

Subsampling Approach for Least Squares Fitting of Semi-parametric Accelerated Failure Time Models to Massive Survival Data

Zehan Yang^{1*}, HaiYing Wang^{1*} and Jun Yan¹

¹Department of Statistics, University of Connecticut, Storrs,
Connecticut, 06269–4120, USA.

*Corresponding author(s). E-mail(s): zehan.yang@uconn.edu;
haiying.wang@uconn.edu;

Contributing authors: jun.yan@uconn.edu;

Abstract

Massive survival data are increasingly common in many research fields, and subsampling is a practical strategy for analyzing such data. Although optimal subsampling strategies have been developed for Cox models, little has been done for semiparametric accelerated failure time (AFT) models due to the challenges posed by non-smooth estimating functions for the regression coefficients. We develop optimal subsampling algorithms for fitting semi-parametric AFT models using the least-squares approach. By efficiently estimating the slope matrix of the non-smooth estimating functions using a resampling approach, we construct optimal subsampling probabilities for the observations. For feasible point and interval estimation of the unknown coefficients, we propose a two-step method, drawing multiple subsamples in the second stage to correct for overestimation of the variance in higher censoring scenarios. We validate the performance of our estimators through a simulation study that compares single and multiple subsampling methods and apply the methods to analyze the survival time of lymphoma patients in the Surveillance, Epidemiology, and End Results program.

Keywords: A-optimality; Non-smooth estimating function; Survival analysis

2 *Subsampling for Least Squares Fitting of Semi-parametric AFT Model*30

1 Introduction

31 The proliferation of storage and surveillance technologies has led to the emer-
 32 gence of large-scale datasets with survival outcomes in a variety of domains
 33 such as healthcare. The size of these datasets, however, often exceeds the com-
 34 putational capacity of an analyst's computer, posing significant challenges for
 35 their analysis. To tackle this issue, several strategies have been proposed. The
 36 divide-and-conquer strategy divides massive data into groups, processes them
 37 separately, and aggregates the results. This strategy has been applied to Cox
 38 models (Wang et al., 2021, 2022) and accelerated failure time (AFT) models
 39 (Su et al., 2023). Carefully devised, the strategy facilitates the full LASSO path
 40 through a batch screening approach in the case of the ultrahigh-dimensional
 41 Cox model with sparse solutions at all predefined regularization parameters
 42 in Li et al. (2022). Another strategy is the online updating strategy, which
 43 handles massive survival data arriving in a stream by batches and updates the
 44 cumulative estimators. Examples of this approach include testing for the pro-
 45 portional hazards assumption (Xue et al., 2020) and fitting Cox models (Wu
 46 et al., 2021).

47 Our focus here is the subsampling strategy, which selects a significantly
 48 smaller yet optimal subsample for analysis instead of using the full data. This
 49 concept was developed for linear regression in the form of leverage sampling by
 50 Drineas et al. (2006) and Mahoney et al. (2011). Ma et al. (2015) examined the
 51 statistical aspects of this method, referring to it as algorithmic leveraging. In
 52 this method, non-uniform subsampling probabilities are based on the empirical
 53 statistical leverage scores derived from the input covariate matrix. The
 54 asymptotic properties of the leverage sampling estimator were further explored
 55 by Ma et al. (2022). Wang et al. (2018) introduced an optimal subsampling
 56 algorithm for logistic regression based on the A-optimality criterion, which
 57 minimizes the trace of the asymptotic variance matrix of the resulting estima-
 58 tor. This approach has been extended to a variety of statistical models such
 59 as generalized linear models (Ai et al., 2021) and quantile regression models
 60 (Wang and Ma, 2021). In the field of survival analysis, this approach has been
 61 developed for Cox models (Zhang et al., 2023), Cox models with rare events
 62 (Keret and Gorfine, 2022), additive hazard rate models (Zuo et al., 2021), and
 63 parametric AFT models (Yang et al., 2022). To the best of our knowledge,
 64 however, no prior work has explored its application to semi-parametric AFT
 65 models for massive survival data.

66 Developing optimal subsampling strategies for semi-parametric AFT mod-
 67 els can be a challenging task. Two commonly used approaches for fitting
 68 semi-parametric AFT models are the rank-based approach (Tsiatis, 1990; Jin
 69 et al., 2003; Chiou et al., 2014, 2015) and the least squares approach (Buck-
 70 ley and James, 1979; Jin et al., 2006; Chiou et al., 2014). In the presence of
 71 censoring, the key challenge is to derive the optimal subsampling probabilities
 72 (SSP) for censored observations. The SSP of an observation is proportional
 73 to its contribution to the estimating functions in standard approaches (Zhang
 74 et al., 2023; Yang et al., 2022). For the rank-based method, it is tempting

75 to assign a zero SSP to censored observations since they do not contribute
76 as individual terms to the estimating functions for the regression coefficients.
77 This is also true for the estimating equation approaches for the additive hazard
78 models and Cox models. A general approach is to express the estimating
79 equations in terms of appropriately defined martingales, as was done by [Zhang et al. \(2023\)](#) to the partial likelihood score function for the Cox proportional
80 hazards model. For the least squares method, however, the contribution of a
81 censored observation to the estimating equations has an explicit form ([Tsiatis, 1990](#)). Conceptually, the optimal SSPs are expected to behave similarly
82 to those in a parametric AFT model ([Yang et al., 2022](#)). The extra challenge
83 comes from the evaluation of these contributions.

84 Here we address the challenge of developing optimal subsampling strategies
85 for semi-parametric AFT models using the least-squares approach. Specifically,
86 we focus on two types of optimal SSPs as discussed in [Wang et al. \(2022\)](#). The
87 first type depends on the estimating functions and their slope matrices. For
88 a censored observation, we define its contribution to the estimating function
89 with the conditional expectation of the event time in place of the censored time
90 ([Buckley and James, 1979](#)). Since the resulting estimating function depends
91 on the Kaplan-Meier estimator of the residuals, which is non-smooth, we use a
92 resampling procedure proposed by [Zeng and Lin \(2008\)](#) to evaluate the slope
93 matrix. The second type of optimal SSPs only depends on the estimating function,
94 which is computationally simpler and faster to calculate. For both types,
95 since the true optimal SSPs are based on the unknown full data estimator, we
96 propose a two-step method for practical implementation. In the first step, we
97 approximate the optimal SSPs using a pilot estimator obtained from a small
98 pilot subsample. In the second step, we use multiple subsamples selected by
99 the approximated optimal SSPs to obtain the point estimator and its stan-
100 dard error. We demonstrate the effectiveness of this method through extensive
101 simulation studies and a real data example, confirming the utility of our pro-
102 posed optimal subsampling strategies for semi-parametric AFT models. Our
103 implementation is part of an R package `aftosmac`, which is publicly available
104 at <https://github.com/YEnthalpy/aftosmac>.

105 The remainder of the paper is structured as follows. In Section 2, we present
106 a general subsampling procedure for semiparametric AFT models with least-
107 squares using given SSPs. Section 3 focuses on deriving the optimal SSPs based
108 on two criteria motivated by experiment design. Since the optimal SSPs depend
109 on the unknown full-data estimator, in Section 4, we propose a feasible two-
110 step approach and derive an estimator of the asymptotic variance. In Section 5,
111 we evaluate the performance of the estimator through a simulation study.
112 Section 6 illustrates the application of the proposed method to analyze the
113 survival time of lymphoma patients in the Surveillance, Epidemiology, and End
114 Results (SEER) program. Finally, we conclude with a discussion in Section 7.

4 *Subsampling for Least Squares Fitting of Semi-parametric AFT Model*117 **2 Preliminaries**118 Consider a semi-parametric AFT model for a log-transformed failure time T
119 with a p -dimensional covariate vector \mathbf{X} :

120
$$T = \alpha + \mathbf{X}^\top \boldsymbol{\beta} + \epsilon, \quad (1)$$

121 where α is an intercept, $\boldsymbol{\beta}$ is a $p \times 1$ vector of regression coefficients, and ϵ is
122 a random error with mean zero and an unspecified distribution. Due to right
123 censoring, the observed time is $Y = \min(T, C)$, where C is a log-transformed
124 censoring time, and C and T are conditionally independent given \mathbf{X} . Also
125 observed is the event indicator $\delta = I(T < C)$ with $I(\cdot)$ being the indicator
126 function. Suppose that a random sample of size n is available: $\{\mathbf{X}_i, Y_i, \delta_i\}_{i=1}^n$,
127 which are independent and identically distributed copies of $\{\mathbf{X}, Y, \delta\}$.128 The least squares estimation of $\boldsymbol{\beta}$ has the same principle as the classical
129 least squares for non-censored data. In the case where $\{T_i\}_{i=1}^n$ are all observed
130 (i.e., no censoring), the classical least-squares estimator of $\boldsymbol{\beta}$ can be obtained
131 by solving the equation

132
$$\sum_{i=1}^n (\mathbf{X}_i - \bar{\mathbf{X}})(T_i - \mathbf{X}_i^\top \boldsymbol{\beta}) = 0,$$

133 where $\bar{\mathbf{X}} = \sum_{i=1}^n \mathbf{X}_i/n$. In the presence of censoring, however, the true failure
134 time T_i is unknown for those individuals with $\delta_i = 0$, in which case, the
135 equation cannot be evaluated. [Buckley and James \(1979\)](#) proposed replacing
136 each T_i with its conditional expectation given the observed data $(\mathbf{X}_i, Y_i, \delta_i)$,

137
$$\hat{T}_i(\boldsymbol{\beta}) = \delta_i Y_i + (1 - \delta_i) [\kappa_i(\boldsymbol{\beta}) + \mathbf{X}_i^\top \boldsymbol{\beta} + \alpha],$$

138 where

139
$$\kappa_i(\boldsymbol{\beta}) = \frac{\int_{e_i(\boldsymbol{\beta})}^{\infty} u d\hat{F}_{\boldsymbol{\beta}}(u)}{1 - \hat{F}_{\boldsymbol{\beta}}\{e_i(\boldsymbol{\beta})\}},$$

140 and $\hat{F}_{\boldsymbol{\beta}}(\cdot)$ is the estimated cumulative distribution function for $e_i(\boldsymbol{\beta}) = Y_i -$
141 $\mathbf{X}_i^\top \boldsymbol{\beta} - \alpha$, via the Kaplan-Meier estimator. The Buckley-James least squares
142 estimator $\hat{\boldsymbol{\beta}}_n$ is the root of

143
$$\mathbf{U}_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \mathbf{U}_{n,i}(\boldsymbol{\beta}) = 0, \quad (2)$$

144 where

145
$$\mathbf{U}_{n,i}(\boldsymbol{\beta}) = (\mathbf{X}_i - \bar{\mathbf{X}}) \left\{ \hat{T}_i(\boldsymbol{\beta}) - \mathbf{X}_i^\top \boldsymbol{\beta} \right\}.$$

146 Finding the solution to Equation (2) is time-consuming. [Jin et al. \(2006\)](#)
147 proposed an iterative procedure $\hat{\boldsymbol{\beta}}_n^{(m)} = L_n(\hat{\boldsymbol{\beta}}_n^{(m-1)})$ with an initial estimator

142 $\hat{\beta}_n^{(0)}$ to calculate $\hat{\beta}_n$, where

$$L_n(\beta) = \left[\sum_{i=1}^n (\mathbf{X}_i - \bar{\mathbf{X}})(\mathbf{X}_i - \bar{\mathbf{X}})^\top \right]^{-1} \left[\sum_{i=1}^n (\mathbf{X}_i - \bar{\mathbf{X}}) \left(\hat{T}_i(\beta) - \bar{T}(\beta) \right) \right],$$

143 and $\bar{T}(\beta) = n^{-1} \sum_{i=1}^n \hat{T}_i(\beta)$. In practice, the zero vector is an appropriate
144 initial value. In each iteration, multiple steps are needed to calculate $L_n(\beta)$.
145 The expression of $L_n(\beta)$ with a given $\hat{T}_i(\beta)$ is similar to that of the traditional
146 least-squares estimator with time complexity $O(np^2)$. Evaluating $\hat{T}_i(\beta)$
147 involves multiple steps. Sorting $\{e_i(\beta)\}_{i=1}^n$ is of complexity $O\{n \log(n)\}$. Getting
148 the Kaplan-Meier-type estimator $\hat{F}_\beta(\cdot)$ using the sorted $e_i(\beta)$'s takes $O(n)$
149 time. Calculating the numerators of $\{\kappa_i(\beta)\}_{i=1}^n$, which are cumulative summations
150 with sorted $\{e_i(\beta)\}_{i=1}^n$, costs $O(n)$ time. Finally, computing $\{\hat{T}_i(\beta)\}_{i=1}^n$
151 with known $\{\kappa_i(\beta)\}_{i=1}^n$ takes $O(np)$ time. The overall time complexity of one
152 iteration is $O\{np^2 + n \log(n) + np + n\} = O\{np^2 + n \log(n)\}$.

153 This procedure is computing intensive because it requires sorting
154 $\{e_i(\beta)\}_{i=1}^n$ in each iteration, which becomes infeasible when dealing with large
155 datasets that exceed the computer's memory. The overall time complexity of
156 the iterative process is $O\{\xi_n [np^2 + n \log(n)]\}$, where ξ_n represents the average
157 number of iterations required to obtain $\hat{\beta}_n$. The value of ξ_n is primarily
158 dependent on the censoring rate and not on n . With the simulated datasets
159 in Section 5, ξ_n was approximately 20 for censoring rate 0.25, 45 for censoring
160 rate 0.5, and 100 for censoring rate 0.75. For this situation, the divide-and-
161 conquer strategy and the online updating strategy cannot be easily adopted
162 because calculating $\hat{T}_i(\beta)$ for a censored observation relies on the residuals of
163 the full dataset.

164 Now we consider the subsampling strategy. Draw a subsample of size r with
165 replacement according to pre-assigned SSPs $\pi = \{\pi_i\}_{i=1}^n$. Denote the sub-
166 sample by $\{\mathbf{X}_i^*, Y_i^*, \delta_i^*, \pi_i^*\}_{i=1}^r$, where \mathbf{X}_i^* is the covariates, Y_i^* is the observed
167 log-transformed time, δ_i^* is the censoring indicator, and π_i^* is the SSP of the
168 i th observation in the subsample. We approximate the full data estimator \hat{F}_β
169 by the subsample estimator

$$\hat{F}_\beta^*(t) = 1 - \prod_{i:T_i^* \leq T} \left(1 - \frac{\sum_{j=1}^r (\pi_j^*)^{-1} \delta_j^* I \{ e_j^*(\beta) = e_i^*(\beta) \}}{\sum_{j=1}^r (\pi_j^*)^{-1} I \{ e_j^*(\beta) \geq e_i^*(\beta) \}} \right),$$

170 where $e_i^*(\beta) = Y_i^* - (\mathbf{X}_i^*)^\top \beta - \alpha$.

171 Based on the subsample, we estimate β with a weighted estimating function

$$\mathbf{U}_r^*(\beta) = \frac{1}{r} \sum_{i=1}^r \frac{1}{\pi_i^*} \mathbf{U}_{r,i}^*(\beta), \quad (3)$$

6 *Subsampling for Least Squares Fitting of Semi-parametric AFT Model*

172 where

$$\mathbf{U}_{r,i}^*(\boldsymbol{\beta}) = \frac{1}{n}(\mathbf{X}_i^* - \tilde{\mathbf{X}}^*) \left\{ \hat{T}_i^*(\boldsymbol{\beta}) - \mathbf{X}_i^{*\top} \boldsymbol{\beta} \right\}.$$

173 In the above formula, $\tilde{\mathbf{X}}^* = (nr)^{-1} \sum_{i=1}^r \mathbf{X}_i^* / \pi_i^*$ and

$$\hat{T}_i^*(\boldsymbol{\beta}) = \delta_i^* T_i^* + (1 - \delta_i^*) [\kappa_i^*(\boldsymbol{\beta}) + \mathbf{X}_i^* \boldsymbol{\beta} + \alpha],$$

174 where

$$\kappa_i^*(\boldsymbol{\beta}) = \frac{\int_{e_i^*(\boldsymbol{\beta})}^{\infty} u d\hat{F}_{\boldsymbol{\beta}}^*(u)}{1 - \hat{F}_{\boldsymbol{\beta}}^* \{e_i^*(\boldsymbol{\beta})\}}.$$

175 The solution to Equation (3) can be derived from the iterative procedure
176 $\tilde{\boldsymbol{\beta}}_r^{(m)} = L_r^* \left[\tilde{\boldsymbol{\beta}}_r^{(m-1)} \right]$, with an initial value $\tilde{\boldsymbol{\beta}}_n^{(0)}$, where

$$L_r^*(\boldsymbol{\beta}) = \left[\sum_{i=1}^r \frac{1}{\pi_i^*} (\mathbf{X}_i^* - \tilde{\mathbf{X}}^*) (\mathbf{X}_i^* - \tilde{\mathbf{X}}^*)^\top \right]^{-1} \sum_{i=1}^r \frac{1}{\pi_i^*} (\mathbf{X}_i^* - \tilde{\mathbf{X}}^*) \left[\hat{T}_i^*(\boldsymbol{\beta}) - \tilde{T}^*(\boldsymbol{\beta}) \right], \quad (4)$$

177 and $\tilde{T}^*(\boldsymbol{\beta}) = (nr)^{-1} \sum_{i=1}^r \hat{T}_i^*(\boldsymbol{\beta}) / \pi_i^*$. We suggest using a zero vector as the
178 initial value in practice. By similar arguments to the full data, the time com-
179 plexity of the subsample estimator is $O\{\xi_r[rp^2 + r \log(r)]\}$, where ξ_r is the
180 number of iterations to get a converging result based on the subsample. Again,
181 it is worth noting that ξ_r depends more on the censoring rate than on r and π_i .182 A subsample of size $r \ll n$ allows for obtaining the estimator $\tilde{\boldsymbol{\beta}}_r$ in a com-
183 putationally feasible manner. However, the statistical efficiency of the estimator
184 heavily relies on the selection of the SSPs.185

3 Optimal Subsampling Probabilities

186 We determine the SSPs using procedures introduced by Wang et al. (2022)
187 which depend on the norms of the summands in an estimating equation.
188 Specifically for our estimating equation (2), the SSPs under the A-optimality
189 criterion are $\boldsymbol{\pi}^{\text{optA}} = \left\{ \pi_i^{\text{optA}} \right\}_{i=1}^n$ with

$$\pi_i^{\text{optA}} = \frac{\left\| \mathbf{M}_n^{-1} \mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n) \right\|}{\sum_{i=1}^n \left\| \mathbf{M}_n^{-1} \mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n) \right\|}, \quad i = 1, 2, \dots, n \quad (5)$$

190 where \mathbf{M}_n is the slope of $\mathbf{U}_n(\hat{\boldsymbol{\beta}}_n)$ and

$$\left\| \mathbf{M}_n^{-1} \mathbf{U}_{n,i}(\boldsymbol{\beta}) \right\| = \left\| \mathbf{M}_n^{-1} (\mathbf{X}_i - \tilde{\mathbf{X}}) \right\| \{ (1 - \delta_i) |\kappa_i(\boldsymbol{\beta})| + \delta_i |e_i(\boldsymbol{\beta})| \}. \quad (6)$$

191 Since the estimating function is non-smooth, we estimate \mathbf{M}_n by an effi-
192 cient resampling method proposed in Zeng and Lin (2008). In the resampling

method, $\{Z_i\}_{i=1}^R$ are generated in the first step where Z_i 's are zero-mean random vectors of dimension p and are independent of the data. In the second step, $n^{-1/2}\mathbf{U}_n(\hat{\beta}_n + n^{-1/2}Z_i)$'s are calculated for $i = 1, \dots, R$. In the third step, we calculate the least squares estimate of $n^{-1/2}\mathbf{U}_{jn}(\hat{\beta}_n + n^{-1/2}Z_i)$'s on Z_i 's for $j = 1, \dots, p$, where \mathbf{U}_{jn} denotes the j th component of \mathbf{U}_n . The j th row of \mathbf{M}_n is estimated by the j th least squares estimates.

In practice, we use a small pilot subsample of size r_0 where $r_0 \ll n$ to estimate $\hat{\beta}_n$ and $\{\mathbf{U}_{n,i}(\hat{\beta}_n)\}_{i=1}^n$ in order to approximate the optimal SSPs. Let $\tilde{\beta}_{r_0}$ be the pilot estimator derived from the pilot subsample. We calculate $\{e_i^*(\tilde{\beta}_{r_0})\}_{i=1}^{r_0}$ which are prediction errors of the selected pilot sample. Centering \mathbf{X} is required in estimating $\mathbf{U}_{n,i}(\hat{\beta}_n)$ which takes $O(np)$ time. Estimating $\kappa_i(\hat{\beta}_n)$ dominates the computing time of estimating $\mathbf{U}_{n,i}(\hat{\beta}_n)$ and it takes multiple steps. We sort $e_i^*(\tilde{\beta}_{r_0})$'s in the first step which takes $O\{r_0 \log(r_0)\}$ time. In the second step, the denominators of $\kappa_i^*(\tilde{\beta}_{r_0})$'s are calculated by the Kaplan-Meier type cumulative distribution function using sorted $e_i^*(\tilde{\beta}_{r_0})$'s which costs $O(r_0)$ time. In the third step, the numerators of $\kappa_i^*(\tilde{\beta}_{r_0})$'s that are cumulative summations are calculated with a cost of $O(r_0)$ time. In the fourth step, we calculate $\{e_i(\tilde{\beta}_{r_0})\}_{i=1}^n$ which takes $O(np)$ time. In the last step, we estimate $\kappa_i(\hat{\beta}_n)$ using constant interpolation. Specifically, we employ binary search to locate the position of $e_i(\tilde{\beta}_{r_0})$ in the sorted $e_i^*(\tilde{\beta}_{r_0})$'s, which takes $O\{\log(r_0)\}$ time. We assume that $e_{(k-1)}^*(\tilde{\beta}_{r_0}) \leq e_i(\tilde{\beta}_{r_0}) \leq e_{(k)}^*(\tilde{\beta}_{r_0})$, where $e_{(k)}^*(\tilde{\beta}_{r_0})$ is the k th element in the sorted $e_i^*(\tilde{\beta}_{r_0})$'s. We estimate $\kappa_i(\hat{\beta}_n)$ using $\kappa_{(k)}^*(\tilde{\beta}_{r_0})$, which corresponds to $e_{(k)}^*(\tilde{\beta}_{r_0})$. Since we have n observations in the full sample, the time complexity to estimate $\{\kappa_i(\hat{\beta}_n)\}_{i=1}^n$ is $O\{n \log(r_0)\}$. In conclusion, the overall time complexity to estimate $\{\mathbf{U}_{n,i}(\hat{\beta}_n)\}_{i=1}^n$ is $O\{r_0 \log(r_0) + r_0 + n \log(r_0)\} = O\{n \log(r_0)\}$.

The slope matrix \mathbf{M}_n is estimated using the pilot subsample only. Thus, the interpolation procedure is no longer needed in estimating \mathbf{M}_n . The time complexity for calculating R estimating equations is $O\{r_0 R \log(r_0)\}$ and solving the least squares estimate with a $R \times p$ design matrix for p times takes $O(Rp^3)$ time. In practice, $R = 100$ is enough to derive a good estimate of \mathbf{M}_n . The matrix multiplication of \mathbf{M}_n^{-1} and $\mathbf{U}_{n,i}(\beta)$'s take $O(np^2)$ time with given \mathbf{M}_n . Calculating the norm of a p dimensional vector for n times takes $O(np)$ time. Thus, the time complexity of calculating $\boldsymbol{\pi}^{\text{optA}}$ is $O\{np^2 + np + n \log(r_0) + r_0 \log(r_0) + Rp^3 + r_0 R \log(r_0)\} = O\{np^2 + n \log(r_0)\}$.

To avoid estimating \mathbf{M}_n and matrix multiplications, we propose another version of SSPs based on the L-optimality $\boldsymbol{\pi}^{\text{optL}} = \{\pi_i^{\text{optL}}\}_{i=1}^n$, where

$$\pi_i^{\text{optL}} = \frac{\|\mathbf{U}_{n,i}(\hat{\beta}_n)\|}{\sum_{i=1}^n \|\mathbf{U}_{n,i}(\hat{\beta}_n)\|}, \quad (7)$$

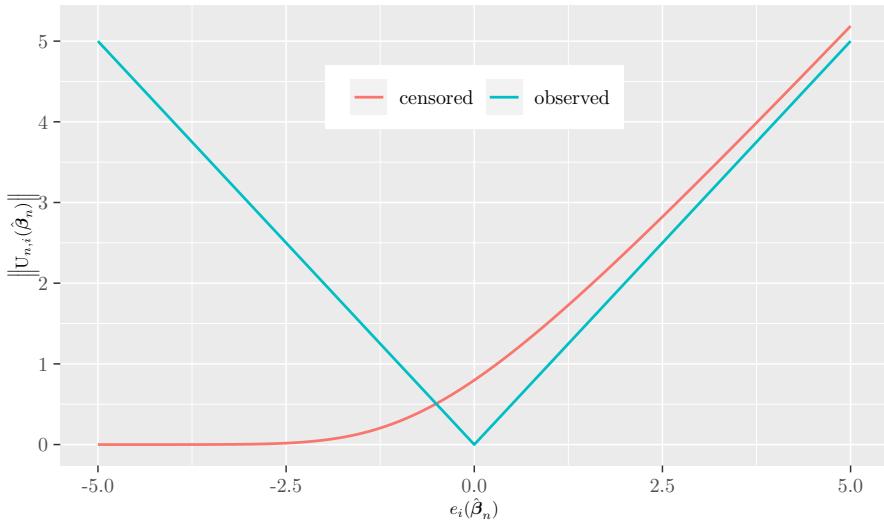


Fig. 1 Influence of prediction errors on π^{optL} .

and

$$\|\mathbf{U}_{n,i}(\boldsymbol{\beta})\| = \|\mathbf{X}_i - \bar{\mathbf{X}}\| \{(1 - \delta_i) |\kappa_i(\boldsymbol{\beta})| + \delta_i |e_i(\boldsymbol{\beta})|\}. \quad (8)$$

For π^{optL} , we only need to estimate $\mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)$'s which take $O\{n \log(r_0)\}$ time and calculating norms of n vectors of dimension p takes $O(np)$ time. Thus the time complexity to calculate π^{optL} is $O\{np + n \log(r_0)\}$ which is less time-consuming than π^{optA} . It should be noted that there are several steps involved in estimating $\{\mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)\}_{i=1}^n$, each of which takes $O(np)$ time. When p is small and comparable to $\log(r)$, the time complexity of the interpolations required, which take $O\{n \log(n)\}$ time, is similar to $O(np)$. As a result, estimating $\{\mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)\}_{i=1}^n$ takes only slightly less than $O(np^2)$ time. Nevertheless, as p increases, the computational efficiency of π^{optL} becomes more apparent.

The effect of $e_i(\hat{\boldsymbol{\beta}}_n)$ on the optimal SSPs is interesting. For parametric models without censoring, observations with residuals of large magnitude have large optimal SSPs in existing investigations. This is not true for censored observations. Note that $\mathbb{E}(\epsilon) = \int_{-\infty}^{\infty} u dF_{\epsilon}(u)$ is 0 in model (1), where $F_{\epsilon}(u)$ is the cumulative distribution function of ϵ . Thus, $\|\mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)\|$ converges to 0 as $e_i(\hat{\boldsymbol{\beta}}_n) \rightarrow -\infty$ for censored observations. When $e_i(\hat{\boldsymbol{\beta}}_n) \rightarrow +\infty$, the numerator of $\kappa_i(\hat{\boldsymbol{\beta}}_n)$ converges to zero slower than the denominator. Thus, $\|\mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)\|$ converges to $+\infty$ as $e_i(\boldsymbol{\beta}) \rightarrow +\infty$. Note that $\{\pi_i^{\text{optA}}\}_{i=1}^n$ are proportional to $\{\|\mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)\|\}_{i=1}^n$ and $\{\pi_i^{\text{optL}}\}_{i=1}^n$ are proportional to $\{\|\mathbf{M}_n^{-1} \mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)\|\}_{i=1}^n$ where \mathbf{M}_n^{-1} does not change for different i 's. Thus, π_i^{optA} and π_i^{optL} have the same trend as $\|\mathbf{U}_{n,i}(\hat{\boldsymbol{\beta}}_n)\|$ with respect to $e_i(\hat{\boldsymbol{\beta}}_n)$. Nevertheless, it does not contradict the fact that optimal SSPs prefer data points whose event time

Table 1 Means and summations of uniform SSPs and π^{optA} for censored and observed observations with Gumbel (G), Logistic (L) and Normal (N) distributions as the error distributions and different censoring rates c_r .

	$c_r: 25\%$				$c_r: 50\%$				$c_r: 75\%$			
	uniform	G	L	N	uniform	G	L	N	uniform	G	L	N
summation												
Censored	0.25	0.253	0.309	0.272	0.50	0.443	0.459	0.447	0.75	0.544	0.545	0.545
Event	0.75	0.747	0.691	0.728	0.50	0.557	0.541	0.553	0.25	0.456	0.455	0.455
mean ($\times n$)												
Censored	1.00	1.013	1.235	1.087	1.00	0.884	0.919	0.892	1.00	0.728	0.729	0.725
Event	1.00	0.996	0.922	0.971	1.00	1.117	1.081	1.109	1.00	1.807	1.802	1.832

is harder to predict. A censored observation means $C_i \leq T_i$, and a negative $e_i(\hat{\beta}_n)$ means $C_i < \hat{T}_i$. Thus, for a censored observation, a larger magnitude of a negative $e_i(\hat{\beta}_n)$ does not mean a larger prediction error, $|T_i - \hat{T}_i|$. On the other hand, a positive $e_i(\hat{\beta}_n)$ means $C_i > \hat{T}_i$, and thus a larger magnitude of a positive $e_i(\hat{\beta}_n)$ means a larger prediction error, $|T_i - \hat{T}_i|$. For uncensored observations, clearly a large absolute $e_i(\hat{\beta}_n)$ means that the event time is hard to predict, thus both π_i^{optL} and π_i^{optA} are large when $e_i(\hat{\beta}_n)$ is far away from zero. For the same magnitude of a positive error, the optimal SSPs are higher for censored observations than uncensored ones since the event time of a censored observation is harder to predict than an uncensored observation. This pattern is shown in Figure 1.

To investigate which types of observation are preferred by optimal SSPs in given datasets, we used simulated datasets of size n whose detailed information is stated in the first paragraph of Section 5 to generate the optimal SSPs. Table 1 presents the means and sums of the SSPs for censored and uncensored observations separately. We calculated π^{optA} and derived their sums and means for each dataset. When we compared the mean optimal SSPs with the mean of the uniform SSPs, we observed that π^{optA} prefers uncensored observations at high censoring rates but prefers censored observations at low censoring rates. At a censoring rate of 0.5, the mean of π^{optA} was higher than n^{-1} (the uniform SSP) for uncensored observations but smaller than n^{-1} for censored observations, indicating that optimal SSPs prefer uncensored observations that provide more information beyond the influence of the censoring rate. This preference can also be observed in the summation of π^{optA} . The summations of π^{optA} for both types of observations were similar to the summations of uniform SSPs at a censoring rate of 0.25, but significantly different at a censoring rate of 0.75. These two preferences likely involve trade-offs that require further investigation.

280 4 A Two-Step Subsampling Approach

281 In this section, a feasible two-step method is proposed to derive the subsampling estimator. Note that the optimal SSPs in Section 3 are dependent on the
 282 full sample estimator $\hat{\beta}_n$ which cannot be used directly. To resolve this issue,
 283 in the first step, we approximate π^{optL} and π^{optA} based on a pilot estimator
 284 $\tilde{\beta}_{r_0}$ of $\hat{\beta}_n$, which is derived from a small, pilot subsample of size r_0 in the
 285 first step. Denote the estimated optimal SSPs as $\pi^{\text{optA}}(\tilde{\beta}_{r_0})$ and $\pi^{\text{optL}}(\tilde{\beta}_{r_0})$.
 286 In the second step, a subsample of size r is drawn according to the estimated
 287 SSPs in the first step. The subsampling estimator $\check{\beta}_r$ is obtained by the second
 288 step subsample in combination with the pilot subsample. Following the idea of
 289 Zeng and Lin (2008), the variance of $\check{\beta}_r$ is estimated based on a sandwich for-
 290 mula $\mathbf{M}_r^{-1} \mathbf{V}_r \mathbf{M}_r^{-1}$, where \mathbf{M}_r is the estimator of \mathbf{M}_n based on the combined
 291 subsample and

$$292 \mathbf{V}_r = \frac{1}{n^2(r_0 + r)} \left\{ \sum_{i=1}^r \frac{\mathbf{U}_{r,i}^*(\check{\beta}_r) \{ \mathbf{U}_{r,i}^*(\check{\beta}_r) \}^\top}{\{\pi_i^{\text{opt}}(\check{\beta}_r)\}^2} + n^2 \sum_{i=1}^{r_0} \mathbf{U}_{r_0,i}^*(\tilde{\beta}_{r_0}) \{ \mathbf{U}_{r_0,i}^*(\tilde{\beta}_{r_0}) \}^\top \right\},$$

293 with $\mathbf{U}_{r_0,i}^*(\beta)$ being the estimating function for the i th element in the pilot
 294 subsample.

295 Now we consider the time complexity of the two-step approach. As dis-
 296 cussed in Section 3, the first step involves obtaining either π^{optA} or π^{optL} ,
 297 which takes $O\{np^2 + n \log(r_0)\}$ time and $O\{np + n \log(r_0)\}$ time, respectively. In
 298 the second step, calculating the subsample estimator takes $O\{\xi_r[rp^2 + r \log(r)]\}$
 299 time. For the sandwich variance estimator, calculating \mathbf{M}_r takes $O\{Rr \log(r)\}$
 300 time, as discussed in Section 3; calculating \mathbf{V}_r costs $O(rp^2 + r_0 p^2)$ time.
 301 Therefore, the overall time complexity of the two-step method using π^{optA} is
 302 $O\{np^2 + n \log(r_0) + \xi_r[rp^2 + r \log(r)] + Rr \log(r) + rp^2 + r_0 p^2\} = O\{np^2 +$
 303 $n \log(r_0) + \xi_r[rp^2 + r \log(r)] + Rr \log(r)\}$. The time complexity of π^{optL} is
 304 similar this formula except that the np^2 term is replaced by np .

305 Note that the approximate optimal SSPs, denoted by $\pi^{\text{opt}}(\tilde{\beta}_{r_0})$, are derived
 306 from a random pilot estimator which may cause additional disturbance.
 307 Based on (6), for uncensored observations with $e_i(\hat{\beta})$ more approaching zero,
 308 their exact SSPs are closer to zero and the additional disturbances may get
 309 amplified. To protect the subsample estimator, we adopt the idea of defen-
 310 sive sampling and mix the approximated $\pi^{\text{opt}}(\tilde{\beta}_{r_0})$ with the uniform SSP
 311 denoted by $\pi_{r_0}^{\text{Uni}}$ (Hesterberg, 1995). That is, we use adjusted optimal SSPs
 312 $\pi_{\alpha i}^{\text{opt}}(\tilde{\beta}_{r_0}) = \{\pi_{\alpha i}^{\text{opt}}(\tilde{\beta}_{r_0})\}_{i=1}^n$ instead of $\pi^{\text{opt}}(\tilde{\beta}_{r_0})$ to do subsampling, where

$$313 \pi_{\alpha i}^{\text{opt}}(\tilde{\beta}_{r_0}) = (1 - \alpha) \pi_i^{\text{opt}}(\tilde{\beta}_{r_0}) + \frac{\alpha}{n}, \quad 0 < \alpha < 1, \quad i = 1, 2, \dots, n.$$

314 In the simulation study and the real data analysis, we set $\alpha = 0.2$.

315 At high censoring rates, the sandwich estimator in Zeng and Lin (2008)
 316 overestimates the empirical variance; see Section 5. We resolve this issue
 317 by selecting B subsamples of size r to estimate B subsampling estimators

317 $\{\check{\beta}_{b,r}\}_{b=1}^B$ in the second step. In this scenario, the resultant estimator takes
 318 the form

$$\check{\beta}_r = \frac{1}{B} \sum_{b=1}^B \check{\beta}_{b,r}, \quad (9)$$

319 and its variance estimator is

$$\check{\mathbf{V}}_r = \frac{1}{B(B-1)} \sum_{b=1}^B (\check{\beta}_{b,r} - \check{\beta}_r) (\check{\beta}_{b,r} - \check{\beta}_r)^\top. \quad (10)$$

320 Note that $\check{\mathbf{V}}_r$ can be used for statistical inferences on the true regression
 321 coefficients if the subsample size is much smaller than the full data size (Wang
 322 et al., 2022). This requires that rB/n is close to zero in practice since the actual
 323 size of the subsample is $r \times B$. The dimension of $\check{\beta}_r$ is p , thus B should be larger
 324 than p in order to get a reliable variance estimator. In practice, the choice of
 325 B should be much smaller than n/r but greater than p . Since we do not need
 326 to estimate \mathbf{M}_r when $B > 1$, the time complexity in this case using π^{optA} is
 327 $O\{np^2 + n \log(r_0) + \xi_r B[rp^2 + r \log(r)] + Bp^2\} = O\{np^2 + \xi_r B[rp^2 + r \log(r)]\}$.
 328 Similarly, the time complexity when using π^{optL} is $O\{np + \xi_r B[rp^2 + r \log(r)]\}$.
 329 Nevertheless, it is important to note that the computation time is dominated
 330 by the derivation of $\check{\beta}_r$ when $\xi_r Br \geq n$.

331 5 Simulation

332 The performances of the estimator from the two-step procedure were assessed
 333 in a simulation study. We used three different error distributions: standard nor-
 334 mal, standard logistic, and centered Gumbel distribution with shape parameter
 335 zero and scale parameter one. The covariates follow multivariate normal with
 336 mean zero and covariance matrix $\Sigma_{ij} = 0.5^{I(i \neq j)}$. The dimension of β was
 337 seven and all coefficients were set to be 1 including the intercept. The censor-
 338 ing times were generated from the Uniform distribution with the minimum and
 339 maximum values equal to 0 and c , respectively, where c was tuned to achieve
 340 censoring rates $c_r \in \{0.25, 0.50, 0.75\}$.

341 For each of the nine configurations, 1000 large datasets of size $n = 500,000$
 342 were generated. In our simulation, the pilot sample size was $r_0 = 3000$. The
 343 second-step subsample sizes considered were $r \in \{4000, 8000, 16000\}$ and $B \in$
 344 $\{1, 10\}$. For the i th dataset in each of the nine configurations, we derived $\check{\beta}_r^{(i)}$
 345 by the two-step subsampling method using π^{optA} , π^{optL} and the uniform SSPs.
 346 We compared the performance of the two-step method using different SSPs by
 347 the root mean square error (RMSE) of $\check{\beta}_r^{(i)}$, where the RMSE is calculated by

$$\text{RMSE} = \left(\frac{1}{s} \sum_{i=1}^s \|\check{\beta}_r^{(i)} - \hat{\beta}_n\|^2 \right)^{1/2}. \quad (11)$$

348 Note that for each replicate, the pilot subsample is different.

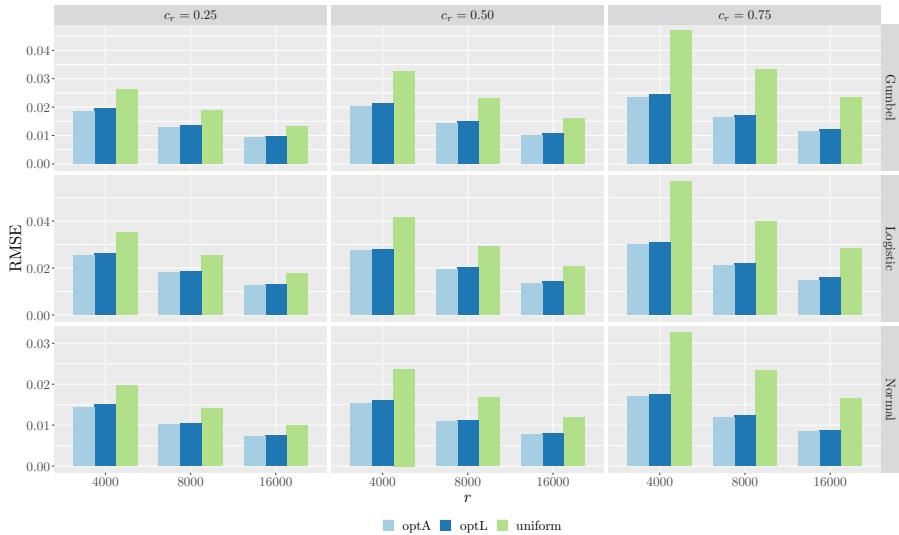


Fig. 2 Empirical RMSEs for different SSPs, error distribution, subsample sizes r and censoring rates when covariates follow multivariate normal distribution based on the two-step procedure with $B = 10$.

349 The estimation efficiency of our method is shown in Figure 2. It shows the
 350 RMSEs of $\hat{\beta}_r$ based on the uniform SSPs, π^{optA} , and π^{optL} for the two-step
 351 method when $B = 10$. Note that the actual subsample sizes we use to estimate
 352 the resultant estimator are $B \times r$. As expected, in all data configurations,
 353 π^{optL} and π^{optA} give smaller RMSE than uniform SSP and π^{optA} give the
 354 smallest RMSE. As the censoring rate increases, there will be fewer informative
 355 observations. So the RMSEs of all methods increase as less information is
 356 available. In all configurations, the RMSEs decrease as the subsample size r
 357 increases.

358 We evaluated the accuracy of the variance estimator by comparing its average
 359 over 1000 subsamples with the empirical variance. The upper panel of
 360 Figure 3 presents the results for the formula-based variance estimator when
 361 $B = 1$. The figure reveals that the estimated and empirical RMSEs are close
 362 at censoring rates 0.25 and 0.5, indicating that the sandwich estimator esti-
 363 mates the true variance well at low to moderate censoring rates. However, the
 364 sandwich estimator noticeably overestimates the true variance differences at
 365 the censoring rate 0.75, which leads to conservative conclusions and loss of
 366 power in inferences. To correct the bias for high-censoring cases, we set $B = 10$
 367 and estimate the variances using Equation (10). The lower panel of Figure 3
 368 demonstrates that this provides accurate variance estimates for high censoring
 369 rates. Hence, we suggest using $B = 10$ in the second step and estimating the
 370 standard error by (10) for high censoring rates.

371 Finally, we evaluate the computational efficiency of the two-step methods.
 372 We compared the computing time when $B = 10$ and $B = 1$. To ensure a fair
 373 comparison, we increased the subsample size for $B = 1$ to $10r$. We performed

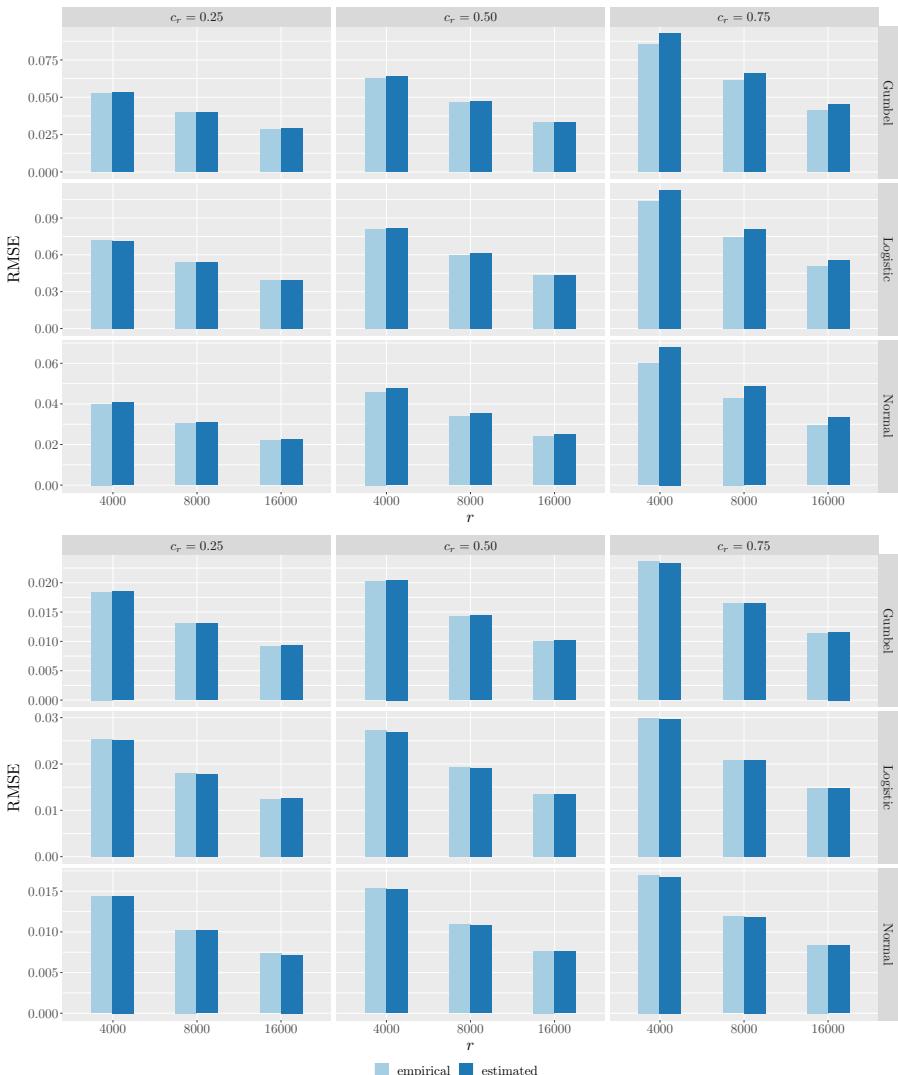


Fig. 3 Empirical and estimated RMSEs with π^{optA} for different error distribution, subsample sizes r and 0.75 censoring rates when covariates follow multivariate normal distribution based on the two-step procedure with $B = 1$ (upper) and $B = 10$ (lower).

the computation on a laptop running Windows 11 with an Intel Core (TM) i7-8650U @ 1.90GHz processor and 16 GB memory. Figure 4 summarizes the computational and estimation efficiency of both methods. It shows that using $B = 10$ subsamples of size r is less time-consuming than using $B = 1$ subsample of size $10r$. This is due to the fact that the formula-based variance estimation when $B = 1$ takes a considerable amount of time, as discussed in Section 4. Using π^{optL} , π^{optA} , and uniform SSPs take similar CPU time because the

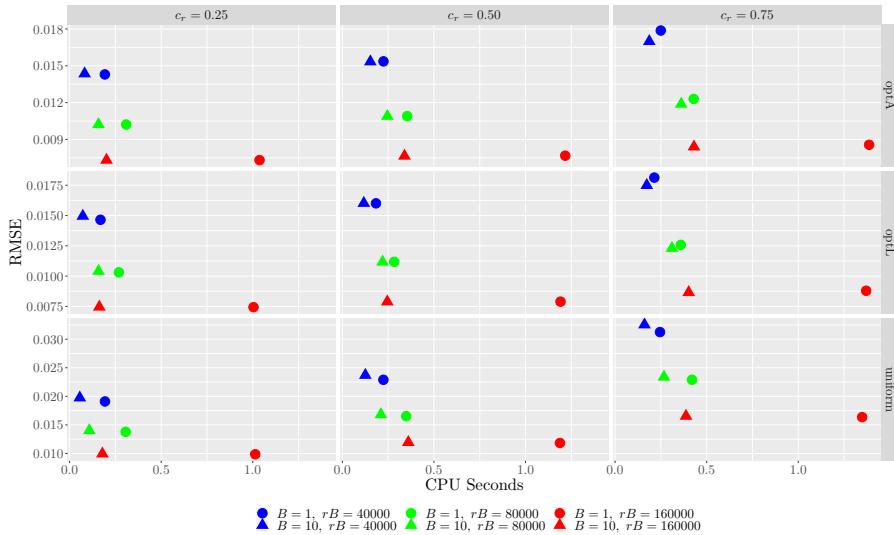


Fig. 4 Comparison of estimation efficiency and computational efficiency for different subsample sizes r , censoring rates, subsampling methods, and values of B when the errors are generated from a standard normal distribution.

value of r is large enough so that calculating the SSPs does not dominate the computing time.

6 Survival of Lymphoma

The two-step procedure was applied to model the survival time of lymphoma patients in the SEER program. The dataset contains 159,149 patients that were diagnosed with lymphoma from 1973 to 2012 and the censoring rate is 58.3%. We considered four risk factors, including age with the unit of year, nonwhite race indicator (1 = nonwhite), male indicator (1 = male) and the diagnostic year. We also included the interaction between age with the male indicator and age with the non-white indicator. The pilot sample size was set to be $r_0 = 2000$ and the subsample sizes were $r \in \{2000, 4000, 8000\}$. We considered three kinds of SSPs, uniform SSPs, the L-optimal SSPs (π^{optL}) and the A-optimal SSPs (π^{optA}). In the real data analysis, we set $B = 10$.

Figure 5 shows the empirical RMSEs from 1000 replicates of the two-step method with $B = 10$ based on different SSPs and different second-step subsample sizes. The RMSE decreases as r increases which indicates the consistency of our method. As expected, both optimal SSPs perform better than the uniform SSPs. It should be noted that π^{optA} does not result in universally smaller RMSEs for all parameters. As shown in Figure 2, for the interaction term ‘Age×Male’ and the risk factor ‘Diagnostic Year’, the ‘optA’ estimates have higher RMSE than the ‘optL’ estimates. This is because π^{optA} are designed to minimize the overall RMSEs for all risk factors and interactions, rather than specifically targeting individual risk factors or interactions.

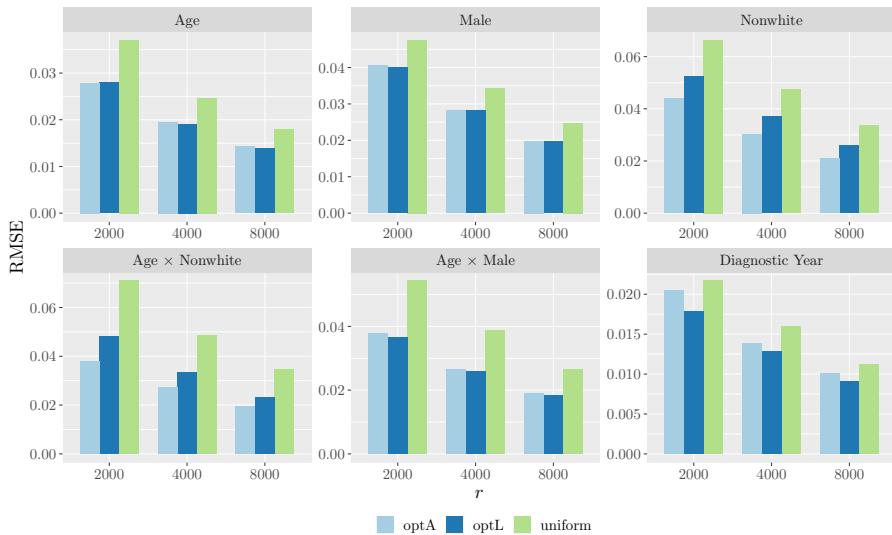


Fig. 5 Empirical RMSEs of different risk factors for different SSPs and different second-step subsample sizes r when fixing the pilot sample size $r_0 = 2000$ over 1000 replicates of the two-step method with $B = 10$.

Table 2 Estimates (EST) and their empirical standard errors (ESE) and average estimated standard errors (ASE) from different subsampling approaches for $r = 4000$ and $r_0 = 2000$ over 1000 replicates of the two-step method with $B = 10$.

	optL			optA			uniform			Full	
	EST	ESE	ASE	EST	ESE	ASE	EST	ESE	ASE	EST	SE
Age	-1.029	0.019	0.020	-1.030	0.020	0.020	-1.029	0.025	0.026	-1.030	0.013
Male	0.701	0.028	0.028	0.702	0.028	0.028	0.701	0.034	0.035	0.700	0.017
Nonwhite	-0.665	0.037	0.036	-0.667	0.030	0.030	-0.666	0.048	0.046	-0.666	0.023
Age \times Nonwhite	0.303	0.034	0.033	0.306	0.027	0.027	0.299	0.048	0.049	0.306	0.026
Age \times Male	-0.486	0.026	0.026	-0.486	0.026	0.026	-0.488	0.039	0.038	-0.486	0.018
Diagnostic Year	0.478	0.013	0.013	0.478	0.014	0.014	0.479	0.016	0.015	0.478	0.008

Table 2 summarizes the average estimates and their corresponding average empirical standard errors (EST) and average pooled standard error estimators (ASE) for all subsampling methods when $r = 4000$ and $B = 10$ over 1000 subsamples. We compared the subsample estimates with the full data estimates whose standard errors were derived from the non-parametric bootstrap of 1000 samples. The optimal subsampling methods yield one-third less standard errors than the uniform subsampling method. The empirical and estimated standard errors are similar which indicates the subsampling methods are suitable for statistical inference. The empirical standard errors for both optimal subsampling methods are small which shows that using a small subsample is sufficient in practice to estimate the full data estimates. The results indicate that elder,

16 *Subsampling for Least Squares Fitting of Semi-parametric AFT Model*

415 female, nonwhite, and earlier-diagnosed patients had shorter survival times.
 416 For white patients and male patients, the slope of age was steeper.

417 **7 Discussion**

418 The optimal subsampling method for the least square fitting of semiparamet-
 419 ric AFT model for massive survival data is challenging due to non-smooth
 420 estimating functions. The crucial element of this approach is determining the
 421 SSP, which we addressed by a resampling method (Zeng and Lin, 2008). We
 422 proposed two types of optimal SSPs, induced by the A-optimality and the
 423 L-optimality from design of experiments. Optimal SSPs prefer extreme obser-
 424 vations, but for censored observations, only those with positive residuals of
 425 large magnitudes are considered extreme, while those with negative residuals of
 426 large magnitudes are not. Moreover, for positive residuals with the same magni-
 427 tude, optimal SSPs prefer censored observations over uncensored observations.
 428 This preference for extreme observations does not contradict the accepted
 429 notion that optimal SSPs tend to choose observations that are harder to pre-
 430 dict. We conducted a simulation study and a real data analysis to demonstrate
 431 the feasibility and effectiveness of the proposed methods, which provide good
 432 approximations of full data inferences while being computationally feasible.

433 Further investigation is warranted for optimal subsampling methods in
 434 fitting semiparametric AFT models with the rank-based approach. In rank-
 435 based estimation, censored observations do not contribute to the estimating
 436 function, but they contribute to the ranking. Simply assigning a zero SSP to
 437 censored observations would not properly account for their contributions. A
 438 possible solution is to express the estimating functions using some martingales,
 439 which facilitates the evaluations of the contributions of censored observations.
 440 This approach has been successfully applied in Cox models (Zhang et al., 2023).
 441 Additionally, the induced smoothing approach, which improves computational
 442 efficiency (Chiou et al., 2014, 2015), remains important. This method replaces
 443 the non-smooth estimating equations with a smoothed version whose solutions
 444 are asymptotically equivalent to those of the non-smooth version. Ongoing
 445 investigation in this direction will be reported elsewhere.

446 **References**

447 Ai, M., J. Yu, H. Zhang, and H. Wang. 2021. Optimal subsampling algorithms
 448 for big data generalized linear models. *Statistica Sinica* 31(2): 749–772 .

449 Buckley, J. and I. James. 1979. Linear regression with censored data.
 450 *Biometrika* 66(3): 429–436 .

451 Chiou, S., S. Kang, and J. Yan. 2015. Rank-based estimating equations with
 452 general weight for accelerated failure time models: An induced smoothing
 453 approach. *Statistics in Medicine* 34(9): 1495–1510 .

454 Chiou, S.H., S. Kang, and J. Yan. 2014. Fitting accelerated failure time models
 455 in routine survival analysis with R package aftgee. *Journal of Statistical*
 456 *Software* 61(11): 1–23 .

457 Drineas, P., M.W. Mahoney, and S. Muthukrishnan 2006. Sampling algorithms
 458 for L_2 regression and applications. In *Proceedings of the Seventeenth Annual*
 459 *ACM-SIAM Symposium on Discrete Algorithm*, pp. 1127–1136. Association
 460 of Computing Machinery.

461 Hesterberg, T. 1995. Weighted average importance sampling and defensive
 462 mixture distributions. *Technometrics* 37(2): 185–194 .

463 Jin, Z., D. Lin, L. Wei, and Z. Ying. 2003. Rank-based inference for the
 464 accelerated failure time model. *Biometrika* 90(2): 341–353 .

465 Jin, Z., D. Lin, and Z. Ying. 2006. On least-squares regression with censored
 466 data. *Biometrika* 93(1): 147–161 .

467 Keret, N. and M. Gorfine. 2022. Optimal Cox regression subsampling proce-
 468 dure with rare events. arXiv preprint: <https://arxiv.org/abs/2012.02122>.

469 Li, R., C. Chang, J.M. Justesen, Y. Tanigawa, J. Qian, T. Hastie, M.A.
 470 Rivas, and R. Tibshirani. 2022. Fast lasso method for large-scale and
 471 ultrahigh-dimensional Cox model with applications to UK biobank. *Bio-
 472 statistics* 23(3): 522–540 .

473 Ma, P., Y. Chen, X. Zhang, X. Xing, J. Ma, and M.W. Mahoney. 2022. Asymp-
 474 totic analysis of sampling estimators for randomized numerical linear algebra
 475 algorithms. *The Journal of Machine Learning Research* 23(1): 7970–8014 .

476 Ma, P., M.W. Mahoney, and B. Yu. 2015. A statistical perspective on algo-
 477 rithmic leveraging. *Journal of Machine Learning Research* 16(27): 861–911
 478 .

479 Mahoney, M.W. et al. 2011. Randomized algorithms for matrices and data. *Foundations and Trends® in Machine Learning* 3(2): 123–224 .

480 Su, W., G. Yin, J. Zhang, and X. Zhao. 2023. Divide and conquer for accel-
 481 erated failure time model with massive time-to-event data. *The Canadian*
 482 *Journal of Statistics* 51(2): 400–419 .

483 Tsiatis, A.A. 1990. Estimating regression parameters using linear rank tests
 484 for censored data. *The Annals of Statistics* 18(1): 354–372 .

485 Wang, H. and Y. Ma. 2021. Optimal subsampling for quantile regression in
 486 big data. *Biometrika* 108(1): 99–112 .

18 *Subsampling for Least Squares Fitting of Semi-parametric AFT Model*

488 Wang, H., R. Zhu, and P. Ma. 2018. Optimal subsampling for large sample
489 logistic regression. *Journal of the American Statistical Association* 113(522):
490 829–844 .

491 Wang, J., J. Zou, and H. Wang. 2022. Sampling with replacement vs Poisson
492 sampling: A comparative study in optimal subsampling. *IEEE Transactions
493 on Information Theory* 68(10): 6605–6630 .

494 Wang, W., S.E. Lu, J.Q. Cheng, M. Xie, and J.B. Kostis. 2022. Multivariate
495 survival analysis in big data: A divide-and-combine approach. *Biometrics* 78(3): 852–866 .

496 Wang, Y., C. Hong, N. Palmer, Q. Di, J. Schwartz, I. Kohane, and T. Cai.
497 2021. A fast divide-and-conquer sparse Cox regression. *Biostatistics* 22(2):
498 381–401 .

500 Wu, J., M.H. Chen, E.D. Schifano, and J. Yan. 2021. Online updating of
501 survival analysis. *Journal of Computational and Graphical Statistics* 30(4):
502 1209–1223 .

503 Xue, Y., H. Wang, J. Yan, and E.D. Schifano. 2020. An online updating
504 approach for testing the proportional hazards assumption with streams of
505 survival data. *Biometrics* 76(1): 171–182 .

506 Yang, Z., H. Wang, and J. Yan. 2022. Optimal subsampling for parametric
507 accelerated failure time models with massive survival data. *Statistics in
508 Medicine* 41(27): 5421–5431 .

509 Zeng, D. and D. Lin. 2008. Efficient resampling methods for nonsmooth
510 estimating functions. *Biostatistics* 9(2): 355–363 .

511 Zhang, H., L. Zuo, H. Wang, and L. Sun. 2023. Approximating partial like-
512 lihood estimators via optimal subsampling. *Journal of Computational and
513 Graphical Statistics* .

514 Zuo, L., H. Zhang, H. Wang, and L. Liu. 2021. Sampling-based estima-
515 tion for massive survival data with additive hazards model. *Statistics in
516 Medicine* 40(2): 441–450 .