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ABSTRACT
We used isotopic and genomic data to explore the ecological and social context of cultural 
practices associated with the mummi"cation of crocodiles in ancient Egypt. Ancient DNA was 
recovered from four mummi"ed crocodile hatchlings held in the collections of the Peabody 
Museum of Natural History, Yale University. Previous genetic analyses of crocodile mummies 
have indicated that most mummies represent the newly resurrected taxon, Crocodylus suchus 
Geo#roy Saint-Hilaire, 1807. However, mitogenomic data for the Yale Peabody Museum mum-
mies indicates that these specimens represent the "rst genomically authenticated represen-
tatives of the Nile crocodile (Crocodylus niloticus Laurenti, 1768) in museum collections. We 
explore these "ndings within the broader context of modern and historical distributions of both 
crocodile species and the potential implications for our understanding of funerary practices 
involving crocodiles in ancient Egypt.
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Introduction

Communities living in close proximity to, and 
exploiting, local wildlife populations gather 
knowledge via direct observations of natural 
history or through the cultural transmission 
of such knowledge. Cosmologies and cultural 
practices involving animals usually entail 
highly developed taxonomies and belief sys-
tems regarding the relationships of animals to 
both the natural and divine world. By exam-
ining the prevalence of a speci"c species from 
bioarchaeological settings over time and space 
we may be able to detect evidence for shi$s in 
species distributions attributable to environ-
mental conditions, overexploitation, or directly 
due to changing cultural preferences. Here, we 
contribute to the broader understanding of 
cultural and ecological contexts for crocodile 
mummi"cation in ancient Egypt by adding 

isotopic and genomic data for a set of mum-
mies from the collections at the Yale Peabody 
Museum of Natural History.

!e ancient Egyptians mummi"ed croco-
diles within two main contexts: sacred animals 
and votive o#erings (Ikram 2015:1–16). In the 
case of the former, the Egyptians believed that 
part of the soul of the god Sobek (the crocodile 
headed god responsible for fertility) entered 
the body of a crocodile that could be identi"ed 
as special by its markings. During its lifetime 
the crocodile would be revered as if it were a 
god and consulted as an oracle. Priests would 
feed it with delicacies, care for it, and adorn it 
with gold jewelry, as described by 5th and 1st 
century BC visitors to these cult centers (Hero-
dotus, bk 2, 69; Strabo, bk 17, 38). On its death 
the crocodile would be mummi"ed and bur-
ied in a tomb or within a larger catacomb, and 
the god’s soul would then pass into the body 
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of another crocodile; this idea is similar to the 
concept of the soul of the Dalai Lama migrat-
ing from body to body (Bresciani 2005; Ikram 
2005, 2015). Occasionally, large temple croc-
odiles were mummi"ed with sets of hatchling 
crocodiles attached along the dorsal surface, 
in the mouth, or distributed elsewhere within 
the wrappings (e.g., Egyptian Museum, Cairo, 
Egypt, CG 29628; British Museum, London, 
United Kingdom, EA38562; Phoebe A. Hearst 
Museum of Anthropology, Berkeley, Califor-
nai, USA, 55–12, 55–13, 55–14). !e speci"c 
meaning of the association is unclear, but sev-
eral hypotheses have emerged. !e relation-
ship of the adult to the hatchlings could be the 
purely symbolic representation of Sobek’s fer-
tility (any adult crocodile could be mummi"ed 
with multiple unrelated hatchlings attached) or 
could represent the true biological relationship 
of the adult to its own o#spring (likely an adult 
female crocodile with hatchlings from her nest 
attached).

Votive crocodile mummies, in contrast, 
were given as o#erings to Sobek. As living 
animals deliberately sacri"ced in order to be 
mummi"ed, perhaps they represented more 

potent o#erings than statues or stelae (Ikram 
2005, 2015). !ese votive animals were usually 
hatchlings or subadults (Figure 1) and were 
so abundant in tombs that they were used as 
ballast, fertilizer, and fuel during the height of 
Egyptomania (Ikram 2015; Lewis 2017; Baber 
2019; Nicholson 2021). Examples of votive 
crocodiles have been found throughout Egypt, 
notably at sites in the Fayum, Ma’abda, and 
Kom Ombo, and in the environs of ancient 
!ebes (modern Luxor).

!e identity of Egyptian crocodiles (both 
ancient and modern) was long thought to be the 
Nile crocodile (Crocodylus niloticus Laurenti, 
1768). However, in recent years fragmentary 
genetic data from sets of hatchling crocodile 
mummies from !ebes and the grottes de 
Samoun (Ma’abda) indicated that the genetic 
identity of these mummies was entirely distinct 
from the Nile crocodile (C. niloticus) and sug-
gested that the Egyptians preferentially mum-
mi"ed a cryptic lineage of crocodiles for use 
as votive o#erings (Hekkala et al. 2011). !ese 
"ndings were consistent with early writings 
describing two crocodile species in Egypt. Cit-
ing Herodotus, the French naturalist Geo#roy 

Figure 1. Two hatchling crocodile mummies from the Barringer Egyptian Collection, Division of 
 Anthropology, Yale Peabody Museum of Natural History. Top: YPM ANT 006435.004 (2070 ± 30 BP), for 
which we recovered mitochondrial genomic fragments. Bottom: YPM ANT 006435.007 (2010 ± 30 BP), for 
which we recovered a nearly complete mitochondrial genome. Scale bar is in centimeters.
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Saint-Hilaire referred to historical accounts of 
ancient Egyptian priests recognizing two forms 
of crocodile in the Nile in his description of a 
new species, Crocodylus suchus Geo#roy Saint-
Hilaire, 1807, or the “sacred” crocodile (Geof-
frey Saint-Hilaire 1807; Hekkala et al. 2011). In 
2020, the "rst complete mitogenome from an 
adult temple crocodile mummy was sequenced 
(Hekkala et al. 2020). !e molecular results for 
this large specimen, purportedly from Kom 
Ombo and held in the collections of the Natural 
History Museum of the Salzkammergut, Bad 
Ebensee, Austria (NMSG-A), conformed to 
the previously recovered fragmentary genomic 
data from crocodile hatchlings and suggested 
that C. suchus might have been preferred for 
the Egyptian crocodile cults dedicated to 
Sobek (Hekkala et al. 2020). Geo#roy Saint-
Hilaire (1807) refers to Strabo (bk 17, 38) not-
ing that the sacred crocodiles that were tamed, 
anointed, and ornamented by the Egyptians 
were called Suchus. Modern accounts of behav-
ioral di#erences between extant populations of 
C. suchus in western African localities, which 
are said to be more docile and less aggressive 
than C. niloticus (Shine et al. 2001; Brito et al. 
2011; Campos et al. 2016; Eniang et al. 2020), 
suggest that behavior might have been a factor 
in the Egyptians’ preference for C. suchus.

To broaden our understanding of the 
changing cultural and ecological contexts of 
animal worship and use in ancient Egypt and 
the wider region over time we analyzed isotopic 
and genomic data for a set of mummi"ed croc-
odiles from the Barringer Egyptian Collection, 
Division of Anthropology, Peabody Museum of 
Natural History, Yale University, New Haven, 
Connecticut, USA (YPM ANT; Scott 1986). 
Our aims were to add to the growing body of 
work exploring whether Egyptians consistently 
used Crocodylus suchus throughout the period 
during which crocodile cults were *ourish-
ing (c. 600 BCE–300 CE) and to determine 
whether clutches of hatchling crocodiles found 
in association with adult crocodile mummies 
are related to one another.

Victor Clay Barringer’s collection was made 
during his 20 years as Justice on the Interna-
tional Court of Appeals in Alexandria, Egypt 
(1874–1894), and the Barringer Egyptian Col-
lection comprises some 700 objects, including 

nine mummi"ed crocodiles (Table 1). In notes 
regarding the transfer of the collection there 
are separate entries for two crocodile mum-
mies of medium size, with another note indi-
cating the transfer of a set of small crocodile 
hatchlings (Figure 1). It is thought that these 
might have been attached to the back of one 
of the crocodiles, as has been noted in several 
examples of crocodile mummies, such as ones 
in the British Museum (EA38562), the Phoebe 
A. Hearst Museum of Anthropology (55-13), 
and the Sharm el-Sheikh Museum (no number, 
probably from Saqqara). However, in the case 
of the Yale Peabody Museum’s material, there 
is no speci"c description of such a relationship 
between the crocodile mummies in the original 
documents.

Materials and Methods

Sample Dating
Samples from two specimens (YPM ANT 
006435.004 and YPM ANT 006435.007) were 
sent to Beta Analytic (Miami, Florida, USA; 
http://www.radiocarbon.com/) for accelera-
tor mass spectrometry radiocarbon dating. 
!e samples consisted of skin removed from 
the underside (belly) of the crocodiles. Con-
ventional radiocarbon ages and sigmas are 
rounded to the nearest 10 years per the conven-
tions of the 1977 International Radiocarbon 
Conference. All work was performed under 
strict chain of custody and quality control 
under ISO/IEC 17025:2005 Testing Accredita-
tion PJLA No. 59423 accreditation protocols.

Genomic Sample Preparation
Small tissue samples were collected from both 
hatchling and adult crocodile mummies from 
the Yale Peabody Museum (Table 1). Using 
sterile collecting tools, we removed 1–2 mm 
bits of tissue from areas where the specimen 
was damaged and tissue was exposed. !e sam-
ples were shipped to and processed in a clean 
lab facility at the Globe Institute, University of 
Copenhagen, Copenhagen, Denmark.

To remove the initial surface contamina-
tion, all samples were immersed in a 5% bleach 
solution and rinsed three times in ultrapure 
water, puri"ed using a MilliporeSigma sys-
tem (Merck, https://www.sigmaaldrich.com/). 

http://www.radiocarbon.com
https://www.sigmaaldrich.com
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Between 100 and 300 mg of each sample was 
digested in ethylenediaminetetraacetic acid 
and proteinase K overnight. !e extraction 
then followed Dabney et al. (2013), with digests 
transferred to 15 ml of binding bu#er and then 
into Zymo reservoirs (Zymo Research, https://
www.zymoresearch.com/) attached to Min-
Elute spin columns (QIAGEN, https://www.
qiagen.com/). Each sample was eluted twice 
with 40 µL of elution bu#er (Bu#er EB, QIA-
GEN) for a "nal volume of 80 µL.

Library Preparation
Mummy DNA extractions and negative con-
trols were shipped to Daicel Arbor Biosciences 
in Minneapolis, Minnesota, USA. Archival 
specimen extracts were prepared as Illumina 
Truseq libraries (Illumina, https://www.illu 
mina.com/) before enrichment with either croc-
odilian derived RNA baits, or with synthetic 
mitobaits derived from genomic sequence 
data. Libraries were created using 25 µL of each 
archival DNA extract in two duplicate Illumina 
library preparations and index-ampli"ed using 
unique P5 and P7 indexing primers (Meyer 
and Kircher 2010) in 40 µL reactions using 10 
µL of each library according to standard pro-
tocols. Ampli"cations were performed in real 
time with a CFX96 Real-time PCR platform 
(BioRad, https://www.bio-rad.com/). Indexed 
libraries were puri"ed with MinElute PCR 
Pur"ciation Kit (QIAGEN, https://www.qia-
gen.com/) to 15 µL TEB.

Enrichment and Re-ampli!cation
Daicel Arbor Biosciences (https://arborbiosci.
com/) used the myBaits MYcroarray kit pro-
tocol for enrichment at 2 µM each per capture 
(Enk et al. 2014). Each capture reaction used 
1  µg each of crocodilian mitobaits and RNA 
baits and 9 µL indexed library, which ranged 
from 0.5 to 5.3 ng/µL as estimated with total 
library quanti"cation. Hybridizations were 
done at 48 °C for 48 hr. Following bead cleanup 
and MinElute puri"cation to 15 µL TEB, 
enriched eluates were ampli"ed for 10 cycles 
and then puri"ed with MinElute to 13 µL TEB. 
!en 9 µL of these re-ampli"ed enriched elu-
ates were used in another round of capture 
using conditions identical to the "rst round 
except incubated at 55 °C for 39 hr. !ese were 

cleaned and then puri"ed with MinElute to 13 
µL TEB, which we then re-ampli"ed for "ve 
cycles. !ese "nal re-ampli"ed doubly enriched 
libraries were then puri"ed to 13 µL TEB.

Sequencing
Enriched myBaits Mito and myBaits Expert 
Whole Genome Enriched (WGE; Daicel Arbor 
Biosciences, https://arborbiosci.com/) libraries 
were combined in pools in a 75-to-25 ratio and 
paired-end sequenced on one lane of an Illu-
mina HiSeq 2500 *owcell (Illumina, https://
www.illumina.com/).

Analytical Methods
Using the python script TQSfastq.py (War-
ren et al. 2007), reads from each sample were 
demultiplexed and trimmed and those with a 
quality (q) value of 20 and a minimum read 
length of 30 were retained. Reads for each sam-
ple were mapped to our bait sequences using 
the BWA-MEM algorithm with default settings 
(Xin et al. 2013; Xu et al. 2021) and read dupli-
cates were identi"ed and marked using the 
tool  MarkDuplicates from Picard Version 1.77 
(http://broadinstitute.github.io/picard/). Using 
BCFtools (Danecek et al. 2021) to call divergent 
sites with the mpileup and call commands, we 
generated a consensus of each sample’s mito-
chondrial genome. !is was followed by indel 
realignment using IndelRealigner from the 
Genome Analysis Toolkit (GATK Version 3.8; 
McKenna et al. 2010). Next, for each sample 
we used the program BCFtools (Version 1.9; Li 
2011) to call divergent sites with the mpileup 
and call commands. With mpileup the maxi-
mum read depth was set to 1,000. For the call 
command, we used the multiallelic-caller with 
ploidy set to haploid. For both commands, we 
included nonvariant sites grouped into blocks 
by minimum depth. We then generated a con-
sensus of each sample’s mitochondrial genome 
incorporating divergent sites. Sites that had 
mapping quality less than 20, a base quality 
less than 20, and a read depth less than 10 were 
masked and nucleotides were replaced with Ns 
in the resulting FASTA "le.

Sequences were aligned to mitochondrial 
reference sequences of Crocodylus niloticus 
(GenBank JF502243.1) and C. suchus (Gen-
Bank JF502244.1; Meredith et al. 2011) using 

https://www.zymoresearch.com
https://www.zymoresearch.com
https://www.qiagen.com
https://www.qiagen.com
https://www.illumina.com
https://www.illumina.com
https://www.bio-rad.com
https://www.qiagen.com
https://www.qiagen.com
https://arborbiosci.com
https://arborbiosci.com
https://arborbiosci.com
https://www.illumina.com
https://www.illumina.com
http://broadinstitute.github.io/picard
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Bowtie2 (Langmead and Salzberg 2012). Con-
sensus sequences of alignments of portions of 
the mitochondrial (mt) genome from GenBank 
(Sayers et al. 2021), the National Center for 
Biotechnology Information (NCBI) nucleotide 
(nt) database, for both Crocodylus niloticus and 
C. suchus (COX1, 12S, and D-loop) were used 
to identify the most likely origin of recovered 
sequences according to sequence identity and 
average coverage depth. Subsequently more 
complete mitochondrial sequences were com-
pared with full mitogenomes of African Croc-
odylus species.

Phylogenetic Analysis
We aligned one nearly complete mitogenome 
from the Yale Peabody Museum samples with 
published mitogenomes of Crocodylus niloticus 
and C. suchus (Hekkala et al. 2020) using Clustal 
Omega (Larkin et al. 2007). A$er alignment, we 
trimmed both ends of the sequence to match 
the sequence length of the newly recovered 
genome and used RAxML Version 8.2.12 (Sta-
matakis 2006, 2014) to generate 1,000 bootstrap 
replicate phylogenies to assess the phylogenetic 
relationship of the mummy sample to published 
contemporary and archival crocodile samples.

Results

Carbon Dating
!e conventional radiocarbon dates for the two 
specimens are YPM ANT 006435.004, 2070 ± 
30 BP (Beta-602771; tissue; δ13C: –20.2‰), and 
YPM ANT 006435.007, 2010 ± 30 BP (Beta-
602772; tissue; δ13C: –17.2‰).

Genomic Results
Of the nine Yale Peabody Museum croco-
dile mummies sampled (two adults and seven 
hatchlings), only four mummies (44%) yielded 
results of high enough quality to de"nitively 
assign the mummy to one species or the other. 
!e quality of the data varied greatly across 
those four samples, with most samples yielding 
only small fragments from diagnostic mito-
chondrial gene regions (Hekkala et al. 2011). 
Because of low endogenous content, we were 
unable to recover nuclear data from any WGE 
enriched sample libraries. BLAST analysis 
(NCBI n.d.) of COX1, 12S, and D-loop regions 

showed that in all cases, the closest database hits 
by percent identity to the consensus sequences 
derived from Crocodylus niloticus. Despite 
the limitations of the data, all four hatchlings’ 
mummies were found to de"nitively match  
C. niloticus mitochondrial sequences to the 
exclusion of C. suchus. Of these, one specimen 
(YPM ANT 006435.007) yielded a nearly com-
plete C. niloticus mitogenome with 99.9% iden-
tity to the reference (GenBank JF502243.1).

To better understand phylogeographic 
variation within the Nile crocodile’s distribu-
tion we used RaxML analysis of an aligned 
set of historical and contemporary Crocodylus 
niloticus mitogenomes to examine the phylo-
geographic position of the recovered haplotype 
of specimen YPM ANT 006435.007 relative to 
haplotypes representing existing populations 
of C. niloticus throughout Africa (Meredith 
et al. 2011; Hekkala et al. 2020). Our phylo-
geographic analysis places the ancient sample 
haplotype within the same subclade as extant 
representatives of C. niloticus from northern 
Lake Nasser (Figure 2). 

Discussion

Prior to molecular work on crocodiles in the 
Nile River basin, it had been assumed that all 
Egyptian crocodiles, extant or mummi"ed, 
were Crocodylus niloticus, the only crocodile 
species identi"ed in the Nile today (Shirley and 
Salem 2008). Molecular results for other croc-
odile mummies previously con"rmed Geo#roy 
Saint-Hilaire’s (1807) identi"cation of C. suchus 
as distinct (Hekkala et al. 2011) and supported 
the idea that the ancient Egyptians consistently 
and possibly deliberately chose C. suchus to 
be venerated (Hekkala et al. 2020). !e iden-
ti"cation of C. niloticus in the Yale Peabody 
Museum holdings is the "rst genetic identi"ca-
tion of true Nile crocodiles (C. niloticus) from 
ancient Egyptian mummi"ed animal remains. 
!e identi"cation of C. niloticus mummies sug-
gests that we must once again revisit previous 
interpretations of ancient Egyptian vernacular 
taxonomies and funerary practices with respect 
to crocodiles. Further, this "nding a0rms the 
historical, social, and biological value of natu-
ral history museum holdings in contemporary 
research.
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Our dates for the two molecularly identi"ed 
Crocodylus niloticus mummies, 2070 ± 30 and 
2010 ± 30 BP (Beta Analytic), indicate that they 
were harvested during the height of the period 
of the crocodile cults (c. 600 BCE–300 CE). 
Although it is possible that Egyptians were less 
adept at identifying two distinct crocodilian taxa 
than previously hypothesized (Hekkala et al. 
2011, 2020), it is also possible that shi$ing access 
to a particular species for a particular practice 
may have driven these cultural choices. It may 
be that, as increasing numbers of C. suchus were 
harvested to make mummies, the population of 
that species declined and the ancient Egyptians 
then switched opportunistically to C. niloticus, 
at least for votive o#erings, targeting them when 
young and easier to hunt and collect.

Alternatively, our identi"cation of the "rst 
authenticated Crocodylus niloticus mummies 

may indicate that, while as an adult C. suchus 
would hypothetically be less of a danger to its 
carers and devotees in the context of temples 
dedicated to Sobek (Behangana et al. 2020; 
Pooley et al. 2020), C. niloticus hatchlings 
would have been easy to handle and plentiful 
(Pooley 1969) and thus could be used as the 
raw material primarily for votive mummies 
that were generally sacri"ced when young and 
small (Richardin et al. 2017). However, the 
molecular identi"cation of additional mum-
mies to con"rm which crocodile species was 
used for each type of mummi"cation and the 
associated 14C dates for these mummies over 
the breadth of the period of the crocodile cults 
would greatly improve our understanding of 
these cultural and ecological trajectories.

While our new evidence con"rms that 
both species were present in ancient Egyptian 

Figure 2. Maximum likelihood (RAxML) cladogram representing the phylogenetic placement of the 
 mitochondrial genome recovered from a hatchling crocodile mummy specimen (YPM ANT 006435.007) 
from the Barringer Egyptian Collection, Division of Anthropology, Yale Peabody Museum of Natural His-
tory. Branch values are Maximum Likelihood bootstrap support. !e results con"rm the mummy haplotype 
as representing Crocodylus niloticus and a placement within a subclade (bounded by yellow box) of modern 
sequences recovered for crocodile samples from Lake Nasser, Egypt. Other sample sources include museum 
specimens from AMNH (American Museum of Natural History, New York) and modern samples Ank1 
and  Ank14 (Ankarana National Park, Madagascar), Mad352 (LacBemaba, Madagascar), Tana3 (Tana River, 
Kenya), and NKRP03 (!e Gambia)(Hekkala et al. 2020).
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ritual practices, the speci"c timing and driv-
er(s) of the decline and extirpation of Croco-
dylus suchus from the Nile during the recent 
past remains unclear. Despite dramatic climate 
shi$s in northern Africa (Jolly et al. 1998; 
Drake et al. 2011; Vale and Brito 2015; Liz et al. 
2021) and the Egyptian Nile (Zalat and Vildary 
2007; Pennington et al. 2017; Beck et al. 2019) 
during the Holocene, distribution models for 
both crocodile species suggest that some degree 
of suitable habitat would have remained in the 
Nile River drainage (Cunningham 2015). More 
broadly, these models suggest that climatic fac-
tors may have played a more important role in 
distribution for C. suchus than for C. niloticus 
over time (Cunningham 2015), and thus the 
continued presence of the latter species in the 
Nile River system today.

!e combination of climatic and anthro-
pogenic stressors, including changing agricul-
tural practices, during the past two millennia 
may have driven more recent patterns of wet-
land desiccation (Touzeau, Lécuyer, and Amiot 
2017; Huebner 2020). Studies of other animal 
mummy species have suggested that a shi$ in 
available wetland habitat or moisture along 
the Nile River may have resulted in the over-
all decline in Egyptian biodiversity over time. 
Detailed examinations of both avian (ibis; 
Wasef et al. 2019) and insectivoran (shrew; 
Woodman 2015; Woodman and Ikram 2021) 
mummies indicate that species once present 
in ancient Egypt have either shi$ed in their 
present distributions or are simply no longer 
there.

Although we were unable to recover data 
su0cient for genotyping individuals and thus to 
test for relatedness between mummies speci"-
cally, it is notable that the Yale Peabody Museum 
hatchling specimens for which data were recov-
ered were all Crocodylus niloticus and seem to 
be of the same stage of development, suggesting 
they may represent one clutch of eggs. In each of 
the two sets of associated hatchlings analyzed so 
far (Hekkala et al. 2011 and the present work) 
only a single species has been found, perhaps 
indicating that, in each case, the source popu-
lation contained only one species, whether har-
vested directly from the wild (Porcier et al. 2019) 
or from a controlled context.

!e Egyptian crocodile-headed god Sobek 
is always identi"ed as a male and yet in nature, 
with the exception of the Indian gharial (Lang 
and Kumar 2013) and the caiman (Murray, 
Crother, and Doody 2020), a relative of the 
American alligator, among crocodilians, it 
is primarily females that have been observed 
to carry and protect hatchlings that have 
emerged from their nests (Garrick and Lang 
1977; Pooley 1977; Alcala, Ross, and Alcala 
1987; Brazaitis and Watanabe 2011; Chabert et 
al. 2015). !erefore, the attachment of hatch-
ling crocodiles to the back (or in some cases 
placement in the mouth; Ikram 2005; Richar-
din et al. 2017) of adult mummies is intrigu-
ing in terms of its cultural signi"cance. !e 
presence of hatchlings associated with a male 
animal are simply symbolic of Sobek’s fertility 
and fecundity. Although there is no genomic 
data yet available for either of the larger indi-
viduals to determine relatedness, it would be 
helpful to know whether they represent males 
or females. Because crocodiles exhibit tem-
perature dependent sex determination, they 
cannot yet be sexed using molecular meth-
ods. However, a computed tomography exam-
ination of the large mummies might help to 
determine whether these were male or female 
and thus give insight into the meaning of the 
association.

Human cultural practices have long 
affected animal populations either directly 
via exploitation for religious, nutritional, or 
agricultural use, or indirectly through modi-
fications of the landscapes and habitats where 
species are found (Rubin et al. 2012; Boivin 
et al. 2016; MacHugh, Larson, and Orlando 
2017; Merheb et al. 2019). The study of bioar-
chaeological collections can help us to better 
understand the ecological and cultural con-
texts of animal exploitation (Rowe et al. 2011; 
Drew, Philipp, and Westneat 2013; Fumagalli 
et al. 2013; Ottoni et al. 2013; Staats et al. 
2013; Fordham et al. 2014), and analyses of 
additional animal mummies from cultural 
heritage collections (Kurushima et al. 2012; 
Wasef et al. 2019) will continue to clarify our 
understanding of their meaning, the ancient 
Egyptians’ recognition of different species, 
and the response of those species to changes 
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in the environment, whether of anthropo-
genic or natural origin.
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