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Abstract

The additive model is a popular nonparametric regression method due to its ability
to retain modeling flexibility while avoiding the curse of dimensionality. The backfit-
ting algorithm is an intuitive and widely used numerical approach for fitting additive
models. However, its application to large datasets may incur a high computational
cost and is thus infeasible in practice. To address this problem, we propose a novel
approach called independence-encouraging subsampling (IES) to select a subsample
from big data for training additive models. Inspired by the minimax optimality of
an orthogonal array (OA) due to its pairwise independent predictors and uniform
coverage for the range of each predictor, the IES approach selects a subsample that
approximates an OA to achieve the minimax optimality. Our asymptotic analyses
demonstrate that an IES subsample converges to an OA and that the backfitting al-
gorithm over the subsample converges to a unique solution even if the predictors are
highly dependent in the original big data. The proposed IES method is also shown
to be numerically appealing via simulations and a real data application.
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1 Introduction

Big data of huge sample sizes are prevalent in many disciplines such as science, engineering,
and medicine. Such data may reveal important domain knowledge, but meanwhile they
pose challenges to data storage and analysis. To address those challenges, subsampling has
recently received increasing attention and has been intensively studied.

An optimal subsampling approach typically specifies a downstream model and carefully
selects an informative subsample so that the model training on the subsample is more accu-
rate than that on other possible subsamples. Different subsampling approaches have been
developed for various parametric models. For linear regression, Ma and Sun (2015) pro-
posed subsampling probabilities defined via leverage scores. Wang et al. (2019) investigated
an information based optimal subsampling algorithm motivated by D-optimal experimental
design. Wang et al. (2021) developed an orthogonal subsampling (OSS) method inspired
by the universal optimality of orthogonal array (OA) for linear regression. Subsampling
methods for other parametric models are also extensively studied, such as Wang et al.
(2018) and Han et al. (2020) for logistic regressions, Wang and Ma (2021) for quantile
regression, and Ai et al. (2021) for generalized linear models. Despite their optimality in
some sense for fitting specific parametric models, the usage of those methods can be hin-
dered by strong model assumptions that may not hold in big data problems. See Fan et al.
(2014) for a detailed discussion. To this end, Meng et al. (2021) proposed an algorithm,
called LowCon, to select a space-filling subsample which is shown to be robust when a
linear model is misspecified. Researchers have also looked into nonparametric settings with
less stringent model assumptions. For example, Meng et al. (2020) showed the superiority
of a space-filling subsample for multivariate smoothing splines; Yang et al. (2017) applied

tensor sketching to accelerate kernel ridge regression; Zhao et al. (2018) and He and Hung



(2022) considered design-based subsampling for Gaussian process modeling; Shi and Tang
(2021) considered model-robust subdata selection. Other methods include continuous dis-
tribution compression (Mak and Joseph, 2018) and supervised data compression (Joseph
and Mak, 2021).

The nonparametric additive model (Hastie and Tibshirani, 1986) has been widely used
in practice because of its interpretability and flexibility (e.g., Walker and Wright, 2002;
Hwang et al., 2009; Liutkus et al., 2014). It avoids the “curse of dimensionality” which
impedes the implementation of fully nonparametric models with multiple predictors. How-
ever, fitting an additive model may still be computationally expensive when the sample
size is huge. For example, if the backfitting algorithm (Breiman and Friedman, 1985; Buja
et al., 1989) combined with local polynomial smoothing is used to fit an additive model on
a data set with N observations of p predictors, where p < N, the time complexity is O(N?)
per backfitting iteration. If the bandwidth is selected via cross-validation, then the com-
plexity would become O(N?) per bandwidth grid evaluation. Therefore, the practicality of
additive models is hindered for large data.

We propose an independence-encouraging subsampling (IES) method for fitting an ad-
ditive model with big data. Akin to the OSS (Wang et al., 2021), the IES is inspired by
the robustness and optimality of OA for experimental design and data collection (Cheng,
1980; Taguchi and Clausing, 1990). Nevertheless, existing results for OAs focus on their
optimality for identifying main effects and interactions via linear regression. We first derive
theoretical results on the minimax optimality of random OAs for nonparametric additive
models and then develop the IES method to select a subsample that approximates a ran-
dom OA. The merits of IES are three-fold. Firstly, it is fast and easy to implement. The
computation of selecting a subsample and training a nonparametric additive model on the

subsample is significantly faster than training the model on the large full data. Secondly,



our theoretical analyses show that an IES subsample converges to a random OA whose pre-
dictors achieve marginal uniformity and pairwise independence. This substantially benefits
the backfitting algorithm, the most popular numerical approach to fit additive models. A
well-known sufficient condition for local polynomial backfitting estimator to converge is the
“near independence” between predictors (Opsomer and Ruppert, 1997). Since the predic-
tors are empirically independent in the selected subsample, the nbackfitting algorithm will
converge to a unique solution even if the predictors are highly dependent in the original big
data. Lastly, the IES approach is numerically shown to be superior to existing subsampling
methods for fitting additive models and robust against certain model misspecifications.
The remainder of this paper proceeds as follows. Section 2 derives the minimax optimal
sampling plan for additive models. Section 3 introduces random OAs and their properties.
Section 4 proposes the IES subsampling approach, and develops some asymptotic theories.
Section 5 provides a fast implementation algorithm for IES. Sections 6 and 7 present simu-
lations and a real data example, respectively. Discussion in Section 8 concludes this paper.
Technical proofs are provided in the Supplementary Materials. R code is publicly available

at https://github.com/.. ...

2 Minimax Optimal Sampling Plan

In this section, we introduce the minimax optimal sampling plan for univariate nonpara-

metric regression and then extend it to additive models.



2.1 Optimal sampling for univariate nonparametric regression

We first consider univariate nonparametric regression for independent and identically dis-
tributed (i.i.d.) data:
Y;:m(XZ)—i-EZ, 221,,N, (1)

where for the ¢-th subject, i = 1,..., N, X; is the univariate continuous predictor, Y; is the
response, €; is the random error, and m(x) = E(Y; | X; = x) is the regression function. The
support of the predictor is assumed compact and hereafter [0, 1] without loss of generality.
It is also assumed that ¢; are independent of the predictors, E(e;) = 0, and Var(e;) = o
The literature of univariate nonparametric regression (e.g., Chapter 5 of Wasserman,

2006) favors linear smoothers of the form

m(z) = Zwi(x;Xl, L XN)Y (2)

where w; is a data-dependent weight function. Among them, the local linear estimator is a
popular option. Fan (1992) showed that under mild conditions, the local linear estimator
for (1) asymptotically achieves a minimax risk on the mean squared error (MSE), where

the minimum is taken over all linear smoothers and the maximum is taken over all m(-) in
¢ ={m() e cP0,1] | max|m® (@) <n}, (3)

with C?[0,1] denoting the set of functions whose second derivatives are continuous. For
any z € [0, 1], the minimax risk is

1/4 52 4/5

W} {1+op(1)},

where f is the density of the predictor distribution.

3
Ro(x) = 715777 { 7

The Ry(z) may still be large for the region with a small f(z). We hope that an estimator

is “robust” for all m(-) in C* and all € [0, 1], in the sense that the estimator performs
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well even in the worst scenario. Therefore, we seek a sampling regime, or equivalently a
design density f, that minimizes the following minimax risk:

R(f)= min sup  E[(m(z) —m(z)* | X4,..., Xn], (4)

m(z) linear mec+ z€[0,1]

where ming, ) linear takes the minimum over all linear smoothers in (2), and C* is defined
in (3). The following result calculates the R(f) in (4) and provides the optimal f that

minimizes R(f). Denote [a]; = max{0,a}.

Theorem 1. Suppose that f(x) is bounded away from zero and infinity. Let f(xg) =

mingcp1) f(z). The minimaz risk in (4) is given by

52\
R =515 (7o) o) 5)

which is achieved by the local linear regression estimator with the Epanechnikov kernel
Ko(u) = 3[1—u?], /4 and bandwidth hy = {1502/[N7]f(a:0)]}1/5 . The optimal design density
f that minimizes R(f) in (5) is the uniform density, that is, f(x) =1 for all x € [0, 1].

2.2  Optimal sampling for additive models

We now consider an additive model for i.i.d. data:
Y,:m(XZ)—i-eZ=u+m1(le)+m2(XZ)—I—+mp(XZp)+ez, Z:]_,Q,,N, (6)

where X; = (X1, ...,X;;,) contains p predictors, Y; is the response, m(x) = E(Y;|X; = )
is the regression function, p is a constant, m;(x) is the component function for the j-
th predictor assumed to be smooth, and ¢;’s are random errors. Again, the support of

each predictor is assumed [0, 1] without loss of generality, and ¢; is independent of the



predictors with E(e;) = 0 and Var(¢;) = 0. Moreover, the following condition is imposed
for identifiability:
/ mj(x)dr =0, j=1,...,p. (7)
The backfitting algorithm (e.g., Breiman and Friedman, 1985; Buja et al., 1989) is a
popular, intuitive, and easy-to-implement numerical approach for fitting additive models.
The algorithm updates each component function estimator alternately and iteratively. At
each iteration, a one-dimensional smoother, e.g., the local linear smoother, is applied to
regress the residual on one predictor to update its corresponding component function es-
timate, where the residual is obtained by subtracting all the other component functions’
estimates from the response. The asymptotic properties of the backfitting algorithm have
been studied by Opsomer and Ruppert (1997) and Opsomer (2000). Their results also
indicate that the convergence of the backfitting algorithm is not theoretically guaranteed
if some predictors are highly dependent.

On the contrary, if all predictors are pairwise independent, (6) implies that
m;(Xi;) — Elm;(Xi;)] = E[Y; | Xi] — E[Y)], foreachj=1,...,p,

where the left-hand side is a centered component function and the right-hand side suggests
a univariate regression of the response on the j-th predictor. Hence, pairwise independence
separates the additive modeling problem to p one-dimensional estimations, so no iteration
is required. In fact, as shown in Opsomer and Ruppert (1997), “near independence” be-
tween predictors can ensure the local-polynomial-based backfitting algorithm to converge.
Therefore, inspired by Theorem 1, we recommend sampling predictors independently and
uniformly to achieve the minimax optimality for each component function estimation. By
Theorem 3.1 of Opsomer (2000), marginal uniformity is also optimal in minimizing the con-

ditional variance of each local polynomial-based backfitted component function estimator
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over all possible designs.

When selecting a subsample from large data, since the data may have highly dependent
predictors and follow an arbitrary distribution, obtaining a subsample with independently
and uniformly distributed predictors (at the population level) is typically impossible. How-
ever, we can seek empirical independence and uniformity for predictors in the subsample,

and this can be achieved via random OA.

3 Introduction to OA

An OA of strength ¢, denoted by OA(N,p,q,t), is an N X p matrix with entries of ¢
levels indexed by {0,1,2,...,¢ — 1}, arranged in such a way that all level combinations
occur equally often in any ¢ columns (Hedayat et al., 1999). Such equal frequency of level
combinations is called combinatorial orthogonality. The following matrix, as an example, is
an OA(4,3,2,2), any two columns of which consist of (0,0), (0,1), (1,0), and (1, 1) exactly

once:

(8)

—_ = O O

0
1
0
1

O R = O

In this paper, OAs mentioned are assumed to have strength 2 unless otherwise specified.
OAs have been extensively used as fractional factorial designs because they allow un-
correlated estimation of main effects through linear regression (Wu and Hamada, 2011;
Mukerjee and Wu, 2006; Wang and Xu, 2022). Cheng (1980) showed that an OA on ¢
levels is universally optimal, i.e., optimal under a wide variety of criteria that include D-

and A-optimality, among all g-level factorial designs for studying main effects.



We now extend the superiority of OAs for establishing nonparametric additive mod-
els. Consider the sampling distribution of the column variables A; in an OA. We have
P(4; = a) = ¢! and P(A; = a,Ay = d) = P(4; = a)P(4; = ) = ¢ for all
a,a’ € {0,1,2,...,q — 1}. Therefore, any column variable in an OA follows a discrete
uniform distribution, and any pair of column variables are independent. We next provide
a sampling scheme to draw data from [0, 1]P that carry over the uniformity and variable

independence of an OA.

Definition 1. Given an OA(N,p,q,2), denoted by A = (a;j) fori =1,...,N and j =
1,...,p, a random OA (X;;) is given by
i + Uy . .
Xi~:m, fori=1,....,N, and j=1,....,p,
q

where the Ui;’s are independent uniform random variables on [0, 1].

A random OA can be understood as a two-step sampling procedure. Firstly, partition
the cube [0, 1]? into ¢* equal-sized cells (subcubes with each side of length ¢~') and select the
n cells specified by the rows of A. The ith row of A specifies the cell IT’_, [a;;/q, (ai;+1)/q).
Secondly, randomly draw a point from each selected cell. Figure 1 illustrates the four
selected cells according to (8). For any two columns, the projection of selected cells covers
the whole face. Therefore, the randomly sampled points from those cells uniformly cover
any two-dimensional subspace. Such a sampling scheme was also studied in Owen (1992)

to obtain a better approximation of integration than Monte Carlo sampling.

Lemma 1. For a random OA, the cumulative distribution on each column is given by

F(x1) = z1, and on any pair of columns is given by F(xq,s) = x125.

Lemma 1 claims both uniformity and pairwise independence between column variables

in a random OA, which are inherited from its combinatorial orthogonality and are the
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Figure 1: Tllustration of selected cells given by (8). A cell is selected if its all edges are red.

exact properties we seek for the optimal training data for additive models. It should be
noted that for an OA(N,p,q,2) to exist, the number of rows has to be a multiple of ¢?,
that is, N = A\¢® for some positive integer A. Abundant methods have been proposed to
generate OAs, and we relegate a summary of their wide availability and generating methods

to Appendix A.

4 Independence-Encouraging Subsampling (IES)

Let (x1,41), ..., (Xn,yn) denote the full data with NV observations, where x; = (41, ..., Zip)
are observations of p predictors and y; is the corresponding response. We consider taking
a subsample of size n, denoted as (x},y7),..., (x5, y’). Based on the previous discussion,
our goal is to encourage empirical uniformity and pairwise independence of predictors in
the subsample, and this can be achieved by finding a subsample whose design matrix
approximates a random OA.

An intuitive approach is to choose an existing OA with n rows and randomly select a

data point in each cell specified by the OA. This approach has two possible limitations.
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First, for an OA(n, p, ¢, 2) to exist, the number of rows has to be a multiple of ¢*, meaning
that this approach is possible only when n = Ag? for some positive integer A. Second, even
if n is a multiple of ¢?, the full data may not fit an arbitrarily chosen OA, that is, many
cells of the OA may be empty and do not contain any data points.

The proposed IES method selects a subsample by directly minimizing a discrepancy
function that measures its deviation from an OA. As a result, the subsample size is not
restricted to be a multiple of a square number, and the selected subsample approximates

an OA that is the best compatible with the data.

4.1 The IES approach

For a full data with design matrix X = (x;;) and a prespecified integer ¢, define the

membership matrix as Z = (z;;), where
2 = |wiq]

fori =1,2,...,N, and j = 1,2,...,p. Clearly z;; € {0,1,2,...,¢ — 1}. Our goal is to
search for a subsample whose design matrix A* has an OA membership matrix. For any
two observations with x; and x;, define

p p

O(xixi) = > U(|wiq) = lwajq)) = Y 1z = 20)),

j=1 j=1

where 1(z;; = z;) is the indicator function that equals 1 if z;; = zy; and 0 otherwise.
Here, 0(x;,%;) counts the membership coincidence between elements of z; and zy, and
thus measures the similarity between x; and x;. For a subsample with design matrix

X* = (x},...,x3)T, define

LX)y = [0, xp)" (9)

1<i<i’<n

12



Clearly, L(X*) measures the overall similarity between all data points in X*. The following

theorem shows that L(X*) also measures the discrepancy between A* and an OA.

Theorem 2. For any X* with n rows,

LX) > Ziqg[np@ +q—1) - (pg)?),

and the lower bound is achieved if and only if Z, the membership matriz of X*, is an

OA(n,p,q,2).

Theorem 2 shows that L(X™) has a lower bound which is attained if and only if the
membership matrix of X* forms an OA. In this sense, L(X™*) can be viewed as a metric on
the discrepancy between X™* and a realization of a random OA. Therefore, we propose the

IES method, which solves the optimization problem:

*
Xop

, = arg min L(X™). (10)

X*CX
The IES subsample is { X}, y5,}, where y; , is the corresponding response vector.

The optimization in (10) does not impose any restriction on n. When n = Ag* and
an OA(n,p, q,2) exists, we obtain a subsample from (10) with an OA membership matrix.
Otherwise, we obtain a subsample that approximates the combinatorial orthogonality in
an OA. We can extend Theorem 2 to a more general setting of n for which an OA(n, p, ¢, 2)
may not exist, which confirms that the optimization in (10) best approximates an OA for a
general setting of n. The presentation of the result requires tedious notations and concepts,
so we relegate the details to Lemma S1 in Supplementary Material.

We next investigate the asymptotic properties of an IES subsample selected by (10),

under the following assumptions.

Assumption 1. The probability density function that generates the design matriz of the

full data is compactly supported and bounded away from zero and infinity.
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Assumption 2. There exists some fized positive integer X such that n — A\¢*> = O(q), and
an OA(¢®,p+1,q,2) exists.

Assumption 3. The subsample size n goes to 0o at the rate of O(NV) for somev € (0,2/p).

Assumption 1 ensures that the full data asymptotically cover the design region as the
size N increases. Assumption 2 indicates again that the IES does not require n = \g?.
The requirement of the existence of OA(¢?, p+1,q,2) is weak, as discussed in Appendix A,
especially considering that we can set ¢ to be much bigger than p. Assumption 3 requires
that n does not grow faster than N?/?, which is commonly the case in the setting of big

subsampling.

Theorem 3. Define the induced joint cumulative distribution function on any two columns

of Xope» X; and X7,

n

1
Fo(xq,x9) —Z]l o<y, X < ).
=1

3

Then under Assumptions 1-3, we have

sup |Fn(l’1,ZL’2) — x1x2| = Op (N—u/2) '

x1,22€(0,1]

Theorem 3 shows that asymptotically the solution to (10) achieves pairwise indepen-
dence and uniformity, leading to a desired subsample for additive models. The convergence
rate depends on v in Assumption 3. A bigger v indicates a larger subsample size and
results in a faster convergence to the uniform distribution. We can relax Assumption 2 to
a more general setting of n with n — A¢?> = O(q) for some v € (0,2). The case of v < 1 is
equivalent to Assumption 2, and for v > 1, F,,(x1, z5) still converges to uniformity but at

a slower rate; see the proof of Theorem 3 in the Supplementary Materials for details.
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4.2 Additive Modeling on IES Subsamples

After obtaining the subsample {X, y;,} from (10), we fit an additive model on this
subsample. Since the predictors in the subsample cannot be guaranteed to be perfectly
independent, we propose to estimate each component function via the backfitting algorithm
(Breiman and Friedman, 1985). Motivated by Theorem 1, we apply local linear smoothers
in each backfitting step.

When there are two predictors, i.e., p = 2, we can prove the convergence of the back-

fitting algorithm on the subsample {X*

i Yopt - We need the following assumptions in

addition to Assumptions 1-3.

Assumption 4. The kernel function K is a symmetric density function compactly sup-
ported on [—1,1]. Moreover, K is M-Lipschitz for some constant M > 0, i.e., |K(u) —
K(v)| < M|u —v| for any u,v € [—1,1].

Assumption 5. As the size of the subsample n — oo, the bandwidth h; — 0 and nh? — 00

forj=1,2.

Both Assumptions 4 and 5 will be used in the proof of Theorem 4 to control certain
numerical integration errors. Assumption 4 on the kernel function is commonly adopted
by kernel-smoothing-based additive modeling methods (e.g., Opsomer and Ruppert, 1997;
Zhang et al., 2013) and can be satisfied by popular kernels, e.g., the Epanechnikov kernel.
Assumption 5 on bandwidths is mild and can be satisfied if each h; takes the optimal order

~1/5

n as in the literature of local polynomial smoothing (e.g., Fan and Gijbels, 1996).

Theorem 4. Under Assumptions 1-5, when p = 2, the backfitting algorithm on the subsam-

ple {Xo*pt, y;‘pt} converges to a unique solution with probability approaching one as N — oo.

The expression of the unique solution involves more tedious notations and can be un-

wieldy in practice. To save space, we defer the details to Appendix B. Substantially different
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from the result by Opsomer and Ruppert (1997), Theorem 4 does not require a weak de-
pendency between the two predictors in the population; even if the population dependency
between the predictors is high, they are almost independent in X, as guaranteed by Theo-
rem 3, so the backfitting procedure on the subsample can converge asymptotically. Another
critical distinction between Theorem 4 and Opsomer and Ruppert (1997) is that the latter
handles independent observations while observations in &, are dependent.

When p > 3, theoretical convergence for the backfitting procedure on an IES subsam-
ple is unknown and will be deferred for future work. Nevertheless, it always converges

numerically in our simulation studies and real data application in Sections 6 and 7.

5 Practical Implementation of IES

The optimization problem in (10) is computationally expensive to solve. An exhausted
search requires evaluating the quantity L(X™) on (f{ ) possible subsamples, which is pro-
hibitive for even a moderate data size. To improve the efficiency, we propose a sequen-
tial TES implementation which selects subsample points sequentially. We start with a
randomly selected point (x}, ). Denote the subsample design matrix with &k points as
Xy = (x3,...,x;)" for k€ {1,...,n—1}. The (k+ 1)th subsample point is then selected

as

Xpp1 = arg  min  L(A7) U {x})

x€X/ X5,
= arg min_ { g [6(xF,x5)]? + E }
XX/ o \1<izr<k 1<i<k

=arg min (x| X)),

xGX/X(*k)
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Algorithm 1 Sequential IES Method
Inputs:

Full data {X,y}, subsample size n, hyperparameter ¢

Initialize:

Set {X%), ¥(1)} < (x1,97), with (x],y7) randomly selected
Calculate [ (x | X(*l)>, for all x € X'/},
for k=1ton—1do

X}, < randomly sample one point from arg minxeX/X<*k) [ (x | X@)

{ X1y Yiran b X0 it U {E 1Y)}

z (x | X@H)) 1 <x | X(’;)) +8(x,x},,)2 for all x € X/,
end for

Apply a backfitting algorithm to the selected subsample {X(*n), y’(*n)}

return [ and 7y, for j =1,2,...,p, trained with the backfitting algorithm

where

(x| XGy) = D [0, %)) (11)

1<i<k
measures the similarity between x and X(’;), and the selected xj_; is the least similar point
to X,. If there are multiple minimizers, xj ., is randomly selected among them. After

choosing xj_;, we update I(-) for x € X /X, via

l (X | X(ZH)) =1 (x | X(z)) + d(x, XZ+1)2,
so the computational complexity of selecting one point is O(Np).
Algorithm 1 outlines the detailed steps of the sequential IES implementation. In our

numerical results in Sections 6 and 7, the backfitting algorithm uses the local linear smooth-

ing and is conducted via the R package gam (Hastie, 2015). The hyperparameter ¢ can be
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Figure 2: Tllustration of Algorithm 1 with simulated data. The full sample (left), a random
subsample (middle), and the IES subsample (right).

any not-to-small integer, and we find that an integer greater than 10 would be adequate.
Also, setting ¢ at a prime power may provide more stable numerical performance because
of the better OA approximation and combinatorial orthogonality (details in Appendix A).
Therefore, we recommend choosing a prime power ¢ which is close to m for some pos-
itive integer A. In our simulation and real data studies where n = 1000 and 5000, we set
q = 2" = 16, which is close to 1/1000/4 = 15.8.

To visualize the resulting subsample of Algorithm 1, we generate full data of 2000 i.i.d.
bivariate normal points, truncated in absolute value by 2. The generating distribution has
zero mean, unit variance and a correlation of 0.3 between any two predictors. Figure 2
plots the full data (left), a random subsample (middle), and an IES subsample (right),
both subsamples of size 250. The hyperparameter ¢ = 16 is used for the IES. Figure 2
clearly shows that predictors in the IES subsample are more uniformly distributed and less

correlated than predictors in the random subsample.
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6 Simulation Studies

In this section, we evaluate the performance of the IES method through simulation studies.
We compare the IES subsample with the random subsample (Rand) and the LowCon
method. LowCon is a subsampling method developed in Meng et al. (2020) for smoothing
splines and in Meng et al. (2021) for misspecified linear models. It selects a subsample
that approximates a prefix space-filling design (Joseph et al., 2015; Lin and Tang, 2015)
via nearest neighbor search.

We set the full sample size N = 10000 and generate values of p = 3 predictors from two

distributional settings:

Case 1. The predictors follow a truncated multivariate normal TN (0, X, —2,2) with mean

zero and covariance matrix ¥ = (0.31(79)). Each predictor lies in [~2,2].

Case 2. The predictors are generated via a truncated multivariate exponential distribution
using the elliptical copula in the R package copula. The covariance matrix X is the same
as in Case 1. The marginal distribution is specified as an exponential with rate one, and

is truncated above by 4 and translated to [—2,2].

The responses are generated by Y = m(X) + €, where

8 +exp{3—X22}
44+ X4 4

m(X) =1+ +1.5sin (gX3> , (12)

and ¢ follows N(0,0.25).

The effect of model misspecification on IES is also studied, where an additional interac-
tion term 21In(4.5 + X7 X5) is added to the true regression function in (12) but is not used
when training an additive model.

Each setting of predictors is replicated 200 times, and the three subsampling meth-

ods, Rand, LowCon and IES, are performed for each replication with the subsample size
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Case 1: Normal Predictors
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Figure 3: The MEE (left) and ASE (right) of m trained on different subsamples of the full

sample in the two cases.

n = 1000. The hyperparameter ¢ = 16 is used for the IES method. Backfitting algorithm
with local linear smoothers is then applied to train an additive model over each subsam-
ple. The bandwidth, searched in {0.05,0.1,0.15,...,0.95}3, is chosen via a five-fold cross

validation (CV). For the m trained over each subsample, we consider two performance

m(x) — m(x)|, and

((x) — m(x))* /10°. The MEE is a realization

measures, namely, the maximum estimation error MEE = maxyxecy,..,
the average squared error ASE =3 .
of the maximum risk used in (4) and quantifies the worst performance of m, and the ASE
measures the overall performance of m over the test domain. The test data X, are 10°

grid points with each predictor spanning at 100 evenly spaced points from —1.8 to 1.8.
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Figure 4: Component function estimates trained on subsamples obtained by different meth-

ods for Case 2: exponentially distributed predictors.

Figure 3 plots the MEE and ASE of m trained on different subsamples across the
200 replications. The IES consistently allows better estimation of m than the subsamples
selected from other methods. Specifically, the MEE plots demonstrate the advantage of
the TES in controlling the worst error across the entire domain, and the ASE plots suggest
a better overall estimation performance of IES.

Figure 4 depicts the fitted curves of each component function in (12) for each subsample
of the full data generated in Case 2. The red curve represents the target centered component
function, and the black curve indicates the average fit over the 200 replications. The grey
shaded area is the empirical 95% confidence band. It is clear that the IES method always
outperforms random subsampling in allowing a better fit of each component function.
When compared with LowCon, the IES performs similarly in terms of average fit, but it

performs better in terms of stability (width of the shaded band), especially in the area with
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Figure 5: The MEE (left) and ASE (right) on the regression function with misspecification.

low density, i.e. the right tails of all component functions, and when the target function
assumes a nonlinear shape, e.g. the turnings areas in the second and third component
functions. Figure S1 in Supplementary Materials reveals similar comparison results for the
subsamples of the full data generated in Case 1.

The out-performance of IES over LowCon comes from two aspects. Firstly, the IES
samples diverse points sequentially and avoids duplicates, while LowCon applies nearest
neighborhood search to approximate a prefix space-filling design, which often samples re-
peatedly on the same observation in the region with scarce data. Duplicated points have
bigger weights and increase the modeling instability. Secondly, most space-filling designs
target at full dimensional uniformity but may not be uniform when projected to low di-
mensions. [ES targets at one- and two-dimensional uniformity and thus is more suitable
for establishing additive models.

Figure 5 shows the boxplots of MEEs and ASEs for the regression function with the

misspecified interaction term 21In(4.5 + X;X5). The predictors are generated the same
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as in Case 2. The lower estimation error for IES suggests that its subsamples are less
susceptible to model misspecification because of the fact that the predictors in an IES
subsample are less dependent. In our particular setting, X3 is nearly independent of X,
and X, in the IES subsample. Hence, the component function of X3 is not affected by
the misspecified interaction term of X; and X5 and be accurately estimated. The plots of
estimated component functions are relegated to Figure S2 in Supplementary Materials to

save Sspace.

7 Real Data

We now evaluate the performance of the IES method on the Diamond Price Prediction
dataset. The dataset is available from both the R package ggplot2 and https://www.
kaggle.com/shivam2503/diamonds. Price along with 9 predictors of 53,940 diamonds are
collected in the data with the goal of building a predictive model for the diamond price.
Three discrete quality measures, namely cut, color, and clarity, are dropped, as we focus
on continuous predictors. Among continuous predictors, carat, depth (which summarizes
information in other left-out predictors) and table, are picked for modeling. The first
predictor measures the weight of each diamond and the latter two are specialized shape
metrics. Since both carat and price are highly skewed, a log transformation is applied. We
train the model

price &= (1 + my(carat) + ma(depth) + ms(table)

over selected subsamples via the same backfitting procedure as in Section 6.
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Figure 6: Centered component function estimates obtained on the full data (black), random

subsample (red), and IES subsample (blue).

7.1 Estimation Performance

Backfitting on the LowCon subsample of this dataset does not converge. Therefore, we
only compare the IES with random subsamples. We use the model trained on the full data
as a benchmark because the true model is unknown to us. The subsample size is fixed at
n = 5000.

Figure 6 depicts estimated component functions trained on the full sample and subsam-
ples selected by different methods. The span of z-axis of each component function reflects
its range in the full data. Since a subsample often results in a reduced range of predictors,
extrapolation is needed. In this case, we use term-wise nearest neighbor estimation. In
Figure 6, the component function of carat has a dominant effect in magnitude with mostly
a linear shape. The estimations over an IES subsample and a random subsample are both
close to the benchmark, with the IES showing its advantage in the right tail. This confirms
that the IES subsample provides better worst-case control in accuracy. The estimation of
the other two component functions clearly demonstrates the superiority of IES. The TES

effectively captures the information of each component function, even if the function has a
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Table 1: Estimation and prediction performances of Rand and IES in the diamond price

prediction data.

Rand IES
ASE 0.13 0.01
MEE 1.51 0.48

AvePredError 0.06 0.06
MaxPredError 1.67 1.29

complex shape and a relatively weak signal.

Table 1 further compares the performance of TES and random subsamples using mea-
sures for estimation and prediction errors. First, same as in Section 6, we calculate MEE
and ASE for the regression function over the test data X,.., the grid points of size 10° that
span the range of the full data. The response for X}, is generated using the model trained
on the full data. In addition, we calculate the average (AvePredError) and maximum pre-
diction error (MaxPredError) for the observed price in the full data. From Table 1, an IES
subsample outperforms a random subsample in minimizing both estimation and prediction
errors. An additive model trained on an IES subsample provides more accurate compo-
nent function estimation and response prediction than the model trained over a random

subsample.

25



Table 2: Average computation times (in seconds) spent on subsampling, CV, and model

fitting. Standard deviations (SD) are in parentheses.

Full Rand IES
Subsampling 0 (0) 0.0003 (0.0000) 5.82 (0.34)
CvV 8092.53 (121.99) 926.06 (20.12) 1140.04 (27.52)
Fitting 0.21 (0.11) 0.03 (0.02) 0.03 (0.01)
Total 8092.74 (121.96) 926.09 (20.12) 1145.89 (27.48)

7.2 Computation Time

We now report the computational time of IES on the Diamond data. Table 2 lists the
computation time of subsampling, CV, and model fitting procedures as well as the total
spent time, with their respective standard deviations shown in parenthesis. As shown
in Table 2, CV dominates the time consumption for training an additive model, making
the modeling on the full data dramatically slow. Training the model on a subsample
significantly accelerates the CV and reduces the time to around 8-fold. The ITES sampling
procedure does take a few more seconds, but this is unimportant compared to the big saving
on the time for CV. The total time of IES and Rand are comparable, and it makes sense

for TES to be a little slower than Rand to achieve its superior estimation performance.
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8 Discussion

We have developed a new subsampling method, called ISE, to accelerate the computation
of training an additive model from large data. The ISE selects the subsample that approx-
imates an OA and optimizes the minimax risk of training an additive model by enabling
asymptotically independent and uniformly distributed predictors in the selected subsample.
Theoretical results have been derived to guarantee the convergence of the backfitting pro-
cedure over an ISE subsample for two-dimensional problems. Extensive simulation studies
and a real data application demonstrate that ISE outperforms existing subsampling meth-
ods in providing accurate estimations of the regression function and each component.
Future works can look into subsampling via OAs with higher strength. The asymptotic
property in Theorem 4 can be easily extended to a general number of predictors if the train-
ing subsample has a higher strength. In addition, such a subsample achieves higher-order
independence among multiple predictors and will allow better estimation of an additive
model with interaction terms. Another direction is to consider the performance of TES for
a more general family of models, for example, the generalized additive model. We expect
that such a subsample will perform well for estimating g(E[Y]) for a general link function

g because of its independence between predictors and uniform coverage of the data region.

Supplementary Materials

The supplementary materials include the proofs of Theorems 1-4 and additional simulation

results.
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Appendix A Existence of OA

The existence and construction of OAs have been widely studied in the literature, see,
for example, Hedayat et al. (1999) and Dey and Mukerjee (2009) for a comprehensive

introduction. Below is a well-known result.

Lemma A1l. If q is a prime power and X is a positive integer, then an OA(AG%,p,q,2)
exists for any p < q+ 1.

A construction of OA(¢?, ¢ + 1,¢,2) with ¢ being a prime power can be found in He-
dayat et al. (1999) (Theorem 3.1). Stacking X copies of an OA(¢? ¢+ 1,¢,2) provides an
OA(Ng?,q+1,q,2), any p columns of which is an OA(A¢?, p, q,2).

When ¢ is not a prime power, one may construct OAs from pairwise orthogonal Latin

squares. The lemma below comes from this approach.

—

Lemma A2. Let gi*qy*---q’* be a prime factorization of q¢ and qo = min{gq;"

1,...,u}, then an OA(NG?,p,q,2) exists for any p < qo + 1.

The result is an immediate consequence of Theorems 8.4 and 8.28 in Hedayat et al.
(1999). It extends ¢ from prime power to an arbitrary positive integer.
Many other OAs with flexible p and ¢ exist, see http://neilsloane.com/oadir/ for

a collection of examples.

Appendix B The unique solution in Theorem 4

Denote the observations in the IES subsample { X}, v .} by (77, 77, yi) whered € {1,2,...,n},

x}, and zj, are the two predictors, and y; is the response. Define, for ¢t =0, 1, 2,
i (x) = — — x; —x)", and Wy (x) = — — Ty — )"
t n Py hl hl ! ! n i1 hQ h? 2
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Then define n x n matrices 81 = {[Sl]ij}lgi,jgn and 82 = {[SZ]ij}lgi,an where

. LK (,;) Vio(a) — o= K (h‘) (%) — 8) Vi (7)) B13
1 VnO(le)Vm(xfl) — Vi (xfl)Q 7
B () Walon) — 2K (5572 (e — o) W (a32)

Wio(55) Waa(7y) — Wai(77)? .

Following Buja et al. (1989) and Opsomer and Ruppert (1997), the bivariate additive

and [Sg]ij =

model, fitted by local linear smoothers via backfitting algorithm, aims to solve the following

estimation equation:

T 7 m S
! e T Yy (B14)
S; 7] \iho S;
where ﬁll - (ml(ffl)a ce 7m1(x;kzl))—rv ﬁl? - (mQ("L‘TQ)’ s >m2<x;2))—r’ Y = (yika s 797*1)T’

S = (Z-11"/n)S;, and S = (Z — 117 /n)S, with Z being the n x n identity matrix

and 1 being a n X 1 vector of all ones. The centering constant  is estimated separately by

A

it = y. The backfitting algorithm on the IES subsample converges to the unique solution
my | [[Z-(T-88)"T-8)]Y
my)  \[I-(T-88) " T-8)Y
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The document contains the proofs of Theorems 1-4 and additional simulation results.

1 Proofs

1.1 Proof of Theorem 1

Proof. For any fixed x in the support, define mo(-) = (bn/2) [1 — /n(- — )?/bn]4, where
[a]+ = max{0,a} and by = [15n'/*c?/ (Nf(a:))]Q/E. Then my € C*. By Eq. A.3 of Fan
(1992),

{1570 (0_2)4/51% 4051 4 0,(1)) < El((x) — mo(@)fXs. o Xaly (8]
1 n = x 0p < El(m(x) — my(x 1 Xl

for any linear smoother m. Fix x at xy = argmin,ejo,1) f(2) on the left side of (S1), and it

follows from the definition of sup,,ccx ,eo1) E[((x) —m(2))? Xy, ..., Xy] that

5 52\ 4/
_1571/5771/5 (N) f(xo)*4/5(1 +o0,(1)) < sup  E[(m(z) — m(z))}Xq, ..., Xyl

4 meC*,z€(0,1]

Thus
o2

4/5
R = 157 (5 ) Haa) 5+ 0, (1) ($2)

1



It suffices to show that the lower bound in (S2) is also an upper bound for R(f).

Consider the local linear estimator 77, using the kernel Ko(u) = 3(1—u?), and bandwidth

1/5
he = < f(lg‘;’;] 2N> . Evaluating the MSE with this particular linear smoother 77, and taking

the supremum gives that

) 3 0_2 4/5 ' B

sup Bl () —m(@)?Xu,.... Xn] = S15-Y51/5 (—) min () V(1+0,(1)).
mec*,z€(0,1) 4 N z€[0,1]
This completes the proof. O

1.2 Proof of Theorem 2

We provide and prove a more general result, Lemma S1 below, and Theorem 2 will follow

as a special case of Lemma S1. We need the concept of weak strength (Xu, 2003).

Definition S1. An n X p design with q levels is called an OA of weak strength t, denoted
as OA(n,p,q,t™), if all level combinations for any t columns appear as equally often as
possible, that is, the difference of occurrence of level combinations does not exceed one in

any t columns.

Lemma S1. For a subsample X*,

p(p — 1)h(n,¢*) + ph(n, q) — np?
2 )

LX) > (S3)

where h(a,b) = |a/b]*b+ (2 |a/b] + 1) (a — |a/b] b). The lower bound in (S3) is achieved
if and only if the membership matriz of X* is an OA(n,p,q,t~) fort=1,2.
Proof. Let Z* be the membership matrix of X* and define

K(EZ)=——— S (52

n(n —1) 1<i<i'<n

2



where zf and z}, are two disctinct rows in Z*. By Lemma 1 and Corollary 3(ii) of Xu

(2003), we have
pp = Dh(n, ¢*) + ph(n, q) — np?
n(n —1)

for any Z € {0,1,...,¢—1}"*P and the equality holds if and only if Z is an OA(n,p,q,t")

K(2) =

for t = 1,2. Hence,

p(p = Dh(n,¢*) + ph(n, q) — np*

rary =20 5

This completes the proof. O

Proof of Theorem 2. An OA of strength 2 is of both weak strength 1~ and 27, so Lemma
S1 applies. Take n to be a multiple of ¢*>. Then h(n,q¢*) = n?/¢* and h(n,q) = n?/q.
Substitution of both expressions into Equation (S3) completes the proof. O

1.3 Proof of Theorem 3

The following lemma is needed to prove Theorem 3.

Lemma S2. Given that an OA(q* p+1,q,2) exists, an OA(n,p,q,27) that is simultaneous

of strength 1~ exists for any positive integer n.

Proof. We prove the lemma by construction. Let A = [n/q?], where [] denotes the closest
integer. Then —¢* < n — A\¢® < ¢*>. We consider the case g(q) = n — A\¢®> < 0. The
case g(q) > 0 follows the same construction by adding a copy of the selected rows to the
OA(Ng?,p,q,2) constructed below.

Start with an OA(¢?,p+1,¢,2). Arrange its rows so that the first column is ascending
in levels, from 0’s to (¢ — 1)’s, and denote this OA by A. Stacking A copies of it forms
an OA(A\g%,p + 1,q,2), denoted as A’. Denote the submatrix consisting of the first |g(q)|



rows from A by A, and delete the first column of A.. Then A, is an OA(|g(q)|,p,q,t~) for
t = 1,2. Delete the first column and the first |g(¢)| rows in A’. The resulting matrix, as a
complement of A., is then an OA(n,p,q,t”) for t = 1,2. The result is thus proved. O

We now prove Theorem 3 under the following weaker assumption in replace of Assump-

tion 2.

Assumption S1. n— \g*> = O(q") for some fized positive integer X and v € (0,2), and an
OA(¢*,p+1,q,2) exists.

Proof of Theorem 3. The proof consists of two parts:

(i). For any integer A > 0, with probability approaching one, a full data, under Assump-
tions 1-3, covers all ¢P cells that constitute the p dimensional unit cube at least A+ 1

times.

(ii). An IES subsample is sufficiently close to a random OA under the Assumptions 2 and
3. We prove for the case A = 1, since the proof for A # 1 is essentially the same.

Without loss of generality, we assume that all p predictors take values in [0, 1].

Proof of (i). Let (Xi,...,Xy)" denote a random predictor matrix of dimension N x p
satisfying Assumption 1. Define Ey as the event that (X, ... ,XN)T occupies all ¢P cells
at least A+ 1 times. Denote B; the event that the [-th cell is occupied at most A\ times. By
Assumption 1, there exists a € (0,1) and b > a such that the joint density of predictors is

larger than a and smaller than b. When A =1,

a\” b a\ V!
P(Bl)<(1——> —i—N—(l——) ,
qP qP q?



for all I € {1,...,4?}. It follows that

<UB,> <SS PB)<¢ (1——>N+Nb<1—%>N_l. (S4)

q

The two terms in the upper bound in (S4) can be rewritten as

N
qp(l—g) :exp{lnqp—i—Nln(l—g)}
qr v

=exp {Ing” — Na/¢" + o(N/q*)}, (S5)
and
Nb(l—g) —beXp{lnN—i-(N—l)ln(l—E)}
=bexp{InN — (N — 1)a/¢" + o(N/q*)} . (S6)

Equations (S5) and (S6) come from Taylor expansion of In(1—a/¢), where g goes to infinity
as implied by Assumptions 2 and 3. Under the two assumptions, ¢ = O(N"/?) for some
v € (0,2/p) and the first term in Equations (S5) and (S6) is of order O(log N). Therefore,
the second term, of order Q(N'~"?/2), dominates the first. As a result, both equations goes

to exp{—oo} = 0. This proves limy_,o. P(Ex) = 1 and concludes the first part.

Proof of (ii). By Lemma S1, the minimizer of L has their membership matrix as an
OA(n,p,q,t”) and for ¢t = 1,2 if such an OA exists. The existence is then guaranteed by
Assumption S1 and Lemma S2. Moreover, in view of Part (i), the probability that the
full data contains a subsample with such an OA membership matrix approaches one as
N — oco. A, is thus guaranteed to have its membership matrix as a OA(n,p,q,27) in
probability. By Assumption S1 and with A\ = 1, n = ¢*> + g(q) for some g(q) = O(q").
According to the definition of OA(¢* + g(q),p,q,27), the membership matrix of Xy 1s
different from an OA(q?, p,q,2) by |g(q)| rows on any two columns.
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For any 1,2, € [0,1], the quantity > " 1(X}5 < 1, X5 < x9) is bounded between
|z1q] |z2q] and (|z1q] +1) (|z2q] + 1) for a subsample with an OA(¢?, p, ¢,2) membership

matrix. Hence with probability approaching one, induced distribution of X, satisfies

(lz1q]) (lz2q]) — 19(q)| (lz1q] + 1) ([22q] + 1) + |g(q)|
q*+ 9(q) '

< Fu(1,22) <
(@1, 2) ¢+ 9(q)
Then, in probability,

2q +2|g(¢)| +1
7>+ 9(q)
By Assumptions S1 and 3, the above bound is of order O (g~ ™{1:27}) = O( N~ min{1,2=7}v/2)

|Fn(x1a 552) - ﬂ511T2| <

and does not depend on x; and xo. Together with Part (i),

sup |F(x1, 22) — x129] = Op(N—min{LQ—'y}y/Q)'

1,72

Setting v = 1 gives the result in Theorem 3.

1.4 Proof of Theorem 4

We first generalize the standard definition of Lipschitz functions and introduce the definition

of M,-Lipschitz functions to ease the presentation of the proof.

Definition S2 (M, -Lipschitz function). We call a sequence of functions g, defined on T
as M, -Lipschitz if for any s,t € T,

9n(8) = gn(t)] < My|s — .
We now introduce some notations.

e Throughout the proofs below, constants are absolute, that is, they do not vary with n,

q or h.



e Denote Opyp as a big Op term that is uniform in z € [0,1]. Formally, we write T),(z) =
Ovyp(ay) if SUPze0,1) Tw(x)] = Op(an).

Similarly we use oyp to denote the uniform op counterpart.

e Given a point = € [0, 1] and a positive bandwidth h, define D, 5, = {u € [-1,1] : x+uh €
[0,1]}. A point = € [0,1] is called an interior point if D,, = [—1,1]; otherwise, it is

called a boundary point.

e Define the t-th boundary moment as
Ry(z; h) ::/ K(u)u'du, t=0,1,2.
Dz,h

Denote My = sup,¢(_1 17 [ K (u)]. Then we have

/ Modu
Dx,h_Dz/,h

where D, ;, — D, is the symmetric difference between the two sets. This shows that

Ri(+;h) is (2My/h)-Lipschitz.

2M,
|Ry(; h) — Ro(a'; )| < <= le=d), (S7)

e Recall that Ey is the event that the full data covers each of the ¢ grids at least X + 1
times. By (i) in the proof of Theorem 3, P(Ey) — 1 as the full sample size N — 0.

Next we provide some technical lemmas that will be used to prove Theorem 4. Note
that “n — o0” in all the proofs below can be implied by “N — oo” due to Assumption 3.
Moreover, gh? = O(y/n)h? by Assumption 2 and 1/(gh?) goes to 0 by Assumption 5.

Recall that V,;(x) and W, (z), t = 0,1,2, are defined in Appendix B. We provide a
lemma to show that each of them is essentially a Riemann sum and its corresponding

approximation error can be properly controlled.



Lemma S3. Under Assumptions 1-5 and conditioning on the event Ey,
Vnt<l‘> = htht(x, hl) + (St, and Wnt(x) = tht(l’, hg) -+ Ct; t= 0, 1, 2.

where §; and (; are diminishing error terms such that |5;/hi| = Oyp(1/(qh?)) and |¢/hs| =
Oup(1/(qh3)) . Here we inhibit the dependence on x in the notations of & and ¢; for

simplicity.

Proof. We consider two cases to prove the result for V,;(z).

Case 1: n— \¢g> = 0. When n — A\¢?> = 0 and Ey occurs, X*

opt

has an OA membership
matrix by Theorem 2. Therefore, &, covers each of the g by g grids A times. This suggests
that each V,;,t = 0,1, 2, is essentially a Riemann sum as shown in details below.

For each k € {1,...,q}, let {@)s}scq1,2,..0q) denote a subset of {z}; : ¢ =1,...,n} that
falls into [(k — 1)/q, k/q]. Since n = A\¢*, we have

t/\q rh — T 1
Vot () i -
' quhl ( hy )( ha )q
Bt A g % ¢
Lks — X Lps T 1
: - S8
)‘q;;hl ( hn >< ha )q (58)
ht a 1 o —z\ (= -2\
= —= —K = g dz’ + 6,
)‘q; /ohl ( hy )( h ) e o
| Tz —x 2 — 2\’
—n | —K da! + 6
1/0 ha ( h )( ha > v
/ K tdu+6t,
zhl

where the last step is obtained by letting v = (2’ — x)/hy,

() () [ () (5
1 hy ha h q 0 ha ha




and &, = {hY/(Aq)} 3209, 6, Here we inhibit the dependence on z in the notations of d,
and 0; for simplicity.
We next provide a bound for ;s which is uniform in « € [0,1]. By the mean value

theorem, there is a set of real numbers {z® € [(k —1)/q,k/q] : k = 1,2,...,q} such that

k/q r_ r e\ (k) _ ®) _ 2\"
[ () () o i () (45)
(k=1)/q h ha hy hy hy hq
For t =0,1,2 and all s,
ii K(xkp‘_w) <J7k,s_m)t_K<$(k)—fE> <$(k)—:zj)t
1 qhy hy hy hy hy
1 % Tpys — xks—:c K z®) — g 2® — 2\
h1 hl hl
< i % (l‘ks — <xks — 3:) <x(k) :U)
hy hy
" Ths — k) _ o k)
h1 h1 h1

_ (k) _ (k)
l‘k s T ,8 xr X
< — K By s B
m’?x {' ( ) hy b ha

(59)

|

|5t,8‘ =

< —max

} , (S10)

where By s = 0,

t—1 Tho— 1 l l‘(k) . t—1-1
Bt ks = = , =12,
e T ( hy ) < ha )

and the second term in (510) is obtained via Assumption 4.

We next discuss bounds of By s and thus those of |d; | via (S10).

e When t = 0, we have By, = 0. Accompanied by the fact that, for all £ and s,
|z1.s — 2| < 1/q, we have [5ys] < M/(gh?).



e When t = 1, we have By, = 1. Hence |64 < (Mo + M)/(qh?), where M, =
SUPye[-1,1] | K (u)].

e Whent =2and z, & supp K((- — x)/h1), we have K ((z,s—)/h1) (zps—2®) /b1 Bogs =
0, which implies that |6y | < M/(gh?).

e Whent = 2and zy s € supp K((- — z)/hy), we have ((k—1)/q, k/q)Nsupp K ((- — z)/h1) #
() almost surely. The left hand side of (S9) is positive, so 2*) € supp K((- — x)/h;) C
[ — hy,x + hy]. As a result, |Byys| = }(mks —x)/hy + (x(’“) - :U)/hl} < 2, and [dg5| <
(2My + M) /(ghi).

In summary, |0, s| < (¢Mo + M)/(qh?) for t = 0,1,2. Therefore,

tM0+M 1
_/\ Z‘(StS'— _OUP(q_h%)

Case 2: n— A¢* # 0. Under Assumption 2, g(q) = n — A¢*> = O(q). When Ey occurs, the

membership matrix of &7,

has |g(q)| rows different from an OA(\g?, 2, ¢,2). Without loss

of generality, we assume g(q) > 0 and the first A\¢? rows in X, forms an OA. Then

opt

Vule) = /\q+g /qzhl ( ha )(xflh:xyé

h! A +9(a) 1 xt —x 5 —2\'1
+—"1 —K( i )( i ) -, S11
Yy hl no)a (S11)

i=Ag2+1

By Case 1, the integral approximation to the first term of (S11) gives an error term of
Oup(ht™2/q). Since g(¢) = O(q), and !1/h1K((a:/—a:)/hl)((x’—as)/hl)t’ < My/hy for
any z, 2" € [0,1], the second term in (S11) is of order Oyp(hi ™! /q), which is oyp(hi™2/q).

Thus the result remains the same as in Case 1.

10



The result for W,,;(x) can be proved following similar arguments, so we omit its proof.

]
We next provide bounds for
Ri(x; h)
th) = t=1,2.
QN = R Rl h) — Rami?
Lemma S4. Under Assumption /,
4 [1 K (u)du
up sup [Qsash)] < ———— 0 KL .
he(0,1/2] z€[0,1] fo 2K (u)u?du — (fo 2K(u)udu>
1 4 (12K (u)ud
inf inf Qa(x;h) > =, and sup sup Q2(z;h) < ) (w)u”du 5
he(0,1/2] z€[0,1] 2 he(0,1/2] z€[0,1] fol 2K (u)udu — (fol 2K(u)uclu)

Particularly, Q1(z;h) =0 and Qa(x;h) =1 for each interior point x.

Proof. For any fixed h € (0,1/2], if x is an interior point, then Ry(z;h) =1, Ry(z;h) =0,
and Ry(x;h) = fol 2K (u)u*du. Hence Qi(z;h) = 0 and Qo(z; h) = 1.

For arbitrary x € [0,1] and h € (0,1/2], exploiting the fact that kernel K is a sym-
metric density on [—1,1], we have 1/2 < Ro(z;h) < 1, 0 < |Ry(x; h)| < fol K (u)du, and

" K(u)u?du < Ro(z;h) < [ 2K (u)uldu. Along with the Cauchy-Schwartz inequality,
0 0

Ro(w: h) Ra(: h) — R2(z: h) > i { /0 9K (w)udu — ( /0 1 2K(u)udu)2} S0, (S12)

From the bounds for Ri(x;h) and (S12), it follows

4]01 K(u)du

Q)] < — : .
Jo 2K (u)u2du — (fo 2K(u)udu>

11



and
< Qa(x;h) < 4f0 2K (u)u*du )
fol 2K (u)u?du — <f01 2K(u)udu)

Note that the bounds for J; and ()2 above depend on neither x nor h. The proof is thus
complete.

]

Define fi(ro,m1,72) = r1/(rore — ri) and fo(ro,71,72) = ro/(rora — r1). The next lemma
reveals the relation between (Ry(x;h), Ri(z;h), Ra(x; b)) and Qu(z; h) via fi,t = 1,2, and
then establishes the Lipschitz continuity of each @Q;(z;h) accordingly.

Lemma S5. Let ng, n1 and ne be three terms of order oyp (1) and h € (0,1/2]. Under
Assumption 4, fort=1,2,

fe (Ro(z; h) +mo, Ra(w; h) + 1, Ra(w; h) +m2) = Qu(w; h) {14 Opp (no +m +m2) ). (S13)

Furthermore, for any h € (0,1/2] and t € {1,2}, Q:(-;h) = fi (Ro(;h), R1(+; h), Ra(+; h)) is
(Cy/h)-Lipschitz for some constant Cy > 0.

Proof. Clearly, for any € > 0, f;(ro, 1, 72) is twice continuously differentiable on {(rg, r1,72) :

roro — r3 > €}. Hence, by (S12), fi(ro,r1,72) is twice continuously differentiable on

=[1/2,1] { /K du/ K(u udu] X [/OlK(u)quu,/;QK(u)ﬁdu},

which is a compact set that contains {(Ry(x;h), Ri(z;h), Ra(x;h)) : x € [0,1]} for h €
(0,1/2]. We now apply the Taylor expansion at (Ro(x;h), Ri(z;h), Ra(x; h)). For each

12



t=1,2,

ft (Ro(x; h) + no, Ri(z3h) 4+ m1, Re(x; h) + 12)

5 t a t
= Qi(z; h) + 8—7]; (Ro(z; h), Ry(z; h), Ra(x; b)) mo + Ol (Ro(w; h), Ri(x; h), Ro(w; b)) m

87"1
0
+ (9_7{t (Ro(z; h), Ry(z; h), Ra(x; h)) 2 + oup (Mo + M+ 12)
2

where the oyp term is due to the boundedness of the second-order partial derivatives of f;
on 7.

Let Dyt = Sup( pyrmyer [0fi/Ore(ro,m1,72)| with ¢ = 0,1,2 and t = 1,2. By the
continuity of df;/0ry and compactness of T, each Dy ; is a bounded constant. Along with
ny = oyp(l) for t' =0,1,2, we have

Of
37’t/

(Ro(z;h), Ry(x; h), Ro(x; h)) iy = Opp(ny), t =0,1,2.

By Lemma S4, supe(g1/9 SUPyse(o.1] |Q¢(7; )| is bounded from above by some constant.

Hence
Qi(x; h) + Opp (Mo + 1 +12) = Qu(x; ) {14 Oup (o +m +12)} -

This proves (S13).
We next show that Q;(+; h) is (Cy/h)-Lipschitz. Let z, 2’ € [0,1]. By the multi-variable

mean value theorem and continuity of Ry, Ry, Ry, there exist vy, vy, v € [0, 1] such that

fi (Ro(2'; h), Ry(a'; h), Ra(2'; h)) — fi (Ro(z; h), Ry(x; h), Ro(x; h))

- g_f; (Ro(vo; 1), Ru(vi; h), Ra(va; h)) (Ro(a'; h) — Ro(w; )
+ g—fi (Ro(vo; h), Ry(vi; h), Ry(va; b)) (Ry(2'; h) — Ry(w; h))
+ g_i (Ro(vo; h), Ri(v1;h), Ra(ve; b)) (Re(2'; h) — Ro(x; 1)) . (S14)

13



Recall that Dy ; = Sup(,, , r)er |0fi/Ory(ro,m1,79)| Witht' = 0,1,2 and t = 1,2. Combined
with (S14), we have

|fi (Ro(2'; h), Ra(2'; h), Ro(2's b)) — fi (Ro(; h), R(z; h), Ro(w; h))|
< Doy [(Ro(2'; h) — Ro(w; 7)) + Dy [(Ru(2'; h) — Ri(w; 1))

+ Dy |(Ro(a'; k) — Ro(; )|

2M,
< (Dot + D14+ Dyy) A 0 |z — 2']. {by (57)}

Taking Cy = 2My (Dot + D1t + Do) completes the proof. O
The next lemma shows that Q);,t = 1,2 convoluted with the kernel is also Lipschitz.

Lemma S6. Under Assumption 4, there exists a contant k; for all h € (0,1/2] such that the
integrals (1/h) [if K ((x — v)/h) Qu(v; h)dv and (1/h) [} K ((x — v)/h) ((x — v)/h) Q:(v; h)dv,
as functions of x on [0,1], are (k/h)-Lipschitz, t = 1,2.

Proof. We first consider (1/h) fol K ((x —v)/h) Q¢(v; h)dv. Recall that, by Lemma 5S4,
Q(-;h) is (Cy/h)-Lipschitz, and suppe (g 1/9 SUPyejo1) |Q(7; )| is bounded above by some

14



constant, say, §& > 0. Let z,2' € [0,1] and set v = (v — z)/h and v’ = (v — 2’) /h. Then

1 1 T —v 1 z —v

— || K (vih)dv — | K vy h)d

h/O(h)W)”/O(h)Q(”)”
_ / K@ Qu(x +ub: Bydu— | K@)Qi( + u'hs h)du!

Dan Dy,

IN

[ K@{Qe+ ubih) - Qua’ +uth)}du
Dy nDyr

+ / sup K (u)| sup |Qu(w: h)|du
D z€0,1]

Z,h_Dz/,h uE[O,l}
Ci
/ MOI T — x'\du Moftdu
Dy 1Dy gy Da.n =Dy

S wkr_wlb

IA

+ {by Lemma S4}

where D, j, — D,/ , is the symmetric difference between the two sets. Similarly,

1]/t T—v\T—V ! ¥—v\a —v
— K ch)dy — K ch)d
il () S atsma [ () St o
< PGt E),
h
The desired result is proved with x; = 2My(Cy + &). ]

Recall that (zj;,7};) is the i-th row of A,

ie{l,2,...,n}.

Lemma S7. Let {g(x; h)}rhe0,/2) be a family of functions defined on [0, 1] such that g(-; h)
is (C'/h*)-Lipschitz, for some constant C° > 0 and o < 1. If there exists a constant

G > 0 such that supye o1 /9 SUPsepo1) [9(z; )| < G, then conditioning on En and under

15



Assumptions 1-5, fort € {0,1} and v € {1,2}, we have
1 & T5 — X Th — X ¢
D (M) () st
n ; h, h LA

-/ 'k (ﬂ” ;fO) (x Zf‘))tg@; b )i + Opr (q%) | (s15)

Proof. Here we only prove the result for v = 1, since the proof for v = 2 is exactly the

same. We consider a large enough n so that hy < 1/2.

We first establish the Lipschitz continuity of K ((z% — x0)/h1) (2% — x0)/h1)" g(z; hy)
as a function of z7; for the case t = 0 and 1. Note that g(-; hy) is (C/hS)-Lipschitz on [0, 1],
and, by Assumption 4, K((- — zo)/h1) is (M/hy)-Lipschitz on [0, 1]. Therefore,

o t=0.
r—x - ,
K ) glaih) — K =) gy 1)
hy h

1
rT—x ¥ —x ¥ —x ,
< W E “)-K 2) bglaihy)| + | K =) {g(x;ha) — gla’sh)}
< M sup,, |g(x; hy)| N C' M, v — '] < MG + CM,
hq h¢ hq

< |z — 2|

)

which shows that K((- — zo)/h1)((- — zo)/h1)'g(+; h) is {(MG + CMy)/hq}-Lipschitz.

e t = 1. Since K((x — x9)/h) = K((2' — x9)/h) = 0 whenever both x & [xg — hy, 20 + h1]
and =’ & [xo — h1,zo + hy], it suffices to only consider the case where at least one of x

and 2’ falls into [xg — hy, g + hq].

16



If o’ € [xg — hi1, zo + hq], then without loss of generality

(ot (557) o (5 e (57
< | (15 atwi) '

hy hy

MyG . MG+ CM, . ¢ ,

< — = — — 1
where C" := MyG+MG+C My, so K((-—x0)/h1)((-—x0)/h1)tg(+; h1) is (C'/hy)-Lipschitz
for t = 1.

Next we follow similar arguments as in the proof of Lemma S3 to prove (S15). Explicitly,

e n = \¢>. We have

1 K Tk,s — Lo Tk,s — Lo ! L K z®) — g z® — g t ). p,
|Tes| = ;a ( I ) ( » ) 9(xh,s; 1) — < » ) ( W ) g (z"; hy)
_ _ t (k) _ (k) _ ¢
Tk,s o Tk,s Zo . T o X o (k).

< —_
>~ m]?X K ( hl ) ( h1 ) g(xk,sv hl) K < h1 ) ( hl ) g ({E ’hl)

! C/
< — max |xk,s - x(k)‘ =—,

1k qhy

where z, s and %) are defined the same as in the proof of Lemma S3, and

q t 1 t
Tp,s — Lo Tg,s — Xo 1 Ts — Zo Ts — Zo
6 1= E K ’ ’ sshi)— | K s hy)dxy.
Tt, — < h/l > < hl ) g(xkh 1>q A ( hl ) ( ) g(x 1) Zz

ha

Therefore the integral approximation error 7 := 1/(Aq) Zi‘il dts = Oup (1/(qhy)).

e n # \g®. The proof is also similar to that of Lemma S3 and is omitted.
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]

Lemma S8. Let {g1(z; k) bhe(o,1/2) and {g2(x; h) bre(o,1/2) be two families of continuous func-
tions on [0,1]. Suppose that, for all h € (0,1/2], g2(-; h) is (C/h%)-Lipschitz with constant
C > 0 and o < 1. Moreover, there exists a constant G > 0 such that sup,, sup, |g1(z; h)| <

G and supy, sup, |g2(x; h)| < G. Then conditioning on Ey and under Assumptions 1-5, for
t1,to € {0,1} and any i,j, we have

*

1< xf — ar — i\
RSZ'j(gl,gg;tl,tg) = EZ {K( 11 hl 11) ( llh1 11) gl(xfl;hl)
=1
* % Xk [2)
<K (szhQ l’lz) ($J2h2 I12> gg(xg;hg)}
' T — x5 T — x5 " x
= /o K i i g1(xf; hy)dx
1 f— I 1 1
K[ =Z 2 "“hy)da' s + Opp | — + — | .
: {/0 ( ho ) ( ho ) 92(; ha)dz’ o+ Oup qhy +qh2

Proof. We consider n large enough so that hqy, hy < 1/2.

Case 1: n = \¢®>. When Ey occurs, RS;i(g1, g2;t1, t2) is the average of A two-dimensional
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Riemann sums over the same ¢ by ¢ grids. Therefore
9311 ﬁl Ty — T " .
RSij(g1, g2 t1, t2) Z K I YCHAY

Tiy — X7 T — e\ 2 1
x K [ =22 l2) ( 32 12> vt h) L
< h2 h2 92( 2 2>q2
* %\ t1
xr — T T —
= K il il i
/[0,1]2 ( hl ) ( hl ) gl( Li1s )
$;2 —a x;TZ — '\ , / }
<K ho ho g2(x'; he)dxdz' + o,
! T — ¥ T — ¥ t1
:/0 K( hy Z1> < hy Zl) 91(2i; ha)de

1 ¥l 5 — ! t2
x/ K(xﬂ x) ( 12 ) 022’ ho)da’ + 69,
0 ha ho
where

. 1 & xf — xf ar — s\ Tio — X Ty — 5\ P 1
51] _ K 11 il 11 il . h VK 72 12 j * ,h -+
tito A ; ( hl hl g1 (Izla 1) h2 h2 gg<$12 2) q2

* % \ t1 * ! * A2
T — T T — @ Tig — X Tig — T
_ K il i1 * . h K J J /; h d d /.
/[071]2 ( Iy ) < Iy ) g1(x71; h) ( Iy > < Iy ) G2(2"; ho)dadx

Let {(km1,kma) : m = 1,...,¢*} be an enumeration of {1,...,q¢}? and {(zm 15, Tmas)

m=1,...,¢* s =1,...,A} denote the subset of {(z};,2},) : [ = 1,...,n} that falls into
[(km1 — 1)/q, kma/q] X [(km2 — 1)/q,kma/q]. By the mean value theorem, we can find
(@™, 25™) € [(kma = 1)/, kma/a) % (k2 = 1)/a, ki /a) s m = 1,....¢?} such that

km,2/q m,1/4q T — r* T — t1 xr — ! x* — 7 t2
d i x5 h K( L ) ( 72 ) go(x'; ho)dada’
/mz 1/q/ 1-1)/q ( ha )( hi ) 91(ii In) ho ho A5 o)
t1 m * m t
K .1'1 —xl xgm)_xz‘l ($*h)K JI;Q_JJg ) l‘jQ_l’g N\ * <x(m)_h>l
hy hy g1 (X515 M Iy Iy G2 \ Ly 52 )




Therefore

A * * * * t1
1 Tin1,s — Til Tina,s — L1
- K 51y 51y * . h
h Z{ ( Iy ) ( I ) CHEY
x;z - x;n,2,s x;Q - xfng,s 2 .
x K hs hs 92 (xm,Q,s; h2)
(m) _« m) _ «\" . (m) ¥ (m)\ 2
Ty — X Ty — X i, — T Tr, —x
I i1 1 i1 ARl LA j2 — L2 ( (m).h>
( h,l ) ( hl g1 (xﬂ) 1) hg h2 g2\ Ty "5 N2
x;n s x;k x;kn s ‘T;k h
fo (Tt (T T g )
-73;2 - 37:,1,2,5 75;’2 - 55;1,2,5 " «
<K = P 92(2), 5 43 h2)
(m) * (m) * t * (m) * (m) t2
Ty — X Ty — X i, —x Tr, —x
K2 il 1 il K| 292 2 2 2 ( (m).h>
( hl ) ( hl g1 (‘le? 1) hQ hg g2 IQ 3 102
* * * * t1
Tin1,s — Ti1 Tin,s — Li1
K ) sdy ‘rz‘ ; h
( hy ) ( Iy ) 91( 1 1)
to
xt, — xt, — t2 ot — ™ zt — ™
x:‘n s; h K .72 m7273> ( .72 m7275> - K ]2 2 ]2 2
|g2( 2 2)| ( ho ho ho o
% m % m t2
K Ij2_33g ) $j2_5’3§ )
hs ha
* (m) * (m) t2
Tr, —x Tt —x m .
+ K( & ; : ) < 2 - 2 ) 92 (Ié );hz>gl(%;h1)><
2 2
Th o — Tk s — o\ . 2™ g\
K m,1l,s 71 m,l,s 7l . K 1 il 1 7l ) 817
{ ( hq hq hq hq ( )

20

< max max
m S

< max max
m S

_|_

92($:n,2,s§ ha) — g2 (x;m); hz)




Note that K ((-—xz0)/h)((- — x0)/h)" is (C¢/h)-Lipschitz for some constant Cy > 0, t =0, 1,
indicated by the proof of Lemma S7. Hence

Ca | %M()) + MyG?
qha  qh3

o
qhy 7

57, < MyG (G

where t;,t, € {0,1}. Since a < 1, this indicates that 0;,, = Opp(1/(qgh1) + 1/(ghs)) for
t1,te € {0,1}.

Case 2: n — \¢? # 0. By similar arguments as in the proof of Lemma S3, the result also

holds. O

Proof of Theorem 4. By Buja et al. (1989) and Opsomer and Ruppert (1997), to prove that
there exists a unique solution to (B14) and the bivariate backfitting procedure converges to

this solution with probability approaching one, it suffices to prove that lim sup ||S;S; || < 1
n—oo
and lim sup [|S; 87| < 1 with probability approaching one, where || Al|o = max; D77 [Ajj]
n—oo
is the maximum row sum of a matrix A.

Hereafter we only show limsup ||S;S;]|« < 1 with probability approaching one. The

n—oo

proof to show limsup [|S;S7 |l < 1 with probability approaching one is similar and thus
n—oo

omitted.
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Conditioning on Ey, it follows from (B14) and Lemma S3 that

*

Ro(x}y:h) + 02/h3

1 x%l — Ty
ii = B J
[81] J nh1 (

B ThH — X Ry(z}5h1) +61/ha }
hy  {Ro(x}y; ha) + doH{ Ra(xjy; hy) + 02/} — {Ru(xjy; ha) + 01 /I }?

g — : : o 5
01

nh hl

_ K ( I 1> ]lh lfl (Ro(xil;hl)+(507R1($i1;h1>+h_7R2(xi1;h1)+
1 1 !

ha ) [{RO(QT%HQ hy) + doH Ra(xfy; ha) + 02/ B3} — { Ru(wy; ha) + 01 /P }?

%
hi

1 T — . 1
= nth < thl 1) Qa(xl; hy) {1 + Oyp (q?)} {by Lemma S5}

1 T —wi\ T — Ty 1
— K| -2 ! J “oh 14+0 —
nhy ( hy ) hy (i ) { e (qh%)}
1 i —xy 1 T — T\ Tho—Th
— K J ? * 'h . K J J * ‘h
(oK (P ) @atetin - i () B, i

y {1 + Oup (qih%) } | (S18)

Similarly we obtain

1 Ty — Tjy 1 Lo — Tin\ Tio — Ty
i = K J 2 * . h _ K J ] * . h/
[82] J { ( Iy ) Q2<x227 2) nhy ( hy ) Iy Ql(xma 2)}

nh2

« {1 + Opp (q—zg) } | (S19)

Since Sf = (Z — 117 /n)S; for t = 1,2, we have

n

[Silii = [Siij — %Z[St]lj’ t=12

=1
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Then

5753 = ([smm[sz]m o DS Z[sm — el YIStk — 1Stk Y (Sil
{ (S185)i5 81 lim Z [Sa]ij } (denoted by L)
+2 {% > Z Silim Z Solus - Z ([SQ]W- Z[Sl],m> H (denoted by Ly).

(S20)

We next prove that both L; = oyp(1/n) and Ly = oyp(1/n) for large enough n so that
ha hy < 1/2.

Proof that L, = oyp(1/n). By (S18) and (S19), for the first term in L;, we have

1 - Ty — TF . Tjy — X *
[$185]i = {m ;K (llh—ll) Qa2(wj; ) K (]h—22> Q2755 ha)

_‘T;k * 'I#TQ_"E? 'I#TQ_:L‘? *
I 1Q1($i1;h1)K( ! i 2) ’ i 2Q1(2}y; ho)

1 1
1 S 21
- { +Our (qh% - qh%) (521)

By Lemma S5, Q(x;h) is a (Cy/h)-Lipschitz function for some constant Cy, t = 1,2. By

Lemma S4 and Assumption 5, when n is large, supy, ¢(.1/9 SUPzep,1) |@Q(%; h)| is bounded
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above by a constant. Therefore, we can apply Lemma S8 to (S21) to obtain

1 ! x — ! Ty —
S1So)i; = K il Sihyde |OK (22 ' hy)da'
sy = 4 [ K (S5 Qutetihids [ & (20 ) Qe
! r—xh\ v —a; ! w5y — 2"\ Ty — 7'
K i LQq (x5 ha)d / K(=Z 22 '; hy)da’
[ () e [ () S e
1 ok 1 * gl * ol
_/ K(x hx”)@(l";‘l;hl)dx/ K(Jfﬂh x)szh " O) (' hy)da’
0 1 0 2 2
! r—xh\ *—x} ! xhy — ) )
—/ K( ; ”) ; Z1621($;‘1;le)0l:16/ K( JQh )QQ(as;hg)da:
0 1 1 0 2
2
1

1 1 1 1
Ovr [ —+— V1400 [ — +—
e (qh1+qh2)}{ e (qh +qh§)}

/ K (1) Qs (a: by )du / K () Qa(a%y + t'hos ho)dd
DZ* hl

,Dz;,‘Q sho

1
n

—/ K (u) uQq (x}; hl)du/ K (u) uQ1 (], 4 u'ho; ho)du/
Do

DI;Q,hQ

+/ K (u) Qo(z; hl)du/ K (u) u' Q1 (xy 4 u'hy; ho)du/
D+ p D

* *
Ti1™M xhgsho

— / K (u) uQq(xl; hl)du/ K (u') Qoxy 4 u'hy; ho)du'
’Dx’f‘ N D

W;Q’hQ

1 1 1 1
10 1 — 22
e (qh?hg * thhé)} { +Our (qh% * qh%) } (522)

where the last equality is obtained by letting u = (v — zj;)/hi and v’ = (2" — 27,)/ha.

24



For the second term in L, we apply Lemma S7 to obtain

n

sl =g () s

) e ()} o ()
:{/D;l K (u) Qu(ay: )

K ﬂ,m)dumw(q%)}{uom () o

Ti1oM1

and

- 1 ! Tj — @ ’ ’
> [Salrj = — / K (=2 Qo (a'; hy)da
r=1 ha Lo h
1 i, — '\ z¥, — 2 1 1
— | K22 2 s ho)da! — 1 —
/0 ( ho ) ho Qs o)’ + O <qh2)}{ Our (qh%)}
= {/D K (u') Q2(x; + u'ha; ha)du!

1 1
+/D* ) K( )UQl( ]2+uh2,h2)du +OUP (qh%)}{1+OUP (q—h%>}

z7g:h2

(S24)
Combing (S22), (S23) and (524), we have

1 1 1 1
Li= ~Opp (= + =) = our [~ 325
o (qh? ! qh%) o (n) ’ (529
since 1/(gh?) — 0 and 1/(qh%) — 0 by Assumptions 2 and 5.

Proof that Ly = oyp(1/n). We first evaluate the first term in L. By (S24), we have

Sy fassns o ()} o0 ()}
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where

1 * 1 * *
L(z;,15 1) ;:/ K(Zm Q2(v; hl)dV—/ K(Im—Y) Iml VQl(I/; hy)dv.
0 hl 0 hl h1

Then

n n

3 S g e 0o (G ) {1 0 ()}

m=1 =1
Now we work on (1/n)> " _ L(xy,;h1). By Lemma S4, supjc /9 SUPep,1 |Q: (25 )| is

m=1

bounded above by some constant, say &, for ¢ = 1,2, which implies that
SUDpe(0,1/2) SUPsefo,1] |1L(7; h)| < My(& + &). In addition, L(z;h)/h is {(k1 + K2)/h}-
Lipschitz by Lemma S6. Thus, by another Riemann integral approximation with respect

to variable z* ;. we have

ml>

1 . B 1,1 — | N |

EmZ:l]L(wmbhl)—/o /0 {K( I )Qz(V,h1)—K( I ) i Ql(y,hl)}dxdy
1

+ Oup <%) )

/01 /01 {K (x}:lv) Qo(vihn) — K (:E}:lu) x};le(y; hl)}dxdy
+Oup <i } {1 + Opp (qih%) } . (526)

which implies that

n n
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With (S23) and (S26), we have

1 1 1
2 s s = g {10 (G ) 0o (G )}
Lot Tr—v rT—v\xT—V 1
[/0 /0 {K( hy )Q2(V7hl)_K< Iy ) hy Ql(Vvhl)}dde‘{'OUP( hl)} X
wjy — . r ' Tjp — 2"\ 2 — ', 1
{/0 K( h2 >Q2<$7h2)dl’ /0 K( h2 ) h2 Ql(l’,hz)dl'—i—OUp (qhQ)}

/0 1 [ () Qi) = K () uQa(0 ) duds + O (qih%)] «

U {K () Qalay + whas ha) + K () Qi + u'hos ha) } du’ + Ogp (ﬁ]
D, x ?

59

1 1
. {1 Our (Th%) +Our (q—hg> } ’ (527)

where the last equality is obtained by letting u = (x — v)/hy and v’ = (2/ — x3,) /ho.
For the second term in Lo, by (S24),

- = 1 1 1
2 (M”‘j;[‘sﬂlm) = {10 () oo ()

{{/1[( (y—x;:ﬂ) Qs(v: h )—i—K(V_x?*m) V—x:mQ (v; hy)dv + O (L)}
1 ; Iy 2\ Iy Iy 1\ UP ah
K (202 Qulapite) - K () 220w )

which can be considered as a two-dimensional Riemann sum over (z},,z},) for m =

M:

3
I

—N
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1,...,n. Similar to the proof of Lemma S8, we have

. — 1 _ _—
P ([SQ]MJ ;[81]1m> hiho { + Oyp (qh%) + Oup (qh%)} X
Lot vV—2x vV—zx\V—=x 1
{/0 /0 K< I ) Q2(v; hy) —|—K< I ) i Q1(v; hy)dzdv + Oy p <q_h%)}
1 xt, — xt, —x\ xf, — o 1
J2 . _ J2 J2 . !
{/o K( I )Q2(fﬁ,h2) K( " ) s Q1(z"; hy)dz" + Oyp (qh%)}

- [ / 1 /D (K () Qa(v; 1) — K () uQu (v hy) } dudv + Og (q%)

/ * ! A * ’ ’ 1
/ {K (u) Qa(x5y + u'hg; ho) + K (u) ' Q1 (x5 + u'ha; ho) } du’ + Oyp (W)
Do 1 2

*
25g:ha

1 1
. {1 +Oor (q—hﬁ +Oor (7@) } ’ (529)

where in the last step we let u = (z —v)/hy and v’ = (2" —x},)/ho. Subtracting (529) from

(S27), we obtain
1 1 1 1
Ly==0pp(—5+—) = -
o (qh? i qh%) o (n) ’

since 1/(qh?) — 0 and 1/(¢h3) — 0 by Assumptions 2 and 5.
Since [S;8;3]i; = L1+ Lo by (S20), we have [S;S;]i; = oup (n™!) . Therefore, under El,

X

v,hq

of which probability approaches to one as N — oo, we have
18185 [lec = 0up (1)

This completes the proof.
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2 Additional Simulation Results

Figure S1 plots the component function estimates trained on subsamples obtained by dif-

ferent methods for Case 1 ( truncated multivariate normal predictors) in Section 6. Figure

S2 plots the component function estimates trained on subsamples obtained by different

methods for truncated multivariate exponential predictors under model misspecification.

Details are discussed in Section 6.

Rand LowCon IES Rand LowCon IES
3.
2
14
0.
14
-2
2 4 0 1 2 0 2 4 0 1 2 2 4 0 1 22 4 0 1 22 4 0 1 2
Xi X2
Rand LowCon IES
— Mean Fit
— Target Curve
2 0 2 0 2 0 2
X3

Figure S1: Component function estimates trained on subsamples obtained by different

methods for Case 1 (truncated multivariate normal predictors) in Section 6.
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Rand LowCon IES Rand LowCon IES
2 2
1
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_2.
_1.
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2 1 0 1 22 41 0 1 22 -1 0 1 2 2 1 0 1 22 41 0 1 22 -1 0 1 2
X1 X2
Rand LowCon IES
1 4
— Mean Fit
O.
—— Target Curve
_1.
2 1 0 1 22 4 0 1 22 4 0 1 2
X3

Figure S2: Component function estimates trained on subsamples obtained by different

methods for exponential predictors under model misspecification.
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