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Abstract11

Massive survival data are increasingly common in many research fields,12

and subsampling is a practical strategy for analyzing such data. Although13

optimal subsampling strategies have been developed for Cox models, lit-14

tle has been done for semiparametric accelerated failure time (AFT)15

models due to the challenges posed by non-smooth estimating func-16

tions for the regression coefficients. We develop optimal subsampling17

algorithms for fitting semi-parametric AFT models using the least-18

squares approach. By efficiently estimating the slope matrix of the19

non-smooth estimating functions using a resampling approach, we con-20

struct optimal subsampling probabilities for the observations. For feasible21

point and interval estimation of the unknown coefficients, we pro-22

pose a two-step method, drawing multiple subsamples in the second23

stage to correct for overestimation of the variance in higher censor-24

ing scenarios. We validate the performance of our estimators through a25

simulation study that compares single and multiple subsampling meth-26

ods and apply the methods to analyze the survival time of lymphoma27

patients in the Surveillance, Epidemiology, and End Results program.28
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2 Subsampling for Least Squares Fitting of Semi-parametric AFT Model

1 Introduction30

The proliferation of storage and surveillance technologies has led to the emer-31

gence of large-scale datasets with survival outcomes in a variety of domains32

such as healthcare. The size of these datasets, however, often exceeds the com-33

putational capacity of an analyst’s computer, posing significant challenges for34

their analysis. To tackle this issue, several strategies have been proposed. The35

divide-and-conquer strategy divides massive data into groups, processes them36

separately, and aggregates the results. This strategy has been applied to Cox37

models (Wang et al., 2021, 2022) and accelerated failure time (AFT) models38

(Su et al., 2023). Carefully devised, the strategy facilitates the full LASSO path39

through a batch screening approach in the case of the ultrahigh-dimensional40

Cox model with sparse solutions at all predefined regularization parameters41

in Li et al. (2022). Another strategy is the online updating strategy, which42

handles massive survival data arriving in a stream by batches and updates the43

cumulative estimators. Examples of this approach include testing for the pro-44

portional hazards assumption (Xue et al., 2020) and fitting Cox models (Wu45

et al., 2021).46

Our focus here is the subsampling strategy, which selects a significantly47

smaller yet optimal subsample for analysis instead of using the full data. This48

concept was developed for linear regression in the form of leverage sampling by49

Drineas et al. (2006) and Mahoney et al. (2011). Ma et al. (2015) examined the50

statistical aspects of this method, referring to it as algorithmic leveraging. In51

this method, non-uniform subsampling probabilities are based on the empir-52

ical statistical leverage scores derived from the input covariate matrix. The53

asymptotic properties of the leverage sampling estimator were further explored54

by Ma et al. (2022). Wang et al. (2018) introduced an optimal subsampling55

algorithm for logistic regression based on the A-optimality criterion, which56

minimizes the trace of the asymptotic variance matrix of the resulting estima-57

tor. This approach has been extended to a variety of statistical models such58

as generalized linear models (Ai et al., 2021) and quantile regression models59

(Wang and Ma, 2021). In the field of survival analysis, this approach has been60

developed for Cox models (Zhang et al., 2023), Cox models with rare events61

(Keret and Gorfine, 2022), additive hazard rate models (Zuo et al., 2021), and62

parametric AFT models (Yang et al., 2022). To the best of our knowledge,63

however, no prior work has explored its application to semi-parametric AFT64

models for massive survival data.65

Developing optimal subsampling strategies for semi-parametric AFT mod-66

els can be a challenging task. Two commonly used approaches for fitting67

semi-parametric AFT models are the rank-based approach (Tsiatis, 1990; Jin68

et al., 2003; Chiou et al., 2014, 2015) and the least squares approach (Buck-69

ley and James, 1979; Jin et al., 2006; Chiou et al., 2014). In the presence of70

censoring, the key challenge is to derive the optimal subsampling probabilities71

(SSP) for censored observations. The SSP of an observation is proportional72

to its contribution to the estimating functions in standard approaches (Zhang73

et al., 2023; Yang et al., 2022). For the rank-based method, it is tempting74
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to assign a zero SSP to censored observations since they do not contribute75

as individual terms to the estimating functions for the regression coefficients.76

This is also true for the estimating equation approaches for the additive haz-77

ard models and Cox models. A general approach is to express the estimating78

equations in terms of appropriately defined martingales, as was done by Zhang79

et al. (2023) to the partial likelihood score function for the Cox proportional80

hazards model. For the least squares method, however, the contribution of a81

censored observation to the estimating equations has an explicit form (Tsi-82

atis, 1990). Conceptually, the optimal SSPs are expected to behave similarly83

to those in a parametric AFT model (Yang et al., 2022). The extra challenge84

comes from the evaluation of these contributions.85

Here we address the challenge of developing optimal subsampling strategies86

for semi-parametric AFT models using the least-squares approach. Specifically,87

we focus on two types of optimal SSPs as discussed in Wang et al. (2022). The88

first type depends on the estimating functions and their slope matrices. For89

a censored observation, we define its contribution to the estimating function90

with the conditional expectation of the event time in place of the censored time91

(Buckley and James, 1979). Since the resulting estimating function depends92

on the Kaplan-Meier estimator of the residuals, which is non-smooth, we use a93

resampling procedure proposed by Zeng and Lin (2008) to evaluate the slope94

matrix. The second type of optimal SSPs only depends on the estimating func-95

tion, which is computationally simpler and faster to calculate. For both types,96

since the true optimal SSPs are based on the unknown full data estimator, we97

propose a two-step method for practical implementation. In the first step, we98

approximate the optimal SSPs using a pilot estimator obtained from a small99

pilot subsample. In the second step, we use multiple subsamples selected by100

the approximated optimal SSPs to obtain the point estimator and its stan-101

dard error. We demonstrate the effectiveness of this method through extensive102

simulation studies and a real data example, confirming the utility of our pro-103

posed optimal subsampling strategies for semi-parametric AFT models. Our104

implementation is part of an R package aftosmac, which is publicly available105

at https://github.com/YEnthalpy/aftosmac.106

The remainder of the paper is structured as follows. In Section 2, we present107

a general subsampling procedure for semiparametric AFT models with least-108

squares using given SSPs. Section 3 focuses on deriving the optimal SSPs based109

on two criteria motivated by experiment design. Since the optimal SSPs depend110

on the unknown full-data estimator, in Section 4, we propose a feasible two-111

step approach and derive an estimator of the asymptotic variance. In Section 5,112

we evaluate the performance of the estimator through a simulation study.113

Section 6 illustrates the application of the proposed method to analyze the114

survival time of lymphoma patients in the Surveillance, Epidemiology, and End115

Results (SEER) program. Finally, we conclude with a discussion in Section 7.116

https://github.com/YEnthalpy/aftosmac
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2 Preliminaries117

Consider a semi-parametric AFT model for a log-transformed failure time T118

with a p-dimensional covariate vector X:119

T = α+X⊤β + ϵ, (1)

where α is an intercept, β is a p× 1 vector of regression coefficients, and ϵ is120

a random error with mean zero and an unspecified distribution. Due to right121

censoring, the observed time is Y = min(T,C), where C is a log-transformed122

censoring time, and C and T are conditionally independent given X. Also123

observed is the event indicator δ = I(T < C) with I(·) being the indicator124

function. Suppose that a random sample of size n is available: {Xi, Yi, δi}ni=1,125

which are independent and identically distributed copies of {X, Y, δ}.126

The least squares estimation of β has the same principle as the classical127

least squares for non-censored data. In the case where {Ti}ni=1 are all observed128

(i.e., no censoring), the classical least-squares estimator of β can be obtained129

by solving the equation130

n∑

i=1

(Xi − X̄)(Ti −X⊤
i β) = 0,

where X̄ =
∑n

i=1 Xi/n. In the presence of censoring, however, the true failure131

time Ti is unknown for those individuals with δi = 0, in which case, the132

equation cannot be evaluated. Buckley and James (1979) proposed replacing133

each Ti with its conditional expectation given the observed data (Xi, Yi, δi),134

T̂i(β) = δiYi + (1− δi)
[
κi(β) +X⊤

i β + α
]
,

where135

κi(β) =

∫∞
ei(β)

udF̂β(u)

1− F̂β {ei(β)}
,

and F̂β(·) is the estimated cumulative distribution function for ei(β) = Yi −136

X⊤
i β − α, via the Kaplan-Meier estimator. The Buckley–James least squares137

estimator β̂n is the root of138

Un(β) =
1

n

n∑

i=1

Un,i(β) = 0, (2)

where139

Un,i(β) = (Xi − X̄)
{
T̂i(β)−X⊤

i β
}
.

Finding the solution to Equation (2) is time-consuming. Jin et al. (2006)140

proposed an iterative procedure β̂
(m)

n = Ln(β̂
(m−1)

n ) with an initial estimator141
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β̂
(0)

n to calculate β̂n, where142

Ln(β) =

[
n∑

i=1

(Xi − X̄)(Xi − X̄)⊤

]−1 [ n∑

i=1

(Xi − X̄)
(
T̂i(β)− T̄ (β)

)]
,

and T̄ (β) = n−1
∑n

i=1 T̂i(β). In practice, the zero vector is an appropriate143

initial value. In each iteration, multiple steps are needed to calculate Ln(β).144

The expression of Ln(β) with a given T̂i(β) is similar to that of the tradi-145

tional least-squares estimator with time complexity O(np2). Evaluating T̂i(β)146

involves multiple steps. Sorting {ei(β)}ni=1 is of complexity O{n log(n)}. Get-147

ting the Kaplan-Meier-type estimator F̂β(·) using the sorted ei(β)’s takes O(n)148

time. Calculating the numerators of {κi(β)}ni=1, which are cumulative summa-149

tions with sorted {ei(β)}ni=1, costs O(n) time. Finally, computing {T̂i(β)}
n

i=1150

with known {κi(β)}ni=1 takes O(np) time. The overall time complexity of one151

iteration is O{np2 + n log(n) + np+ n} = O{np2 + n log(n)}.152

This procedure is computing intensive because it requires sorting153

{ei(β)}ni=1 in each iteration, which becomes infeasible when dealing with large154

datasets that exceed the computer’s memory. The overall time complexity of155

the iterative process is O{ξn[np2 + n log(n)]}, where ξn represents the aver-156

age number of iterations required to obtain β̂n. The value of ξn is primarily157

dependent on the censoring rate and not on n. With the simulated datasets158

in Section 5, ξn was approximately 20 for censoring rate 0.25, 45 for censoring159

rate 0.5, and 100 for censoring rate 0.75. For this situation, the divide-and-160

conquer strategy and the online updating strategy cannot be easily adopted161

because calculating T̂i(β) for a censored observation relies on the residuals of162

the full dataset.163

Now we consider the subsampling strategy. Draw a subsample of size r with164

replacement according to pre-assigned SSPs π = {πi}ni=1. Denote the sub-165

sample by {X∗
i , Y

∗
i , δ

∗
i , π

∗
i }ri=1, where X∗

i is the covariates, Y ∗
i is the observed166

log-transformed time, δ∗i is the censoring indicator, and π∗
i is the SSP of the167

ith observation in the subsample. We approximate the full data estimator F̂β168

by the subsample estimator169

F̂ ∗
β(t) = 1−

∏

i:T∗
i ≤T

(
1−

∑r
j=1 (π

∗
j )

−1
δj

∗I
{
e∗j (β) = e∗i (β)

}
∑r

j=1 (π
∗
j )

−1
I
{
e∗j (β) ≥ e∗i (β)

}
)
,

where e∗i (β) = Y ∗
i − (X∗

i )
⊤β − α.170

Based on the subsample, we estimate β with a weighted estimating function171

U∗
r(β) =

1

r

r∑

i=1

1

π∗
i

U∗
r,i(β), (3)
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where172

U∗
r,i(β) =

1

n
(X∗

i − X̃∗)
{
T̂ ∗
i (β)−X∗⊤

i β
}
.

In the above formula, X̃∗ = (nr)
−1∑r

i=1 X
∗
i /π

∗
i and173

T̂ ∗
i (β) = δ∗i T

∗
i + (1− δ∗i ) [κ

∗
i (β) +X∗

iβ + α] ,

where174

κ∗
i (β) =

∫∞
e∗i (β)

udF̂ ∗
β(u)

1− F̂ ∗
β {e∗i (β)}

.

The solution to Equation (3) can be derived from the iterative procedure175

β̃
(m)

r = L∗
r

[
β̃
(m−1)

r

]
, with an initial value β̃

(0)

n , where176

L∗
r(β) =

[
r∑

i=1

1

π∗
i

(X∗
i − X̃∗)(X∗

i − X̃∗)⊤

]−1 r∑

i=1

1

π∗
i

(X∗
i−X̃∗)

[
T̂ ∗
i (β)− T̃ ∗(β)

]
,

(4)
and T̃ ∗(β) = (nr)

−1∑r
i=1 T̂

∗
i (β)/π

∗
i . We suggest using a zero vector as the177

initial value in practice. By similar arguments to the full data, the time com-178

plexity of the subsample estimator is O{ξr[rp2 + r log(r)]}, where ξr is the179

number of iterations to get a converging result based on the subsample. Again,180

it is worth noting that ξr depends more on the censoring rate than on r and πi.181

A subsample of size r ≪ n allows for obtaining the estimator β̃r in a compu-182

tationally feasible manner. However, the statistical efficiency of the estimator183

heavily relies on the selection of the SSPs.184

3 Optimal Subsampling Probabilities185

We determine the SSPs using procedures introduced by Wang et al. (2022)186

which depend on the norms of the summands in an estimating equation.187

Specifically for our estimating equation (2), the SSPs under the A-optimality188

criterion are πoptA =
{
πoptA
i

}n

i=1
with189

πoptA
i =

∥∥∥M−1
n Un,i(β̂n)

∥∥∥
∑n

i=1

∥∥∥M−1
n Un,i(β̂n)

∥∥∥
, i = 1, 2, . . . , n (5)

where Mn is the slope of Un(β̂n) and190

∥∥M−1
n Un,i(β)

∥∥ =
∥∥M−1

n (Xi − X̄)
∥∥ {(1− δi) |κi(β)|+ δi |ei(β)|} . (6)

Since the estimating function is non-smooth, we estimate Mn by an effi-191

cient resampling method proposed in Zeng and Lin (2008). In the resampling192
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method, {Zi}Ri=1 are generated in the first step where Zi’s are zero-mean ran-193

dom vectors of dimension p and are independent of the data. In the second194

step, n−1/2Un(β̂n + n−1/2Zi)’s are calculated for i = 1, . . . , R. In the third195

step, we calculate the least squares estimate of n−1/2Ujn(β̂n + n−1/2Zi)’s on196

Zi’s for j = 1, . . . , p, where Ujn denotes the jth component of Un. The jth197

row of Mn is estimated by the jth least squares estimates.198

In practice, we use a small pilot subsample of size r0 where r0 ≪ n to199

estimate β̂n and {Un,i(β̂n)}
n

i=1 in order to approximate the optimal SSPs.200

Let β̃r0 be the pilot estimator derived from the pilot subsample. We calculate201

{e∗i (β̃r0)}
r0

i=1
which are prediction errors of the selected pilot sample. Center-202

ing X is required in estimating Un,i(β̂n) which takes O(np) time. Estimating203

κi(β̂n) dominates the computing time of estimatingUn,i(β̂n) and it takes mul-204

tiple steps. We sort e∗i (β̃r0)’s in the first step which takes O{r0 log(r0)} time.205

In the second step, the denominator of κ∗
i (β̃r0)’s are calculated by the Kaplan-206

Meier type cumulative distribution function using sorted e∗i (β̃r0)’s which costs207

O(r0) time. In the third step, the numerators of κ∗
i (β̃r0)’s that are cumu-208

lative summations are calculated with a cost of O(r0) time. In the fourth209

step, we calculate {ei(β̃r0)}
n

i=1
which takes O(np) time. In the last step, we210

estimate κi(β̂n) using constant interpolation. Specifically, we employ binary211

search to locate the position of ei(β̃r0) in the sorted e∗i (β̃r0)’s, which takes212

O{log(r0)} time. We assume that e∗(k−1)(β̃r0) ≤ ei(β̃r0) ≤ e∗(k)(β̃r0), where213

e∗(k)(β̃r0) is the kth element in the sorted e∗i (β̃r0)’s. We estimate κi(β̂n) using214

κ∗
(k)(β̃r0), which corresponds to e∗(k)(β̃r0). Since we have n observations in215

the full sample, the time complexity to estimate {κi(β̂n)}
n

i=1 is O{n log(r0)}.216

In conclusion, the overall time complexity to estimate {Un,i(β̂n)}
n

i=1 is217

O{r0 log(r0) + r0 + n log(r0)} = O{n log(r0)}.218

The slope matrix Mn is estimated using the pilot subsample only. Thus,219

the interpolation procedure is no longer needed in estimating Mn. The time220

complexity for calculating R estimating equations is O{r0R log(r0)} and solv-221

ing the least squares estimate with a R × p design matrix for p times222

takes O(Rp3) time. In practice, R = 100 is enough to derive a good esti-223

mate of Mn. The matrix multiplication of M−1
n and Un,i(β)’s take O(np2)224

time with given Mn. Calculating the norm of a p dimensional vector for n225

times takes O(np) time. Thus, the time complexity of calculating πoptA is226

O{np2+np+n log(r0)+ r0 log(r0)+Rp3+ r0R log(r0)} = O{np2+n log(r0)}.227

To avoid estimating Mn and matrix multiplications, we propose another228

version of SSPs based on the L-optimality πoptL = {πoptL
i }ni=1, where229

πoptL
i =

∥∥∥Un,i(β̂n)
∥∥∥

∑n
i=1

∥∥∥Un,i(β̂n)
∥∥∥
, (7)



Springer Nature 2021 LATEX template

8 Subsampling for Least Squares Fitting of Semi-parametric AFT Model

0

1

2

3

4

5

-5.0 -2.5 0.0 2.5 5.0
ei(β̂n)

∥ ∥ ∥U
n
,i
(β̂

n
)∥ ∥ ∥

censored observed

Fig. 1 Influence of prediction errors on πoptL.

and230

∥Un,i(β)∥ =
∥∥Xi − X̄

∥∥ {(1− δi) |κi(β)|+ δi |ei(β)|} . (8)

For πoptL, we only need to estimate Un,i(β̂n)’s which take O{n log(r0)} time231

and calculating norms of n vectors of dimension p takes O(np) time. Thus232

the time complexity to calculate πoptL is O{np + n log(r0)} which is less233

time-consuming than πoptA. It should be noted that there are several steps234

involved in estimating {Un,i(β̂n)}
n

i=1, each of which takes O(np) time. When235

p is small and comparable to log(r), the time complexity of the interpolations236

required, which take O{n log(n)} time, is similar to O(np). As a result, esti-237

mating {Un,i(β̂n)}
n

i=1 takes only slightly less than O(np2) time. Nevertheless,238

as p increases, the computational efficiency of πoptL becomes more apparent.239

The effect of ei(β̂n) on the optimal SSPs is interesting. For parametric240

models without censoring, observations with residuals of large magnitude have241

large optimal SSPs in existing investigations. This is not true for censored242

observations. Note that E(ϵ) =
∫∞
−∞ udFϵ(u) is 0 in model (1), where Fϵ(u) is243

the cumulative distribution function of ϵ. Thus,
∥∥∥Un,i(β̂n)

∥∥∥ converges to 0 as244

ei(β̂n) → −∞ for censored observations. When ei(β̂n) → +∞, the numerator245

of κi(β̂n) converges to zero slower than the denominator. Thus,
∥∥∥Un,i(β̂n)

∥∥∥246

converges to +∞ as ei(β) → +∞. Note that {πoptA
i }ni=1 are proportional to247 {∥∥∥Un,i(β̂n)

∥∥∥
}n

i=1
and {πoptL

i }ni=1 are proportional to
{∥∥∥M−1

n Un,i(β̂n)
∥∥∥
}n

i=1
248

where M−1
n does not change for different i’s. Thus, πoptA

i and πoptL
i have the249

same trend as
∥∥∥Un,i(β̂n)

∥∥∥ with respect to ei(β̂n). Nevertheless, it does not250

contradict the fact that optimal SSPs prefer data points whose event time251
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Table 1 Means and summations of uniform SSPs and πoptA for censored and observed
observations with Gumbel (G), Logistic (L) and Normal (N) distributions as the error
distributions and different censoring rates cr.

cr: 25% cr: 50% cr: 75%

uniform G L N uniform G L N uniform G L N

summation
Censored 0.25 0.253 0.309 0.272 0.50 0.443 0.459 0.447 0.75 0.544 0.545 0.545
Event 0.75 0.747 0.691 0.728 0.50 0.557 0.541 0.553 0.25 0.456 0.455 0.455

mean (×n)
Censored 1.00 1.013 1.235 1.087 1.00 0.884 0.919 0.892 1.00 0.728 0.729 0.725
Event 1.00 0.996 0.922 0.971 1.00 1.117 1.081 1.109 1.00 1.807 1.802 1.832

is harder to predict. A censored observation means Ci ≤ Ti, and a negative252

ei(β̂n) means Ci < T̂i. Thus, for a censored observation, a larger magnitude253

of a negative ei(β̂n) does not mean a larger prediction error, |Ti − T̂i|. On the254

other hand, a positive ei(β̂n) means Ci > T̂i, and thus a larger magnitude255

of a positive ei(β̂n) means a larger prediction error, |Ti − T̂i|. For uncensored256

observations, clearly a large absolute ei(β̂n) means that the event time is257

hard to predict, thus both πoptL
i and πoptA

i are large when ei(β̂n) is far away258

from zero. For the same magnitude of a positive error, the optimal SSPs are259

higher for censored observations than uncensored ones since the event time of260

a censored observation is harder to predict than an uncensored observation.261

This pattern is shown in Figure 1.262

To investigate which types of observation are preferred by optimal SSPs in263

given datasets, we used simulated datasets of size n whose detailed informa-264

tion is stated in the first paragraph of Section 5 to generate the optimal SSPs.265

Table 1 presents the means and sums of the SSPs for censored and uncen-266

sored observations separately. We calculated πoptA and derived their sums267

and means for each dataset. When we compared the mean optimal SSPs with268

the mean of the uniform SSPs, we observed that πoptA prefers uncensored269

observations at high censoring rates but prefers censored observations at low270

censoring rates. At a censoring rate of 0.5, the mean of πoptA was higher than271

n−1 (the uniform SSP) for uncensored observations but smaller than n−1 for272

censored observations, indicating that optimal SSPs prefer uncensored obser-273

vations that provide more information beyond the influence of the censoring274

rate. This preference can also be observed in the summation of πoptA. The275

summations of πoptA for both types of observations were similar to the sum-276

mations of uniform SSPs at a censoring rate of 0.25, but significantly different277

at a censoring rate of 0.75. These two preferences likely involve trade-offs that278

require further investigation.279
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4 A Two-Step Subsampling Approach280

In this section, a feasible two-step method is proposed to derive the subsam-281

pling estimator. Note that the optimal SSPs in Section 3 are dependent on the282

full sample estimator β̂n which cannot be used directly. To resolve this issue,283

in the first step, we approximate πoptL and πoptA based on a pilot estimator284

β̃r0 of β̂n, which is derived from a small, pilot subsample of size r0 in the285

first step. Denote the estimated optimal SSPs as πoptA(β̃r0) and πoptL(β̃r0).286

In the second step, a subsample of size r is drawn according to the estimated287

SSPs in the first step. The subsampling estimator β̌r is obtained by the second288

step subsample in combination with the pilot subsample. Following the idea of289

Zeng and Lin (2008), the variance of β̌r is estimated based on a sandwich for-290

mula M−1
r VrM

−1
r , where Mr is the estimator of Mn based on the combined291

subsample and292

Vr =
1

n2(r0 + r)

{
r∑

i=1

U∗
r,i(β̌r){U∗

r,i(β̌r)}⊤

{πopt
i (β̌r)}

2 + n2
r0∑

i=1

U∗
r0,i(β̃r0){U∗

r0,i(β̃r0)}⊤
}
,

with U∗
r0,i

(β) being the estimating function for the ith element in the pilot293

subsample.294

Now we consider the time complexity of the two-step approach. As dis-295

cussed in Section 3, the first step involves obtaining either πoptA or πoptL,296

which takesO{np2+n log(r0)} time andO{np+n log(r0)} time, respectively. In297

the second step, calculating the subsample estimator takes O{ξr[rp2+r log(r)]}298

time. For the sandwich variance estimator, calculating Mr takes O{Rr log(r)}299

time, as discussed in Section 3; calculating Vr costs O(rp2 + r0p
2) time.300

Therefore, the overall time complexity of the two-step method using πoptA is301

O{np2 + n log(r0) + ξr[rp
2 + r log(r)] + Rr log(r) + rp2 + r0p

2} = O{np2 +302

n log(r0) + ξr[rp
2 + r log(r)] + Rr log(r)}. The time complexity of πoptL is303

similar this formula except that the np2 term is replaced by np.304

Note that the approximate optimal SSPs, denoted by πopt(β̃r0), are derived305

from a random pilot estimator which may cause additional disturbance.306

Based on (6), for uncensored observations with ei(β̂) more approaching zero,307

their exact SSPs are closer to zero and the additional disturbances may get308

amplified. To protect the subsample estimator, we adopt the idea of defen-309

sive sampling and mix the approximated πopt(β̃r0) with the uniform SSP310

denoted by πUni
r0 (Hesterberg, 1995). That is, we use adjusted optimal SSPs311

πopt
α (β̃r0) = {πopt

αi (β̃r0)}
n

i=1
instead of πopt(β̃r0) to do subsampling, where312

πopt
αi (β̃r0) = (1− α)πopt

i (β̃r0) +
α

n
, 0 < α < 1, i = 1, 2, . . . , n.

In the simulation study and the real data analysis, we set α = 0.2.313

At high censoring rates, the sandwich estimator in Zeng and Lin (2008)314

overestimates the empirical variance; see Section 5. We resolve this issue315

by selecting B subsamples of size r to estimate B subsampling estimators316
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{β̌b,r}
B

b=1
in the second step. In this scenario, the resultant estimator takes317

the form318

β̌r =
1

B

B∑

b=1

β̌b,r, (9)

and its variance estimator is319

V̌r =
1

B(B − 1)

B∑

b=1

(
β̌b,r − β̌r

) (
β̌b,r − β̌r

)⊤
. (10)

Note that V̌r can be used for statistical inferences on the true regression320

coefficients if the subsample size is much smaller than the full data size (Wang321

et al., 2022). This requires that rB/n is close to zero in practice since the actual322

size of the subsample is r×B. The dimension of β̌r is p, thus B should be larger323

than p in order to get a reliable variance estimator. In practice, the choice of324

B should be much smaller than n/r but greater than p. Since we do not need325

to estimate Mr when B > 1, the time complexity in this case using πoptA is326

O{np2+n log(r0)+ ξrB[rp2+ r log(r)]+Bp2} = O{np2+ ξrB[rp2+ r log(r)]}.327

Similarly, the time complexity when using πoptL is O{np+ξrB[rp2+r log(r)]}.328

Nevertheless, it is important to note that the computation time is dominated329

by the derivation of β̌r when ξrBr ≥ n.330

5 Simulation331

The performances of the estimator from the two-step procedure were assessed332

in a simulation study. We used three different error distributions: standard nor-333

mal, standard logistic, and centered Gumbel distribution with shape parameter334

zero and scale parameter one. The covariates follow multivariate normal with335

mean zero and covariance matrix Σij = 0.5I(i̸=j). The dimension of β was336

seven and all coefficients were set to be 1 including the intercept. The censor-337

ing times were generated from the Uniform distribution with the minimum and338

maximum values equal to 0 and c, respectively, where c was tuned to achieve339

censoring rates cr ∈ {0.25, 0.50, 0.75}.340

For each of the nine configurations, 1000 large datasets of size n = 500, 000341

were generated. In our simulation, the pilot sample size was r0 = 3000. The342

second-step subsample sizes considered were r ∈ {4000, 8000, 16000} and B ∈343

{1, 10}. For the ith dataset in each of the nine configurations, we derived β̌
(i)

r344

by the two-step subsampling method using πoptA, πoptL and the uniform SSPs.345

We compared the performance of the two-step method using different SSPs by346

the root mean square error (RMSE) of β̌
(i)

r , where the RMSE is calculated by347

RMSE =

(
1

s

s∑

i=1

∥β̌(i)

r − β̂n∥2
)1/2

. (11)

Note that for each replicate, the pilot subsample is different.348
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Fig. 2 Empirical RMSEs for different SSPs, error distribution, subsample sizes r and cen-
soring rates when covariates follow multivariate normal distribution based on the two-step
procedure with B = 10.

The estimation efficiency of our method is shown in Figure 2. It shows the349

RMSEs of β̌r based on the uniform SSPs, πoptA, and πoptL for the two-step350

method when B = 10. Note that the actual subsample sizes we use to estimate351

the resultant estimator are B × r. As expected, in all data configurations,352

πoptL and πoptA give smaller RMSE than uniform SSP and πoptA give the353

smallest RMSE. As the censoring rate increases, there will be fewer informative354

observations. So the RMSEs of all methods increase as less information is355

available. In all configurations, the RMSEs decrease as the subsample size r356

increases.357

We evaluated the accuracy of the variance estimator by comparing its aver-358

age over 1000 subsamples with the empirical variance. The upper panel of359

Figure 3 presents the results for the formula-based variance estimator when360

B = 1. The figure reveals that the estimated and empirical RMSEs are close361

at censoring rates 0.25 and 0.5, indicating that the sandwich estimator esti-362

mates the true variance well at low to moderate censoring rates. However, the363

sandwich estimator noticeably overestimates the true variance differences at364

the censoring rate 0.75, which leads to conservative conclusions and loss of365

power in inferences. To correct the bias for high-censoring cases, we set B = 10366

and estimate the variances using Equation (10). The lower panel of Figure 3367

demonstrates that this provides accurate variance estimates for high censoring368

rates. Hence, we suggest using B = 10 in the second step and estimating the369

standard error by (10) for high censoring rates.370

Finally, we evaluate the computational efficiency of the two-step methods.371

We compared the computing time when B = 10 and B = 1. To ensure a fair372

comparison, we increased the subsample size for B = 1 to 10r. We performed373
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Fig. 3 Empirical and estimated RMSEs with πoptA for different error distribution, subsam-
ple sizes r and 0.75 censoring rates when covariates follow multivariate normal distribution
based on the two-step procedure with B = 1 (upper) and B = 10 (lower).

the computation on a laptop running Windows 11 with an Intel Core (TM)374

i7–8650U @ 1.90GHz processor and 16 GB memory. Figure 4 summarizes the375

computational and estimation efficiency of both methods. It shows that using376

B = 10 subsamples of size r is less time-consuming than usingB = 1 subsample377

of size 10r. This is due to the fact that the formula-based variance estimation378

when B = 1 takes a considerable amount of time, as discussed in Section 4.379

Using πoptL, πoptA, and uniform SSPs take similar CPU time because the380
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Fig. 4 Comparison of estimation efficiency and computational efficiency for different sub-
sample sizes r, censoring rates, subsampling methods, and values of B when the errors are
generated from a standard normal distribution.

value of r is large enough so that calculating the SSPs does not dominate the381

computing time.382

6 Survival of Lymphoma383

The two-step procedure was applied to model the survival time of lymphoma384

patients in the SEER program. The dataset contains 159,149 patients that385

were diagnosed with lymphoma from 1973 to 2012 and the censoring rate is386

58.3%. We considered four risk factors, including age with the unit of year,387

nonwhite race indicator (1 =nonwhite), male indicator (1 = male) and the388

diagnostic year. We also included the interaction between age with the male389

indicator and age with the non-white indicator. The pilot sample size was set390

to be r0 = 2000 and the subsample sizes were r ∈ {2000, 4000, 8000}. We391

considered three kinds of SSPs, uniform SSPs, the L-optimal SSPs (πoptL) and392

the A-optimal SSPs (πoptA). In the real data analysis, we set B = 10.393

Figure 5 shows the empirical RMSEs from 1000 replicates of the two-step394

method with B = 10 based on different SSPs and different second-step subsam-395

ple sizes. The RMSE decreases as r increases which indicates the consistency396

of our method. As expected, both optimal SSPs perform better than the uni-397

form SSPs. It should be noted that πoptA does not result in universally smaller398

RMSEs for all parameters. As shown in Figure 2, for the interaction term399

‘Age×Male’ and the risk factor ‘Diagnostic Year’, the ‘optA’ estimates have400

higher RMSE than the ‘optL’ estimates. This is because πoptA are designed to401

minimize the overall RMSEs for all risk factors and interactions, rather than402

specifically targeting individual risk factors or interactions.403
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Fig. 5 Empirical RMSEs of different risk factors for different SSPs and different second-
step subsample sizes r when fixing the pilot sample size r0 = 2000 over 1000 replicates of
the two-step method with B = 10.

Table 2 Estimates (EST) and their empirical standard errors (ESE) and average
estimated standard errors (ASE) from different subsampling approaches for r = 4000 and
r0=2000 over 1000 replicates of the two-step method with B = 10.

optL optA uniform Full

EST ESE ASE EST ESE ASE EST ESE ASE EST SE

Age −1.029 0.019 0.020 −1.030 0.020 0.020 −1.029 0.025 0.026 −1.030 0.013
Male 0.701 0.028 0.028 0.702 0.028 0.028 0.701 0.034 0.035 0.700 0.017

Nonwhite −0.665 0.037 0.036 −0.667 0.030 0.030 −0.666 0.048 0.046 −0.666 0.023
Age×Nonwhite 0.303 0.034 0.033 0.306 0.027 0.027 0.299 0.048 0.049 0.306 0.026

Age×Male −0.486 0.026 0.026 −0.486 0.026 0.026 −0.488 0.039 0.038 −0.486 0.018
Diagnostic Year 0.478 0.013 0.013 0.478 0.014 0.014 0.479 0.016 0.015 0.478 0.008

Table 2 summarizes the average estimates and their corresponding average404

empirical standard errors (EST) and average pooled standard error estimators405

(ASE) for all subsampling methods when r = 4000 and B = 10 over 1000 sub-406

samples. We compared the subsample estimates with the full data estimates407

whose standard errors were derived from the non-parametric bootstrap of 1000408

samples. The optimal subsampling methods yield one-third less standard errors409

than the uniform subsampling method The empirical and estimated standard410

errors are similar which indicates the subsampling methods are suitable for411

statistical inference. The empirical standard errors for both optimal subsam-412

pling methods are small which shows that using a small subsample is sufficient413

in practice to estimate the full data estimates. The results indicate that elder,414
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female, nonwhite, and earlier-diagnosed patients had shorter survival times.415

For white patients and male patients, the slope of age was steeper.416

7 Discussion417

The optimal subsampling method for the least square fitting of semiparamet-418

ric AFT model for massive survival data is challenging due to non-smooth419

estimating functions. The crucial element of this approach is determining the420

SSP, which we addressed by a resampling method (Zeng and Lin, 2008). We421

proposed two types of optimal SSPs, induced by the A-optimality and the422

L-optimality from design of experiments. Optimal SSPs prefer extreme obser-423

vations, but for censored observations, only those with positive residuals of424

large magnitudes are considered extreme, while those with negative residuals of425

large magnitudes are not. Moreover, for positive residuals with the same magni-426

tude, optimal SSPs prefer censored observations over uncensored observations.427

This preference for extreme observations does not contradict the accepted428

notion that optimal SSPs tend to choose observations that are harder to pre-429

dict. We conducted a simulation study and a real data analysis to demonstrate430

the feasibility and effectiveness of the proposed methods, which provide good431

approximations of full data inferences while being computationally feasible.432

Further investigation is warranted for optimal subsampling methods in433

fitting semiparametric AFT models with the rank-based approach. In rank-434

based estimation, censored observations do not contribute to the estimating435

function, but they contribute to the ranking. Simply assigning a zero SSP to436

censored observations would not properly account for their contributions. A437

possible solution is to express the estimating functions using some martingales,438

which facilitates the evaluations of the contributions of censored observations.439

This approach has been successfully applied in Cox models (Zhang et al., 2023).440

Additionally, the induced smoothing approach, which improves computational441

efficiency (Chiou et al., 2014, 2015), remains important. This method replaces442

the non-smooth estimating equations with a smoothed version whose solutions443

are asymptotically equivalent to those of the non-smooth version. Ongoing444

investigation in this direction will be reported elsewhere.445
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