 0(<,y,) # 0.
Proof of Claim 5.3. The proof is the same as in [KT21, Claim 5.5]. |

Clearly, 8'(,,) = 0 for [ > 0 and Claim 5.3 implies that such an [ has to be larger than
1. Let k be the largest integer for which 6%(.e7,) # 0. In particular, then **! (.27, ) = 0,
and hence

0% € T ((Q5(log D))®* @ Hom(Gy, M)
where A%, :=ker(f|g,) as in (5.1.4). As o7, is of rank one, the nontrivial map
Ay — (5 (log D))" @

must be an injection. We may assume with no loss of generality that the image of this
injection is saturated. After raising it to the power s := rank(.4%), we find that

o @ (det M) — (2 (log D))
i.e., by using the definition of 47, we have
(5.3.1) (#in(—D — H))* @ (det A7) ™" < (Q(log D)) ™.

Now, as (det 47)~! is pseudo-effective by (5.1.4), we have the inequality
sci (Wn(=D — H)) - H* ' < ¢1 (#2(—D — H))* @ (det A5) 1) - HE L.
On the other hand, by [CP19, Thm. 1.3] it follows from (5.3.1) that
er (#n(—D — H))® @ (det A)7Y) - HIH < ¢ ((Q}B(log D))®’“) CHAL
By combining these latter two inequalities we find that
c1 (#p(—D — H))- H7 < d** 'k(Kg + D)- H L.
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Now, substituting the definition %, = det ((f*w;’(‘/B)(—mD)), this implies that

(5.32) o (det e (—mrg, — 1)0)) CHY < dF (K + D) - HY Y 4 HY.

Furthermore, by Proposition 5.1 we have that £ < w < a,,, where a,, := ¢y, 2 - dim X/B,
and s < @,,. Therefore, from (5.3.2) we find

(5.3.3) Cl(det f*w:;?/B)Hd—l Sdamllyn—lam(KB_'_D).Hd—l+(1 _"_m,,,m)DHd—l _"_Hd.

The statement now follows from combining (5.2.2) and (5.3.3), with v, = @mam — 1,

(5.3.4) am = (rmm?en,)dim X/B and b, = 1 +mry,. O

5.C. Proof of Theorem 1.5. After removing a subset of B of codimp > 2, let ' : X/ —
B’ be the stable reduction associated to n : B’ — B, as in (4.10.1). By (4.10.2) and (3.6.2)

there is an embedding f;w%]/B, — n*f*wgg/B, such that
[ det fiw[;gf]/B,}pm — 0" (det fuw'y/p)Pm.
~®*(X,,) cf. [Kol90, 2.5],[Vie95, Thm. 7.17]

By Teissier’s inequality [Laz04, Thm. 1.6.1] (and references therein) and Theorem 1.3 it
follows that

(vol(@*\,)) ¢ [ (7H)® ]

which implies that

1
< pmdegn (A" am(Kp + D) + by, D) - H*" + H?) |

1 m d
(vol(®* A ) < PS8 (g, (K + D) + by D) - H*' + HY) .
(H)'~a
Finally, setting
d
cm(T1,T2,73) = Z"fl (" iy + b + 23)°

Z3
completes the proof. O

REFERENCES

[AKO0O] D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math.
139 (2000), no. 2, 241-273. MR1738451 (2001f:14021)
[ALT20] K. Adiprasito, G. Liu, and M. Temkin, Semistable reduction in characteristic 0, Sém. Lothar.
Combin. 82B (2020), Art. 25, 10. MR4098246
[Ara71] S. J. Arakelov, Families of algebraic curves with fized degeneracies, Izv. Akad. Nauk SSSR
Ser. Mat. 35 (1971), 1269-1293. MR0321933 (48 #298)
[BB20] D. Brotbek and Y. Brunebarbe, Arakelov-Nevanlinna inequalities for variations of Hodge
structures and applications (2020). Preprint arXiv:2007.12957.
[BGT1] S. Bloch and D. Gieseker, The positivity of the Chern classes of an ample vector bundle,
Invent. Math. 12 (1971), no. 2, 112-117.
[BGPGO6] S. B. Bradlow, O. Garcia-Prada, and P. B. Gothen, Mazimal surface group representations
in isometry groups of classical hermitian symmetric spaces, Geom. Dedicata 122 (2006),
185-213.
[BHPS13] B. Bhatt, W. Ho, Zs. Patakfalvi, and C. Schnell, Moduli of products of stable varieties,
Compos. Math. 149 (2013), no. 12, 2036-2070. MR3143705
[BVO0O] E. Bedulev and E. Viehweg, On the Shafarevich conjecture for surfaces of general type over
function fields, Invent. Math. 139 (2000), no. 3, 603-615. MR1738062 (2001f:14065)
[Con00] B. Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750,
Springer-Verlag, Berlin, 2000. MR1804902


https://arxiv.org/abs/2007.12957

28

[CP19]

[Del87]
[EV92]
[Fuj18]

[Fuj78]
[Har77]

[HL10]

[HX13]

[JZ02]
[Kar00]

[Kaw81]
[KKOS)]
[KK10]
[KK20]

[KKMSD73]

[KL10]

[KMO8]
[KM10]
[KK10]
[KM98]
[KMMS87]

[Kol10]
[Kol18]

[Kol22]
[Kol86]

[Kol90]
[KSBSS]
[Kov00]

[Kov02]

SANDOR J KOVACS AND BEHROUZ TAJI

F. Campana and M. Paun, Foliations with positive slopes and birational stability of orb-
ifold cotangent bundles, Inst. Hautes Etudes Sci. Publ. Math. 129 (2019), no. 1, 1-49.
arXiv:1508.02456.

P. Deligne, Un théoréme de finitude la monodromie, Progr. Math., 1987. Discrete groups in
geometry and analysis (New Haven, Conn., 1984).

H. Esnault and E. Viehweg, Lectures on wvanishing theorems, DMV Seminar, vol. 20,
Birkhéduser Verlag, Basel, 1992. MR1193913 (94a:14017)

O. Fujino, Semipositivity theorems for moduli problems, Ann. Math. 187 (2018), no. 187,
639-665. DOI:10.4007 /annals.2018.187.3.1.

T. Fujita, On Kdhler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), 779-794.

R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in
Mathematics, No. 52. MR0463157 (57 #3116)

D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Second, Cam-
bridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR2665168
(2011e:14017)

C. D. Hacon and C. Xu, Ezistence of log canonical closures, Invent. Math. 192 (2013), no. 1,
161-195.

J. Jost and K. Zuo, Hodge bundles over algebraic curves, J. Alg. Geom 11 (2002), 535-546.
K. Karu, Minimal models and boundedness of stable varieties, J. Algebraic Geom. 9 (2000),
no. 1, 93-109.

Y. Kawamata, Characterization of Abelian Varieties, Compositio Math. 43 (1981), 253-276.
S. Kebekus and S. J Kovacs, Families of canonically polarized varieties over sur-
faces, Invent. Math. 172 (2008), no. 3, 657-682. DOI:10.1007/s00222-008-0128-8. Preprint
arXiv:0707.2054. MR2393082

, The structure of surfaces and threefolds mapping to the moduli stack of canonically
polarized varieties, Duke Math. J. 155 (2010), no. 1, 1-33. MR2730371 (2011i:14060)

J. Kollar and S. J Kovacs, Deformations of log canonical and F-pure singularities, Algebr.
Geom. 7 (2020), no. 6, 758-780, DOI 10.14231/ag-2020-027. MR4156425

G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings i, Lecture
Notes in Mathematics, vol. 399, Springer-Verlag Berlin Heidelberg, 1973.

S. J Kovécs and M. Lieblich, Boundedness of families of canonically polarized manifolds:
A higher dimensional analogue of shafarevich’s conjecture, Ann. Math. 172 (2010), no. 3,
1719-1748. DOI:10.4007 /annals.2010.172.1719.

V. Koziarz and J. Maubon, Representations of complex hyperbolic lattices into rank 2 clas-
sical Lie groups of Hermitian type, Geom. Dedicata 137 (2008), 85-111.

, The Toledo invariant on smooth varieties of general type, Crelle J. Reine Angew.
Math 2010 (2010), no. 649, 207-230. DOI:10.1515/crelle.2010.093.

J. Kollar and S. J Kovécs, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23
(2010), no. 3, 791-813. DOI:10.1090/5S0894-0347-10-00663-6. MR2629988 (2011m:14061)

J. Kollar and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math-
ematics, vol. 134, Cambridge University Press, Cambridge, 1998. MR2000b:14018

Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem,
Algebraic geometry, sendai, 1985, 1987, pp. 283-360. MR946243 (89¢:14015)

J. Kollar, Moduli of varieties of general type (2010). Preprint arXiv:1008.0621.

J. Kollar, Log-plurigenera in stable families, Peking Math. J. 1 (2018), no. 1, 81-107.
MR4059993

J. Kollar, Families of varieties of general type, Cambridge University Press, 2022. to appear.
, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1,
11-42. MR825838 (87c:14038)

, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235-268.
MR1064874 (92¢:14008)

J. Kollar and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities,
Invent. Math. 91 (1988), no. 2, 299-338.

S. J Kovdécs, Algebraic hyperbolicity of fine moduli spaces, J. Algebraic Geom. 9 (2000), no. 1,
165-174. MR1713524 (2000i:14017)

, Logarithmic vanishing theorems and Arakelov-Parshin boundedness for singular
varieties, Compositio Math. 131 (2002), no. 3, 291-317. MR2003a:14025



https://arxiv.org/abs/1508.02456
https://doi.org/10.4007/annals.2018.187.3.1
http://dx.doi.org/10.1007/s00222-008-0128-8
http://arxiv.org/abs/0707.2054
https://annals.math.princeton.edu/2010/172-3/p06
https://doi.org/10.1515/crelle.2010.093
http://dx.doi.org/10.1090/S0894-0347-10-00663-6
https://arxiv.org/abs/1008.0621

[Kov13]
[Kov96]
[Kov97]

[KP17]

[KS16]
[KT21]

[Laz04]

[Mat72]
[Par68]
[Pat12]
[Pet00]

[Sha63]

[Siu9g]
[Taj20]
[Taj21]

[Vie83]

[Vie95)]

[Vie01]

[Vie08]
[Viel0]
[VZ02]
[VZ03]
[VZ07]

[Zuc82)

ARAKELOV INEQUALITIES IN HIGHER DIMENSIONS 29

, Singularities of stable varieties, Handbook of moduli. Adv. Lect. Math. (ALM), 25,
vol. II, Int. Press, Somerville, MA, 2013.
, Smooth families over rational and elliptic curves, J. Algebraic Geom. 5 (1996),
no. 2, 369-385. Erratum: J. Algebraic Geom. 6 (1997), no. 2, 391. MR1374712 (97¢:14035)
, On the minimal number of singular fibres in a family of surfaces of general type, J.
Reine Angew. Math. 487 (1997), 171-177. MR1454264 (98h:14038)
S. J Kovécs and Zs. Patakfalvi, Projectivity of the moduli space of stable log-varieties and
subadditivity of log-Kodaira dimension, J. Amer. Math. Soc. 30 (2017), no. 4, 959-1021, DOI
10.1090/jams/871.
S. J Kovacs and K. Schwede, Inversion of adjunction for rational and Du Bois pairs, Algebra
Number Theory 10 (2016), no. 5, 969-1000.
S. J Kovécs and B. Taji, Hodge sheaves underlying flat projective families (2021). Preprint
arXiv:2103.03515.
R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathemat-
ics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48,
Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR2095471
(2005k:14001a)
T. Matsusaka, Polarized varieties with given Hillbert polynomial, Amer. J. Math. 9 (1972),
1027-1077.
A. N. Parshin, Algebraic curves over function fields. I, Izv. Akad. Nauk SSSR Ser. Mat. 32
(1968), 1191-1219.
Zs. Patakfalvi, Viehweg’s hyperbolicity conjecture is true over compact bases, Adv. Math.
229 (2012), no. 3, 1640-1642. MR2871152 (2012m:14072)
C. A. M. Peters, Arakelov-type inequalities for hodge bundles (2000). Preprint
arXiv:math/0007102.
I. R. Shafarevich, Algebraic number fields, Proc. Internat. Congr. Mathematicians (Stock-
holm, 1962), 1963, pp. 163-176. English translation: Amer. Math. Soc. Transl. (2) 31 (1963),
25-39.
Y.-T. Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3, 661-673. MR1660941
(99i:32035)
B. Taji, Birational geometry of smooth families of varieties admitting good minimal models
(2020). Preprint arXiv:2005.01025.
, On the Kodaira dimension of base spaces of families of manifolds, Journal Pure
Applied Algebra 225 (2021), 106729. arXiv:1809.05616.
E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre
spaces, Algebraic varieties and analytic varieties (tokyo, 1981), 1983, pp. 329-353. MR715656
(85b:14041)
E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik
und ihrer Grenzgebiete (3), vol. 30, Springer-Verlag, Berlin, 1995. MR1368632 (97j:14001)
E. Viehweg, Positivity of direct image sheaves and applications to families of higher dimen-
stonal manifolds, School on Vanishing Theorems and Effective Results in Algebraic Geometry
(Trieste, 2000), 2001, pp. 249-284.
, Arakelov inequalities, Surveys Diff. Geom. 13 (2008), 245-276. preprint
arXiv:0812.3350.
, Compactifications of smooth families and of moduli spaces of polarized manifolds,
Ann. of Math. 172 (2010), 809-910. arXiv:math/0605093.
E. Viehweg and K. Zuo, Base spaces of non-isotrivial families of smooth minimal models,
Complex geometry (Gottingen, 2000), 2002, pp. 279-328. MR1922109 (2003h:14019)
E. Viehweg and K. Zuo, On the Brody hyperbolicity of moduli spaces for canonically polarized
manifolds, Duke Math. J. 118 (2003), no. 1, 103-150. MR1978884 (2004h:14042)

, Arakelov inequalities and the uniformization of certain rigid Shimura varieties, J.
Diff. Geom. 77 (2007), 291-352.
S. Zucker, Remarks on a theorem of Fujita, J. Math. Soc. Japan 34 (1982), no. 1, 47-54.



https://arxiv.org/abs/2103.03515
https://arxiv.org/pdf/math/0007102.pdf
https://arxiv.org/abs/2005.01025
https://arxiv.org/abs/1809.05616
https://arxiv.org/abs/0812.3350
http://arxiv.org/abs/math/0605093

30 SANDOR J KOVACS AND BEHROUZ TAJI

SANDOR KOVACS, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, BOoX 354350, SEAT-
TLE, WASHINGTON, 98195, U.S.A

Email address: skovacs@uw.edu

URL: http://sites.math.washington.edu/ kovacs/current/

BEHROUZ TAJI, SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NEW SOUTH WALES
SYDNEY, NSW 2052 AUSTRALIA

Email address: b.tajiOunsw.edu.au

URL: https://web.maths.unsw.edu.au/ btaji/


mailto:skovacs@uw.edu 
http://sites.math.washington.edu/~kovacs/current/
mailto:b.taji@unsw.edu.au
https://web.maths.unsw.edu.au/~btaji//

	1. Introduction
	2. Preliminaries and Background
	3. Twisted direct image sheaves and Viehweg numbers
	4. Finite-type substacks of the stack of canonically polarized manifolds and boundedness of Viehweg numbers
	5. Higher dimensional Arakelov inequalities
	References

