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Abstract

We study the problem of estimating a large, low-rank matrix corrupted by additive noise
of unknown covariance, assuming one has access to additional side information in the form
of noise-only measurements. We study the Whiten-Shrink-reColor (WSC) workflow, where
a “noise covariance whitening” transformation is applied to the observations, followed by
appropriate singular value shrinkage and a “noise covariance re-coloring” transformation.
We show that under the mean square error loss, a unique, asymptotically optimal shrinkage
nonlinearity exists for the WSC denoising workflow, and calculate it in closed form. To
this end, we calculate the asymptotic eigenvector rotation of the random spiked F-matrix
ensemble, a result which may be of independent interest. With sufficiently many pure-
noise measurements, our optimally-tuned WSC denoising workflow outperforms, in mean
square error, matrix denoising algorithms based on optimal singular value shrinkage which
do not make similar use of noise-only side information; numerical experiments show that
our procedure’s relative performance is particularly strong in challenging statistical settings
with high dimensionality and large degree of heteroscedasticity.

1 Introduction

Low-rank matrix reconstruction from partial or corrupted measurements is a well-studied prob-
lem in machine learning and statistics, with applications ranging from computer vision [45] and
structural biology [2,12] to medical imaging [16] and medical signal processing [42]. This paper
considers recovery of a p-by-n matrix X of rank r ≪ n, p from an additively corrupted measured
matrix Y = X+R. Here, R is a noise matrix (independent of X) whose columns are assumed
independent and identically-distributed (i.i.d.), with an arbitrary between-row correlation struc-
ture Σ.

Such matrix denoising problems occur, for example, in principal component analysis (PCA)
under a low-rank factor model [57]. Consider n data points in p-dimensional Euclidean space,
denoted y1, . . . ,yn ∈ R

p of the form yi = xi + εi. The i.i.d. “signal” vectors x1, . . . ,xn are
assumed to lie on some unknown r-dimensional subspace, and the i.i.d. “noise” vectors ε1, . . . , εn
have a full rank covariance matrix Σ, and so spread over the entire ambient space. One would
like to reconstruct the low dimensional signal vectors from the noisy observations y1, . . . ,yn. Let
Y ∈ R

p×n be the data matrix, formed by stacking the observations y1, . . . ,yn as its columns, so
that Y = X +R, where X ∈ R

p×n is a matrix whose columns are x1, . . . ,xn and R is a noise
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matrix. This signal estimation problem becomes a matrix denoising problem: estimate X from
Y.

This paper approaches the matrix denoising problem in the well-known spiked model [31],
wherein the matrix dimensions p, n → ∞ with a limiting aspect ratio γ := limp,n→∞ p/n > 0
while the signal rank r = rank(X) is fixed. The spiked model captures the key features of the
matrix denoising problem in a regime where both underlying signal rank and signal-to-noise
ratio (SNR) are small; in particular, the ground truth X is not consistently estimable from Y

(see Section 2 below).
From the perspective of random matrix theory, the spiked model has relatively simple and

well-understood asymptotic behavior [7,8,11,49]. Specifically, the behavior of Y is described by
the following phenomena:

1. Singular value displacement: The singular values of Y are divided into a “bulk”, which has
a deterministic limiting shape and corresponds to pure noise, and at most r “outliers” which
exceed the bulk and correspond to “signal”. The locations of the outliers are asymptotically
deterministic, and the i-th largest singular value of Y depends only on the i-th largest
singular value of X. The presence (or lack thereof) of an outlier is a threshold phenomenon:
there is some SNR level σ∗, a detection threshold, such that the i-th singular value σi
creates an observable outlier if and only if σi > σ∗.

2. Principal component angles: The angles between the leading observed PCs and the signal
PCs are essentially deterministic. The i-th signal PC is essentially orthogonal to the
the j-th (j 6= i) observed PC. The angle between the i-th signal and i-th observed PCs
concentrates around a deterministic number ∈ [0, 1), which may be consistently estimated
from the observed i-th singular value of Y.

A popular and practical approach to the matrix denoising problem is singular value shrinkage,
where X is estimated by taking the singular value decomposition (SVD) of Y, retaining its
singular vectors while systematically deflating the singular values to correct for the noise [22,
24,26,47,50,52]. Leveraging the above spiked model asymptotic phenomena, which are entirely
quantifiable, several authors have derived optimal singular value shrinkers under various settings,
cf. [22, 23, 25,26,28,30,38–40,47,52,56].

For isotropic noise (Σ = I), matrix denoising in the spiked model is well-understood. How-
ever, the general case of heteroscedastic noise offers interesting problems of practical interest.
Several recent works have studied PCA, singular value shrinkage and related spectral methods
in the presence of heteroscedastic noise, either across rows, columns or both; see for exam-
ple [1,9,20,23,28–30,35,39–41,47,56,65]. Under our present setting of independent columns and
inter-row covariance matrix Σ, formulas for the optimal singular value shrinker are available:
when the noise covariance Σ is known, the optimal shrinker can be computed exactly, and when
it is not, one can consistently estimate the optimal shrinkage rule from the observed spectrum
of Y; the resulting procedure is known as OptShrink [47] (see also [23]).

When denoising a signal sampled with additive heteroscedastic noise, one sometimes has the
opportunity to sample the noisy channel in the absence of any signal. A natural approach –
indeed a classical idea in signal estimation – is to use noise-only measurements to “whiten” the
measurements. According to this approach, one should (i) “whiten” the data, that is multiply
by Σ

−1/2 (assuming Σ is somehow available); (ii) apply an estimation procedure calibrated
for uncorrelated noise, yielding an estimator X̂

w; and (iii) apply a “recoloring” transformation
X̂ = Σ

1/2
X̂

w. The popularity of this approach in signal processing is due both to its conceptual
simplicity, and to the ubiquity of linear filtering, under which it is often optimal. The influential
textbook of van Trees [58] advocates, for example: “Many of our models assumed the received
signal, either a waveform or a vector, was observed [in] the presence of “white noise” [...] We
demonstrated, first with vectors and then with waveforms, that we could always find a “whitening
transformation” that mapped the original process into a signal plus white noise problem. The
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reader should remember to consider this approach when dealing with more general problems.”

( [58, Epilogue]).
In our present denoising problem, under the spiked model, it is natural to consider a Whiten-

Shrink-reColor (WSC) workflow, where a “signal covariance whitening” transformation is applied
to the observations, followed by appropriate singular value shrinkage and a “signal covariance re-
coloring” transformation. The simplest scenario where WSC may be considered is when the noise
(population) covariance Σ is available as side information. This case was studied recently by two
of the authors, who derived the optimal shrinkage rule of the WSC procedure [40]. As one can
expect, denoising performance were shown to improve by incorporating the side information Σ

into the WSC workflow, compared with optimal singular value shrinkage [47]; interestingly, the
optimal shrinker for WSC was found to be different from the singular value shrinker optimally
tuned for white noise.

Clearly, the assumption that the noise covariance Σ is known or consistently estimable is
typically unrealistic in high dimensions [13]. As [40] demonstrated, complete knowledge of
the noise covariance offers significant improvement for matrix denoising under heteroscedastic
noise. One then naturally wonders whether partial information of the noise R could be similarly
leveraged. Specifically, assume access to side information in the form of m > p pure-noise

samples. Following [39], the present paper considers matrix denoising in the spiked model under
a WSC workflow, where instead of the noise population covariance, “whitening” and “recoloring”
are done using a sample covariance matrix of pure-noise samples Σ̂. This problem is fascinating
in part owing to the fact that, as Σ̂ is an inconsistent estimate of Σ, whitening by Σ̂ injects
additional “noise” into the estimation procedure, which should be systematically corrected for.

Contributions.

1. Optimal WSC denoiser. Our main contribution is the derivation of the optimal WSC
denoiser in mean square error. Specifically, we show that an asymptotically optimal
shrinker exists for this WSC workflow, and derive it in closed form.

2. Asymptotic singular vector rotations for the spiked F-matrix. Curiously, the
whitened data matrix

Yw
= Σ̂−1/2Y = Σ̂−1/2X+ Σ̂−1/2R .

is an object of independent interest known in the random matrix theory literature as a
spiked F-matrix [6, 48]. Prior works in signal processing and statistics have studied the
problem of signal detection under spiked F-matrix ensemble, focusing on the behavior
of the largest eigenvalues in the presence or absence of a signal [18, 33, 34, 48, 55, 66, 67].
In particular, it was shown [48] that the singular values of Yw exhibit the same basic
phenomenology similar to the “classical” spiked model:1 its singular values are arranged in
the form of a “bulk” plus at most r outliers exceeding the bulk. (The limiting distribution
of the bulk was calculated already in the classical work of Wachter [61].) Formulas for the
spike detection threshold, as well as the spike-forward map (singular value displacements)
have also been computed. As discussed above, derivation of optimal shrinkers for WSC
worflow in our scenario requires calculation of the limiting angles between the population
(signal) principal components and their empirical counterparts. A secondary contribution
of the present paper is closed-form formulas for the limiting angles of the spiked F-matrix
ensemble.

1Note that Y
w does not follow a generalized spiked model in the sense of e.g. [11], since the low-rank and

noise parts are statistically dependent on one another through their mutual dependence on Σ̂.
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Paper outline. This paper is organized as follows. In Section 2, we state the precise ob-
servation model and estimation problem; provide key definitions of functions; and describe the
proposed denoising algorithm in detail. In Section 3, we state the theoretical results on spiked
F-matrices, and show how these may be used to derive the optimal denoisers. In Section 4 we
briefly survey several known results on the properties of the F-matrix ensemble, which shall be
crucial in the derivation to follow. Section 5 is devoted to the proofs of our technical results, with
some details deferred to the Appendix. Lastly, in Section 6 we report on numerical experiments
illustrating the behavior of the proposed denoising method. In particular, we numerically com-
pare the performance of our method to that of optimal singular value shrinkage (OptShrink [47])
under different model configurations. Section 7 is devoted to conclusion and some additional
discussion.

2 Notation and problem setup

2.1 Observation model

Let σ1, . . . , σr > 0, be positive numbers, and u1, . . . ,ur ∈ R
p and v1, . . . ,vr ∈ R

n be vectors.
Denote by U ∈ R

p×r the matrix whose columns are u1, . . . ,ur, and similarly for V ∈ R
n×r.

Also, let Λ ∈ R
r×r be a diagonal matrix with diagonal given by (σ1, . . . , σr). The signal matrix,

the object to be estimated, is

X =
r∑

i=1

σiuiv
⊤
i = UΛV

⊤ . (1)

Clearly, rank(X) ≤ r. Let Z ∈ R
p×n be a random matrix, independent of X, with i.i.d. Gaussian

entries Zi,j ∼ N (0, 1), and let R = Σ
1/2

Z, where Σ ∈ R
p×p is positive definite. One observes

Y ∈ R
p×n,

Y = X+
1√
n
R = UΛV

⊤ +
1√
n
Σ

1/2
Z . (2)

That is, each column of X is corrupted by additive noise of mean 0 and covariance Σ/n. We
remark that this normalization (dividing the noise by

√
n) is such that the singular values of

the signal X and the noise n−1/2
R are of the same order, cf. [22, 23,26,39,47,52].

The noise covariance Σ is assumed to be unknown. Instead, one is given side information in
the form of m pure-noise samples, which are independent of the measurement matrix Y. That
is, one observes a noise-only matrix

R
′ = Σ

1/2
Z
′ ∈ R

p×m , Z
′
i,j

i.i.d.∼ N (0, 1) . (3)

We will assume that m ≥ p so that rank(R′) = rank(Σ1/2) with probability (w.p.) 1. Having
observed the signal-plus-noise measurement matrix Y and the side information R

′, our goal is
to estimate the signal matrix X. For an estimator X̂ = X̂(Y,R′), we measure its error using
the Frobenius loss (MSE): E‖X− X̂‖2F . The matrices in the observation model are summarized
in Table 1.

We study this denoising problem under the spiked model [11, 31]. Formally, we consider a
sequence of denoising problems, n,m, p → ∞, with the following specifications:

1. “High-dimensional” asymptotics: For constants γ ∈ (0,∞) and β ∈ (0, 1),

p

n
→ γ,

p

m
→ β, as n,m, p → ∞ . (4)

2. Regularity of noise covariance sequence:
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Symbol(s) Description Size(s) Observed?

U, V, Λ Signal SVD p× r, p× n, r × r Not observed

X Signal UΛV
⊤ p× n Not observed

Z, Z′ White noise p× n, p×m Not observed

Σ Noise covariance p× p Not observed

R Noise Σ
1/2

Z p× n Not observed

R
′ Out-of-sample noise Σ

1/2
Z
′ p×m Observed

Y Signal-plus-noise X+R p× n Observed

Û, V̂, Λ̂ r-SVD of Y p× r, p× n, r × r Observed

Σ̂ Sample covariance R
′
R

′⊤/m p× p Observed

N Pseudo-whitened noise Σ̂
−1/2

R/
√
n p×m Not observed

E Wishart matrix ZZ
⊤/n p× p Not observed

S Wishart matrix Z
′
Z
′⊤/m p× p Not observed

D1, . . . ,Dr Signal PC weights p× p Not observed

Table 1: Matrices used in this paper.

(a) The empirical spectral distribution (ESD) of Σ converges weakly almost surely to
some deterministic, compactly supported law dH. To wit, for every bounded contin-
uous f(·), p−1tr(f(Σ)) := p−1

∑p
i=1

f(λi(Σ)) −→
∫
f(λ)dH(λ) a.s. as p → ∞.

(b) The extremal eigenvalues of Σ converge to the edges of the support of dH. To wit,
if supp(dH) = [a, b] then λmin(Σ) → a, λmax(Σ) → b. We further require that a > 0.

We denote the first moment of the limiting empirical spectral distribution (LESD) by

µ := lim
p→∞

p−1 tr(Σ) =

∫ b

a
λdH(λ) . (5)

3. Generative assumptions on signal: The number of spikes r and the intensities σ1, . . . , σr >
0 are fixed as n,m, p → ∞. The signal principal directions satisfy the following:

(a) Right principal directions: The matrix V ∈ R
n×r is such that V

⊤
V → Ir×r

almost surely. In other words, {v1, . . . ,vr} are (asymptotically) orthonormal vectors.

(b) Left principal directions: The vectors u1, . . . ,ur have the form2

ui = p−1/2
Diwi , for w1, . . . ,wr ∼ N (0, Ip×p) . (6)

Furthermore, the (sequences of) matrices Di satisfy:

i. Boundedness: For some C > 0, max1≤i≤r ‖Di‖ < C almost surely.

ii. Unit energy: limp→∞ p−1‖Di‖2F = 1.

iii. Limiting joint law: The algebra generated by {DiD
⊤
i ,Σ,Σ−1} has a limiting

joint law in the sense of free probability theory (see Section A.2).

The following quantities will play an important role in our formulas:

τi := lim
p→∞

p−1tr
(
D

⊤
i Σ

−1
Di

)
, 1 ≤ i ≤ r. (7)

We assume that each τi is finite and strictly positive.

2The Gaussianity of the vectors wi is not strictly necessary; one could replace it by any other isotropic

distribution of sufficiently light tail.
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(c) Simple signal spectrum: The following “effective” spike intensities contain no mul-
tiplicities. By way of notation, they are ordered as

√
τ1σ1 > . . . >

√
τrσr. We remark

that this assumption is standard throughout the literature on singular value shrink-
age, see for example [23, 26,39,47,52].

Remark 1. Much of the existing literature on singular value shrinkage either assumes isotropic
noise (Σ = Ip×p) or an isotropic prior (Di = Ip×p) on the left signal directions u1, . . . ,ur

(cf. [23,26,47,52]). Similar to [39], we relax this assumption by allowing in (6) for an alignment
between the signal direction and the noise, whose “strength” is captured by the parameter τi from
(7). Note that (6) implies that u

⊤
i uj → 1{i = j} a.s., thus the ui-s may be interpreted as

the principal components of X (though this statement is only precise asymptotically). In the
language of factor analysis, the vi-s may be interpreted as the factor values [3, 4, 21,51].

Remark 2. Throughout the paper we assume that Z,Z′ have Gaussian entries; this assumption
is used explicitly in the proofs (specifically, the bi-orthogonal invariance of these matrices). In
Section 6 we give numerical evidence indicating that our results should be universal with respect
to the noise distribution: they continue to hold when Z,Z′ are i.i.d. with sufficiently light-tailed
isotropic entries.

2.2 Whiten-Shrink-reColor (WSC) denoisers

Our task is to estimate the signal matrix X from the observed signal-plus-noise matrix Y = X+R

and the noise-only samples R
′. We next describe the class of procedures we consider for this

problem.
Let Σ̂ be an estimate of the covariance matrix Σ. Later, we will take Σ̂ = R

′
R

′⊤/m, but
for now any estimate would suffice. We use Σ̂ to pseudo-whiten the noise on the observation
matrix, constructing a new matrix Y

w:

Y
w = Σ̂

−1/2
Y = Σ̂

−1/2
UΛV

⊤ +
1√
n
(Σ̂−1/2

Σ
1/2)Z . (8)

We consider the following family of estimators F , computed from the SVD of Yw:

Y
w SVD

=

min{p,n}∑

k=1

θ̂kû
w
k v̂

w
k , F =

{
r̂∑

k=1

ηkΣ̂
1/2

û
w
k v̂

w
k : η1, . . . , ηr̂ ∈ R

}
, (9)

where r̂ denotes a data-driven estimator of rank(X), to be described in Section 2.4. Let X̂
η =∑r̂

k=1
ηkΣ̂

1/2
û
w
k v̂

w
k , where η = (η1, . . . , ηr̂). It will be shown later (in Section 3.2) that for any

deterministic η, the asymptotic loss

AMSE(η) = lim
p→∞

‖X− X̂
η‖2F (10)

almost surely exists, and is finite. The goal, then, is to find η1, . . . , ηr so to minimize the
asymptotic loss:

η = argmin
η̃

AMSE(η̃). (11)

We will derive the optimal choice of η1, . . . , ηr̂ in Section 3.2.

Remark 3. The values η1, . . . , ηr̂ are known as the generalized singular values of X̂ with re-
spect to the matrix Σ̂

−1; correspondingly, the vectors Σ̂
1/2

û
w
1
, . . . , Σ̂1/2

û
w
r , v̂

w
1
, . . . , v̂w

r are the

generalized singular vectors [43]. That is, Σ̂1/2
û
w
1
, . . . , Σ̂1/2

û
w
r are orthonormal with respect to

the weighted inner product 〈x, x̃〉
Σ̂−1 = x

⊤
Σ̂

−1
x̃.
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An equivalent formulation of the estimator, which may be more natural, is given as follows.
Define

ûk =
Σ̂

1/2
û
w
k

‖Σ̂1/2ûw
k ‖

, v̂k = v̂
w
k 1 ≤ k ≤ r, (12)

so that we may write the estimator in the form

X̂ =

r∑

k=1

tkûkv̂k, where tk = ‖Σ̂1/2
û
w
k ‖ · ηk. (13)

As we will show in Theorem 2, the vectors û1, . . . , ûr are asymptotically orthonormal as p, n,m →
∞; consequently, equation (13) is an approximate SVD of X̂, with approximate singular values
t1, . . . , tr. The vectors û1, . . . , ûr may be interpreted as estimates of the population princi-
pal components, u1, . . . ,ur. Accordingly, we will refer to û1, . . . , ûr as the empirical principal

components.
Rationale for the estimation procedure. The estimator family F in (9) was studied

in the authors’ previous work [39] when the estimator Σ̂ of Σ is asymptotically consistent in
operator norm as p, n,m → ∞; in the setting of the present paper, this occurs when, for example,
Σ̂ is a sample covariance and p/m → 0. In this setting, it is shown that under a uniform prior
on the singular vectors of X, the estimator X̂ outperforms the optimal singular value shrinkage
estimator (OptShrink) described in [47]. It follows that so long as Σ̂ is sufficiently close to Σ,
the optimal X̂ will outperform OptShrink as well.

2.3 Key definitions

We introduce several parameters and functions that will be used to evaluate the optimal η1, . . . , ηr.
Their significance will be explained in Section 4; for now, we simply present their definitions.
The key parameters and functions, along with others that are introduced later in the paper, are
summarized in Tables 2 and 3, respectively.

Define the following values:

σthresh =

√
β +

√
β + γ − βγ

1− β
, (14)

and

θmax =
1 +

√
β + γ − βγ

1− β
, θmin =

1−√
β + γ − βγ

1− β
. (15)

The quantities θmax, θmin are the almost-sure limits of, respectively the largest and smallest non-
zero singular values of Σ̂−1/2

Y in the pure-noise case, that is, when there are no spikes. The
value σthresh is the smallest singular value of X that can be reliably detected as p → ∞ in the
case where Σ = Ip . We discuss this in more detail in Section 3.1 below.

On the ray (θ2max,∞) ⊂ R, we define the Stieltjes transform of Wachter’s distribution as
follows:

s(z) =
1

γz
− 1

z
−

γ (z(1− β) + (1− γ)) + 2βz − γ
√
(z(1− β) + (1− γ))2 − 4z

2γz(γ + βz)
. (16)

We also define the associated Stieltjes transform of Wachter’s distribution as follows:

s(z) = −
γ (z(1− β) + (1− γ)) + 2βz − γ

√
(z(1− β) + (1− γ))2 − 4z

2z(γ + βz)
. (17)
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We also define a related function on the same domain (θ2max,∞):

ζ(z) = −
z(1− β)− (1− γ)−

√
((1− β)z + (1− γ))2 − 4z

2(γ + β − γβ)z
. (18)

It is also convenient to define

ψ(z) = z · s(z) · ζ(z) =
(1− β)z − 1− γ −

√
(z(1− β) + (1− γ))2 − 4z

2(βz + γ)
, (19)

and the function

ϕ(z) = z · |s(z)| · (s(z))2 . (20)

We also define the spike-forward map Ξ : [σthresh,∞) → [θmax,∞) by

Ξ(σ) =

√
(1 + σ2)(γ + σ2)

(1− β)σ2 − β
. (21)

Note that Ξ(·) is strictly increasing and smooth. Its inverse Ξ−1 : [θmax,∞) → [σthresh,∞) is

Ξ−1(θ) =
1√
ψ(θ2)

, (22)

where ψ(z) is defined in (19).
Let mβ(·) be the Stieltjes transform of the Marchenko-Pastur law with shape parameter β.

When 0 < z < (1−
√
β)2, namely it is smaller than the left edge edge of the Marchenko-Pastur

bulk, it is given by the following formula, cf. [6, Lemma 3.11]:

mβ(z) =
1− β − z −

√
(z − 1− β)2 − 4β

2βz
. (23)

Denote the functions Υ1(·),Υ2(·), z ∈ (θ2max,∞),

Υ1(z) =
1

z

[
1− s(z) + (s(z))2mβ(−s(z))

]
(24)

Υ2(z) =
1 + γ(ζ(z) + zζ ′(z))

z2
[
1− 2s(z)mβ(−s(z)) + (s(z))2m′

β(−s(z))
]
, (25)

where m
′

β(·) is the derivative of mβ(·). One can verify that whenever z ∈ (θ2max,∞), one has

0 < −s(z) < (1−
√
β)2 and so (23) is indeed applicable. We show this explicitly in Lemma 10,

Appendix C.
Finally, define the function

E(z) = −γ|ζ(z)| ·
(
Υ1(z) + zΥ′

1(z)
)
+ z · |s(z)| ·

(
Υ2(z)− s(z)2

)
. (26)

2.4 Detailed description of the estimator

We now give the exact details of our proposed estimator, including estimates of the formulas for
the optimal choice of η1, . . . , ηr. This process will be derived formally in Section 3.2; we present
it now for the reader’s convenience.

Inputs:

• The data matrix Y ∈ R
p×n to be denoised.

• m > p samples of pure noise R
′ ∈ R

p×m.

• A small parameter ε > 0.
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Symbol Description

s Stieltjes transform

s Associated Stieltjes transform

ζ Resolvent-like function

ψ ψ(z) = z · s(z) · ζ(z)

ϕ ϕ(z) = z · |s(z)| · (s(z))2

Ξ Spike-forward map

Ξ−1 Spike-backward map

Υ1, Υ2, E Auxiliary functions

Table 2: Functions used in this paper.

Symbol(s) Description

σthresh Detection threshold

θmin Left bulk edge

θmax Right bulk edge

θ̂1, . . . , θ̂r Singular values of Yw

σ1, . . . , σr Singular values of X

c1, . . . , cr Left weighted inner products

c1, . . . , cr Right inner products

τ1, . . . , τr Signal/noise alignments

µ Noise covariance trace

p Dimensionality

n Number of signal-plus-noise samples

m Number of noise-only samples

γ Signal-plus-noise aspect ratio p/n

β Noise-only aspect ratio p/m

η1, . . . , ηr Optimal generalized singular values

t1, . . . , tr Optimal approximate singular values

Table 3: Parameters used in this paper.
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Algorithm:

1. Form the sample covariance of pure noise samples Σ̂ = R
′
R

′⊤/m.

2. Estimate the normalized trace of the noise covariance:

µ̂ =
1

p
tr Σ̂. (27)

3. Form the matrix Y
w = Σ̂

−1/2
Y and take its SVD,

Y
w =

min(n,p)∑

i=1

θ̂iû
w
i (v̂

w
i )

⊤ . (28)

4. Estimate the "effective" signal rank3

r̂ = max
{
1 ≤ i ≤ n : θ̂i > θmax + ε

}
, (29)

(if the set is empty, set r̂ = 0), where θmax appears in (15).

5. Estimate the parameters τ1, . . . , τr̂ via

τ̂j =
ϕ(θ̂2j )

|ψ′(θ̂2j )|‖Σ̂1/2ûj‖2 − µ̂E(θ̂2j )
, (30)

6. For 1 ≤ k ≤ r̂, estimate the following parameters:

σ̂k =
1√
τ̂k

Ξ−1(θ̂k), ĉk =

√√√√ 1

τ̂k
· ϕ(θ̂

2
k)

ψ′(θ̂2k)
, ĉk =

√√√√s(θ̂2k) ·
ψ(θ̂2k)

ψ′(θ̂2k)
. (31)

7. Define

η̂k =
σ̂k ĉk ĉk

‖Σ̂1/2ûw
k ‖2

. (32)

Return the estimator

X̂ =
r̂∑

k=1

η̂kΣ̂
1/2

û
w
k (v̂

w
k )

⊤, (33)

and the estimated AMSE:

ÂMSE =

r∑

k=1

σ̂2k

(
1− ĉ2k ĉ

2
k

1

‖Σ̂1/2ûw
k ‖2

)
. (34)

3 Main results

In this section, we provide the mathematical results that justify the algorithm in Section 2.4.
Specifically, we provide formulas for the quantities necessary to estimate the asymptotically
optimal coefficients η1, . . . , ηr̂.

3It will shown later that for any fixed ε > 0, we have r̂(ε) ≤ r asymptotically almost surely; furthermore, for

ε sufficiently small, r̂(ε) will be exactly the number of spikes r
∗ whose intensity is strong enough so as to not be

“swallowed” completely by the noise.

10
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Figure 1: The value of σthresh as a function of β, for different values of γ.

3.1 The limiting spectrum of a spiked F-matrix

As mentioned before, the random matrix Y
w is an instance of a spiked F-matrix. The results

of this section quantify the relevant phenomenology surrounding these matrices, namely we: 1)
compute the spike detection threshold, and a formula for the singular value displacement (spike-
forward) map; 2) compute the limiting cosines between the population and empirical PCs. These
are the two components necessary to derive the optimal shrinkage rule, as presented above; we
do this in Section 3.2.

We start with a limiting formula for the singular values of Yw:

Theorem 1. Set r∗ = max
{
1 ≤ k ≤ r :

√
τkσk > σthresh

}
. Then, for any fixed k, almost surely,

lim
p→∞

θ̂k = yk :=

{
Ξ(

√
τkσk) if 1 ≤ k ≤ r∗

θmax if k > r∗
. (35)

Theorem 1 identifies a detectability phase-transition: a spike can be identified consistently
by looking at the leading empirical singular value (as an outlier, separated from the “main bulk”
of other singular values) whenever its “effective intensity”

√
τiσi exceeds the threshold σthresh.

4

When this is the case, this effective intensity can in fact be estimated consistently from the data
as Ξ−1(θ̂i). Figure 1 plots the detection threshold σthresh as a function of β, for different values
of γ.

The result in Theorem 1 is not new. To our knowledge, it first appeared in [48], where
it is stated for Σ = I; an extension for the non-white case is straightforward. More sophisti-
cated results have since appeared in the literature. For a spike above the detectability thresh-
old, assuming Σ = I and Gaussian Z,Z′, [18] proved a CLT for the empirical singular values:
{√p(θ̂k − yk)}i≤r∗ converge jointly to a centered multivariate Gaussian (with an explicitly given
covariance matrix). This result was extended by [62], which only assumed Z,Z′ with independent
entries and finite 4-th moment. Another related work is [34] which studied, assuming Gaussian
noise, the distribution of the leading empirical singular values in the non-asymptotic (finite n),
high SNR regime (σ → ∞) by perturbation theory methods. A follow-up work [19] extended the
analysis for complex Gaussian matrices. Lastly, [63] studied the leading eigenvalues in a model
where the numbers of spikes r is divergent (but not too large compared to n, p,m). Although
Theorem 1 not new, in Section 5.1 we will nonetheless provide a self-contained proof, which shall
also function as an important preparatory step towards proving Theorem 2 below.

4Note that Theorem 1 does not imply that detection is impossible below the threshold. Detection in this
so-called “sub-critical regime” was studied in [33], and their results imply that consistent detection is indeed
impossible (assuming Σ = I and uniformly random signal spikes).
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Lastly, Theorem 1 readily justifies the rank estimation procedure described in (29). It im-
plies that for any fixed small enough ε, specifically, 0 < ε < Ξ(

√
τr∗σr∗) − θmax, one has

limp→∞ r̂(ε) = r∗ almost surely. We remark in passing that one may in fact choose ε = o(1), so
to always ensure (asymptotically) consistent rank estimation. Indeed, when there is no signal
(X = 0) the stochastic fluctuations n2/3(λ1(n−1

YY
⊤) − θmax) converge in distribution to a

Tracy-Widom law [27,32]. In particular, in the presence of spikes, one may verify (e.g. by singu-
lar value interlacing) that λr+1(n

−1
Y

⊤
Y) = θmax+OP(n

−2/3). Consequently, for any vanishing
ε = ω(n−2/3), a.s. r∗ ≤ lim infp→∞ r∗(ε) ≤ lim supp→∞ r∗(ε) ≤ r.

The next theorem calculates the limiting cosines between the population signal spikes and
their empirical counterparts:

Theorem 2. Let 1 ≤ k ≤ r, and set yk = Ξ(
√
τkσk). Suppose

√
τkσk > σthresh. Then

c2k ≡ lim
p→∞

(
u
⊤

k Σ̂
1/2

û
w
k

)2
=

1

τk
· y

2
k

(
s(y2k)

)2
s(y2k)

ψ′(y2k)
, (36)

c2k ≡ lim
p→∞

(
v
⊤

k v̂k

)2
= s(y2k) ·

ψ(y2k)

ψ′(y2k)
, (37)

lim
p→∞

(
u
⊤

k Σ̂
1/2

û
w
k

)
·
(
v
⊤

k v̂k

)
= − 1√

τk
·
yks(y

2
k)s(y

2
k) ·
√
ψ(y2k)

ψ′(y2k)
≥ 0, (38)

lim
p→∞

‖Σ̂1/2
û
w
k ‖2 =

1

|ψ′(y2k)|

[
µ · E(y2k) +

1

τk
ϕ(y2k)

]
, (39)

and

lim
p→∞

(
u
⊤

k ûk

)2
=

ϕ(y2k)

τkµ · E(y2k) + ϕ(y2k)
, (40)

where the limits hold almost surely. Moreover, if 1 ≤ k, l ≤ r and k 6= l, then

lim
p→∞

(
u
⊤

k Σ̂
1/2

û
w
l

)2
= lim

p→∞

(
v
⊤

k v̂l

)2
= 0 . (41)

The proof of Theorem 2 is found in Section 5.2.

3.2 Derivation of the optimal shrinker

Recall the form of the estimators (9) and (13). Equipped with Theorems 1 and 2, it is straight-
forward to evaluate the optimal weights η1, . . . , ηr in terms of the population parameters.

Theorem 3. Let yk = Ξ(
√
τkσk), and suppose

√
τkσk > σthresh, 1 ≤ k ≤ r. Then the optimal

η = (η1, . . . , ηr) that minimizes AMSE(η) is given by the following:

ηk = σk · ck · ck · |ψ′(y2k)|
[
µ · E(yk) +

1

τk
ϕ(yk)

]−1

, (42)

where ck and ck are defined in (36) and (37), respectively. The optimal t1, . . . , tk are given by

tk = σk · ck · ck · |ψ′(y2k)|
[
µ · E(yk) +

1

τk
ϕ(yk)

]−1/2

. (43)

The AMSE at these optimal values is equal to

AMSE(η) =

r∑

k=1

σ2k

(
1− c2kc

2
k|ψ′(y2k)|

[
µ · E(yk) +

1

τk
ϕ(yk)

]−1
)
. (44)
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Proof. Using the asymptotics in Theorem 2, the mean squared error may be written as:

‖X̂−X‖2F =

r∗∑

k=1

{
η2k‖Σ̂1/2

û
w
k ‖2 − 2ηkσk(u

⊤
k Σ̂

1/2
û
w
k )(v

⊤
k v̂k)

}
+

r∑

k=1

σ2k −
∑

j 6=k

2ηjσk(u
⊤
k Σ̂

1/2
û
w
j )(v

⊤
k v̂j)

≃
r∗∑

k=1

{
η2k

1

|ψ′(y2k)|

[
µ · E(y2k) +

1

τk
ϕ(y2k)

]
− 2ηkσkckck

}
+

r∑

k=1

σ2k, (45)

and minimizing this gives the desired expression for ηk. The optimal tk follow from tk = ηk ·
‖Σ̂1/2

û
w
k ‖, and (39). The formula for the AMSE is obtained substituting ηk into the expression

for the AMSE in (45).

The optimal ηk may be consistently estimated using only the observed matrices Y and R
′.

Indeed, suppose that θ̂ > θmax. Then from Theorems 1 and 2, the values τk may be estimated
via

τ̂k =
ϕ(θ̂2k)

|ψ′(θ̂2k)|‖Σ̂1/2ûk‖2 − µ̂E(θ̂2k)
, 1 ≤ k ≤ r. (46)

while the population intensities σk may be consistently estimated as

σ̂k =
1√
τ̂k

Ξ−1(θ̂k), 1 ≤ k ≤ r. (47)

With these estimates, using Theorem 2 ck and ck may be estimated as follows:

ĉk =

√√√√√ 1

τ̂k
·
θ̂2k

(
s(θ̂2k)

)2

s(θ̂2k)

ψ′(θ̂2k)
, ĉk =

√√√√s(θ̂2k) ·
ψ(θ̂2k)

ψ′(θ̂2k)
. (48)

Finally, the factor

|ψ′(y2k)|
[
µ · E(yk) +

1

τk
ϕ(yk)

]−1

(49)

may be estimated as ‖Σ̂1/2
û
w
k ‖−2. Putting these together, we estimate the optimal ηk as

η̂k = σ̂k · ĉk · ĉk . (50)

This completes the derivation of the optimal X̂.

4 Background on F-Matrices

Before moving on to the proofs of our main results, we briefly review several known result about
the spectrum of the matrix Y

w in the absence of a signal. In other words, we consider the
pseudo-whitened noise matrix N ∈ R

p×n

N =
1√
n
Σ̂

−1/2
R =

1√
n
Σ̂

−1/2
Σ

1/2
Z . (51)

Define the following Wishart matrices:

E = ZZ
⊤/n, S = Z

′
Z
′⊤/m, (52)

Importantly, observe that the singular values of N do not depend on the population covari-
ance Σ. To see this, write Σ̂ = Σ

1/2
SΣ

1/2, and recall that the squared singular values of N are

13



the (non-zero) eigenvalues of N⊤N = Z⊤Σ1/2Σ̂−1Σ1/2Z = Z⊤S−1Z, which does not depend on
Σ. Thus, when studying the singular values of N we may assume w.l.o.g. that Σ = I, as we
shall do throughout this section. The non-zero eigenvalues of N⊤N ∈ R

n×n and NN⊤ ∈ R
p×p

are the same. With E defined as in (52), we write NN⊤ = S−1/2ES−1/2. Applying a similarity
transformation, its eigenvalues are identical to those of the matrix

F = S−1/2ES1/2 = S−1E . (53)

The random matrix ensemble (53) is known as an F-matrix/Fisher matrix; see, for example, [6].
It is closely related to the multivariate Beta ensemble, which features in classical multivariate
statistics, in particular Multivariate Analysis of Variance (MANOVA) [46].5

We briefly recall some definitions. For a diagonalizable matrix A ∈ R
p×p, its empirical

spectral distribution (ESD) is the counting measure of the eigenvalues: µA := n−1
∑p

i=1 δλi(A).
For a probability measure µ on R, its Stieltjes transform sµ(·) is the function

sµ(z) =

∫
∞

−∞

1

λ− z
dµ(z) , where z ∈ C \ R . (54)

The limiting empirical spectral distribution (LESD) for F-matrices was first derived by Wachter
[61] with subsequent generalizations in [53, 54, 64]; for a textbook reference, see [6, Theorem
4.10].

Theorem 4 (Wachter’s distribution). Let θmin, θmax be as in (15). The ESD of the F-matrix
(53) converges weakly almost surely to a deterministic distribution. When γ ≤ 1, the LESD is
continuous, supported on [θmin, θmax] and has the density,

Fγ,β(λ) =
(1− β)

√
(θ2max − λ)(λ− θ2min)

2πλ(γ + βλ)
1{θ2min ≤ λ ≤ θ2max} . (55)

When γ > 1 the LESD has a continuous density (55), but also an atom at λ = 0 with weight
1− γ−1.

Note that when β = 0, (55) collapses to the well-known Marchenko-Pastur law with shape
γ.

Theorem 55 implies, in particular, that all but a vanishing fraction of the non-zero eigenvalues
of F are contained in [θ2min, θ

2
max]. The next result, which follows from [5, Theorem 1.1], implies

that in fact, asymptotically almost surely there are no eigenvalues outside the support:

Theorem 5 (Extreme eigenvalues of F-matrix). Almost surely,

lim
p→∞

λmin(F) = θ2min, lim
p→∞

λmax(F) = θ2max .

In our proofs, we shall use a well-known formula for the Stieltjes transform of Wachter’s law.
The following appears, for example, in [6, Theorem 4.10].

Proposition 1 (Stieltjes transform of Wachter’s law). The Stieltjes transform of Wachter’s
law is given by (16). Furthermore, we have the following convergence for the empirical Stieltjes
transform:

p−1tr(NN⊤ − zI)−1 −→ s(z),

d

dz
p−1tr(NN⊤ − zI)−1 = p−1tr(NN⊤ − zI)−2 −→ s′(z) ,

5 One can show that the eigenvalues of F and the MANOVA matrix (S+E)−1/2
E(S+E)−1/2 are bijectively

mapped to one another via the mapping z 7→ z/(1 + z).
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for all z ∈ (θ2max,∞). Above, convergence is a.s. and uniform on compact subintervals.
Furthermore,

n−1tr(N⊤N− zI)−1 = n−1

[
tr(NN⊤ − zI)−1 + (n− p)

1

z

]
−→ s(z),

d

dz
n−1tr(N⊤N− zI)−1 = n−1tr(N⊤N− zI)−2 −→ s′(z) .

We also need a limiting expression for the following resolvent-like expression from [18, Lemma
1]:

Proposition 2. Let ζ(z) be as in (18). Then

p−1 tr (E− zS)−1 −→ ζ(z),

d

dz
p−1 tr (E− zS)−1 = p−1 trS (E− zS)−2 −→ ζ ′(z) ,

for all z ∈ (θ2max,∞). Above, convergence is a.s. and uniform on compact subintervals.

Notation. For (possibly random) sequences ap, bp ∈ R, we write ap ≃ bp to indicate ap−bp → 0
a.s. For a sequence of matrices Mp ∈ R

p×p, we denote tr(Mp) := limp→∞ p−1tr(Mp), where it
is understood that the limit exists a.s.

5 Proofs of main results

5.1 Proof of Theorem 1

We study the leading eigenvalues of the pseudo-whitened data matrix (8),

Yw = P+N , (56)

where P = Σ̂−1/2UΛV is the pseudo-whitened signal matrix, and N is the pseudo-whitened
noise matrix (51). Since rank(P) = r, by Weyl’s interlacing inequalities, for every i,

σi+r+1(Y
w) ≤ σi+1(N) + σr+1(P) = σi+1(N) , σ(r+i)+r+1(N) ≤ σr+i+1(Y

w) + σr+1(−P) = σr+i+1(Y
w) .

Thus, for any i, θ̂i+r+1 := σi+r+1(Y) satisfies σ2r+i+1(N) ≤ σi+r+1(Y) ≤ σi+1(N). By Theo-
rems 4 and 5, σ2r+i+1(N), σi+1(N) → θmax a.s. Consequently, for fixed k ≥ r + 1, θ̂k → θmax.

It remains to check whether Yw has singular values which are asymptotically larger than
θmax. Note that, appealing to Theorem 5, such singular values necessarily cannot be singular
values of the noise matrix N. By [11, Lemma 4.1], the singular values of Yw which are not
singular values of N are exactly (with multiplicities) the solutions to det(M̂(y)) = 0, where
M̂(y) is the 2r-by-2r symmetric matrix

M̂(y) =

[
y ·U⊤Σ̂−1/2

(
y2Ip −NN⊤

)−1
Σ̂−1/2U U⊤Σ̂−1/2

(
y2Ip −NN⊤

)−1
NV

V⊤N⊤
(
y2Ip −NN⊤

)−1
Σ̂−1/2U y ·V⊤

(
y2In −N⊤N

)−1
V

]
−
[

0 Λ−1

Λ−1 0

]
.

(57)

Define the matrix T = diag(τ1, . . . , τr) ∈ R
r×r. The next lemma asserts that the random

matrix M̂(y) converges a.s. to a deterministic limit as p→ ∞:

Lemma 1. Suppose that y /∈ C \ [θmin, θmax]. Then a.s., M̂(y) −→ M(y), where

M(y) =

[
−yζ(y2) · T 0

0 −ys(y2) · I

]
−
[

0 Λ−1

Λ−1 0

]
. (58)

Moreover, convergence (of each entry) is uniform on compact subsets in y /∈ C \ [θmin, θmax].
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Proof. We start with the off-diagonal elements of (57). First, note that the matrix N is in-
variant to multiplication by O(n) from the right. Consequently, if O ∼ Haar(O(n)), then

U⊤Σ̂−1/2
(
y2Ip −NN⊤

)−1
NV

d
= U⊤Σ̂−1/2

(
y2Ip −NN⊤

)−1
NOV ≃ 0 ∈ R

r×r. Now, consid-
ering the top left block and using (6),
(
U⊤Σ̂−1/2

(
y2Ip −NN⊤

)−1
Σ̂−1/2U

)

j,k

= p−1w⊤

j D
⊤

j Σ̂
−1/2

(
y2Ip −NN⊤

)−1
Σ̂−1/2Dkwk

(⋆)≃ p−1tr

(
D⊤

k Σ̂
−1/2

(
y2Ip −NN⊤

)−1
Σ̂−1/2Dk

)
1{j = k} ,

where (⋆) follows by the independence of wj ,wk and, e.g., the Hanson-Wright inequality.

The term under the trace is Σ̂−1/2
(
y2Ip −NN⊤

)−1
Σ̂−1/2 =

(
y2Σ̂− Σ̂1/2NN⊤Σ̂1/2

)−1
=

Σ−1/2
(
y2S−E

)−1
Σ−1/2. Crucially, the matrix (y2S−E)−1 is orthogonally invariant, and a.s.

has bounded operator norm, since y > σthresh. Consequently, (y2S−E)−1 and Σ−1/2DkD
⊤

k Σ
−1/2

are asymptotically free (see Section A.2), and so

tr

(
D⊤

k Σ̂
−1/2

(
y2Ip −NN⊤

)−1
Σ̂−1/2Dk

)
= tr

(
(y2S−E)−1Σ−1/2DkD

⊤

k Σ
−1/2

)

= tr
(
(y2S−E)−1

)
tr
(
Σ−1/2DkD

⊤

k Σ
−1/2

)

= −ζ(y2) · τk , (59)

where we used Proposition 2 and (7). This establishes pointwise convergence; uniform conver-
gence follows from the Arzela-Ascoli theorem, where both equicontinuity and uniform bound-
edness of the entries clearly hold, since y is bounded away from the support of Wachter’s dis-
tribution, [θmin, θmax]. Finally, the bottom right block of (57) may be analyzed similarly, using
Proposition 1.

Since the operator norm of Yw is a.s. bounded by a constant, applying an argument
analogous to that in Lemma 6.1 from [10], we deduce that for each 1 ≤ k ≤ r, either: 1)
σk(Y

w) → θmax a.s.; or 2) σk(Y
w) tends a.s. to a root of the deterministic polynomial equation

det(M(y)) = 0. Moreover, the roots of this equation match exactly (including their multiplic-
ities) the limiting locations and counts of the outlying singular values of Yw. Now, one may
verify that det(M(y)) = 0 if and only if for some 1 ≤ k ≤ r,

ψ(y2) := y2 · ζ(y2) · s(y2) = 1/(τkσ
2
k) , (60)

where an explicit formula for ψ(z) is given in (19). One can show that ψ(·) is strictly decreasing,
and maps (θ2max,∞) bijectively to (1/σ2thresh, 0). Consequently, a solution to (60) exists if and
only if

√
τkσk > σthresh, in other words, k ≤ r∗. In this case, one may also compute explicitly

the functional inverse, so that (60) is equivalent to y = Ξ(
√
τkσk), where the spike-forward map

Ξ(·) is given in (21). This concludes the proof of Theorem 1.

5.2 Proof of Theorem 2

The first step of the proof consists of computing the limiting inner products 〈ui, Σ̂
−1/2ûw

k 〉 and

〈vi, v̂k〉. This is an important intermediate step towards calculating 〈ui, Σ̂
1/2ûw

k 〉 and ‖Σ̂1/2ûw
k ‖.

To this end, define the vectors αk,βk ∈ R
r, 1 ≤ k ≤ r,

αk = U⊤Σ̂−1/2uw
k , βk = V⊤v̂k .

Lemma 2. Let 1 ≤ k ≤ r be such that
√
τkσk > σthresh. For every i ∈ [r] \ {k},

lim
p→∞

(αk)i = 0, lim
p→∞

(βk)i = 0 . (61)
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Proof. By [11, Lemma 5.1], the vector xk = (Λβk,Λαk) ∈ R
2r is in the kernel of M̂(θ̂k), where

M̂(·) is defined in (57). Since xk has bounded norm, and limp→∞ ‖M̂(θ̂k) − M(yk)‖ = 0 (by
Lemma 1), we have limp→∞M(yk)xk = 0 a.s. Considering only coordinates i and i+ r, where
i 6= k, yields the equation

0 ≃
[
ykζ(y

2
k)τi 1/σi

1/σi yks(y
2
k)

] [
(xk)i
(xk)i+r

]
. (62)

Observe that the matrix in (62) is invertible: its determinant is τiy2kζ(y
2
k)s(y

2
k)−1/σ2i = τiψ(y

2
k)−

1/σ2i = τi/(τkσ
2
k) − 1/σ2i , where we used (60); now recall that by assumption, τkσ2k 6= τiσ

2
i , so

the determinant is not zero. Thus, (xk)i, (xk)i+r ≃ 0, and the claim follows.

By the definition of ûw
k , v̂k as singular vectors of Yw, we have Ywv̂k = θ̂kû

w
k and Yw⊤ûw

k =

θ̂kv̂k. Decomposing Yw = Σ̂−1/2UΛV⊤+N yields θ̂kûk = (Σ̂−1/2UΛV⊤+N)v̂k = Σ̂−1/2UΛβk+
Nv̂k. Rearranging, Nv̂k = θ̂kû

w
k − Σ̂−1/2UΛβk. Similarly, N⊤ûw

k = θ̂kv̂k −VΛαk. Now,

θ̂2kv̂k = Yw⊤Ywv̂k = (Σ̂−1/2UΛV⊤ +N)⊤(Σ̂−1/2UΛV⊤ +N)v̂k

= (Σ̂−1/2UΛV⊤ +N)⊤(Σ̂−1/2UΛβk +Nvk)

= VΛU⊤Σ̂−1UΛβk +N⊤Σ̂−1/2UΛβk +VΛU⊤Σ̂−1/2(Nv̂k) +N⊤Nv̂k

= VΛU⊤Σ̂−1UΛβk +N⊤Σ̂−1/2UΛβk +VΛU⊤Σ̂−1/2(θ̂kû
w
k − Σ̂−1/2UΛβk) +N⊤Nv̂k

= N⊤Σ̂−1/2UΛβk + θ̂kVΛαk +N⊤Nv̂k .

When θ̂k is an outlier, namely when,
√
τkσk > σthresh, we have θ̂k ≃ yk := Ξ(

√
τkσk) and more-

over that θ̂2kI−N⊤N is invertible. Thus, v̂k = (θ̂2kI−N⊤N)−1
(
N⊤Σ̂−1/2UΛβk + θ̂kVΛαk

)
.

Finally, recall that by Lemma 2, αk ≃ (αk)kek, βk ≃ (βk)kek, where ek is the k-th stan-
dard basis element. Note that one could repeat the same calculation above, starting with
θ̂2kû

w
k = YwYw⊤ûk. We deduce the following formulas for the outlying singular vectors:

v̂k ≃ σk · (βk)k · (y2kI−N⊤N)−1N⊤Σ̂−1/2uk + σkyk · (αk)k · (y2kI−N⊤N)−1vk ,

ûw
k ≃ σk · (αk)k ·

(
y2kI−NN⊤

)−1
Nvk + σkyk · (βk)k ·

(
y2kI−NN⊤

)−1
Σ̂−1/2uk .

(63)

Lemma 3. Suppose that
√
τkσk > σthresh, and set yk = Ξ(

√
τkσk). Let

c2k = s(y2k) ·
ψ(y2k)

ψ′(y2k)
, c̃2k = τk · ζ(y2k) ·

ψ(y2k)

ψ′(y2k)
, (64)

where ck also appears in Theorem 2. Then a.s.,

lim
p→∞

(αk)
2
k = c̃2k, lim

p→∞
(βk)

2
k = c2k, lim

p→∞
(αk)k(βk)k = c̃kck . (65)

Proof. By definition, ‖v̂k‖2 = 1. Consequently, by (63),

1 ≃ σ2k(βk)
2
k · u⊤

k Σ̂
−1/2N(y2kI−N⊤N)−2N⊤Σ̂−1/2uk + (σkyk)

2(αk)
2
k · v⊤

k (y
2
kI−N⊤N)−2vk

+ σ2kyk(βk)k(αk)k · v⊤

k (y
2
kI−N⊤N)−2N⊤Σ̂−1/2uk .

Note the third term above vanishes asymptotically, by the independence of uk = Dkwk. Sim-
ilarly, using ‖uw

k ‖2 = 1 in (63), and replacing the quadratic forms by the corresponding traces
(as in the proof of Theorem 1 above) yields the system of equations,

[
1/σ2k
1/σ2k

]
≃


 p−1tr

(
D⊤

k Σ̂
−1/2N(y2kI−N⊤N)−2N⊤Σ̂−1/2Dk

)
y2k · n−1tr(y2kI−N⊤N)−2

y2k · p−1tr
(
D⊤

k Σ̂
−1/2(y2kI−NN⊤)−2Σ̂−1/2Dk

)
n−1tr

(
N⊤(y2kI−NN⊤)−2N

)



[
(βk)

2
k

(αk)
2
k

]
.

(66)
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Next, we calculate limiting expressions for the coefficients. Using Proposition 1, the right column
of (66) is

y2k · n−1tr(y2kI−N
⊤
N)−2 ≃ y2ks

′(y2k), (67)

n−1tr
(
N

⊤(y2kI−NN
⊤)−2

N

)
= y2kn

−1tr(y2kI−NN
⊤)−2 − n−1tr(y2kI−NN

⊤)−1 ≃ y2ks
′(y2k) + s(y2k) .

In (59) we have calculated:

Hk(z) = lim
p→∞

p−1tr
(
D

⊤
k Σ̂

−1/2(zI−NN
⊤)−1

Σ̂
−1/2

Dk

)
= −τkζ(z)

−H ′
k(z) = lim

p→∞
p−1tr

(
D

⊤
k Σ̂

−1/2(zI−NN
⊤)−2

Σ̂
−1/2

Dk

)
= τkζ

′(z) .

Thus, the bottom left entry of (66) is ≃ τky
2
kζ

′(y2k). As for the top left entry, observe that
N(y2kI−N

⊤
N)−2

N
⊤ = (y2kI−NN

⊤)−2
NN

⊤. Consequently, this entry tends to ≃ −y2kH ′
k(y

2
k)−

Hk(y
2
k) = τky

2
kζ

′(y2k) + τkζ(y
2
k). Recalling that 1/σ2k = τkψ(y

2
k) = y2kζ(y

2
k)s(y

2
k) and plugging the

aforementioned limits in (66), we deduce that (αk)
2
k, (βk)

2
k asymptotically satisfy

[
τkψ(y

2
k)

τkψ(y
2
k)

]
≃

[
τky

2
kζ

′(y2k) + τkζ(y
2
k) y2ks

′(y2k)
τky

2
kζ

′(y2k) y2ks
′(y2k) + s(y2k)

] [
(βk)

2
k

(αk)
2
k

]
. (68)

Solving this system yields the claimed expressions. Lastly, to conclude the calculation of
(αk)k(βk)k, it suffices to show that it is non-negative (since we already computed its modu-
lus). Indeed, by definition,

θ̂k = u
w
k
⊤
Y

w
vk = u

w
k
⊤(Σ̂−1/2

UΛV
⊤ +N)vk ≤ α⊤

k Λβk + ‖N‖ .

Now, since θ̂k is an outlier, ‖N‖ ≃ θmax < yk ≃ θ̂k, hence α⊤
k Λβk > 0. By Lemma 2,

α⊤
k Λβk ≃ σk(αk)k(βk)k, and so we are done.

Next, we calculate the correlations between the recolored empirical singular vectors Σ̂
1/2

û
w
i

and their corresponding population spikes uk.

Lemma 4. Suppose that
√
τkσk > σthresh. Then Eqs. (36), (38) and (41) hold.

Proof. We start with the representation (63) and take an inner product with Σ̂
1/2

uℓ:

u
⊤
ℓ Σ̂

1/2
û
w
k ≃ σk · (αk)k · u⊤

ℓ Σ̂
1/2

(
y2kI−NN

⊤
)−1

Nvk + σkyk · (βk)k · u⊤
ℓ Σ̂

1/2
(
y2kI−NN

⊤
)−1

Σ̂
−1/2

uk .

The first term is asymptotically vanishing, and the second term is possibly non-vanishing only
when k = ℓ (since the uk-s are independent), and so (41) is established. We have

u
⊤
k Σ̂

1/2
(
y2kI−NN

⊤
)−1

Σ̂
−1/2

uk = u
⊤
k Σ̂

(
y2kΣ̂−Σ

1/2
EΣ

1/2
)−1

uk = u
⊤
k Σ

1/2
S
(
y2kS−E

)−1
Σ

−1/2
uk

(i)
≃ p−1tr

(
S
(
y2kS−E

)−1
)
· 〈Σ1/2

uk,Σ
−1/2

uk〉
(ii)
≃ −s(y2k) ,

where (i) follows from the orthogonal invariance of S(y2kS− E)−1; and (ii) follows from Propo-
sition 1, writing tr(S(y2kS− E)−1) = tr(y2kI− S

−1/2
ES

−1/2)−1 = tr(y2kI−NN
⊤)−1 (recall that

the Stieltjes transform does not depend on Σ) and the normalization ‖uk‖2 ≃ p−1‖Dk‖2F ≃ 1.
Recall that (v⊤

k v̂
w
k )

2 = (βk)
2
k ≃ c2k was computed in Lemma 3. Thus,

(u⊤
k Σ̂

1/2
û
w
k )

2 ≃ σ2ky
2
k · c2k · s(yk)2, (u⊤

k Σ̂
1/2

û
w
k )(v

⊤
k v̂

w
k ) ≃ −σkyk · c2k · s(yk) .

Finally, use σ2k = 1/
(
τkψ(y

2
k)
)

to get the expressions in Eqs. (36) and (38).
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It remains to compute ‖Σ̂1/2
û
w
i ‖

2. To this end, multiply (63) by Σ̂
1/2 and take the norm,

‖Σ̂1/2
û
w
k ‖

2 ≃

∥∥∥∥σk(αk)kΣ̂
1/2

(
y2kI−NN

⊤
)−1

Nvk + σkyk(βk)kΣ̂
1/2

(
y2kI−NN

⊤
)−1

Σ̂
−1/2

uk

∥∥∥∥
2

(i)
≃ σ2

k c̃
2
kv

⊤
k N

⊤
(
y2kI−NN

⊤
)−1

Σ̂

(
y2kI−NN

⊤
)−1

Nvk

+ σ2
ky

2
kc

2
ku

⊤
k Σ̂

−1/2(y2k −NN
⊤)−1

Σ̂(y2k −NN
⊤)−1

Σ̂
−1/2

uk

(ii)
≃ σ2

k c̃
2
k · n

−1tr

(
N

⊤
(
y2kI−NN

⊤
)−1

Σ̂

(
y2kI−NN

⊤
)−1

N

)

+ σ2
ky

2
kc

2
k · p

−1tr
(
D

⊤
k Σ̂

−1/2(y2kI−NN
⊤)−1

Σ̂(y2kI−NN
⊤)−1

Σ̂
−1/2

Dk

)
,

where: (i) we discarded the cross term, which is asymptotically vanishing; and (ii) similarly to
previous calculations, the quadratic forms concentrate around the traces. Define

G1(z) = lim
p→∞

n−1tr

(
N

⊤
(
zI−NN

⊤
)−1

Σ̂

(
zI−NN

⊤
)−1

N

)
,

G2,k(z) = lim
p→∞

p−1tr
(
D

⊤
k Σ̂

−1/2(zI−NN
⊤)−1

Σ̂(zI−NN
⊤)−1

Σ̂
−1/2

Dk

)
,

(69)

so that
‖Σ̂1/2

û
w
k ‖

2 ≃ σ2
k c̃

2
k ·G1(y

2
k) + σ2

ky
2
kc

2
k ·G2,k(y

2
k) . (70)

Also define the following mixed traces

Υ1(z) = lim
p→∞

p−1tr(zS−E)−1
S
2, (71)

Υ2(z) = lim
p→∞

p−1tr(zS−E)−2
S
2 , (72)

where z ∈ C \ [θ2min, θ
2
max] and the limit exists a.s. We show in Appendix, Section C that

Υ1(·),Υ2(·) have the closed-form formulas given in Eqs. (24) and (25).

Lemma 5. Let Υ1(·) be defined in (71), and recall the notation µ = p−1tr(Σ). Then

G1(z) = −γµ ·
[
zΥ1(z) + Υ′

1(z)
]
, z ∈ C \ [θ2min, θ

2
max]. (73)

Proof. Let

G̃1(z) = lim
n→∞

n−1tr
(
(zI−NN

⊤)−1
Σ̂

)
, so that G1(z) = −zG̃′

1(z)− G̃1(z) .

Straightforward algebraic manipulation yields tr
(
(zI−NN

⊤)−1
Σ̂

)
= tr

(
S(zS−E)−1

SΣ
)
.

Since S(zS − E)−1
S is orthogonally invariant, {S(zS − E)−1

S,Σ} are asymptotically free (see
Section A.2). Thus,

lim
p→∞

p−1tr
(
S(zS−E)−1

SΣ
)
= tr(S(zS−E)−1

S) · tr(Σ) = µ ·Υ1(z) ,

and the lemma follows.

Lemma 6. Let Υ2(·) be defined in (72). Then

G2,k(z) = µτk

[
Υ2(z)− (s(z))2

]
+ (s(z))2 , z ∈ C \ [θ2min, θ

2
max]. (74)

We provide a proof in Appendix, Section B. To conclude the computation of ‖Σ̂1/2
û
w
k ‖

2, and
thereby the proof of Theorem 2, combine (70) with Lemmas 5 and 6.
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Figure 2: Plots of the asymptotically optimal singular values as functions of the population
singular value (left) and of the observed singular value (right), for different values of β.

6 Numerical results

We report on several numerical experiments that illustrate both the performance of the denoising
algorithm relative to other methods, and the agreement between the asymptotic results and finite
sample estimates for both Gaussian and non-Gaussian noise. One of the questions addressed
in this section is under what parameter settings the optimal Whiten-Shrink- re-Color (WSC)
denoiser outperforms OptShrink, which is optimal shrinkage without any pre-transformation
[47]. It was shown in [39] that when the signal principal components are uniformly random,
optimal shrinkage with oracle whitening (corresponding to β = 0) outperforms OptShrink for
heteroscedastic noise; consequently, optimal shrinkage with pseudo-whitening (when β > 0) will
still outperform OptShrink when β is sufficiently small, though the precise value of β will depend
on the other problem parameters, such as γ and the heteroscedasticity of the noise.

Sections 6.2 and 6.3 numerically illustrate this behavior, by comparing the errors of the
two methods in different parameter regimes and evaluating the β at which the two methods
have identical error. Section 6.4 explores a different but related phenomenon, comparing the
minimum detectable signal singular value of the two methods. Section 6.5 examines the two
methods’ performances in estimating the signal principal components. Section 6.6 compares
different shrinkage methods on finite-sample data, again showing that the relative performance
of pseudo-whitening over OptShrink increases as the heteroscedasticity of the noise increases.

The experiments in Section 6.7 illustrate two phenomena: first, that the asymptotic results
appear to hold for non-Gaussian noise with sufficiently many moments (“universality”), though
they break down when the noise becomes too fat-tailed; and second, that the spiked model pa-
rameters appear to converge at the rate of approximately O(p−1/2) for thin-tailed distributions.

All experiments reported in this section were performed in Matlab. Code may be found
online at https://github.com/wleeb/FShrink.

6.1 Plots of optimal shrinkers

We plot the asymptotically optimal singular values t1 as functions of the population singular
values and of the observed singular values, for γ = 1/2, covariance Σ ∈ R

1000×1000 with eigen-
values linearly spaced between 1/500 and 1, and D1 = I1000. The optimal singular values are
computed for different values of β, and plotted in Figure 2. Note that β = 0 corresponds to
the oracle singular values (where Σ is known exactly), used in [39]. For larger β, the optimal
singular values decrease in value; that is, more shrinkage is needed to account for the increased
uncertainty in the estimate of Σ.

20



6.2 Asymptotic errors

The previous work [39] shows, assuming isotropic random spike directions, that an oracle WSC
denoiser (which has access to Σ; equivalently, β = 0 under our setup) outperforms optimal
singular value shrinkage (OptShrink) [47]. Consequently, pseudo-whitening must also outperform
OptShrink provided that β is sufficiently small, that is, one has access to sufficiently many
pure-noise samples. Though the precise value of β at which optimal shrinkage with pseudo-
whitening has superior performance is not immediately transparent from the error formulas, it
can be evaluated numerically. In this set of experiments, we compare the asymptotic errors of
optimal shrinkage with pseudo-whitening, comparing them to the asymptotic errors obtained
by OptShrink; for context, we also show a comparison with the oracle WSC denoiser from [39]
(which outperforms both methods, but is not a viable procedure in the setting of this paper).

6.2.1 Linearly-spaced eigenvalue spectrum

For a specified aspect ratio γ > 0 and condition number κ ≥ 1, we consider a diagonal noise
covariance Σ with p = 2000 linearly spaced eigenvalues whose maximum and minimum elements
have ratio κ, and that are normalized so that τ = 1; that is,

1

p

p∑

i=1

1

Σii
= 1. (75)

For κ = 50, 000, we compute σBBP, the asymptotically largest singular value of the noise matrix
Σ1/2Z/

√
n, using the numerical method introduced in [37] (the term BBP is from the paper [7]);

this method evaluates σBBP by numerically solving the equations that implicitly characterize
σBBP. We consider a rank 1 p-by-n signal matrix X with i.i.d. singular vectors u and v and
singular value σ = σBBP + 1. For these parameters, the asymptotic errors for optimal shrinkage
with exact whitening are then computed using the formula from [39], while the asymptotic error
for OptShrink is evaluated numerically using the method from [37], which numerically solves the
Stieltjes transform of the limiting spectral distribution of the sample covariance of the noise. For
optimal shrinkage with pseudo-whitening, we consider a range of aspect ratios β between 0 and
0.95, and evaluate the AMSE for each value of β. These values are plotted as functions of β in
Figure 3, alongside the asymptotic errors of the other two methods. As the plots demonstrate,
for each value of γ and κ the error of shrinkage with pseudo-whitening approaches that of
shrinkage with exact whitening as β → 0. Furthermore, for each value of γ, as κ grows (that is,
as the noise becomes more heteroscedastic) the performance of shrinkage with pseudo-whitening
improves relative to OptShrink; when κ = 50, 000, shrinkage with pseudo-whitening outperforms
OptShrink for the entire considered range of β.

6.2.2 Polynomially-decaying eigenvalue spectrum

For a specified aspect ratio γ > 0 and parameter α, we consider a diagonal noise covariance Σ

with p = 2000 eigenvalues of the form C · tα, where t are equispaced between 1 and 3, and where
C is chosen so that τ = 1, i.e. (75) holds. For α = 5, we compute σBBP, the asymptotically
largest singular value of the noise matrix Σ1/2Z/

√
n, using the numerical method introduced

in [37]. We consider a rank 1 p-by-n signal matrix X with i.i.d. singular vectors u and v and
singular value σ = σBBP + 1. For these parameters, the asymptotic errors for optimal shrinkage
with exact whitening are then computed using the formula from [39], while the asymptotic error
for OptShrink is evaluated numerically using the method from [37]. For optimal shrinkage with
pseudo-whitening, we consider a range of aspect ratios β between 0 and 0.95, and evaluate the
AMSE for each value of β. These values are plotted as functions of β in Figure 4, alongside
the asymptotic errors of the other two methods. As the plots demonstrate, for each value of
γ and α the error of shrinkage with pseudo-whitening approaches that of shrinkage with exact
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Figure 3: Asymptotic errors for the optimal WSC denoiser with pseudo-whitening as a function of
β ∼ p/m for different values of γ ∼ p/n and parameter κ, where the noise covariance has linearly
spaced eigenvalues and condition number κ. For reference, we also plot the asymptotic errors
for the oracle WSC denoiser (from [39]) and optimal shrinkage without whitening (OptShrink,
from [47]). The errors for OptShrink are numerically evaluated using the method from [37]. Our
numerical results demonstrate that the performance gains offered by whitening become more
pronounced as the condition number κ increases.
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Figure 4: Asymptotic errors for optimal shrinkage with pseudo-whitening as a function of β ∼
p/m for different values of γ ∼ p/n and parameter α, with noise eigenvalues of the form C ·tα with
t equispaced between 1 and 3. For reference, we also plot the asymptotic errors for the oracle
WSC denoiser (from [39]) and optimal shrinkage without whitening (OptShrink, from [47]).
The errors for OptShrink are numerically evaluated using the method from [37]. Our numerical
results demonstrate that the performance gains offered by whitening become more pronounced
as α increases, that is the eigenvalues of the noise covariance deviate further from a constant
profile.

whitening as β → 0. Furthermore, for each value of γ, as α grows (that is, as the noise becomes
more heteroscedastic) the performance of shrinkage with pseudo-whitening improves relative to
OptShrink; for example, when γ = 2 and α = 5, shrinkage with pseudo-whitening outperforms
OptShrink for the entire considered range of β.

6.3 Critical value of β

For another view of the experiments in Section 6.2, we evaluate the value of β at which optimal
shrinkage with pseudo-whitening outperforms OptShrink. When β = 0 (i.e. when oracle whiten-
ing is used), pseudo-whitening is guaranteed to outperform OptShrink [39]; the performance of
pseudo-whitening degrades as β approaches 1, and for some parameter values pseudo-whitening
will perform worse than OptShrink when β is sufficiently close to 1. To illustrate this phe-
nomenon, we consider the same two families of noise covariances described in Sections 6.2.1 and
6.2.2. Holding all other parameter values fixed, we consider the error of optimal shrinkage with
pseudo-whitening as a function of β, and solve for the value of β at which the pseudo-whitening
error is equal to that of OptShrink when the signal strength is equal to 1.1σBBP. The value of
σBBP and the errors for OptShrink are evaluated using the method from [37], as in Section 6.2;
and the critical value of β is numerically evaluated using the secant method.

The left panel of Figure 5 plots the critical value of β for the Section 6.2.1 model as a
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Figure 5: Value of β for which the AMSE of OptShrink is equal to the AMSE of optimal singular
value shrinkage with pseudo-whitening. Left: critical value of β plotted as a function of κ, where
the noise covariance has linearly spaced eigenvalues and condition number κ. Right: critical value
of β plotted as a function of α, with noise eigenvalues of the form C ·tα with t equispaced between
1 and 3. It is observed that the critical value of β grows as the heteroscedasticity parameters (κ
or α) grow; that is, the more heteroscedastic the noise, the fewer noise-only samples are needed
for optimal shrinkage with pseudo-whitening to outperform OptShrink.

function of the condition number κ; the right panel plots the critical value of β for the Section
6.2.2 model as a function of the decay parameter α. These curves are shown for a range of
values of γ. Both plots reveal similar qualititative behavior: the critical value of β grows as
the heteroscedasticity parameters (κ or α) grow; that is, the more heteroscedastic the noise, the
fewer noise-only samples are needed for optimal shrinkage with pseudo-whitening to outperform
OptShrink. Furthermore, the relative performance of optimal shrinkage with pseudo-whitening
also increases with γ.

6.4 Minimum detectable signal

To further illustrate the differences in performance between optimal shrinkage with pseudo-
whitening and OptShrink as a function of β, we consider the smallest singular value of X that
is detectable under each noise model. We denote by θBBP the smallest detectable singular value
of X; for any specified variance profile, this may be numerically evaluated using the method
from [37], which solves the equations that implicitly characterize the value. We also consider
the minimum detectable signal singular value by pseudo-whitening, given by the formula (14);
this value obviously grows with β. Figures 6 and 7 plot the minimum detectable values under
OptShrink as functions of the heteroscedasticity of the noise, as measured by the parameter κ
for the model in Section 6.2.1 and the parameter α for the model in Section 6.2.2, respectively.
These figures also display the values of the largest β where the two methods have identical signal
detection thresholds, again as functions of the heteroscedasticity of the noise covariances.

6.5 Principal component estimation

Next, we compare the methods of pseudo-whitening to OptShrink in estimating the principal
components of the signal vector. We fix the parameter γ = 1/2 and consider the model from
Section 6.2.1, where the noise covariance has p = 2000 linearly spaced spectrum and is normalized
so that τ = 1. Figure 8 plots the asymptotic absolute inner products between the estimated
PCs under pseudo-whitening, for several values of β. Also shown are the asymptotic absolute
inner products between the true PCs and the estimated PCs used by OptShrink (the top left
singular vector of the unnormalized data matrix). The signal singular value is taken to be
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Figure 6: Left: the minimum detectable signal singular value by OptShrink. Right: value of β
for which the minimum detectable signal singular value for the pseudo-whitened matrix equals
the minimum detectable value for OptShrink. Values are plotted as functions of κ, where the
noise covariance has linearly spaced eigenvalues and condition number κ.
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Figure 7: Left: the minimum detectable signal singular value by OptShrink. Right: value of β
for which the minimum detectable signal singular value for the pseudo-whitened matrix equals
the minimum detectable value for OptShrink. Values are plotted as functions of α, where the
noise covariance eigenvalues are of the form C · tα with t equispaced between 1 and 3.
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Figure 8: The cosines of the angles between the true principal component and the estimated
principal component, plotted as functions the condition number κ of the noise covariance matrix
Σ with linearly spaced eigenvalues.

max{σthresh, σBBP}+1, where σthresh is evaluated for the largest value of β considered (β = .5).
Both σBBP and the cosines for the unwhitened PCs are evaluated using the method from [39].

As is apparent from the plot, larger values of β result in smaller cosines; that is, when
pseudo-whitening is performed with fewer noise-only samples, the resulting estimates are worse.
Second, as the condition number grows – that is, as the noise becomes more heteroscedastic –
the relative performance of pseudo-whitening improves relative to estimation without whitening.
At a certain condition number, each pseudo-whitening curve begins to outperform the estimates
without any whitening.

6.6 Comparison with other singular value shrinkers

We compare the shrinker described in Section 2.4 to three other shrinkage methods. The first
method is OptShrink [47], the optimal singular value shrinker of the data matrix Y itself without
any transformation. OptShrink uses knowledge of the operator norm of the pure noise matrix
Σ

1/2
Z, which we evaluate numerically using the method from [37]. We also compare to optimal

shrinkage with exact whitening from [39]. In the present context this is an oracle method,
that assumes exact knowledge of the noise covariance Σ (equivalently, it may be viewed it as
instance of the algorithm from Section 2.4 with β = 0). Finally, we compare with the shrinker
from [39] with the sample covariance Σ̂ used as a plug-in estimator; that is, this method uses
pseudo-whitening, but treats it as if it were oracle whitening.

The details of the experiment are are follows. We set the problem size parameters p = 600;
n = 1200; m = 1800; and r = 3. We generate the covariance Σ with diagonal entries equally
spaced between 1 and a specified condition number κ ≥ 1. The signal singular values σ1, σ2,
and σ3 are defined as follows:

σj = σthresh ·
1 + (r − j + 1)/r√

τ
, 1 ≤ j ≤ 3, (76)

where τ is given by

τ =
1

p

p∑

i=1

1

Σii
. (77)

These value of σ ensures that the signal components are asymptotically detectable, but very
close to the edge of detectability. We generate the vectors v1, v2 and v3 in R

n and u1, u2 and
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Figure 9: Plots of the mean relative error as a function of the condition number of the noise
covariance matrix Σ (plotted in log scale). Four shrinkage methods are considered: (i) Oracle
with plugin: the whiten-shrink-recolor procedure of [40], with a plugin estimate for the noise
covariance matrix; (ii) Pseudo-whitening: the method proposed in this paper; (iii) OptShrink:
the optimal singular value shrinker of [47]; (iv) Oracle whitening: the procedure if [40] using
the true noise covariance matrix – note that this is an oracle method, and not practically imple-
mentable under the setting considered in this paper. The experiment shows that, unsurprisingly,
oracle whitening attains the smallest error, and outperforms optimal shrinkage (OptShrink) by
an increasing margin as the noise covariance becomes more and more ill-conditioned. Pseudo-
whitening using the number of available noise-only measurements (m = 1600, the data dimen-
sions being n = 1200, p = 600) is worse than OptShrink for small condition number, but attains
markedly better performance when it is large. Furthermore pseudo-whitening, which is optimal
over all Whiten-Shrink-reColor procedures, outperforms [40] with a plugin estimate of the noise
covariance.

27



u3 in R
p to be random orthonormal vectors (obtained by applying Gram-Schmidt to random

vectors). We then define the p× n signal matrix X

X =

3∑

k=1

σkukv
⊤

k . (78)

We generate the p× n in-sample noise matrix Σ
1/2

Z, where Z has i.i.d. entries with variance 1
from a Gaussian distribution. We construct the p× n data matrix Y = X+Σ

1/2
Z. Finally, for

each value of κ, we generate the p ×m out-of-sample noise matrix Σ
1/2

Z
′, where Z

′ has i.i.d.
Gaussian entries of variance 1. Each of the four methods is then applied to this input data,
with the oracle rank r = 3 supplied. For each value of κ, the data is generated N = 200 times,
and the relative errors are averaged over all runs. The results of this experiment are shown
Figure 9, which plots the log2 mean relative errors of each method against log2(κ). Optimal
shrinkage with oracle whitening outperforms each method, as is expected; the optimal shrinker
with pseudo-whitening always outperforms the oracle shrinker with a plug-in covariance, and
outperforms OptShrink at high condition numbers.

6.7 Convergence for Gaussian and non-gaussian noise

We check the convergence rates of the observed cosines and singular values to their limiting
values. The simulation was run as follows. We set the parameters γ = 2/3 and β = 1/4. For
each fixed value of p, we take n = p/γ and m = p/β. For each p, we generate the noise covariance
Σ with diagonal entries linearly spaced between 1 and 50. We generate the matrix D = D1 as

D =
√
p · diag(1/p2, 4/p2, . . . , (p− 1)2/p2, 1). (79)

We then generate the vector u = u1 as

u =
Dw

‖Dw‖ , (80)

where w has entries that are i.i.d. Gaussian. We also set the value σ = σ1 to be:

σ = σthresh ·
1.8√
τ
, (81)

where

τ =
1

p

p∑

i=1

D
2
1i

Σii
. (82)

This value of σ ensures that the signal is detectable. We also generate the vector v = v1 with
i.i.d. Gaussian entries. With these parameters set, we define the p×n signal matrix X = σuv⊤.
We generate the p× n in-sample noise matrix Σ

1/2
Z, where Z has i.i.d. entries with variance 1

from a specified distribution, either Gaussian, Rademacher, normalized t10, normalized t4.5, or
normalized t3 (where the t distributions are normalized to have unit variance). We construct
the p × n data matrix Y = X + Σ

1/2
Z. Finally, we generate the p × m out-of-sample noise

matrix Σ
1/2

Z
′, where Z

′ has i.i.d. entries from the same distribution as the entries of Σ1/2
Z.

With the data generated in this way, we compute the values v̂⊤
v, (ûw)⊤Σ̂1/2

u, (ûw)⊤Σ̂−1/2
u,

and θ̂. For each value of p, the experiment is run N = 10, 000 times, and the errors are averaged
as follows:

Errorp(ξ) =
1

N

N∑

i=1

|ξ̂i − ξ|
|ξ| , (83)
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Mean error, inner cosines

p Gaussian Rademacher t, df=10 t, df=4.5 t, df=3

550 9.857e-03 9.920e-03 9.979e-03 1.991e-02 4.841e-01

1100 6.998e-03 7.043e-03 7.027e-03 1.470e-02 6.068e-01

2200 4.926e-03 4.933e-03 4.946e-03 1.073e-02 7.302e-01

4400 3.508e-03 3.491e-03 3.440e-03 8.147e-03 8.476e-01

Table 4: Mean error of v̂⊤
v.

Mean error, outer cosines, whitened

p Gaussian Rademacher t, df=10 t, df=4.5 t, df=3

550 1.559e-02 1.600e-02 1.603e-02 2.604e-02 4.968e-01

1100 1.133e-02 1.131e-02 1.123e-02 1.907e-02 6.146e-01

2200 7.974e-03 8.020e-03 7.896e-03 1.366e-02 7.346e-01

4400 5.662e-03 5.534e-03 5.611e-03 1.026e-02 8.498e-01

Table 5: Mean error of (ûw)⊤Σ̂1/2
u.

Mean error, outer cosines, unwhitened

p Gaussian Rademacher t, df=10 t, df=4.5 t, df=3

550 2.121e-02 2.130e-02 2.123e-02 3.085e-02 4.794e-01

1100 1.498e-02 1.500e-02 1.496e-02 2.259e-02 6.022e-01

2200 1.058e-02 1.071e-02 1.060e-02 1.614e-02 7.266e-01

4400 7.529e-03 7.417e-03 7.477e-03 1.211e-02 8.452e-01

Table 6: Mean error of (ûw)⊤Σ̂−1/2
u.

Mean error, singular values

p Gaussian Rademacher t, df=10 t, df=4.5 t, df=3

550 1.653e-02 1.673e-02 1.677e-02 1.944e-02 2.857e-01

1100 1.169e-02 1.188e-02 1.164e-02 1.352e-02 3.609e-01

2200 8.267e-03 8.343e-03 8.350e-03 9.464e-03 4.464e-01

4400 5.918e-03 5.907e-03 5.928e-03 6.811e-03 6.014e-01

Table 7: Mean error of θ̂.
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Figure 10: The log2 of the average relative errors between the spiked model parameters and
their asymptotic values, plotted against log2(p), for five different noise types. The errors for the
Gaussian, Rademacher, and t10 noise are nearly indistinguishable, and appears to decay at a
rate of approximately O(p−1/2), since their curves have slopes close to 1/2; the errors for t4.5
noise are larger, but still appear to decay at approximately the same rate. By contrast, the
errors for the heavy-tailed t3 noise diverge.
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where ξ denotes the asymptotic value of the parameter in question and ξ̂1, . . . , ξ̂N denote the N
realizations of the parameter. These average errors are presented in Tables 4 through 7. Figure
10 shows the errors are plotted in log scale.

For noise with Gaussian, Rademacher, and t10 distributions the errors between the observed
values and the true values decays at approximately the rate O(p−1/2); furthermore, the errors
themselves are nearly identical regardless of the noise distribution. By contrast, the errors for
the t4.5 distribution are larger, though they still shrink at a similar rate; whereas the errors for
the fat-tailed t3 distribution grow with p.

7 Discussion and conclusion

This paper considered the problem of low-rank matrix denoising under additive noise, assuming
that the columns of the noise matrix are i.i.d. but have an otherwise arbitrary and unknown
inter-row covariance structure. Under our setup, one has access to side information in the form of
pure-noise samples, and wishes to make use of this additional information in denoising. Crucially,
the number of available pure-noise samples is such that one cannot consistently estimate the
noise covariance matrix Σ; thus, one can think of Σ as being only partially known.

We proposed to tackle this problem by means of singular value shrinkage, under a Whiten-
Shrink- re-Color framework. To wit, one forms the pure-noise sample covariance Σ̂, and 1)
uses Σ̂ to pseudo-whiten the observed signal-plus-noise matrix; 2) applies optimal singular value
shrinkage to the resulting pseudo-whitened matrix; and finally 3) performs a re-coloring step.
Our main contribution is the derivation of the optimal singular shrinker to be used in this
compound procedure. To this end, we proved new results on the spectrum of the spiked F-
matrix ensemble, which may be of independent interest.

As one would expect, we demonstrated that our optimally-tuned WSC denoiser outper-
forms OptShrink, the optimally-tuned singular value shrinkage without noise whitening [47]),
provided that the number of pure-noise samples is sufficiently large (see Section 6). A par-
ticularly appealing quality of the proposed estimator is its simplicity, both conceptually and
implementation-wise. Indeed, the idea of noise whitening is classical within signal processing.
Furthermore, the method comes with precise performance guarantees, including estimates of the
AMSE and the inner products between the signal PCs and their estimates, which can be useful
in practice. There is no reason to believe, however, that this approach is optimal among all de-
noising procedures. Devising new methods to make better use of the available side information
(and/or deriving tight lower bounds on the attainable MSE) is an interesting direction for future
research.

A natural extension of our method would be to replace the noise sample covariance Σ̂ with
a better covariance estimator: note that while the sample covariance has generically an optimal
estimation rate, one can often construct estimators that attain a smaller estimation error (e.g.,
smaller constant prefactors); see for example the shrinkage estimator of [36]. To implement such
modified WSC scheme, one needs to calculate precise analytic formulas for the singular values
and singular vector angles of the whitened and recolored data matrix. For more sophisticated
covariance estimators (such as [36]), this calculation appears to be challenging.
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A Auxiliary Technical Results

A.1 Elementary concentration lemmas

The following elementary concentration results are used throughout the paper:

Lemma 7. Let Ap ∈ R
p×p be a sequence of bounded matrices, a ∈ R

p a bounded vector, and
g ∼ N (0, p−1Ip×p). Then

‖g‖2 ≃ 1, g⊤Apg ≃ p−1tr(Ap), g⊤a ≃ 0 .

Lemma 8. Let Ap ∈ R
p×p be a sequence of bounded, orthogonally invariant, random matrices,

namely, for any O ∈ O(p), OApO
⊤ d
= Ap. Let ap,bp ∈ R

n be two sequences of bounded vectors.
Then

a⊤p Apbp ≃
(
a⊤p bp

)
· p−1 tr(Ap) .

Lemma 9. Let Ap ∈ R
p×n be a sequence of left orthogonally invariant random matrices, namely,

for any O ∈ O(p), OAp
d
= Ap. Let ap ∈ R

p,bp ∈ R
n be bounded. Then a⊤p Abp ≃ 0.

A.2 Free Probability and calculation of mixed moments

Free probability is a theory of noncommutative random variables, originally introduced by
Voiculescu [60]. We briefly describe several elementary results that are used in our calcula-
tions. For more background, see e.g. [17,44].

Definition 1 (Limiting joint law). Let X = {X1, . . . ,Xl} be l (sequences of) of p-by-p matrices
with bounded operator norm. We say X has an a.s. limiting joint law if for any non-commutative
polynomial P ∈ C 〈x1, . . . , xl, y1, . . . , yl〉,6 the a.s. limit

trP
(
X1, . . . ,Xl,X

⊤

1 , . . . ,X
⊤

l

)
= lim

p→∞

1

p
trP

(
X1, . . . ,Xl,X

⊤

1 , . . . ,X
⊤

l

)
(84)

exists. The mapping C 〈x1, . . . , xl, y1, . . . , yl〉 → R taking a polynomial P to its corresponding
limit is called the joint law of S.

Remark 4. Note that the joint law of Sp is completely determined by its (non-commutative)
joint moments:

zi1 · · · zit , z ∈ {x, y} , ij ∈ {1, . . . , l} .

Moreover, if X = {X} is a single symmetric matrix with an LESD dF , then it limiting law is

xk 7→
∫
xkdF (x) .

Definition 2 (Free independence). Suppose that X1, . . . ,Xk each have a joint limiting law. They
are (asymptotically) freely independent if the following holds: let Pj(Xij ) be any non-commutative
polynomials in Xij , then

tr
{[
P1(Xi1)− tr(P1(Xi1))I

]
· · ·

[
Pt(Xit)− tr(Pt(Xit))I

]}
= 0 , (85)

whenever adjacent indices are always different: i1 6= i2, i2 6= i3 etc.

6By that, we mean a polynomial in 2l non-commutative variables. For example, x1x2 6= x2x1.
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Free independence is a powerful tool for computing traces involving multiple random ma-
trices. A fundamental result connecting free probability with random matrices states that in-
dependent unitarily/orthogonally invariant random matrices are asymptotically freely indepen-
dent. To our knowledge, the complex (unitary) first appeared in the work of Voiculescu [60];
for the real case, we cite a result of Collins and Śniady [15] (see also [14]). The following is
essentially [15, Theorem 5.2]:

Theorem 6 (Asymptotic freedom for orthogonally invariant matrices). Let (X1), . . . , (Xk) be k
(sequences of) p-by-p matrices, so that each matrix has an a.s. limiting law. Let O2, . . . ,Ok ∼
Haar(O(p)). Then

(X1), (O2X2O
⊤

2 ), . . . , (OkXkO
⊤

k )

are asymptotically freely independent.

B Proof of Lemma 6

The proof consists of repeated applications of (85). It is straightforward to verify that

G2,k(z) = tr
(
AzΣA⊤

z Ck

)
, where Az := (zS−E)−1S, Ck = Σ−1/2DkD

⊤

k Σ
−1/2 . (86)

Since Az is orthogonal invariant and has bounded norm (since z /∈ [θmin, θmax]), it is freely inde-
pendent of all deterministic matrices. To carry out the computation, we apply (85) successively.
For brevity, denote ∆z = Az − tr(Az)I. Then

G2,k(z) = tr
(
∆zΣA⊤

z Ck

)
+ tr(Az)tr

(
ΣA⊤

z Ck

)

= tr
(
∆zΣA⊤

z Ck

)
+
(
tr(Az)

)2
tr(CkΣ) = tr

(
∆zΣA⊤

z Ck

)
+ (s(z))2 ,

where the last equality uses the assumption tr(DkD
⊤

k ). We simplify further the first term on
the r.h.s.,

tr
(
∆zΣA⊤

z Ck

)
= tr

(
∆zΣ∆⊤

z Ck

)
+ tr(A⊤

z ) tr (∆zΣCk)︸ ︷︷ ︸
=0

= tr
(
∆zΣ∆⊤

z Ck

)
.

Next,

tr
(
∆zΣ∆⊤

z Ck

)
= tr

(
∆z(Σ− µI)∆⊤

z Ck

)
+ µ · tr

(
∆z∆

⊤

z Ck

)

= tr
(
∆z(Σ− µI)∆⊤

z (Ck − τkI)
)

︸ ︷︷ ︸
=0

+τk tr
(
∆z(Σ− µI)∆⊤

z

)

︸ ︷︷ ︸
=0

+µ · tr
(
∆z∆

⊤

z Ck

)

= µτk · tr(∆z∆
⊤

z ) .

Lastly, tr(∆z∆
⊤
z ) = tr(AzA

⊤
z ) − (tr(Az))

2 = Υ2(z) − (s(z))2. Collecting all the terms above,
we obtain the claimed formula for G2,k(z). �

C Closed-form formulas for Υ1,Υ2

In this section we prove the closed-form formulas (24) and (25) for the mixed traces

Υ1(z) = lim
p→∞

p−1tr(zS−E)−1S2, Υ2(z) = lim
p→∞

p−1tr(zS−E)−2S2 ,

where z ∈ C \ [θ2min, θ
2
max].

First, because the formula (23) for the Stieltjes transform is only applicable for arguments
smaller than the left edge of the Marchenko-Pastur law, 0 < z < (1−

√
β)2, we begin with:
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Lemma 10. For any z ∈ (θ2max,∞), one has 0 < −s(z) < (1−
√
β)2.

Proof. Since −s(z) is positive and decreasing for z > θ2max, it suffices to show that −s(θ2max) ≤
(1−

√
β)2. A straightforward calculation gives −s(θ2max) = f(γ;β) = f1(γ;β) + f2(γ;β) where

f1(γ;β) =
β(β −

√
β + γ − βγ)

β + γ
, (87)

and

f2(γ;β) =
1−

√
β + γ − βγ

1− γ
; (88)

note that f2(γ;β) is well-defined and differentiable at γ = 1, where its value is f2(1;β) =
1
2(1−β).

We claim that the function γ 7→ f(γ;β), γ ∈ [0,∞), is maximized at γ = 0. This, in turn,
implies −s(θ2max) ≤ f(0;β) = β −

√
β + 1 −

√
β = (1 −

√
β)2 as required. To show this, let us

compute the derivative of f(·;β). One has

∂γf1(γ;β) = β
− 1−β

2
√
β+γ−βγ

(β + γ)− (β −
√
β + γ − βγ)

(β + γ)2
=
β
(
β −

√
β + γ − βγ

)2

2(β + γ)2
√
β + γ − βγ

, (89)

and

∂γf2(γ;β) =
− 1−β

2
√
β+γ−βγ

(1− γ) + (1−
√
β + γ − βγ)

(1− γ)2
= −

(
1−

√
β + γ − βγ

)2

2(1− γ)2
√
β + γ − βγ

, (90)

(which may also be continuously extended to γ = 1). Since f(γ;β) → 0 as γ → ∞, it is enough
to show that the only solution to ∂γf(γ;β) = 0 for γ ∈ [0,∞] is γ = 0. First, let us consider
γ = 1. One may readily calculate (e.g., using L’Hôpital’s rule): ∂γf2(1;β) = −1

8(1 − β)2 and

∂γf1(1;β) =
β(1−β)2

2(1+β)2
, so ∂γf(1;β) = − (1−β)4

8(1+β)2
< 0. We next consider values γ 6= 1. From (89)

and (90), if ∂γf(γ;β) = 0 then either

(1− γ)
√
β
(
β −

√
β + γ − βγ

)
= (β + γ)

(
1−

√
β + γ − βγ

)
, (91)

(1− γ)
√
β
(
β −

√
β + γ − βγ

)
= −(β + γ)

(
1−

√
β + γ − βγ

)
. (92)

Making a change of variables r = β + γ − βγ, so that γ = r−β
1−β , equations (91) and (92) may be

rewritten in terms of r as follows:

√
β
(
β −

√
r
)( 1− r

1− β

)
±

(
1−

√
r
)(r − β2

1− β

)
= 0 . (93)

Using r − β2 = (
√
r − β)(

√
r + β) and 1− r = (1−√

r)(1 +
√
r), (93) is equivalent to:

(β −
√
r)(1−

√
r)

[√
β(1 +

√
r)± (

√
r + β)

]
= 0. (94)

The roots are r = β2, r = 1, and r = β. Since γ = (r − β)/(1 − β), and we only consider
γ ∈ [0,∞) \ {1} (recall that γ = 1 was treated separately) it follows that the only solution to
∂γf(γ;β) = 0 with γ ∈ [0,∞) is γ = 0, concluding the proof.

Let S = WΛW
⊤ be an eigen-decomposition, Λ = diag(λ1, . . . , λp). Since E is orthogonally

invariant and independent of S, W⊤
EW

d
= E and is independent of Λ. Consider the resolvent

Rz(w) = (wI+ zΛ−E)−1 . (95)
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Clearly,

Υ1(z) = lim
p→∞

p−1tr
[
Rz(0)Λ

2
]
= lim

p→∞
p−1

p∑

i=1

[Rz(0)]iiλ
2
i ,

Υ2(z) = − lim
p→∞

p−1tr

[
∂

∂w
Rz(0)Λ

2

]
= − lim

p→∞
p−1

p∑

i=1

∂

∂w
[Rz(0)]iiλ

2
i ,

Recall: since z > θ2max, assuming small enough w, Rz(w) is a.s. well-defined and has bounded
operator norm. The main ingredient of the proof consists of deriving formulas for the individual
diagonal entries of Rz(w). We remark that the calculation below uses rather standard ideas
from random matrix theory, see for example the book [6].

For brevity, denote Az,w = wI+zΛ−E and so Rz(w) = A
−1
z,w. Let i ∈ [n] be any coordinate.

Denote by Pi ∈ R
(p−1)×p the projection onto the coordinate set [p] \ {i}. Let e1, . . . , ep ∈ R

p be
the standard basis vectors. Up to a permutation of the coordinates, Az,w has the block form:

Az,w =

[
[Az,w]i,i e

⊤
i Az,wP

⊤
i

PiAz,wei PiAz,wP
⊤
i

]
=

[
w + zλi − n−1[ZZ⊤]ii −n−1

e
⊤
i ZZ

⊤
P

⊤
i

−n−1
PiZZ

⊤
ei PiAz,wP

⊤
i .

]

Applying the block matrix inversion formula,

[A−1
z,w]ii =

[
w + zλi − n−1[ZZ⊤]ii − (n−1

e
⊤
i ZZ

⊤
P

⊤
i )(PiAz,wP

⊤
i )

−1(n−1
PiZZ

⊤
ei)

]−1
,

equivalently,

1

[Rz(w)]ii
= w + zλi − n−1[ZZ⊤]ii − (n−1

e
⊤
i ZZ

⊤
P

⊤
i )(PiAz,wP

⊤
i )

−1(n−1
PiZZ

⊤
ei) . (96)

We will show that the r.h.s. of (96) concentrates around a deterministic quantity.
We start with the following.

Lemma 11. A.s.,

max
1≤i≤n

∣∣∣(n−1
e
⊤
i ZZ

⊤
P

⊤
i )(PiAz,wP

⊤
i )

−1(n−1
PiZZ

⊤
ei)− n−1tr

[
P

⊤
i (PiAz,wP

⊤
i )

−1
PiE

]∣∣∣ −→ 0 ,

max
1≤i≤n

∣∣∣∣(n
−1

e
⊤
i ZZ

⊤
P

⊤
i )

∂

∂w
(PiAz,wP

⊤
i )

−1(n−1
PiZZ

⊤
ei)− n−1tr

[
P

⊤
i

∂

∂w
(PiAz,wP

⊤
i )

−1
PiE

]∣∣∣∣ −→ 0 .

Proof. Observe that Z
⊤
ei ∼ N (0, In×n). Moreover, this random vector is independent of PiZ,

hence also of Az,w. Furthermore, the random matrices n−1
Z
⊤
P

⊤
i (PiAz,wP

⊤
i )

−1
PiZ, as well as

their w-derivatives, have operator norm bounded (a.s.) by a constant7. The result follows by
the Hanson-Wright inequality (cf. [59, Theorem 6.2.1]) and a union bound over 1 ≤ i ≤ n.

We next consider the trace in Lemma 11.

Lemma 12. A.s.,

max
1≤i≤n

∣∣∣n−1tr
[
P

⊤
i (PiAz,wP

⊤
i )

−1
PiE

]
− n−1tr

[
A

−1
z,wE

]∣∣∣ −→ 0 ,

max
1≤i≤n

∣∣∣∣n
−1tr

[
P

⊤
i

∂

∂w
(PiAz,wP

⊤
i )

−1
PiE

]
− n−1tr

[
∂

∂w
A

−1
z,wE

]∣∣∣∣ −→ 0 .

7Note that by eigenvalue interlacing, λmin(PiAz,wP
⊤

i ) ≥ λmin(Az,w), hence ‖(PiAz,wP
⊤

i )
−1‖ ≤ ‖A−1

z,w‖.
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Proof. By the block matrix inversion formula,

PiA
−1

z,wP
⊤
i =

(

PiAz,wP
⊤
i − [Az,w]ii

−1
PiAz,weieiAz,wP

⊤
i

)−1

.

Thus,

PiA
−1

z,wP
⊤
i − (PiAz,wP

⊤
i )

−1 = PiA
−1

z,wP
⊤
i

(

[Az,w]ii
−1

PiAz,weieiAz,wP
⊤
i

)

(PiAz,wP
⊤
i )

−1

is rank 1, and clearly has bounded operator norm. Write PiA
−1
z,wP

⊤
i − (PiAz,wP

⊤
i )

−1 = qq⊤,
so

max
1≤i≤n

∣

∣

∣
n−1tr

[

P⊤
i (PiAz,wP

⊤
i )

−1PiE
]

− n−1tr
[

P⊤
i (Pi(Az,w)

−1P⊤
i )PiE

]∣

∣

∣
= max

1≤i≤n

∣

∣

∣
n−1q⊤

i (PiEP⊤
i )qi

∣

∣

∣

≤ max
1≤i≤n

n−1‖qi‖
2‖PiEP⊤

i ‖ −→ 0 .

Moreover, I−P⊤
i Pi = eie

⊤
i is rank 1, allowing us to deduce

max
1≤i≤n

∣

∣

∣
n−1tr

[

P⊤
i Pi(Az,w)

−1P⊤
i PiE

]

− n−1tr
[

(Az,w)
−1E

]

∣

∣

∣
−→ 0

by a similar argument. This establishes the first claim of the Lemma. The second claim (per-
taining to the w-derivatives) follows by a similar calculation.

Now,

1

n
tr[A−1

z,wE] = −
p

n
+

1

n
tr
[

A−1

z,w(zΛ+ wI)
]

= γ

(

−1 + w
1

p
tr(Rz(w)) + z

1

p
tr(Rz(w)Λ)

)

. (97)

Setting w = 0, by Propositions 1 and 2,

1

p
tr(Rz(0))

d
=

1

p
tr(zS−E)−1 −→ −ζ(z) ,

1

p
tr(Rz(0)Λ)

d
=

1

p
tr((zS−E)−1S) −→ −s(z)

∂

∂w

1

p
tr(Rz(w)Λ)

∣

∣

∣

∣

w=0

d
= −

1

p
tr(zS−E)−2S) −→ −ζ ′(z) .

(98)

Combining (96) with Lemmas 11, 12 and Eqs. (97), (98), along with max1≤i≤n |[n
−1ZZ⊤]ii−1| →

0, yields max1≤i≤n |[Rz(0)]ii − ρi(z)| → 0, where

1

ρi(z)
= zλi − 1 + γ(1 + zs(z)) = z(λi + s(z)) . (99)

The second equality in (99) uses the relation s(z) = γs(z)− (1− γ)1
z

between the Stieltjes and
the associated transforms. Furthermore, differentiating (96) with respect to w yields

−
∂
∂w

[Rz(0)]ii

[Rz(0)]2ii
= 1−

∂

∂w
(n−1e⊤i ZZ

⊤P⊤
i )(PiAz,wP

⊤
i )

−1(n−1PiZZ
⊤ei)

∣

∣

∣

∣

w=0

.

Consequently, max1≤i≤n |
∂
∂w

[Rz(0)]ii − ρ̃i(z)| → 0 where

ρ̃i(z) = −Ri(z)
2
(

1 + γ[ζ(z) + zζ ′(z)]
)

= −
1 + γ(ζ(z) + zζ ′(z))

z2
·

1

(λi + s(z))2
. (100)
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Equipped with Eqs. (99) and (100), we now conclude the calculation. Starting with Υ1,

Υ1(z) ≃
1

p

p
∑

i=1

ρi(z)λ
2
i =

1

z
·

1

p

p
∑

i=1

λ2
i

λi + s(z)
=

1

z
·

1

p

p
∑

i=1

(

λi − s(z) +
(s(z))2

λi + s(z)

)

.

Note that p−1
∑p

i=1 λi = p−1tr(S) ≃ 1, and p−1
∑p

i=1
1

λi+s(z) ≃ mβ(−s(z)), where mβ(·) is the

Stieltjes transform of a Marchenko-Pastur law with shape β. Thus, formula (24) is obtained.
Next,

Υ2(z) ≃ −

1

p

p
∑

i=1

ρ̃i(z)λ
2
i =

1 + γ(ζ(z) + zζ ′(z))

z2
·

1

p

p
∑

i=1

λ2
i

(λi + s(z))2

=
1 + γ(ζ(z) + zζ ′(z))

z2
·

1

p

p
∑

i=1

(

1−
2s(z)

λi + s(z)
+ (s(z))2

1

(λi + s(z))2

)

.

Observing that p−1
∑p

i=1
1

(λi+s(z))2
≃ m

′

β(−s(z)), we deduce (25). Thus the computation is

concluded.
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