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1  |  INTRODUC TION

Scientists estimate 37% of biodiversity will be lost by the year 
2100 if no further conservation measures are implemented, risk-
ing necessary ecosystem functions like the cycling of clean air 
and water, buffering the spread of infectious disease, and provid-
ing cultural and spiritual services (Ceballos et al., 2017; Harrison 
et al., 2014; Isbell et al., 2022). And because it is permanent, the loss 
of species is among the most pressing environmental issues today 

(Ceballos et al., 2020). Unparalleled rates of global biodiversity loss 
are attributed to detrimental human impacts such as logging, pol-
lution, and climate change among others (Harfoot et al., 2021). The 
Convention on Biological Diversity drafts new targets to reduce the 
rate of extinction to under 20 species across all major groups (CBD, 
2021), an action which is primarily evaluated in the context of bio-
diversity inventories. Such inventories are critical in monitoring and 
upholding these commitments by providing baseline data and mea-
suring their impacts over time (Cristescu & Hebert, 2018).
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Abstract
Deforestation, exploitation, and other drivers of biodiversity loss in Madagascar 
leave its highly endangered and predominantly endemic wildlife at risk of extinc-
tion. Decreasing biodiversity threatens to compromise ecosystem functions and vital 
services provided to people. New, economical, and diverse methods of biodiversity 
monitoring can help to establish reliable baseline and long- term records of species 
richness. Metabarcoding with invertebrate- derived DNA (iDNA) has emerged as a 
promising new biosurveillance tool. An unexpected wet forest fragment tucked in the 
dry cliffs of Madagascar's southcentral plateau, the Ivohibory Protected Area (IPA), 
hosts a unique mosaic of species diversity, featuring both dry and wet forest species. 
Recently elevated to protected status, the IPA has been surveyed for flora and fauna 
with a range of inventory methods over the course of three years and six expedi-
tions (2016, 2017, & 2019). We collected 1451 leeches over 12 days from the IPA to 
supplement known species richness and to compare results against current records. 
With iDNA, we pooled tissues, isolated, and amplified bloodmeal DNA with five sets 
of primers. We detected 20 species of which four are species of frogs previously un-
detected and three of which are previously unknown to exist in this region. iDNA 
surveys have the capacity to provide complementary data to traditional surveying 
methods like camera traps, line transects, and bioacoustic methods.
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The advent of environmental DNA (eDNA) and related metabar-
coding methods have launched new possibilities for biodiversity 
monitoring. The bloodmeals of blood- feeding invertebrates have 
been targeted as sources of vertebrate host DNA for biodiversity 
surveys (Calvignac- Spencer et al., 2013; Gogarten et al., 2020; 
Kocher et al., 2017; Rodgers et al., 2017) in what is a subcategory 
of eDNA known as invertebrate- derived DNA (iDNA). Leeches have 
emerged as appealing iDNA options for their site fidelity (Tessler 
et al., 2018) slow rate of bloodmeal digestion (Schnell et al., 2012), 
and distribution across the Indo- Pacific, a region home to highly 
threatened ecosystems (Allan et al., 2019; Borda & Siddall, 2011; 
Brooks et al., 2002; Myers et al., 2000). Leech- derived iDNA has 
become increasingly implemented to inventory biodiversity (Drink-
water, Schnell, et al., 2019; Ji et al., 2022; Lynggaard, Oceguera- 
Figueroa, et al., 2022; Schnell et al., 2018) showing promise for its 
ability to provide complementary data when used alongside conven-
tional survey methods like camera traps and field transects (Abrams 
et al., 2019; Weiskopf et al., 2018). And when paired with several 
biodiversity detection methods and species occupancy models, 
iDNA surveys have helped prioritize the protection of remote, de-
graded habitats (Tilker et al., 2020).

Madagascar's biodiversity is among the most imperiled in the 
world, where all taxa are highly susceptible to extinction due to human 
impacts (Harfoot et al., 2021). The rate of deforestation in Mada-
gascar has more than doubled since 2010 (Vieilledent et al., 2018), 
making it simultaneously a hotspot of biodiversity and deforesta-
tion, globally (Harper et al., 2007; Hoang & Kanemoto, 2021; Myers 
et al., 2000). Furthermore, the loss of presently threatened Mala-
gasy mammals is predicted to inflict more severe long- term impacts 
than all previous extinctions since humans arrived at the island 
(Michielsen et al., 2022), making conservation of extant taxa of high-
est conservation priority.

In 2016, a team from Stony Brook University and Centre ValBio 
research station was invited by the Malagasy community to survey 
a fragment of humid forest in the southcentral region previously 
unknown to researchers. Protected from routine anthropogenic 
burning by cliffs, the fragment has persisted in an otherwise hostile 
matrix (Frappier- Brinton & Lehman, 2022; Humbert, 1927). Prelim-
inary surveys quickly revealed an atypical species assemblage, fea-
turing several dry forest species known to exist exclusively in the 
western and southernmost regions (Machan, 2022; Otero Jimenez 
et al., 2023; P. Wright, personal communication). Subsequent inven-
tories surveyed the IPA with a variety of traditional sampling meth-
ods: diurnal and nocturnal transect surveys, baited camera traps, 
mist nets, baited Sherman traps, audio surveys, and point counts for 
the detection of mammals, reptiles, amphibians, and birds. However, 
the biodiversity of the IPA has yet to be evaluated in the context of 
iDNA, which have been shown to detect taxa distinct from those 
detected by traditional means and which have been used to survey 
other wet forests in Madagascar (Fahmy et al., 2019). Comprehen-
sive biodiversity inventories are needed to discern the species com-
position of this forest, which has recently been protected as a result 
of those preliminary inventories and is now known as the Ivohiboro 

Protected Area (IPA). These inventories will improve our under-
standing of species responses to habitat loss and fragmentation (Ep-
pley et al., 2020; Fahrig, 2017).

The extent of historical forest cover in Madagascar remains de-
bated and some hold the island was once predominantly covered 
with rainforest (Harper et al., 2007), while others suggest pockets 
of humid forest have always existed among the grasslands of the 
central highland plateau (Dewar & Richard, 2007; Solofondranohatra 
et al., 2018). Detailed records of species richness will help elucidate 
the origins of the IPA and thus its role as either relict forest or refuge 
from frequent fire. Opportunities for research in IPA abound and 
will add context to the debate regarding degree of deforestation and 
historical forest cover across Madagascar.

Here, we compare iDNA detections against a thorough biodiver-
sity survey of the IPA (Otero Jimenez et al., 2023) using pooled leech 
tissues from 1451 leeches, and a set of five primers optimized for the 
detection of vertebrates (vertebrate 12S, mammalian 16S, amphib-
ian and osteichthid 16S, avian ND2, and reptilian COI). We assess the 
efficacy of sample pooling strategies, and we also compare our iDNA 
results to those conducted in neighboring Ranomafana National 
Park (Fahmy et al., 2019) and the forests of Andasibe to determine 
whether those fauna contribute taxonomically to the richness of this 
newly protected, unusual, and understudied site.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

This study was conducted in the Ivohiboro Protected Area (IPA) 
located in the Ihorombe region of south- central Madagascar 
(Figure 1). The IPA stretches 3300 ha, of which 874 ha are classified 
as humid forest, ranging in elevation from 900to 1400 m and 
situated approximately 26 km southwest of Pic d'Ivohibe Special 
Reserve, the nearest protected area. It is surrounded by human- 
caused savannah and protected from annual burning by cliffs 
(Figure 2). The site is composed of two parcels, Ivohibory to the 
north and Analamary to the south. Four prior scientific expeditions 
to Ivohibory have been organized where a trail system has been 
established yet not heavily trafficked. Analamary is approximately 
two- thirds larger than Ivohibory and its diversity lesser known. 
This study represents the first scientific expedition to Analamary. 
The IPA does not receive tourists and to this point has been 
visited primarily by researchers and sporadically by the Malagasy 
community for cattle grazing.

Leeches were also collected from Madagascar's northern wet 
forests from Andasibe's Analamazoatra Reserve, Torotorofotsy 
Ramsar Site, and Andasibe- Mantadia National Park. These leeches 
were collected to assess whether species from Andasibe contribute 
taxonomically to the richness of IPA and also to test pooling strat-
egies for IPA samples. The Andasibe region experiences continued 
logging and much of the rainforest is secondary (Dolch et al., 2015). 
We also used leeches collected from Ranomafana National Park (as 
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F I G U R E  1  Map of study area and collection sites.
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analyzed in Fahmy et al., 2019 and Fahmy et al., 2020) as a compar-
ative site to IPA.

2.2  |  Sample collection

A total of 1451 leeches (Chtonobdella spp.) were collected from 
IPA in November 2019. From Ivohibory, the northern parcel, 950 
leeches were collected along 200 m transects on forest trails. 
These included along streams and at the highest elevations 
(~1100 m) of the forest. From Analamary, the southern parcel, 
501 leeches were collected along 200 m transects both parallel 
and perpendicular to the primary stream in the forest. From the 
forests of Andasibe, where leeches were scarce, we collected 
only 66 leeches. Leeches were collected opportunistically along 
rivers and streams, where haemadipsids naturally congregate in 
times of drought (Drinkwater, Schnell, et al., 2019; Nesemann & 

Sharma, 2001). All leeches were collected as they approached 
researchers as part of their natural feeding and foraging behav-
ior. Leeches observed to have latched or fed on humans were not 
collected. From Ranomafana National Park (RNP), leeches were 
collected along 200 m transects perpendicular to hiking trails (see 
Fahmy et al., 2019).

2.3  |  Sample processing

In the field, individual leeches were sorted into groups by morpho-
type. We reported five morphotypes from Ivohibory and four from 
Analamary. All leeches were exported in line with Access and Benefit 
Sharing procedures for Madagascar as Party of the Nagoya Protocol 
(Permit numbers 290/19/MEDD/SG/DGEF/DGRNE, 033 N- EA02/
MG20). All laboratory protocols were carried out at the Institute for 
Comparative Genomics at the American Museum of Natural History. 

F I G U R E  2  (a and b) Landscape of the 
Ivohibory Protected Area and surrounding 
grassland. (c) Forest interior within the 
Analamary parcel. (d) Terrestrial leeches 
(Chtonobdella spp.) collected by lead 
author. All photos credited to lead author 
(name to be inserted post peer review).
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To prevent contamination, sample processing and DNA isolation 
were carried out in a PCR- free space, and we maintained a unidirec-
tional workflow from pre- PCR to post PCR. All laboratory space was 
free from prior handling of fresh tissues of Malagasy fauna. All labo-
ratory equipment was UV sterilized and all surfaces were sterilized 
with DNAway (ThermoFisher) and 70% ethanol between batches of 
pooled samples. We used filter pipette tips to limit the transfer of 
DNA aerosols across samples. From each leech, with a sterile, single- 
use blade, the caudal sucker was removed, and a bisection of the 
posterior third of the crop region was dissected for DNA isolation. 
A subsample of each morphotype was selected for COI sequenc-
ing to elucidate leech species identity prior to downstream analy-
ses (Table S1). All laboratory procedures were performed by a single 
individual.

2.4  |  DNA isolation and amplification

All 1451 leeches were dissected and organized into pools based 
first on leech species and then by collection locality. For more 
detail on pooling strategy, see Supplementary Information. 
We established 64 pools, each containing tissues from 6 to 38 
(x̄  = 20) leeches and six negative extraction and PCR controls for 
a total of 70 pools. Each pool represents a single leech species 
and collection locality. Samples were agitated with 0.5 mm ce-
ramic beads in a Fisherbrand Bead Mill 24 at 1.95 m/s for 1 min 
(Williams et al., 2020). 200 μL of liquid was removed from the 
agitated samples for overnight incubation with 720 μL ATL buffer 
and 80 μL proteinase K. DNA isolation was performed using Qia-
gen's DNeasy Blood and Tissue Kits and deviations from standard 
protocol included: Buffer AL and AW1 centrifugations at 5433 g 
instead of 4293 g, and Buffer AE incubation on the column mem-
brane for 20 min instead of 1 min for the final elution. All other 
steps followed standard protocols.

Pools served as template for amplification of loci corresponding 
to each of vertebrate 12S rDNA (Poinar et al., 1998), mammal 16S 
rDNA (Caragiulo et al., 2014), amphibian and osteichthyid 16S rDNA 
(Vences et al., 2016), avian ND2 (Payne & Sorenson, 2007), and rep-
tile and amphibian COI (Nagy et al., 2012) designed for the identifi-
cation of respective taxonomic groups (see Fahmy et al., 2020). Each 
pool represents a single leech species and collection locality. Each 
locus was amplified twice with 0.5 μL of each primer (10 μM), 22 μL 
of water, and 2 μL of pooled tissue DNA template for each of two 
versions of each primer pair using Amersham Hot Start Mix Ready- 
To- Go PCR beads (Cytiva) to account for varied amplification suc-
cess based on primer pairing (Nichols et al., 2018). Each primer set 
was designed in two versions, one with a forward Illumina adapter 
(ACACT CTT TCC CTA CAC GAC GCT CTT CCGATCT) and one with the 
reverse Illumina adapter (GACTG GAG TTC AGA CGT GTG CTC TTC-
CGATCT). For each PCR reaction and for each locus, one reaction 
used the forward Illumina adaptor in combination with a reverse Il-
lumina adaptor, and another with the forward primer with a reverse 

Illumina adaptor in combination with the reverse primer with a for-
ward Illumina adaptor. Doing so corrects for potential read- quality 
bias in Illumina known from R1 and R2 paired- end sequencing (Tan 
et al., 2019; Williams et al., 2020). Thermocycling profiles were as 
follows: 94°C for 1 min, 40 cycles of 94°C for 15 s, annealing at 54°C 
(but 50°C for ND2 and COI) for 30 s, 70°C for 45 s, with a final cycle 
of 72°C for 2 min. Duplicate PCRs were combined by correspond-
ing pool, purified using a 2:1 carboxylated bead- to- amplicon ratio 
of Agencourt AMPure (Beckman Coulter) and submitted for paired- 
end 250- bp sequencing on an Illumina MiSeq platform at GENEWIZ 
from Azenta Life Sciences, Inc. We targeted between 50,000 and 
100,000 reads per sample as is standard (Bruce et al., 2021). We 
used the same set of primers and followed the same laboratory pro-
tocols as Fahmy et al., 2020. Raw sequencing reads are deposited in 
DRYAD (doi:10.5061/dryad.sxksn038h).

2.5  |  Leech relationships

In the field, leeches were sorted by morphotype and grouped into 
pools first based on leech species then by collection locality. Of 
the 1451 leeches collected, a subsample of 51 leeches representing 
each morphotype was selected for amplification and sequencing of 
cytochrome c oxidase subunit 1 (COI), used to delimit leech species 
(Borda et al., 2008). These individual leeches were not included 
in iDNA analysis. We amplified COI with 500 μM of LCO1490 
5′- GGTCAACAAATCAT AAAGATATTGG- 3′, 500 μM of HHCO1 
5′- GCTG CAAAA ATR GCA AAT ACTGC- 3′ (Folmer et al., 1994), 
22 μL water, 2 μL template DNA, and Amersham Hot Start Mix 
Ready- To- Go PCR beads (Cytiva). The thermocycler profile was 
94°C for 1 min, 35 cycles of 94°C for 45 s, 46°C for 30s, 68°C for 
1 min, and a final cycle of 72°C for 7 min (Borda et al., 2008). PCR 
products were purified with a 2:1 ratio of Agencourt AMPure 
(Beckman Coulter) to amplified product. Purified amplicons 
were cycle sequenced and ethanol precipitated, and sequences 
were determined using an ABI 3730xl DNA Analyzer (Applied 
Biosystems). Resulting sequences had primers trimmed, were 
reconciled, and were manually edited for quality using CodonCode 
Aligner (CodonCode Corporation).

IPA leeches were analyzed phylogenetically in the context of can-
didate leeches endemic to Madagascar: Chtonobdella meyeri, C. morsi-
tans, C. vagans, C. fallax, C. niarchosorum, and C. mangevoensis (Fahmy, 
2023). We also included C. seychellensis as it constitutes a clade 
with all known Malagasy leeches (Tessler et al., 2016). Haemadipsa 
picta (Lai et al., 2011), H. japonica (Morishima & Aizawa, 2019), C. 
tanae, and C. bilineata served as outgroups. Sequences were aligned 
with MUSCLE (Edgar, 2004) and models for nucleotide evolution 
tested with JMODELTEST 2.1.4 (Darriba et al., 2012), selecting the 
TVM + I + G model. Maximum likelihood analysis was conducted with 
IQtree (Hoang et al., 2018; Minh et al., 2020; Nguyen et al., 2015; 
Trifinopoulos et al., 2016) on the CIPRES Scientific Gateway portal 
(Miller et al., 2011) with 1000 bootstrap replicates.
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2.6  |  Bioinformatics and taxonomic assignments

Raw Illumina reads had primers removed and were trimmed for qual-
ity (phred score 33, length at least 100 bp) with Trimmomatic (v. 
0.38) (Bolger et al., 2014). Trimmed sequences representing nested 
substrings were dereplicated and clustered into operational taxo-
nomic units (OTUs) at 98% sequence similarity with USEARCH v.5 
(Edgar, 2010). OTUs were first queried with basic local alignment 
tool (BLAST; NCBI 2021) against a curated database of candidate 
whole mitochondrial genomes to filter non- vertebrate DNA con-
tamination. Contaminants were discarded and remaining OTUs post 
filtering were then queried against NCBI's nr/nt databases on Gen-
Bank with the BLASTn function using high performance computer 
cluster (American Museum of Natural History). Parameters were set 
to retain only sequences with an e- value of at least e- 30 and only 
the top 20 hits.

Taxonomic identification of hosts to the species level required 
a percent identity (PID) of at least 98%, query coverage of at least 
80%, and a minimum 3% difference between the top BLASTn hit 
and the next best taxon. Remaining OTUs were evaluated at fam-
ily level, requiring a conservative PID of 98, query coverage of at 
least 80%, and that the top two BLASTn hits belong to the same 
family. All OTUs for which the top 20 hits represent the same taxon 
were re- blasted for the top 100 hits. A determination to the species 
level was made if the top hit was assigned with at least 98PID and at 
least a 3% gap. If all 100 hits return a single taxon, we represent this 
taxon in our species- level assignments (Table S2). All OTUs which 
did not meet these criteria were discarded. All those that were as-
signed to Homo sapiens were also discarded. For each pool, for those 
assignments with multiple sequences, taxa were collapsed to reflect 
presence/absence.

2.7  |  Statistical analysis

All inventorying methods are imperfect. Successful biodiversity 
monitoring with iDNA rests on a series of probabilities: that a leech 
fed on a host, that that leech was collected by the researcher, that 
the DNA retained in the leech is amplifiable, and that the host's DNA 
is sufficiently represented in the database (Cameron et al., 2007; 
Schnell et al., 2015). Thus, we expect iDNA to underestimate spe-
cies richness and thereby use Chao2 estimators to measure alpha 
diversity as this metric accounts for potential under sampling (Hsieh 
et al., 2016).

Standard diversity indices such as Shannon entropy and the 
Simpson index do not proportionately reflect changes in species 
richness (Alberdi & Gilbert, 2019). In the context of iDNA studies, 
the Hill number statistical framework is advantageous to traditional 
indices of diversity because it simplifies the indices into more ap-
plicable equally abundant OTUs for metabarcoding (Alberdi & Gil-
bert, 2019; Hill, 1973).

Within the Hill number framework, changing q, the scaling 
parameter, adjusts the sensitivity to rare and abundant OTUs. 

Commonly used values, q = 0, q = 1, and q = 2 correspond to species 
richness, the exponential of the Shannon index, and inverse of the 
Simpson index, respectively, and have been used in iDNA studies to 
measure the accumulation of diversity at sampling localities (Drink-
water et al., 2021).

We generated species accumulation curves for IPA biodiversity 
using the iNEXT package in R (Hsieh et al., 2016). See supplementary 
information for rarefaction curves representing all three sampled 
localities. We conducted a chi- squared test to discern host prefer-
ences across vertebrate taxonomic classes between leech species.

2.8  |  Comparative data

We compare iDNA results to biodiversity inventory data from Stony 
Brook University's Centre ValBio (CVB) research station team. The 
CVB team conducted their inventory over the course of 3 years 
(2016, 2017, 2019) for a total of six expeditions to IPA, each between 
10 and 20 days, on average with a team of 12 people. The CVB team 
used the following methods to survey vertebrate fauna: diurnal and 
nocturnal transects, baited Sherman traps, baited camera traps, bio-
acoustics surveys, and mist nets. For exhaustive results of their ef-
forts, see Otero Jimenez et al. (2023).

3  |  RESULTS

3.1  |  Ivohiboro protected area

We sequenced ~5 million reads, ranging from 18,530 to 327,815 
reads per pool, on average of 77,101 reads (± 4556 SE). Reads were 
filtered for size (>100 bp), dereplicated, filtered for vertebrate DNA, 
and grouped into 62,582 unique OTUs of at least 98% similarity. 
These clusters yielded 9908 hits to Homo sapiens and were thus 
discarded. Negative controls were sequenced and revealed low 
quantities of domestic (cow, pig, dog, and chicken) and wild species. 
The majority of OTUs from our negative controls (85%) were hits 
to Homo sapiens. For each taxon detected in our negative controls, 
this number of reads (on average 5.6, ±1.18 SE) was removed from 
co- processed, field- collected samples. While domestic species often 
appear as laboratory contamination, they are extant in our survey 
area and have been documented by the CVB team; if they pass our 
above filtering criteria, we retain them among our species- level iden-
tifications. We examine our data both with and without domestic 
species. For all data integrating both wild and domestic species in 
our analyses, see Figures S2, S3.

We report a total of 20 OTUs assigned to the species- level from 
our IPA samples with a mean of 28 OTUs per sample (±12 SE), be-
longing to nine orders and 13 families. These represent seven am-
phibians, three birds, one fish, and ten mammals (Table S2). Among 
iDNA determinations from IPA, mammals contribute the greatest 
to both species richness (Figure 3) and relative number of detec-
tions across pools (57%), followed by birds (19%), amphibians (20%), 
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    |  1563FAHMY et al.

reptiles (1%) and fish (3%) (Figure S4). We report an additional six 
unique families not encompassed in our species level determina-
tions, for a total of 21 family- level hits.

4647 reads returned results for which there is only one taxon 
in the top 20 hits from BLASTn. These are represented by Boophis 
obscurus, Bos taurus, Canis lupus, Gallus gallus, Mantidactylus bet-
sileanus, Mus musculus, Porcula salvinia, Rattus rattus, and Sus scrofa. 

Five taxa represented species which were not already detected, and 
for which passed our determination criteria: Boophis obscura, Mus 
musculus, Gallus gallus, and Porcula salvinia. Clusters for each taxon 
for which PID was at least 98% and sequence length was at least 
80% of the target locus were re- blasted for the top 100 hits. The 
next best taxon after Boophis obscurus is not sufficiently differ-
ent (less than 3% difference between next best taxon) than other 

F I G U R E  3  Classification of IPA taxa. N/A indicates a determination at that taxonomic level could not be made. Credit to Roberto Díaz 
Sibaja for the silhouette representing a lemur and to Karina Garcia for silhouette representing a bird. * = Domestic species.
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congenerics and we exclude B. obscurus from our species- level de-
terminations. Porcula salvinia is not geographically represented in 
Madagascar and that determination was discarded. For Mus muscu-
lus and Gallus gallus, all 100 hits failed to return alternative hits and 
a species- level determination was made as observed in Table S2. All 
remaining reads, which were not classified to the species or family 
levels, were discarded.

DNA sequencing of the diagnostic COI region of a subsample of 
all leech morphotypes revealed a putative new clade unique to IPA 
(Figure 6). Based on our phylogenetic topology, we infer the major-
ity of leeches analyzed for iDNA belong to Chtonobdella fallax. Our 
chi- squared test revealed no significant relationship between leech 
species and host class (χ2 = 2.15, p = 0.54, α = 0.05).

3.2  |  iDNA versus CVB

Over the course of six expeditions spanning approximately 90 days 
total, and with teams of on average 12 people, CVB's research 
team detected 110 vertebrate species (including domestics) be-
longing to 57 families in the IPA. With iDNA, in 12 days and a team 
of two people, we detected 20 species, of which three are domes-
tic. iDNA surveys detected four species which the CVB team did 
not: Mantidactylus ulcersosus, Boophis periegetes, Plethodontohyla 
inguinalis, and Mantidactylus femoralis. iDNA surveys increased 
species- level detections by 3.63%. We identified 21 total fami-
lies, including those for which species- level determinations could 
not be made. Of the 57 families identified by the CVB team, 18 
were also detected by iDNA (Figure 4a), effectively 36% of known 
family- level richness in 78 fewer days and 20% of the people re-
quired. The CVB team detected more bird and reptile species than 
did iDNA (Figure 4b). Both iDNA and CVB surveys reveal that the 
IPA is predominately populated by small mammals. Among mam-
mal results, our iDNA survey failed to detect bats (Chiroptera) and 
canopy dwelling species such as Cryptoprocta ferox, Madagascar's 
endemic carnivore. Both are documented by the CVB team. At 
the family- level, iDNA increased number of family detections by 
0.5%. All three species accumulation curves representing IPA gen-
erated with iNEXT for q = 0, q = 1, and q = 2 reached an asymptote 
(Figure 5).

F I G U R E  4  Family- level detections comparing iDNA and 
Centre ValBio (CVB) results. The CVB team carried out a series 
of inventories with various techniques, including camera traps, 
bioacoustics surveys, and baited Sherman traps over the course 
of three years and six expeditions. The results of their efforts are 
shown here. (a) Number of families in common as detected by both 
iDNA and CVB's surveys of the IPA. Overlap of family detections 
from IPA with iDNA and surveys deployed by Centre ValBio. (b) 
Proportion of families categorized by taxonomic class detected 
with iDNA or by CVB's surveys. (c) Family- level resolution of shared 
and distinct detections of CVB and iDNA surveys. * = Domestic 
species.
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3.3  |  IPA versus RNP versus ANDB

Pools from Andasibe returned three species- level hits and 10 
family- level identifications (Figure 6, Table S2). Aside from Felis 
catus, species detected with iDNA from Andasibe were not rep-
resented in IPA (Table S2). At family- level resolution, RNP and IPA 

share Mantellidae, Microhylidae, Accipitridae, Brachypteraciidae, 
Columbidae, Muscicapidae, Phasianidae, Bovidae, Eupleridae, Fe-
lidae, Lemuridae, Muridae, Suidae, Tenrecidae and Scincidae. All 
three sites share common diversity at the family level: Phasiani-
dae, Bovidae, Felidae, Lemuridae, Muridae, Suidae, and Tenreci-
dae (Figure 6).

F I G U R E  5  Sample- size- based 
rarefaction and extrapolation sampling 
curves. Incidence- based. Scaling 
parameters (q) for Hill number framework 
shown above each curve. Q = 0 
corresponds to species richness, q = 1 to 
the exponential of the Shannon index, 
and q = 2 to the inverse of the Simpson 
index. Endpoint setting: 2902, Number of 
knots = 100, number of bootstraps = 100, 
confidence interval = 0.95. Where 
number of individuals is equal to number 
of leeches analyzed. Species diversity 
reflects family- level diversity. Domestic 
species not included in this analysis.
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F I G U R E  6  Family- level classifications of iDNA results from Ranomafana National Park (RNP) (Fahmy et al., 2020), the Ivohibory Protected 
Area (IPA) and Andasibe protected areas (ANDB). * = Domestic species. Cervidae represents a family detected in IPA but which is not known 
to exist in Madagascar.
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4  |  DISCUSSION

Our iDNA survey increases species detections in the IPA when used 
as a complementary technique to more traditional methods such 
as camera traps, baited traps and line transect surveys. By pooling 
leech tissues prior to DNA isolation and amplifying host DNA with 
five primer sets, we reveal 20 species- level determinations and 21 
taxonomic families. All mutual iDNA species- level determinations 
are corroborated by CVB's survey. Birds and mammals constitute the 
most diverse groups detected with iDNA (Figure 3), whereas birds 
and reptiles represent CVB's most diverse groups (Figure 4b, c). Ex-
cluding domestic species, we identify ambiguous taxa belonging to 
the following families, Esocidae, Soricidae, and Scincidae, detected 
exclusively with iDNA and all of which are small, ground dwelling 
or aquatic species which are often well camouflaged and difficult 
to detect with cameras, even positioned at ground level (Abrams 
et al., 2019; Tilker et al., 2019; Weiskopf et al., 2018) (Figure 4c).

We report four amphibian species exclusively detected with 
iDNA, resulting in an increase of 3.63% of species- level detections 
in IPA. While minimal, an increase at all is surprising given the years 
of extensive, thorough inventorying effort deployed by the CVB 
team. Our results expand the distribution of Mantidactylus ulcerosus, 
Plethodontohyla inguinalis, and Boophis pereigetes based on their cur-
rent records of geographic distribution from the International Union 
for the Conservation of Nature (IUCN). This points to the comple-
mentarity of iDNA to conventional inventory methods, especially in 
detecting amphibians (Rocha et al., 2012). Similar results have been 
observed in both iDNA and eDNA contexts (Coutant et al., 2021; 
Weiskopf et al., 2018), demonstrating the utility of eDNA to detect 
those species unaccounted for in traditional surveys, further lending 
credibility to the value of iDNA and eDNA more broadly in biosur-
veillance (Fediajevaite et al., 2021).

All taxa represent geographically plausible hits, including those 
to the family Cervidae, which may represent a population of deer 
introduced from Europe (Saggiomo et al., 2020; Tattersall, 2005). 
CVB surveys have not observed deer in the IPA, which would have 
been likely for such large- bodied fauna and so we tentatively repre-
sent this result only in Figure 6 as more research is needed. Further-
more, it is yet unclear whether this population of deer persists to the 
present day as some argue this population has been extirpated from 
Madagascar (Russell et al., 2016).

We performed two PCR replicates per pool to balance sequenc-
ing costs, but we recommend at least three replicates to allow for the 
detection of taxonomic outliers (Shirazi et al. 2021). 9.3% of samples 
(6/64) returned less than 50,000 reads per sample, with the lowest 
read number being 18,530. Because alpha diversity increases with 
sequencing depth (Shirazi et al. 2021), such low sequencing depth 
often leaves a higher proportion of undetected species. This could 
be a result of low levels of host DNA (Pereira- Marques et al., 2019) 
and can result in false negatives.

While iDNA does not inform species abundance, it success-
fully detects the presence of rare and endangered species. Here, 
we identify several species classified as threatened with extinction 

according to the International Union for the Conservation of Nature: 
Boophis periegetes (NT), Fossa fossana and Gephyromantis spinifer 
(VU), and Lemur catta (EN). We present the first species- level identi-
fications of lemurs with iDNA, both in the case of Hapalemur griseus 
in Andasibe and Lemur catta in the IPA, emphasizing the utility of 
iDNA in tracking and monitoring what are among the world's most 
endangered mammals (Lafleur et al., 2016) and Madagascar's most 
emblematic species.

Domesticated species are frequently detected with iDNA and 
may represent standard laboratory contamination. However, we 
include these taxa here on the basis that their presence is in fact 
known in Madagascar and in the IPA region. Furthermore, we visu-
ally identified a bushpig deep in our forested survey area and Mal-
agasy villagers continue to use both the surrounding savannah and 
humid forest to graze zebu, the local cattle. In a recently protected 
fragment like the IPA, presence of domesticated species should be 
monitored as the presence of dogs poses threats to endemic wild-
life (Guedes et al., 2021). Addressing the impacts of domestics on 
the survival of wildlife should be prioritized, especially in a fragment 
where their coexistence is observed.

Our results improve our understanding of the natural foraging 
behavior of haemadipsids. Based on our iDNA results and personal 
observation, we posit that Malagasy haemadipsids ascend at least 
to the forest understory while questing for hosts. Despite evidence 
of geophagy in both lemur species detected, H. griseus and L. catta 
(Pebsworth et al., 2019), they are largely arboreal lemurs and spend 
most of their lives above ground. At the family level, Esocidae, or 
pike/pickerel/mudminnow fishes represent a family which has been 
introduced to Madagascar (Bertoli & Pallavicini, 2016), whereas 
cichlids constitute an endemic group (Matschiner et al., 2020); both 
supporting evidence of terrestrial leeches feeding on fish (Fahmy 
et al., 2020). Although they cannot swim, when dropped in water, 
haemadipsids sink and crawl out (Phillips et al., 2020), introducing 
the potential for seeking aquatic hosts. Our fish host determinations 
assert that the terrestrial leeches of Madagascar feed opportunis-
tically even on freshwater fish, perhaps suggesting an amphibious 
proclivity for Malagasy haemadipsids. And because we find no sig-
nificant difference between leech species and frequency of hosts 
detected, we maintain that Malagasy haemadipsids feed indiscrim-
inately on vertebrate hosts. Further insights into the behavior, life 
history, and species diversity of Malagasy haemadipsids are needed 
to inform best practices of iDNA inventories and to document the 
life history of this understudied group.

Haemadipsid species are often cryptic, and morphology alone 
is insufficient in delimiting species. Of our subsample (n = 51) of all 
leeches collected from IPA and based on sequencing of the COI re-
gion, we find all but two morphotypes (n = 45) are assigned to Ch-
tonobdella fallax. We also find evidence for a putative new clade, 
represented by six leeches and two morphotypes (Figure 7). Further 
genetic analysis and morphological assessment are needed to de-
scribe this new taxon.

All species accumulation curves for all scaling parameters reach 
an asymptote reflecting sufficient sampling with iDNA from IPA. 
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We determine about 2000 leeches are required to capture most 
species richness from the IPA, as species richness plateaus there-
after. Leech sampling effort from RNP and Andasibe were not suf-
ficient to capture total species richness of those sites (Figure 8). 
Based on extrapolated values, approximately 1300 leeches and 

500 leeches would need to be collected to reflect the species 
richness of RNP and Andasibe, respectively, with iDNA (Figure 8). 
False negatives in iDNA surveys reflect several conditions which 
must be met for host DNA to be detectable from leech crops (see 
above); and in the case of Andasibe, false negatives also reflect 

F I G U R E  7  Relationships of IPA leeches represented in green based on maximum likelihood analysis of COI with H. picta, H. japonica, C. 
tanae, and C. bilineata and as outgroups. Branches supported with bootstrap values. Scale bar represents substitutions per site.

F I G U R E  8  Species accumulation 
curves for each of Andasibe (ANDB), 
Ranomafana National Park (RNP), 
and Ivohiboro Protected Area (IPA). 
Species diversity reflects family- level 
determinations with iDNA across all three 
sites. Domestic species not included in 
this analysis.
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sampling effort (Figure 8). Leeches were scarce in the forests of 
Andasibe despite our collection during the rainy season. We col-
lected only 66 leeches over the course of seven days, whereas in 
RNP and IPA, we collected >500 leeches with equal effort. Leech 
scarcity in Andasibe, our most degraded site, supports the hypoth-
esis that leeches serve as indicators of forest quality (Drinkwater, 
Williamson, et al., 2019). Degraded forests, those without intact 
canopies, inherently lack suitable moist habitat thus leeches be-
come more scarce and less active.

Family- level richness across our three sites represent taxa which 
are either domesticated or are endemic and widespread across 
Madagascar. We observe greatest species richness from RNP, fol-
lowed by IPA, and then ANDB. Low species richness in ANDB can 
be attributed to sampling effort and forest quality. While we col-
lected over two times the number of leeches in IPA than in RNP, 
RNP harbors greater diversity than IPA, both as determined by iDNA 
and traditional surveys. RNP was inaugurated in 1991 and has ben-
efitted from decades of protection from resource extraction and 
poaching. The area of RNP (43,500 ha) is also over 12 times that of 
IPA (3300 ha), which may also contribute to greater species richness, 
reflecting long standing support for species- area relationships in 
ecology (Lomolino & Weiser, 2001; Losos & Schluter, 2000; MacAr-
thur & Wilson, 1963; Schoener, 1976; Triantis et al., 2012; Warren 
et al., 2015).

Despite its small size and isolation, IPA supports a rich ecolog-
ical community, with taxa representing every trophic level, includ-
ing Madagascar's apex predator, Cryptoprocta ferox (Otero Jimenez 
et al., 2023). The results of the CVB inventory show that mammals 
constitute the greatest proportion of dry forest species, while rep-
tiles constitute the second greatest proportion of dry forest species, 
followed by amphibians and birds. Lemur catta in IPA represent a 
population new to science, one unique for its adaptation to arbo-
reality in humid forest. L. catta was also the only dry forest species 
detected with iDNA (Table S2). Although they are opportunistic 
feeders and habitat generalists, these lemurs are predominantly 
terrestrial, found on dry, rocky outcrops (Fardi et al., 2018). Even 
neighboring populations found in the Ambositra- Vondrozo Corridor 
in nearby Pic d'Ivohibe and Andringitra National Park live exclusively 
on cliffs above the treeline, exposed to the most extreme climate on 
the island, historically the only location to receive snowfall (Good-
man & Langrand, 1996).

Most mammal and bird species from IPA are habitat generalists 
and are found in both humid and dry forests (Figure S5A). Amphib-
ians are not known to disperse distances greater than 15 km, their 
maximum migratory range (Smith & Green, 2005), yet the nearest 
tract of rainforest is over 24 km to the east. Satellite imagery sug-
gests IPA was once part of the continuous humid forest that forms 
the Ambositra- Vondrozo Corridor (Ramiadantsoa et al., 2015), which 
may explain their presence in IPA. Conversely, the CVB team locate 
Gephyromantis corvus in IPA, classified as endangered and found 
exclusively in the dry forests of the southwest. This taxon is clas-
sified as endangered and was previously found exclusively in the 
dry forests of the southwest. Analysis of population structure and 

gene flow are needed to assess biogeographic origins of these un-
expected taxa. And if current populations are below minimum viable 
size, the unique ecological community and relative species richness 
may ultimately represent a time- lagged extirpation as a response to 
habitat fragmentation (Broekman et al., 2022; Isbell et al., 2022).

The IPA is an area of conservation priority not only for its unique 
community assemblage but also for its potential to shed light on the 
historical forest cover of Madagascar (Humbert, 1927; Federman 
et al., 2015; Solofondranohatra et al., 2020). This newly protected 
forest will elucidate ecological and evolutionary responses to defor-
estation and serve as a living laboratory to test hypotheses regard-
ing biogeography and habitat fragmentation: Have species expanded 
their known ranges into the IPA in search of forest refugia? Or does 
the composition of the IPA reflect remnant communities of older, in-
tact forests? Because of its relative proximity to the COFAV and dif-
ferentially sized northern and southern parcels, the IPA presents an 
opportunity to assess the relationships among dispersal, fragment 
size, and species richness (Saura, 2021). Future studies should aim 
to survey neighboring Pic d'Ivohibe and Andringitra National Park 
with iDNA and other methods to document patterns and viability 
of dispersal across taxonomic groups. Biogeographic divergence age 
analysis of IPA taxa is needed to investigate ecological and evolu-
tionary responses to deforestation and to test hypotheses related to 
vicariance and dispersal (Yoder & Nowak, 2006; Otero Jimenez et al., 
2023). The potential contributions to our understanding of ecology, 
biogeography, and adaptation cannot be overstated. For these rea-
sons, long term monitoring and rigorous reforestation efforts are 
needed to secure the future of these small, isolated populations.

The applications of iDNA and eDNA continue to grow and ex-
pand, featuring various invertebrates (Gogarten et al., 2020; Massey 
et al., 2022) and environmental mediums (Allen et al., 2021; Leem-
poel et al., 2020; Lyet et al., 2021; Lynggaard, Bertelsen, et al., 2022) 
as sources of residual DNA. Yet, to our knowledge, many eDNA in-
ventories of terrestrial ecosystems remain limited to the sampling 
of mammals (Abrams et al., 2019; Drinkwater et al., 2021; Tilker 
et al., 2019). Few studies assess diversity across taxonomic groups 
(Ji et al., 2022) and we encourage researchers to expand genetic loci 
and target taxa to increase identifications and improve taxonomic 
resolution. Future iDNA studies should also conduct systematic, 
concurrent inventories with conventional biodiversity sampling 
techniques to account for temporal variation in species richness.
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