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Abstract

Massive survival data are increasingly common in many research fields,
and subsampling is a practical strategy for analyzing such data. Although
optimal subsampling strategies have been developed for Cox models, lit-
tle has been done for semiparametric accelerated failure time (AFT)
models due to the challenges posed by non-smooth estimating func-
tions for the regression coefficients. We develop optimal subsampling
algorithms for fitting semi-parametric AFT models using the least-
squares approach. By efficiently estimating the slope matrix of the
non-smooth estimating functions using a resampling approach, we con-
struct optimal subsampling probabilities for the observations. For feasible
point and interval estimation of the unknown coefficients, we pro-
pose a two-step method, drawing multiple subsamples in the second
stage to correct for overestimation of the variance in higher censor-
ing scenarios. We validate the performance of our estimators through a
simulation study that compares single and multiple subsampling meth-
ods and apply the methods to analyze the survival time of lymphoma
patients in the Surveillance, Epidemiology, and End Results program.

Keywords: A-optimality; Non-smooth estimating function; Survival analysis
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2 Subsampling for Least Squares Fitting of Semi-parametric AFT Model

1 Introduction

The proliferation of storage and surveillance technologies has led to the emer-
gence of large-scale datasets with survival outcomes in a variety of domains
such as healthcare. The size of these datasets, however, often exceeds the com-
putational capacity of an analyst’s computer, posing significant challenges for
their analysis. To tackle this issue, several strategies have been proposed. The
divide-and-conquer strategy divides massive data into groups, processes them
separately, and aggregates the results. This strategy has been applied to Cox
models (Wang et al., 2021, 2022) and accelerated failure time (AFT) models
(Su et al., 2023). Carefully devised, the strategy facilitates the full LASSO path
through a batch screening approach in the case of the ultrahigh-dimensional
Cox model with sparse solutions at all predefined regularization parameters
in Li et al. (2022). Another strategy is the online updating strategy, which
handles massive survival data arriving in a stream by batches and updates the
cumulative estimators. Examples of this approach include testing for the pro-
portional hazards assumption (Xue et al., 2020) and fitting Cox models (Wu
et al., 2021).

Our focus here is the subsampling strategy, which selects a significantly
smaller yet optimal subsample for analysis instead of using the full data. This
concept was developed for linear regression in the form of leverage sampling by
Drineas et al. (2006) and Mahoney et al. (2011). Ma et al. (2015) examined the
statistical aspects of this method, referring to it as algorithmic leveraging. In
this method, non-uniform subsampling probabilities are based on the empir-
ical statistical leverage scores derived from the input covariate matrix. The
asymptotic properties of the leverage sampling estimator were further explored
by Ma et al. (2022). Wang et al. (2018) introduced an optimal subsampling
algorithm for logistic regression based on the A-optimality criterion, which
minimizes the trace of the asymptotic variance matrix of the resulting estima-
tor. This approach has been extended to a variety of statistical models such
as generalized linear models (Ai et al., 2021) and quantile regression models
(Wang and Ma, 2021). In the field of survival analysis, this approach has been
developed for Cox models (Zhang et al., 2023), Cox models with rare events
(Keret and Gorfine, 2022), additive hazard rate models (Zuo et al., 2021), and
parametric AFT models (Yang et al., 2022). To the best of our knowledge,
however, no prior work has explored its application to semi-parametric AFT
models for massive survival data.

Developing optimal subsampling strategies for semi-parametric AFT mod-
els can be a challenging task. Two commonly used approaches for fitting
semi-parametric AFT models are the rank-based approach (Tsiatis, 1990; Jin
et al., 2003; Chiou et al., 2014, 2015) and the least squares approach (Buck-
ley and James, 1979; Jin et al., 2006; Chiou et al., 2014). In the presence of
censoring, the key challenge is to derive the optimal subsampling probabilities
(SSP) for censored observations. The SSP of an observation is proportional
to its contribution to the estimating functions in standard approaches (Zhang
et al., 2023; Yang et al., 2022). For the rank-based method, it is tempting
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Subsampling for Least Squares Fitting of Semi-parametric AFT Model 3

to assign a zero SSP to censored observations since they do not contribute
as individual terms to the estimating functions for the regression coefficients.
This is also true for the estimating equation approaches for the additive haz-
ard models and Cox models. A general approach is to express the estimating
equations in terms of appropriately defined martingales, as was done by Zhang
et al. (2023) to the partial likelihood score function for the Cox proportional
hazards model. For the least squares method, however, the contribution of a
censored observation to the estimating equations has an explicit form (Tsi-
atis, 1990). Conceptually, the optimal SSPs are expected to behave similarly
to those in a parametric AFT model (Yang et al., 2022). The extra challenge
comes from the evaluation of these contributions.

Here we address the challenge of developing optimal subsampling strategies
for semi-parametric AFT models using the least-squares approach. Specifically,
we focus on two types of optimal SSPs as discussed in Wang et al. (2022). The
first type depends on the estimating functions and their slope matrices. For
a censored observation, we define its contribution to the estimating function
with the conditional expectation of the event time in place of the censored time
(Buckley and James, 1979). Since the resulting estimating function depends
on the Kaplan-Meier estimator of the residuals, which is non-smooth, we use a
resampling procedure proposed by Zeng and Lin (2008) to evaluate the slope
matrix. The second type of optimal SSPs only depends on the estimating func-
tion, which is computationally simpler and faster to calculate. For both types,
since the true optimal SSPs are based on the unknown full data estimator, we
propose a two-step method for practical implementation. In the first step, we
approximate the optimal SSPs using a pilot estimator obtained from a small
pilot subsample. In the second step, we use multiple subsamples selected by
the approximated optimal SSPs to obtain the point estimator and its stan-
dard error. We demonstrate the effectiveness of this method through extensive
simulation studies and a real data example, confirming the utility of our pro-
posed optimal subsampling strategies for semi-parametric AFT models. Our
implementation is part of an R package aftosmac, which is publicly available
at https://github.com/YEnthalpy/aftosmac.

The remainder of the paper is structured as follows. In Section 2, we present
a general subsampling procedure for semiparametric AFT models with least-
squares using given SSPs. Section 3 focuses on deriving the optimal SSPs based
on two criteria motivated by experiment design. Since the optimal SSPs depend
on the unknown full-data estimator, in Section 4, we propose a feasible two-
step approach and derive an estimator of the asymptotic variance. In Section 5,
we evaluate the performance of the estimator through a simulation study.
Section 6 illustrates the application of the proposed method to analyze the
survival time of lymphoma patients in the Surveillance, Epidemiology, and End
Results (SEER) program. Finally, we conclude with a discussion in Section 7.
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4 Subsampling for Least Squares Fitting of Semi-parametric AFT Model

2 Preliminaries

Consider a semi-parametric AFT model for a log-transformed failure time 7'
with a p-dimensional covariate vector X:

T=a+X"B+e, (1)

where « is an intercept, 3 is a p x 1 vector of regression coefficients, and € is
a random error with mean zero and an unspecified distribution. Due to right
censoring, the observed time is Y = min(7, C'), where C' is a log-transformed
censoring time, and C' and T are conditionally independent given X. Also
observed is the event indicator § = I(T < C) with I(-) being the indicator
function. Suppose that a random sample of size n is available: {X;,Y;, 51-};;1,
which are independent and identically distributed copies of {X,Y,d}.

The least squares estimation of B has the same principle as the classical
least squares for non-censored data. In the case where {T;}._, are all observed
(i.e., no censoring), the classical least-squares estimator of 3 can be obtained
by solving the equation

n

D (X = X)(T; - X[ B) =0,

i=1

where X = 3" | X;/n. In the presence of censoring, however, the true failure
time T; is unknown for those individuals with §; = 0, in which case, the
equation cannot be evaluated. Buckley and James (1979) proposed replacing
each T; with its conditional expectation given the observed data (X;,Y;, d;),

Ti(B) = 6;Yi + (1 — &) [ri(B) + X/ B+ a]

where )

ki(B) = fec:o(ﬁ) udFg(u)
' 1—Fp {ei(ﬂ)}7
and Fg(-) is the estimated cumulative distribution function for e;(8) = Y; —
X, B — a, via the Kaplan-Meier estimator. The Buckley—James least squares
estimator 3, is the root of

Z U,.i(B) =0, (2)

where
Uni(8) = (Xi = X) {1:(8) - X[ B} .

Finding the solution to Equation (2) is time-consuming. Jin et al. (2006)
)1 ( a(mfl)

proposed an iterative procedure ,éim ) with an initial estimator
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[3;0) to calculate ,@n, where

i=1

and T(B) = n~ '3, TZ(,B) In practice, the zero vector is an appropriate
initial value. In each iteration, multiple steps are needed to calculate L, (3).
The expression of L,(8) with a given T;(8) is similar to that of the tradi-
tional least-squares estimator with time complexity O(np?). Evaluating T (B)
involves multiple steps. Sorting {e;(3)}.—, is of complexity O{nlog(n)}. Get-
ting the Kaplan-Meier-type estimator Fjg(-) using the sorted e;(8)’s takes O(n)
time. Calculating the numerators of {x;(3)},_,, which are cumulative summa-
tions with sorted {e;(8)};_,, costs O(n) time. Finally, computing {Tl(ﬂ)}?zl
with known {x;(8)}!_; takes O(np) time. The overall time complexity of one
iteration is O{np® + nlog(n) + np + n} = O{np? + nlog(n)}.

This procedure is computing intensive because it requires sorting
{e;(B)}!_, in each iteration, which becomes infeasible when dealing with large
datasets that exceed the computer’s memory. The overall time complexity of
the iterative process is O{&,[np? + nlog(n)]}, where &, represents the aver-
age number of iterations required to obtain ,@n The value of &, is primarily
dependent on the censoring rate and not on n. With the simulated datasets
in Section 5, &,, was approximately 20 for censoring rate 0.25, 45 for censoring
rate 0.5, and 100 for censoring rate 0.75. For this situation, the divide-and-
conquer strategy and the online updating strategy cannot be easily adopted
because calculating 7 3(B) for a censored observation relies on the residuals of
the full dataset.

Now we consider the subsampling strategy. Draw a subsample of size r with
replacement according to pre-assigned SSPs w = {m;}!"_,. Denote the sub-
sample by {X7,Y;*,6F, 7/ },_,, where X} is the covariates, Y;* is the observed
log-transformed time, 67 is the censoring indicator, and «} is the SSP of the
ith observation in the subsample. We approximate the full data estimator Fg
by the subsample estimator

. S ()76 {e3(8) = e:<ﬂ>}>
Fit)=1-— 1-— ,
2 11 ( S (m) T {e(B) = ex(B)}

@Tr<T

where ¢;(8) = Y — (X}) 8 - a.
Based on the subsample, we estimate 3 with a weighted estimating function

T

UiB) =5 Y U0, 3)
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6 Subsampling for Least Squares Fitting of Semi-parametric AFT Model

where

* _ 1 Tk sk o * T
UL(8) = ~(Xi = X) {T7(8) - Xi "B}
In the above formula, X* = (nr)~" Yoi_ Xy /mr and

T7(8) = 6;T7 + (1= 67) [ (B) + XiB + af,

where I .
:f udFj(u)
w(8) = O
1- F,@ {e;(B)}

The solution to Equation (3) can be derived from the iterative procedure

B(m) _ [B(m—l

)}7 with an initial value Bio), where

L;(8) = [Z (X7 X)X - X*)T] > X -X) [Fr(8) - T(9)|

i=1 "1 i=1 "1

) A (4)
and T*(8) = (nr)™" Soi_, Tr(B)/mr. We suggest using a zero vector as the
initial value in practice. By similar arguments to the full data, the time com-
plexity of the subsample estimator is O{&,[rp? + rlog(r)]}, where &, is the
number of iterations to get a converging result based on the subsample. Again,
it is worth noting that &, depends more on the censoring rate than on r and ;.
A subsample of size r < n allows for obtaining the estimator Z‘i’r in a compu-
tationally feasible manner. However, the statistical efficiency of the estimator

heavily relies on the selection of the SSPs.

3 Optimal Subsampling Probabilities

We determine the SSPs using procedures introduced by Wang et al. (2022)
which depend on the norms of the summands in an estimating equation.
Specifically for our estimating equation (2), the SSPs under the A-optimality

. . tA n .
criterion are woPtA = {ﬂ'?p } with
i=1

’MT_LlUn,i(Bn)
S [ME UL B,

OoptA
TP =

., i=1,2,...,n (5)

where M, is the slope of U, (3,,) and

M0 (8)]| = (M (X = X)[[{(1 = 6) [K:(B)] + 6 |ea(B)} . (6)

Since the estimating function is non-smooth, we estimate M, by an effi-
cient resampling method proposed in Zeng and Lin (2008). In the resampling
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method, {Zi}f:l are generated in the first step where Z;’s are zero-mean ran-
dom vectors of dimension p and are independent of the data. In the second
step, n=Y2U, (B, + n~Y/2Z;)’s are calculated for i = 1,..., R. In the third
step, we calculate the least squares estimate of n‘l/Qan (Bn +n~"Y2Z;)’s on
Zi’s for 5 = 1,...,p, where Uj,, denotes the jth component of U,,. The jth
row of M, is estimated by the jth least squares estimates.

In practice, we use a small pilot subsample of size r¢y where ry < n to
estimate 3, and {Un,i(ﬁn)},?:l in order to approximate the optimal SSPs.
Let BTO be the pilot estimator derived from the pilot subsample. We calculate

%

{e*(ﬁro)}:il which are prediction errors of the selected pilot sample. Center-

ing X is required in estimating U, ;(8,,) which takes O(np) time. Estimating

ki(8,,) dominates the computing time of estimating U,, ;(3,,) and it takes mul-

tiple steps. We sort e;(3,,)’s in the first step which takes O{rqlog(ro)} time.

In the second step, the denominator of x;(/3,,)’s are calculated by the Kaplan-

Meier type cumulative distribution function using sorted e (3, )’s which costs

O(ro) time. In the third step, the numerators of «}(3,,)’s that are cumu-
lative summations are calculated with a cost of O(rp) time. In the fourth
?:1 which takes O(np) time. In the last step, we

estimate x;(/3,) using constant interpolation. Specifically, we employ binary

search to locate the position of e;(3,,) in the sorted ej(3,,)’s, which takes

O{log(ro)} time. We assume that e, ,)(8,,) < ei(,éro) < €y (BTO), where

€(k)(By,) is the kth element in the sorted e} (83,,)’s. We estimate r;(0,,) using

step, we calculate {ei(,@m)}

K (k) (B, ), which corresponds to efy (BTO). Since we have n observations in

the full sample, the time complexity to estimate {; (ﬁn)}:;l is O{nlog(ro)}.

In conclusion, the overall time complexity to estimate {U,(3,)} is
O{rolog(ro) + 1o + nlog(ro)} = O{nlog(ro)}.

The slope matrix M, is estimated using the pilot subsample only. Thus,
the interpolation procedure is no longer needed in estimating M,,. The time
complexity for calculating R estimating equations is O{roRlog(r¢)} and solv-
ing the least squares estimate with a R X p design matrix for p times
takes O(Rp?) time. In practice, R = 100 is enough to derive a good esti-
mate of M,,. The matrix multiplication of M ! and U, ;(8)’s take O(np?)
time with given M,,. Calculating the norm of a p dimensional vector for n
times takes O(np) time. Thus, the time complexity of calculating woP* is
O{np® +np+nlog(ro) +rolog(ro) + Rp* +roRlog(ro)} = O{np® +nlog(ro)}.

To avoid estimating M,, and matrix multiplications, we propose another

version of SSPs based on the L-optimality woPt = {wfptL}?:l,

i=1

where

’Un,i(/én)

P = ’ (7)

B | A7
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8 Subsampling for Least Squares Fitting of Semi-parametric AFT Model

censored —— observed

Fig. 1 Influence of prediction errors on 7w°Ptl,

and

[Uns B = [1Xi = X[ {(1 = 6:) [55(B)] + 6 [es (B)1} - (8)

For m°PtL | we only need to estimate U, ;(3,)’s which take O{nlog(ro)} time

and calculating norms of n vectors of dimension p takes O(np) time. Thus
the time complexity to calculate w°P*t is O{np + nlog(rg)} which is less
time-consuming than 7°P*A. Tt should be noted that there are several steps
involved in estimating {Unl(Bn)}j:p each of which takes O(np) time. When
p is small and comparable to log(r), the time complexity of the interpolations
required, which take O{nlog(n)} time, is similar to O(np). As a result, esti-
mating {Unl(ﬁn)}jzl takes only slightly less than O(np?) time. Nevertheless,
as p increases, the computational efficiency of w°P** becomes more apparent.

The effect of ei(ﬁn) on the optimal SSPs is interesting. For parametric
models without censoring, observations with residuals of large magnitude have
large optimal SSPs in existing investigations. This is not true for censored
observations. Note that E(e) = [ udF.(u) is 0 in model (1), where F,(u) is

the cumulative distribution function of e. Thus, HU,”(,B”)

’ converges to 0 as

e;(8,,) — —oo for censored observations. When e;(3,,) — +00, the numerator
}?zl are proportional to

n
o

have the

of k;(3,,) converges to zero slower than the denominator. Thus,

optA
i
n ~
‘} X and {wfptL}Ll are proportional to {HM;lUm(ﬁn)
i—

optL
%

converges to +oo as e;(3) — +oo. Note that {=

{[lvniB.)

where M ! does not change for different i’s. Thus, 7

tA
P and 7

same trend as HU,”(,BR)H with respect to e;(3,,). Nevertheless, it does not
contradict the fact that optimal SSPs prefer data points whose event time
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Table 1 Means and summations of uniform SSPs and 7w°PtA for censored and observed
observations with Gumbel (G), Logistic (L) and Normal (N) distributions as the error
distributions and different censoring rates c,.

cr: 26% cr: 50% cr: 5%

uniform G L N uniform G L N uniform G L N

summation
Censored 0.25 0.253 0.309 0.272 0.50 0.443 0.459 0.447 0.75 0.544 0.545 0.545
Event 0.75 0.747 0.691 0.728 0.50 0.557 0.541 0.553 0.25 0.456 0.455 0.455
mean (Xn)
Censored 1.00 1.013 1.235 1.087 1.00 0.884 0.919 0.892 1.00 0.728 0.729 0.725
Event 1.00 0.996 0.922 0.971 1.00 1.117 1.081 1.109 1.00 1.807 1.802 1.832

is harder to predict. A censored observation means C; < T;, and a negative
ei(Bn) means C; < Tj. Thus, for a censored observation, a larger magnitude
of a negative e;(3,) does not mean a larger prediction error, |T; — 7;|. On the
other hand, a positive ei(Bn) means C; > Ti, and thus a larger magnitude
of a positive ¢;(3,) means a larger prediction error, |T; — T;|. For uncensored
observations, clearly a large absolute ei(B") means that the event time is
hard to predict, thus both ﬂfptL and WfptA are large when ei(,én) is far away
from zero. For the same magnitude of a positive error, the optimal SSPs are
higher for censored observations than uncensored ones since the event time of
a censored observation is harder to predict than an uncensored observation.
This pattern is shown in Figure 1.

To investigate which types of observation are preferred by optimal SSPs in
given datasets, we used simulated datasets of size n whose detailed informa-
tion is stated in the first paragraph of Section 5 to generate the optimal SSPs.
Table 1 presents the means and sums of the SSPs for censored and uncen-
sored observations separately. We calculated w°P*A and derived their sums
and means for each dataset. When we compared the mean optimal SSPs with
the mean of the uniform SSPs, we observed that 7w°P'*4 prefers uncensored
observations at high censoring rates but prefers censored observations at low
censoring rates. At a censoring rate of 0.5, the mean of w°P*A was higher than
n~! (the uniform SSP) for uncensored observations but smaller than n~! for
censored observations, indicating that optimal SSPs prefer uncensored obser-
vations that provide more information beyond the influence of the censoring
rate. This preference can also be observed in the summation of 7w°P*A. The
summations of woP*A for both types of observations were similar to the sum-
mations of uniform SSPs at a censoring rate of 0.25, but significantly different
at a censoring rate of 0.75. These two preferences likely involve trade-offs that
require further investigation.
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10 Subsampling for Least Squares Fitting of Semi-parametric AFT Model

4 A Two-Step Subsampling Approach

In this section, a feasible two-step method is proposed to derive the subsam-
pling estimator. Note that the optimal SSPs in Section 3 are dependent on the
full sample estimator B which cannot be used directly. To resolve this issue,
in the first step, we approximate 7°P* and 7woP** based on a pilot estimator
Bm of ,@n, which is derived from a small, pilot subsample of size rg in the
first step. Denote the estimated optimal SSPs as ﬂOPtA(ﬁTO) and 7r°ptL(,8T0).
In the second step, a subsample of size r is drawn according to the estimated
SSPs in the first step. The subsampling estimator BT is obtained by the second
step subsample in combination with the pilot subsample. Following the idea of
Zeng and Lin (2008), the variance of 3, is estimated based on a sandwich for-
mula M 'V, M1 where M, is the estimator of M, based on the combined
subsample and

n?(ro +7) | & {w;’pt(ﬁT)}Z ro.il Ui
with U} ;(B) being the estimating function for the ith element in the pilot
subsample.

Now we consider the time complexity of the two-step approach. As dis-
cussed in Section 3, the first step involves obtaining either 7woP*A or 7woPth,
which takes O{np?+nlog(re)} time and O{np+nlog(ry)} time, respectively. In
the second step, calculating the subsample estimator takes O{&, [rp?+rlog(r)]}
time. For the sandwich variance estimator, calculating M, takes O{ Rrlog(r)}
time, as discussed in Section 3; calculating V, costs O(rp? + rop?) time.
Therefore, the overall time complexity of the two-step method using 7woP* is
Ofnp* + nlog(rg) + & [rp? + rlog(r)] + Rrlog(r) + rp? + rop?} = Ofnp® +
nlog(ro) + &-[rp? + rlog(r)] + Rrlog(r)}. The time complexity of mw°PtL is
similar this formula except that the np? term is replaced by np.

Note that the approximate optimal SSPs, denoted by w°Pt (Bm)7 are derived
from a random pilot estimator which may cause additional disturbance.
Based on (6), for uncensored observations with e;(3) more approaching zero,
their exact SSPs are closer to zero and the additional disturbances may get
amplified. To protect the subsample estimator, we adopt the idea of defen-
sive sampling and mix the approximated 7r°pt(,f‘)'r0) with the uniform SSP
denoted by 71'Unl (Hesterberg, 1995). That is, we use adjusted optimal SSPs

woPt (ﬁm) = {ﬂ'Opt (ﬁm)}?zl instead of 7woPt (,@m) to do subsampling, where

~ ~ o .
B, = (1 —a)m™(B,,) + — 0<a<l, i=12...n
In the simulation study and the real data analysis, we set a = 0.2.

At high censoring rates, the sandwich estimator in Zeng and Lin (2008)
overestimates the empirical variance; see Section 5. We resolve this issue
by selecting B subsamples of size r to estimate B subsampling estimators
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- B
{By,},_, in the second step. In this scenario, the resultant estimator takes
the form

B -
Br=152 Bor 9)
and its variance estimator is =
. 1 B 5 3 .
Vo= g o Bor =B (Bu =B (10)

Note that V, can be used for statistical inferences on the true regression
coefficients if the subsample size is much smaller than the full data size (Wang
et al., 2022). This requires that rB/n is close to zero in practice since the actual
size of the subsample is r x B. The dimension of BT is p, thus B should be larger
than p in order to get a reliable variance estimator. In practice, the choice of
B should be much smaller than n/r but greater than p. Since we do not need
to estimate M, when B > 1, the time complexity in this case using w°P*4 is
O{np? +nlog(ro) +& Blrp® +rlog(r)] + Bp®} = O{np® + & Blrp* +rlog(r)]}.
Similarly, the time complexity when using 7Pt is O{np+&, B[rp? +7log(r)]}.
Nevertheless, it is important to note that the computation time is dominated
by the derivation of ,BT when &.Br > n.

5 Simulation

The performances of the estimator from the two-step procedure were assessed
in a simulation study. We used three different error distributions: standard nor-
mal, standard logistic, and centered Gumbel distribution with shape parameter
zero and scale parameter one. The covariates follow multivariate normal with
mean zero and covariance matrix ¥;; = 0.5/(77). The dimension of B was
seven and all coefficients were set to be 1 including the intercept. The censor-
ing times were generated from the Uniform distribution with the minimum and
maximum values equal to 0 and ¢, respectively, where ¢ was tuned to achieve
censoring rates ¢, € {0.25,0.50,0.75}.

For each of the nine configurations, 1000 large datasets of size n = 500, 000
were generated. In our simulation, the pilot sample size was ry = 3000. The
second-step subsample sizes considered were r € {4000, 8000, 16000} and B €

{1,10}. For the ith dataset in each of the nine configurations, we derived BE.“
by the two-step subsampling method using 7w°P** | w°P*™ and the uniform SSPs.
We compared the performance of the two-step method using different SSPs by

the root mean square error (RMSE) of BS), where the RMSE is calculated by

s _ A 1/2
RMSE = (iZBY) —mn?) . (1)
i=1

Note that for each replicate, the pilot subsample is different.
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Fig. 2 Empirical RMSEs for different SSPs, error distribution, subsample sizes r and cen-

soring rates when covariates follow multivariate normal distribution based on the two-step
procedure with B = 10.

The estimation efficiency of our method is shown in Figure 2. It shows the
RMSEs of 3, based on the uniform SSPs, 7w°P*A and Pt for the two-step
method when B = 10. Note that the actual subsample sizes we use to estimate
the resultant estimator are B x r. As expected, in all data configurations,
7Pt and 7woPtA give smaller RMSE than uniform SSP and w°P*” give the
smallest RMSE. As the censoring rate increases, there will be fewer informative
observations. So the RMSEs of all methods increase as less information is
available. In all configurations, the RMSEs decrease as the subsample size r
increases.

We evaluated the accuracy of the variance estimator by comparing its aver-
age over 1000 subsamples with the empirical variance. The upper panel of
Figure 3 presents the results for the formula-based variance estimator when
B = 1. The figure reveals that the estimated and empirical RMSEs are close
at censoring rates 0.25 and 0.5, indicating that the sandwich estimator esti-
mates the true variance well at low to moderate censoring rates. However, the
sandwich estimator noticeably overestimates the true variance differences at
the censoring rate 0.75, which leads to conservative conclusions and loss of
power in inferences. To correct the bias for high-censoring cases, we set B = 10
and estimate the variances using Equation (10). The lower panel of Figure 3
demonstrates that this provides accurate variance estimates for high censoring
rates. Hence, we suggest using B = 10 in the second step and estimating the
standard error by (10) for high censoring rates.

Finally, we evaluate the computational efficiency of the two-step methods.
We compared the computing time when B = 10 and B = 1. To ensure a fair
comparison, we increased the subsample size for B = 1 to 10r. We performed
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Fig. 3 Empirical and estimated RMSEs with woP*A for different error distribution, subsam-
ple sizes r and 0.75 censoring rates when covariates follow multivariate normal distribution
based on the two-step procedure with B =1 (upper) and B = 10 (lower).

the computation on a laptop running Windows 11 with an Intel Core (TM)
i7-8650U @ 1.90GHz processor and 16 GB memory. Figure 4 summarizes the
computational and estimation efficiency of both methods. It shows that using
B = 10 subsamples of size r is less time-consuming than using B = 1 subsample
of size 10r. This is due to the fact that the formula-based variance estimation
when B = 1 takes a considerable amount of time, as discussed in Section 4.
Using 7oPtt rP*A " and uniform SSPs take similar CPU time because the
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Fig. 4 Comparison of estimation efficiency and computational efficiency for different sub-
sample sizes r, censoring rates, subsampling methods, and values of B when the errors are
generated from a standard normal distribution.

value of r is large enough so that calculating the SSPs does not dominate the
computing time.

6 Survival of Lymphoma

The two-step procedure was applied to model the survival time of lymphoma
patients in the SEER program. The dataset contains 159,149 patients that
were diagnosed with lymphoma from 1973 to 2012 and the censoring rate is
58.3%. We considered four risk factors, including age with the unit of year,
nonwhite race indicator (1 =nonwhite), male indicator (1 = male) and the
diagnostic year. We also included the interaction between age with the male
indicator and age with the non-white indicator. The pilot sample size was set
to be rg = 2000 and the subsample sizes were r € {2000,4000,8000}. We
considered three kinds of SSPs, uniform SSPs, the L-optimal SSPs (7r°P*") and
the A-optimal SSPs (w°P'*A). In the real data analysis, we set B = 10.

Figure 5 shows the empirical RMSEs from 1000 replicates of the two-step
method with B = 10 based on different SSPs and different second-step subsam-
ple sizes. The RMSE decreases as r increases which indicates the consistency
of our method. As expected, both optimal SSPs perform better than the uni-
form SSPs. It should be noted that w°P*4 does not result in universally smaller
RMSEs for all parameters. As shown in Figure 2, for the interaction term
‘AgexMale’ and the risk factor ‘Diagnostic Year’, the ‘optA’ estimates have
higher RMSE than the ‘optL’ estimates. This is because 7w°P*4 are designed to
minimize the overall RMSEs for all risk factors and interactions, rather than
specifically targeting individual risk factors or interactions.
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Fig. 5 Empirical RMSEs of different risk factors for different SSPs and different second-
step subsample sizes r when fixing the pilot sample size ro = 2000 over 1000 replicates of
the two-step method with B = 10.

Table 2 Estimates (EST) and their empirical standard errors (ESE) and average
estimated standard errors (ASE) from different subsampling approaches for » = 4000 and
ro=2000 over 1000 replicates of the two-step method with B = 10.

optL optA uniform Full
EST ESE ASE EST ESE ASE EST ESE ASE EST SE
Age —1.029 0.019 0.020 —1.030 0.020 0.020 —1.029 0.025 0.026 —1.030 0.013
Male 0.701 0.028 0.028 0.702 0.028 0.028 0.701 0.034 0.035 0.700 0.017
Nonwhite —0.665 0.037 0.036 —0.667 0.030 0.030 —0.666 0.048 0.046 —0.666 0.023
AgexNonwhite 0.303 0.034 0.033 0.306 0.027 0.027 0.299 0.048 0.049 0.306 0.026
AgexMale —0.486 0.026 0.026 —0.486 0.026 0.026 —0.488 0.039 0.038 —0.486 0.018
Diagnostic Year 0.478 0.013 0.013 0.478 0.014 0.014 0.479 0.016 0.015 0.478 0.008

Table 2 summarizes the average estimates and their corresponding average
empirical standard errors (EST) and average pooled standard error estimators
(ASE) for all subsampling methods when r = 4000 and B = 10 over 1000 sub-
samples. We compared the subsample estimates with the full data estimates
whose standard errors were derived from the non-parametric bootstrap of 1000
samples. The optimal subsampling methods yield one-third less standard errors
than the uniform subsampling method The empirical and estimated standard
errors are similar which indicates the subsampling methods are suitable for
statistical inference. The empirical standard errors for both optimal subsam-
pling methods are small which shows that using a small subsample is sufficient
in practice to estimate the full data estimates. The results indicate that elder,
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female, nonwhite, and earlier-diagnosed patients had shorter survival times.
For white patients and male patients, the slope of age was steeper.

7 Discussion

The optimal subsampling method for the least square fitting of semiparamet-
ric AFT model for massive survival data is challenging due to non-smooth
estimating functions. The crucial element of this approach is determining the
SSP, which we addressed by a resampling method (Zeng and Lin, 2008). We
proposed two types of optimal SSPs, induced by the A-optimality and the
L-optimality from design of experiments. Optimal SSPs prefer extreme obser-
vations, but for censored observations, only those with positive residuals of
large magnitudes are considered extreme, while those with negative residuals of
large magnitudes are not. Moreover, for positive residuals with the same magni-
tude, optimal SSPs prefer censored observations over uncensored observations.
This preference for extreme observations does not contradict the accepted
notion that optimal SSPs tend to choose observations that are harder to pre-
dict. We conducted a simulation study and a real data analysis to demonstrate
the feasibility and effectiveness of the proposed methods, which provide good
approximations of full data inferences while being computationally feasible.

Further investigation is warranted for optimal subsampling methods in
fitting semiparametric AFT models with the rank-based approach. In rank-
based estimation, censored observations do not contribute to the estimating
function, but they contribute to the ranking. Simply assigning a zero SSP to
censored observations would not properly account for their contributions. A
possible solution is to express the estimating functions using some martingales,
which facilitates the evaluations of the contributions of censored observations.
This approach has been successfully applied in Cox models (Zhang et al., 2023).
Additionally, the induced smoothing approach, which improves computational
efficiency (Chiou et al., 2014, 2015), remains important. This method replaces
the non-smooth estimating equations with a smoothed version whose solutions
are asymptotically equivalent to those of the non-smooth version. Ongoing
investigation in this direction will be reported elsewhere.
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