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Abstract

Constraining the distribution of small-scale structure in our universe allows us to probe alternatives to the cold dark
matter paradigm. Strong gravitational lensing offers a unique window into small dark matter halos (<1010M

e
)

because these halos impart a gravitational lensing signal even if they do not host luminous galaxies. We create large
data sets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects,
and galaxy light from HST’s COSMOS field. Using a simulation-based inference pipeline, we train a neural posterior
estimator of the subhalo mass function (SHMF) and place constraints on populations of lenses generated using a
separate set of galaxy sources. We find that by combining our network with a hierarchical inference framework, we
can both reliably infer the SHMF across a variety of configurations and scale efficiently to populations with hundreds
of lenses. By conducting precise inference on large and complex simulated data sets, our method lays a foundation for
extracting dark matter constraints from the next generation of wide-field optical imaging surveys.

Unified Astronomy Thesaurus concepts: Strong gravitational lensing (1643); Cosmology (343); Dark matter (353);
Convolutional neural networks (1938); Hierarchical models (1925); Dark matter distribution (356)

1. Introduction

The concordance model in cosmology, ΛCDM, includes the
presence of cold, collisionless dark matter (CDM). One of the
predictions of the CDM model is the presence of approximately
self-similar dark matter halos ranging in mass from fractions of
a solar mass to 1015M

e
(Navarro 1996; Navarro et al. 1997;

Green et al. 2004; Wang et al. 2020). The formation of these
structures is hierarchical, with massive halos forming from
mergers and accretion of less massive halos (White &
Rees 1978; Moore et al. 1999). The CDM model further
predicts that the number density of halos is inversely related to
their mass, producing an abundance of low-mass (<1010M

e
)

halos, both as gravitationally isolated structures and as
“subhalos” of larger “host” halos. Many popular alternatives
to CDM impact the predicted distribution, abundances, and
profiles of low-mass halos (Bode et al. 2001; Kaplinghat 2005;
Bullock & Boylan-Kolchin 2017; Buckley & Peter 2018; Tulin
& Yu 2018). Therefore, constraining dark matter halos at these
small scales provides an important test of the CDM paradigm.

Over the past decade, a number of observational probes have
placed constraints on low-mass dark matter halos. In the Local
Group, measurements of Milky Way satellites have been used
to rule out or limit the parameter space of alternative dark
matter models (Macciò & Fontanot 2010; Kennedy et al. 2014;
Nadler et al. 2019, 2021a; Dekker et al. 2022; Newton et al.
2021), and early measurements of perturbations to the Milky
Way’s stellar streams are providing complementary constraints
(Bonaca et al. 2019; Banik et al. 2021a, 2021b). At higher
redshifts, Lyα forest measurements have been able to constrain
dark matter models that impact small-scale structure formation

in the early universe (Viel et al. 2013; Iršič et al. 2017a, 2017b;
Rogers & Peiris 2021), as have measurements of the UV galaxy
luminosity function (Menci et al. 2016; Rudakovskyi et al.
2021). With the exception of stellar stream perturbations, all of
these probes depend on the emission or absorption of light by
baryons in the halos; connecting luminous tracers to their
underlying dark matter requires accurately modeling the
baryonic physics and therefore introduces large uncertainties.
For Milky Way satellites, the most sensitive probe to date,
modeling the galaxy–halo connection at low halo masses
(<109M

e
), is one of the dominant observational uncertainties

(Nadler et al. 2021a). In order to further constrain small-scale
structure, we require tracers that are comparable in sensitivity
to existing probes but less dependent on accurate modeling of
the baryonic physics.
Strong gravitational lensing is a promising low-mass halo

probe, as it directly measures the gravitational signal of dark
matter structure. In the case of galaxy–galaxy lenses, light from
a distant source galaxy passes by a massive “main deflector”
galaxy and is refocused to produce multiple images. Smaller
halos along the line of sight and subhalos within the main
deflector also deflect the light and can cause detectable
perturbations in the lensing image. These low-mass halos5

can generate a signal even if they have no luminous
counterparts (see Nadler et al. 2020 for recent upper bounds
on the mass of these “dark halos” in a CDM context). The
number of strong lenses available for analysis is also poised to
grow rapidly, with over 1000 known lenses to date (Sonnenfeld
et al. 2013) and tens of thousands expected to be discovered
with next-generation wide-field optical imaging surveys
(Collett 2015). Given modeling tools capable of extracting
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Throughout, we refer to line-of-sight halos and subhalos collectively as

“low-mass halos,” and we use “subhalos” when specifically considering low-
mass halos in the main lens.
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the low-mass halo signal, this sizable data set provides an
opportunity for state-of-the-art dark matter sensitivity.

Strong lensing studies often focus on the population of
subhalos within the main lens, specifically the abundance of
subhalos per unit mass, referred to as the subhalo mass function
(SHMF). Constraining the SHMF at masses below <1010M

e

allows us to measure deviations from the CDM predictions for
low-mass halos. Broadly speaking, there are two frameworks
through which we can model the SHMF in strong lensing. The
first is to attempt to detect the signal of individual subhalos in a
strong gravitational lens, often called direct detection. Tradi-
tionally, this method first models a smooth main deflector and
the source light. Subhalos are then added to the model, and if the
improvement in the fit is sufficient—often measured through the
Bayesian information criterion—the subhalos are considered
detected (Mao & Schneider 1998; Moustakas & Metcalf 2003;
Koopmans 2005; Vegetti & Koopmans 2009; Hezaveh et al.
2013a). Direct detection modeling has been used to identify
subhalos in three systems and place constraints on the fraction of
dark matter in subhalos (Vegetti et al. 2010, 2012; Hezaveh et al.
2016a; Vegetti et al. 2018; Çağan Şengül et al. 2022). Direct
detection returns a concrete picture of the exact quantity,
position, and mass of the subhalos detected. However, scaling
this framework is challenging; modeling only the most massive
subhalos is computationally demanding and yet cannot capture
the thousands of halos in the 107–109M

e
mass range. While

these lower-mass subhalos cannot be individually detected, they
can collectively produce an observable signal. Additionally, with
only one subhalo detection per lens, constraining the SHMF
requires substantial assumptions about the subhalo and line-of-
sight halo populations.

The second approach, often called statistical detection, directly
models the properties of the subhalo population. In statistical
detection, the main deflector and source may still be explicitly
modeled, but no attempt is made to detect individual subhalos.
Instead, this framework measures the signal created by “all” of
the subhalos and connects it to the population statistics (i.e., the
SHMF; Dalal & Kochanek 2002; Cyr-Racine et al. 2016;
Hezaveh et al. 2016b; Birrer et al. 2017a; Rivero et al.
2018a, 2018b; Brennan et al. 2019). This approach reduces the
number of free parameters required to describe the full mass
range from thousands to dozens and can be used to directly infer
the parameters that describe alternate dark matter models.
However, the same SHMF can admit both subhalo configurations
that are excellent and poor descriptors of the data. Additionally,
because the full mass range includes thousands of subhalos,
rigorously sampling the allowed configuration space of even a
single SHMF is a sizable computing task. The net effect is that
directly evaluating the likelihood is intractable, making traditional
Markov Chain Monte Carlo inference unworkable.6

Instead, statistical detection work has focused on simulation-
based inference, a family of methods that circumvent the need
for a tractable likelihood by leveraging access to a simulator.
The most well known of these methods is approximate
Bayesian computation (ABC; Rubin 1984; Beaumont et al.
2002). In ABC, simulated data are generated by sampling from
a prior on the parameter space. If the summary statistics of the
simulated data approximately match the observed data, the

sample is kept. With a sufficiently strict matching criteria, ABC
returns a faithful sampling of the likelihood. In the strong
lensing context, ABC has been used to constrain warm dark
matter models, the halo mass–concentration relation, and the
primordial power spectrum (Birrer et al. 2017b; Gilman et al.
2020a, 2020b; Nadler et al. 2021b; Gilman et al. 2022).
However, ABC has its own drawbacks as an inference
methodology. First, for image data sets, ABC requires reducing
the images to low-dimensional summary statistics that discard
information and therefore limits the constraining power of the
data. Second, ABC inference does not scale to large data sets;
each observed lens requires an independent inference chain
with hundreds of thousands of personalized simulations.
In light of the drawbacks to ABC, modern simulation-based

inference has shifted toward using neural networks as density
estimators. In this approach, a network is trained on a single
training set to predict either the posterior (Lueckmann et al.
2017), the likelihood (Papamakarios et al. 2019), or a likelihood
ratio (Mohamed & Lakshminarayanan 2016) given an input data
point. Unlike ABC, the density estimator can take advantage of
the full information content of the data. The density estimator is
also scalable; after the initial training, the cost of conducting
inference on a new lens is negligible. In strong lensing, Brehmer
et al. (2019) demonstrated that a likelihood ratio estimator can
accurately extract the signal of subhalos on a population of 100
simulated lenses, and recent work has also applied simulation-
based inference techniques to the direct detection framework
(Ostdiek et al. 2022a, 2022b; Coogan et al. 2020; Lin et al.
2020; Diaz Rivero & Dvorkin 2020). Outside of the subhalo
context, several studies have shown the ability of neural density
estimators to constrain the parameters of the main deflector
(Perreault Levasseur et al. 2017; Pearson et al. 2021; Wagner-
Carena et al. 2021) and infer the Hubble constant from strong
lensing time-delay measurements (Park et al. 2021).
The recent literature suggests that applying neural density

estimators to strong lensing images will allow us to place tight
constraints on alternatives to CDM. Despite this, neural density
estimators of subhalo parameters have never been applied to
observed strong lensing images. The principal limitation is the
simulations. The existing proof-of-concept studies make a
number of simplifications; these include smooth source models,
ignoring line-of-sight halos, and simplistic detector responses.
Using networks trained on simplified simulations is likely to
produce biased inference, and it may be that adding these
complexities will wash out the constraining power of the
networks. With an eye toward pushing neural density estimator
techniques toward the data, we set out to answer the following
questions: given simulations of strong lensing images gener-
ated using realistic assumptions for the sources, subhalos, line-
of-sight halos, and Hubble Space Telescope (HST) observa-
tional effects, can simulation-based inference with neural
networks constrain the subhalo population on individual
lenses? Specifically, can the network constrain the normal-
ization of the SHMF? And then, can a network trained to make
predictions on individual lenses be used to hierarchically infer
the SHMF of a population of lenses?
In this paper, we address these questions by using realistic,

complex simulations of galaxy–galaxy strong lenses to train
and test a neural posterior estimator of the SHMF normal-
ization. We pull our sources from observed galaxies, margin-
alize over well-motivated theoretical uncertainties when
sampling our low-mass halos, and include the effects of the

6
Probabilistic cataloging methods conduct transdimensional Bayesian

inference to overcome this limitation but remain computationally limited to
the most massive ( )10 low-mass halos (Brewer et al. 2016; Daylan et al.
2018).
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HST imaging pipeline. We test our neural posterior estimator’s
ability to accurately extract the SHMF signal on individual
simulated lenses, including when the underlying sources are
not seen during training. For this study, we confine our analysis
to the ΛCDM model with cosmological parameters fixed to the
best-fit values from Planck Collaboration (2020). We combine
our network with a hierarchical inference pipeline to
reconstruct the SHMF normalization for test sets that are
statistically distinct from our training set. We find that our
simulation-based inference approach is capable of accurately
and efficiently inferring the statistic of a lensing population
with hundreds of observations. Our method is sensitive to
SHMF normalizations spanning over an order of magnitude
and can account for systematic offsets between the distribution
of training and test populations.

This paper is organized as follows. In Section 2, we discuss
the simulated strong lensing images used in this work, with a
particular focus on the choices surrounding the low-mass halos,
the sources, and the HST observational effects. We then
introduce our simulated data sets, neural posterior estimator,
and hierarchical inference scheme in Section 3. We demon-
strate the ability of the trained model to predict the normal-
ization of the SHMF on individual lenses in Section 4.1. In
Section 4.2, we run our model on 20 sets of lensing images,
each with a self-similar SHMF, and explore the constraints we
can extract with HST-quality photometry. We discuss the
limitations of our analysis and potential future extensions in
Section 5. Finally, in Section 6, we summarize our results and
discuss the implications of our work for the future of dark
matter constraints with strong lensing.

As part of this publication, we are releasing our strong
lensing simulation package PALTAS.7 The package builds

on the simulation code LENSTRONOMY
8

(Birrer & Amara
2018; Birrer et al. 2021) to produce large and realistic strong
lensing image data sets. The code has been designed to be
modular, scalable, and easy to configure. Our hope is that it
will provide an effective tool for the future development of
simulation-based inference in strong lensing. The PALTAS

repository includes all of the code and dependencies necessary
to reproduce the results in this paper along with a set of
comprehensive JUPYTER notebooks that help familiarize users
with the code.

2. Simulation Methods

Extracting unbiased information with simulation-based
inference requires representative simulations of the data. In
the following subsections, we describe the parameterizations
we use to simulate realistic strong lensing images that
incorporate our existing theoretical uncertainties. We break
our simulation choices down into five components: the main
deflector (Section 2.1), the subhalos of the main deflector
(Section 2.2), the line-of-sight halos (Section 2.3), the source
(Section 2.4), and the observational and numerical parameters
for the simulation (Section 2.5). A schematic representation of
the model can be found in Figure 1. While the distribution of
parameter values we use varies between the training,
validation, and test sets, the parameterizations themselves
remain consistent throughout this work. Table 1 lists all
parameters of our model, along with their distribution on each
image set.
For many of the cosmology calculations in our simula-

tions, we use the COLOSSUS
9 package (Diemer 2018). For

Figure 1. Schematic summary of the ingredients of our strong gravitational lensing simulation. The light rays leave the source (Section 2.4) and are perturbed by the
line-of-sight halos (Section 2.3), bent by the main deflector (Section 2.1), and further perturbed by the subhalos (Section 2.2) and remaining line-of-sight halos to
finally be measured by our detector. On top of the ray tracing, there are also observational effects from the detector (Section 2.5) that further distort the image. The
final observed image is shown on the far left.

7
https://github.com/swagnercarena/paltas

8
https://github.com/sibirrer/lenstronomy

9
https://bitbucket.org/bdiemer/colossus
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Table 1

Distribution of Simulation Parameters in the Training, Validation, and Test Sets

Component Training/Validation Distribution Σsub Test Distributions 1, K 20

Main Deflector—Section 2.1

x-coordinate lens center (arcsec) ( )x : 0, : 0.16lens  m s~ (x : Uniflens  m~ (−0.08,0.08),b σ: 0.016)

y-coordinate lens center (arcsec) ( )y : 0, : 0.16lens  m s~ (y : Uniflens  m~ (−0.08,0.08),b σ: 0.016)

Einstein radius (arcsec) E q ~ (μ: 1.1, σ: 0.15)a E q ~ (μ: Unif(1.025,1.175),b σ: 0.015)a

Power-law slope lens g ~ (μ: 2.0, σ: 0.1)a lens g ~ (μ: Unif(1.95,2.05),b σ: 0.01)a

x-direction ellipticity eccentricity ( )e : 0, : 0.11  m s~ e1 ~ (μ: Unif(−0.05, 0.05),b σ: 0.01)

xy-direction ellipticity eccentricity ( )e : 0, : 0.12  m s~ e2 ~ (μ: Unif(−0.05, 0.05),b σ: 0.01)

Main halo critical mass (M
e
) mhost = 1013 mhost = 1013

Main halo redshift zlens = 0.5 zlens = 0.5

x-direction shear ( ): 0, : 0.051 g m s~ 1 g ~ (μ: Unif(−0.025, 0.025),b σ: 0.005)

xy-direction shear ( ): 0, : 0.052 g m s~ 2 g ~ (μ: Unif(−0.025, 0.025),b σ: 0.005)

Mass–Concentration—Appendix A

Concentration normalization c0 = Unif(16, 18) c0 = Unif(16, 18)

Redshift power-law slope ζ = Unif(−0.3, −0.2) ζ = Unif(−0.3, −0.2)

Peak height power-law slope β = Unif(0.55, 0.85) β = Unif(0.55, 0.85)

Mass–concentration power-law pivot mass (M
e
) mpivot,conc = 108 mpivot,conc = 108

Concentration dex scatter σconc = Unif(0.1, 0.16) σconc = Unif(0.1, 0.16)

Cosmology

Cosmology assumption ΛCDM from Planck 2018 ΛCDM from Planck 2018

Subhalos—Section 2.2

SHMF power-law index γsub ∼ Unif(−1.92, −1.82) γsub ∼ Unif(−1.92, −1.82)

SHMF normalization (kpc−2
) ( ): 2 10 , : 1.1 10sub

3 3 m sS ~ ´ ´- - ( )i: 2 10 , : 1.5 10sub
4 4 m sS ~ ´ ´ ´- - c

Subhalo power-law pivot mass (M
e
) mpivot,sub = 1010 mpivot,sub = 1010

SHMF minimum mass (M
e
) m 10min,sub

7= m 10min,sub
7=

SHMF maximum mass (M
e
) m 10max,sub

10= m 10max,sub
10=

Subhalo truncation pivot mass (M
e
) mpivot,trunc = 107 mpivot,trunc = 107

Subhalo truncation pivot radius (kpc) rpivot,trunc = 50 rpivot,trunc = 50

LOS Halos—Section 2.3

LOS mass function normalization ( ): 1.0, : 0.6los d m s~ ( ): 1.0, : 0.6los d m s~
Mass function minimum mass (M

e
) m 10min,los

7= m 10min,los
7=

Mass function maximum mass (M
e
) m 10max,los

10= m 10max,los
10=

Minimum LOS redshift z 0.01min,los = z 0.01min,los =
LOS redshift bin width Δz,los = 0.01 Δz,los = 0.01

LOS cone opening angle (arcsec) θlos = 8.0 θlos = 8.0

Minimum two-halo term radius (kpc) r 0.52halo,min = r 0.52halo,min =
Maximum two-halo term radius (kpc) r 10.02halo,max = r 10.02halo,max =
Deflection angle correction redshift bin width Δz,correction = 0.05 Δz,correction = 0.05

Source: COSMOS Catalog—Section 2.4

Source redshift zsource = 1.5 zsource = 1.5

Maximum catalog redshift z 1.0catalog,max = z 1.0catalog,max =
Faintest catalog apparent magnitude magfaint = 20 magfaint = 20

Minimum source size (pixels) size 50min,pix = size 50min,pix =
Minimum half-light radius (pixels) r1/2 = 10 r1/2 = 10

Source rotation angle fsource ∼ Unif(0, 2π) fsource ∼ Unif(0, 2π)

x-coordinate source center (arcsec) ( )x : 0, : 0.16source  m s~ ( )x : 0, : 0.16source  m s~
y-coordinate source center (arcsec) ( )y : 0, : 0.16source  m s~ ( )y : 0, : 0.16source  m s~
Number of galaxy images Training: 2163/validation: 99 99

Notes. For a detailed discussion of each parameter, see Section 2. The subsets of galaxy images used for the training and test sets are disjoint from one another. In this

table,  is the normal distribution, and Unif is the uniform distribution. The SHMF normalization is highlighted, since it is our main parameter of interest throughout

this work. For the test set distributions, any values in gray indicate that they are identical to the choices made on the training set.
a
The distribution is capped at values larger than zero.

b
For these parameters, each test set has a mean drawn from the uniform distribution specified.

c
For test set i, the mean of Σsub is set to 2 × 10−4 × i, so for test set 4, the mean is 8 × 10−4.
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the lensing calculations, we use the lens modeling package
LENSTRONOMY.

2.1. Main Deflector

In our simulations, the main deflector is a power-law
elliptical mass distribution (PEMD) profile with external shear.
The PEMD (Kormann et al. 1994; Barkana 1998) profile is
described by the convergence:

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )x y

q x y q
,

3

2
. 1

lens E

lens
2 2

lens

1lens

k
g q

=
-

+

g -

Here γlens is the logarithmic slope, θE is the Einstein radius,
and qlens is the axis ratio of the lens. The profile described by
Equation (1) assumes that the coordinate system for x and y is
defined along the major and minor axes of the deflector.
Therefore, there are three remaining parameters to fully
describe the profile: the main deflector center position (xlens,
ylens) and the main deflector rotation angle flens. The additional
external shear component is described by an orientation angle
fext and modulus γext (Keeton et al. 1997).

The angles flens and fext are cyclic parameters, which would
complicate inference. We therefore work in the eccentricity/
Cartesian coordinates for our ellipticity/shear:

( ) ( )e
q

q

1

1
cos 2 , 21

lens

lens
lensf=

-
+

( ) ( )e
q

q

1

1
sin 2 , 32

lens

lens
lensf=

-
+

( ) ( )cos 2 , 41 ext extg g f=

( ) ( )sin 2 . 52 ext extg g f=

Finally, the main deflector has redshift zlens and host mass
mhost. The host mass uses the M200c definition (White 2001).10

There is no exact mapping from the host mass to the Einstein
radius; therefore, the two values are left uncorrelated in our
simulations.

2.2. Subhalos

The subhalos of the main deflector in our simulations follow
the parameterization introduced by Gilman et al. (2020a) with
some slight modifications. We draw our subhalos from the
following mass function:

( )
d N

dA dm

m

m
, 6

2
sub

sub
sub

sub

pivot,sub
1

sub

sub

= S
g

g +

where Σsub is the normalization of the SHMF, msub is the

subhalo mass using the M200c definition (White 2001; see

footnote 10), dA is the differential area element, and mpivot,sub is

the pivot mass. We render subhalos within the mass

range [ ]m m,min,sub max,sub .
11

The SHMF as written contains no explicit dependence on
host properties. Any scaling by, for example, the host mass or
redshift has been absorbed into our definition of Σsub. We

expect our network to be sensitive to the projected number of
subhalos in the main deflector, which for a fixed slope γsub is
best captured by Σsub. For a realistic/observed population of
lenses, we therefore expect our framework to return a
distribution of Σsub values that must be interpreted in the
context of a model with host-dependent scaling.
The subhalos themselves are modeled as a truncated

Navarro–Frenk–White (NFW) radial density profile (Baltz
et al. 2009). The profile can be defined in terms of a mass, msub;
a concentration, csub; and a truncation radius rt. A detailed
discussion of how these are drawn in our simulation can be
found in Appendix A. For the positions of the subhalos, we
follow Gilman et al. (2020a). Specifically, outside of the host’s
scale radius, rs,host, the subhalos follow the host’s mass profile;
within rs,host, the subhalos are uniformly distributed. To keep
the simulations numerically tractable without altering the
signal, we render subhalos within a projected radius of 3θE,
where θE is the Einstein radius of the main deflector. The z-
coordinates of the subhalos are also constrained to be within
the interval [−R200c, R200c]. Here R200c is the smallest radius
such that the host halo’s enclosed mass has a mean density of
200 times ρcrit(z), the critical density of the universe at redshift
z. Outside of this radius, potential halos are considered line-of-
sight halos and accounted for in the two-point halo correlation
(see Section 2.3).

2.3. Line-of-sight Halos

Historically, several studies of galaxy–galaxy strong lenses
have ignored the contributions from line-of-sight halos (Vegetti
et al. 2010, 2012). However, Despali et al. (2018) and Şengül
et al. (2020) showed that, for certain lensing configurations,
line-of-sight halos can produce a signal on par with the
subhalos of the main deflector. In fact, Despali et al. (2018) and
Çağan Şengül et al. (2022) demonstrated that one of the two
existing subhalo detections can be better explained by a line-of-
sight perturber. Therefore, while we do not explore the ability
of strong lensing to constrain line-of-sight halos in this work,
we do model the line-of-sight halos in our simulations self-
consistently within the same CDM framework. This allows us
to marginalize over their uncertainties and calculate their
impact on the SHMF signal, as has been done by previous
work (Gilman et al. 2020a, 2020b).12

As with the subhalos, the line-of-sight halos in our
simulations closely follow the parameterization introduced in
Gilman et al. (2020a). We draw our line-of-sight halos in
discrete redshift bins ranging from a minimum redshift, zmin,los,
to the redshift of the source, zsource. The width of the redshift
bins is set by the parameter Δz,los. Within each redshift bin, we
draw our line-of-sight halos from a modified Sheth–Tormen
halo mass function (Sheth et al. 2001):

⎡
⎣⎢

⎤
⎦⎥

( ( ))

( )

d N

dV dm
r m z

d N

dV dm

1 , ,

. 7

2
los

los
los 2 halo host host

2
los

los ST

d x= +

´

Here δlos is a scaling parameter that accounts for uncertainties

in the overall normalization of the line-of-sight mass function,

ξ2 halo(r, mhost, zhost) is a contribution from the two-point halo10
Our definition of M200c uses the critical density at the redshift of the

subhalo, not the critical density at redshift zero.
11

We assume that more massive halos would host sufficient baryons to be
visible in our images and therefore modeled individually. The lower limit is set
below the sensitivity of our inference (see Appendix F).

12
It is also possible to use our simulations to marginalize over the subhalo

contribution to constrain the line-of-sight halo population, although we do not
do that here.
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correlation function, and ⎡⎣ ⎤⎦
d N

dV dm ST

2
los

los

is the traditional Sheth–

Tormen halo mass function. Each of these components is

described in further detail in Appendix B. We render our line-

of-sight halos in the mass range [ ]m m,min,los max,los (see

footnote 11).
The line-of-sight halos themselves are parameterized by an

NFW profile (Navarro et al. 1997) with the radial density
profile
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Here ρlos is the amplitude of the NFW density profile in units of

M
e
kpc–3, r is the radial position in units of kpc, and rs,los is the

scale radius in units of kpc. As with the subhalo profile, the

scale radius, rs,los, and amplitude of the density profile, ρlos, are

calculated from the mass, mlos, and concentration, clos, of the

line-of-sight halo. The mass–concentration relation being used

is fully detailed in Appendix A.
The z-coordinate of each line-of-sight halo is set by the

redshift slice it is in, and the x- and y-coordinates are bound
within a double cone. The cone is defined by an opening angle
from the observer, θlos, and peaks in radius at the main deflector
redshift zlens. From there, the cone closes with an angle set by
the requirement that the radius of the cone at the source
redshift, zsource, must be 0.2 of the radius at zlens. Within the
cone, the x- and y-coordinates of the line-of-sight halo are
sampled uniformly, as we show in Figure 1.

Finally, we must also add negative convergence sheets to the
lensing potential to cancel the mean expected convergence
from the line-of-sight halos. This procedure avoids rendering
lines of sight that are systematically overdense relative to the
matter density of the universe (Birrer et al. 2017a). At a fixed
redshift, the deflection angles generated by our line-of-sight
halos add linearly to one another. Therefore, we calculate the
mean expected convergence by generating the deflection angles
of an NFW halo with mean mass and concentration and then
convolving the deflection angles with the uniform disk onto
which we render our line-of-sight halos. The negative of these
convolved deflection angles then defines the convergence sheet
that must be added. Because this operation is expensive, we use
a slightly wider binning in redshift, Δz,correction, for the
convergence sheet calculations. We choose Δz,correction so that
the error in the average convergence is negligible.

2.4. Source

Previous studies using neural posterior estimators for strong
lensing inference have focused on simple, parametric source
models (Perreault Levasseur et al. 2017; Brehmer et al. 2019;
Wagner-Carena et al. 2021). Here the sources in our simulation
are drawn from 2262 real galaxy images taken by the HST
COSMOS survey (Koekemoer et al. 2007). The images were
taken using the HST Advanced Camera for Surveys (ACS;
Ryon 2021) between 2003 October and 2005 June using the
F814W filter. From this larger survey, we use the subsample of
postage stamp images generated for the GREAT3 gravitational
lensing challenge (Mandelbaum et al. 2012, 2014) and
distributed with the package GALSIM

13
(Rowe et al. 2015). A

more detailed discussion of this data set can be found in

Mandelbaum et al. (2014), and we summarize the important
points in Appendix C. Our pipeline takes this image catalog
and imposes a few additional selection cuts to ensure that we
are only using well-resolved galaxies: a minimum cutout size in
pixels, sizemin,pix; a faintest apparent magnitude, magfaint; a
maximum redshift, zcatalog,max; and a minimum estimated half-
light radius, r1/2, in units of pixels. After inspecting all images
that passed these cuts, we removed 110 images without a well-
imaged galaxy. These mainly showed strong point sources or
had much of their light masked out by preprocessing
algorithms. We kept images with multiple blended or nearby
galaxies. A sample of the 2262 remaining source images can be
seen in Figure 2. The values we use for the cut parameters can
be found in Table 1.
Our model for the light is then a linear interpolation of one of

these 2262 images. This interpolation introduces three addi-
tional degrees of freedom to our source model: the rotation
angle of the source, fsource, and the x- and y-coordinates of the
source, xsource and ysource. For this source model, we keep the
absolute luminosity and physical size of the galaxy fixed to
what is observed in the COSMOS images. To do this, we first
scale both the angular size and measured flux of the galaxy to
the values that would be measured at the source redshift, zsource.
Then we convert from the electron count units of the F814W
filter on the ACS detector to the electron count units of our
target detector using the offset in the AB magnitude zero-
points. For the F814W filter on ACS images, we assume an AB
zero-point of 25.95, which is the average zero-point over the
COSMOS survey period (Koekemoer et al. 2007; Mandelbaum
et al. 2014; Ryon 2021).

2.5. Observational and Numerical Parameters

Our simulated lens images are made assuming observations
by the HST Wide Field Camera 3 (WFC3) UVIS channel with
the F814W filter. The low-mass halo signal we want to detect is

Figure 2. Sample of the HST COSMOS (Koekemoer et al. 2007) galaxy
images being used as sources by the PALTAS pipeline. The cutouts shown here
have been generated using the procedure discussed in Mandelbaum et al.
(2014), as well as the additional cuts described in Section 2.4.

13
The image database can be found at https://github.com/GalSim-

developers/GalSim/wiki/RealGalaxy%20Data.
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nearly at the level of the noise. Therefore, the distortions and
correlated noise generated by the HST camera and pipeline are
important systematics. Our simulations take care to include
observational effects that are as realistic as possible.

We use the UVIS pixel size of 0 040 pixel–114 (Gennaro
2018, Section 1.1), a CCD gain of 1.58 (Gennaro 2018, Section
5.1.1), and a read noise of 3e− (Gennaro 2018, Section 5.1.2).
For the AB magnitude zero-point, we take the 2020 corrected
measurement of 25.127 (Calamida et al. 2021).15 To calculate
the expected combined sky noise and dark current, we use the
HST Exposure Time Calculator,16 which gives a total bright-
ness of 21.83 mag arcsec–2 for average zodiacal light and
earthshine conditions.

Our point-spread function (PSF) is pulled from the WFC3
PSF Database (Dauphin et al. 2021).17 These PSF models have
been empirically constructed from dithered observations of the
star cluster Omega Centauri and are supersampled by a factor
of 4 relative to the pixel size of the CCD. The modeling allows
for spatial variation of the PSF across the detector, and we
select the best empirical model for the center of UVIS chip 1.
We degrade the PSF to a supersampling factor of 2 (i.e., twice
the resolution of the CCD) in order to match the resolution at
which we simulate our light rays.

The PALTAS simulations we use in this work also account for
the effects of HST’s drizzling pipeline. The HST science
images are not just the raw detector output. Rather, the detector
measurements are first run through the DRIZZLEPAC pipeline.18

Besides standard corrections for the sky background and
cosmic rays, the DRIZZLEPAC pipeline is also responsible for
correcting the geometric distortions caused by the tilt of the
focal plane relative to the optical axis of the detector. To do
this, the DRIZZLEPAC pipeline uses the drizzle algorithm
(Fruchter & Hook 2002) to combine the information from
multiple dithered exposures into a final geometrically corrected
image. Because the algorithm uses multiple exposures that are
offset by subpixel intervals, the information content is at a
higher resolution than the native resolution of the detector.
Therefore, the images output by the drizzle algorithm can be at
a smaller pixel scale than the detector. In fact, some amount of
supersampling is important for minimizing both the aliasing
and shape variation in the corrected image (Rhodes et al. 2007).
From the simulation standpoint, the drizzling pipeline imposes
two major challenges. First, the PSF is a property of the image
in the detector plane; therefore, empirical PSF measurements
are based on the resolution of the detector, not the resolution of
the output of the drizzle algorithm. Second, the information in
each pixel of the detector plane is spread out among several
pixels in the final drizzled image. This leads to correlated noise
that can mimic the small-scale deflection signal produced by
low-mass halos.

In order to best capture the effect the DRIZZLEPAC pipeline
will have on our sensitivity to the SHMF, PALTAS uses the
DRIZZLE

19 software package to run the ray-traced images

through the drizzling algorithm. Here ray tracing refers to the
process of simulating the path of the emitted light rays from the
source to the observer. The detailed steps can be found in
Appendix D. The addition of the noise and the PSF convolution
happen before the drizzling, giving the final image both a
realistically distorted PSF and correlated noise.20 For each of
the four dithered images used in the DRIZZLE pipeline, we
simulate a 23 minute exposure, equivalent to a total of two
orbits of HST time per lens (Dressel 2021, Section 10.4.4). We
choose a postage stamp of 128× 128 pixels in the detector
plane so that the final size of our images after drizzling is
170× 170 pixels, or 5 1× 5 1. Additionally, a mask of radius
0 5 is placed at the center of the image to represent the region
that must be discarded due to a lens light subtraction process.

3. Inference Methods

Our simulation-based inference pipeline has three steps.

1. Generate a 500,000 image training set with wide
distributions on the parameters of interest (Section 3.1).

2. Train a neural density estimator to estimate the posterior
distribution of the parameters of individual lenses
(Section 3.2).

3. Hierarchically combine the single-image posteriors of a
large population of lenses to infer the distribution of
SHMF normalizations (Section 3.3).

The following three sections go into more detail on each of
these steps, and the pipeline is further summarized in Figure 3.

3.1. Simulated Data Sets

For the results presented in this work, we have simulated 22
data sets: one training data set, one validation data set, and 20
test data sets. The parameter distributions for the training,
validation, and test data sets can be found in Table 1. The
training data set is used to fit the network parameters and
consists of 500,000 strong gravitational lensing images
following the simulation choices outlined in Section 2. This
includes a PEMD main deflector with external shear, subhalos
of the main deflector, halos along the line of sight, sources
pulled directly from HST COSMOS observations, and the
observational properties of HST’s WFC3. The validation data
set is drawn from the same distributions as the training data set
but includes only 1000 images. The validation data set is used
to evaluate the trained network’s performance on individual
lenses.
The 20 test data sets have been constructed to test our

pipeline’s ability to constrain a range of SHMF normal-
izations. Each test data set contains 1000 images generated
using the same models as the training data set; however, the
distribution of the eight parameters that describe the main
deflector and the parameter controlling the normalization
of the SHMF have been modified. These are the nine
parameters that our network infers (see Section 3.2). The
mean SHMF normalizations linearly span the interval
Σsub ä [2× 10−4 kpc−2, 4× 10−3 kpc−2

]. For the eight main
deflector parameters, the test distributions are narrower than
the training data set parameter distributions and shifted
uniformly by half a sigma. These shifts will be used to
confirm that our inference of the SHMF normalization is not

14
Note that due to drizzling, the final resolution of our images is

0 030 pixel–1, not 0 040 pixel–1.
15

Summary of results available on the STScI website.
16

https://etc.stsci.edu/etc/input/wfc3uvis/imaging
17

A selection of PSFs can be found at https://www.stsci.edu/hst/
instrumentation/wfc3/data-analysis/psf, and the specific PSF map used by
PALTAS can be found at https://github.com/swagnercarena/paltas/blob/
main/data sets/hst_psf/emp_psf_f814w.fits.
18

https://stsci.edu/scientific-community/software/drizzlepac.html
19

https://github.com/spacetelescope/drizzle

20
Ding et al. (2018) captured the effects of the drizzle algorithm using a

similar pipeline.

7

The Astrophysical Journal, 942:75 (22pp), 2023 January 10 Wagner-Carena et al.



biased by the choices of the training set. We will discuss this
further in Sections 3.3 and 4.2.

The COSMOS catalog parameters have been chosen to use
galaxies that are relatively nearby and better resolved. We
impose these cuts because we are interested in exploring the
degeneracy between galaxy morphology and the subhalo

signal. However, this also means that for this analysis, we
assume the population of large, nearby galaxies resembles the
high-redshift population. In Section 5, we will discuss
alternatives to this assumption for future analysis. The cuts
we impose are the same for the training, validation, and test
data sets; however, of the 2262 galaxies that survive our cuts,

Figure 3. Summary of our simulation-based inference pipeline. The top panel depicts the first step: generating 500,000 simulated lenses that include realistic sources,
dark matter structure, and observational effects (see Section 3.1). Second, we use these 500,000 lenses to train a neural posterior estimator. This network constrains the
lensing parameters on individual strong lensing images; the middle panel shows the posteriors returned by the trained network for a single lens image (see Section 3.2).
Finally, we combine these individual lens posteriors hierarchically to constrain the SHMF for a population of lenses. The bottom panel shows the SHMF constraints
derived from lens images drawn from a different lens parameter, source, and SHMF distribution than the training set (see Section 3.3).

8

The Astrophysical Journal, 942:75 (22pp), 2023 January 10 Wagner-Carena et al.



2163 are reserved for training, and 99 are reserved for
validation and test images. Therefore, at test time, we are
conducting inference on sources the network has never seen.

For the training, validation, and test data sets, the SHMF slope
is drawn from a wide uniform distribution to represent margin-
alizing over theoretical uncertainties estimated using cosmologi-
cal CDM simulations and semianalytic models (Benson 2020).
Similarly, we account for theoretical uncertainty in the line-of-
sight structure mass function by drawing its normalization
uniformly between zero (no line-of-sight structure) and twice the
theoretical expectation. We also draw our mass–concentration
relation parameters from a wide uniform distribution to cover
values favored by modern large-scale structure simulations
(Bullock et al. 2001; Prada et al. 2012; Ludlow et al. 2016;
Diemer & Joyce 2019). Finally, we draw the mass–concentration
relation scatter from a uniform distribution that covers the results
of cosmological CDM simulations (Dutton & Maccio 2014;
Diemer & Kravtsov 2015; Diemer & Joyce 2019).

Both the SHMF normalization and the line-of-sight mass
function normalization are allowed to take on negative values
in the distributions we have assigned. These negative values are
not physically meaningful; when simulating, we treat a
negative normalization as though it were zero. We chose to
include these negative values rather than truncate our normal
distributions because it allows us to conduct our hierarchical
inference analytically21 (see Section 3.3).

The remaining parameters presented in Table 1 are discussed
in Appendix F.

3.2. Posterior Distribution for Individual Lenses

For each individual lens, our goal is to estimate the posterior
of the parameters of interest given the image. To do this, we
employ simulation-based inference using a neural density
estimator. The estimator, qF(d,f)(ξ), approximates the posterior,
p(ξ|d, Ωint). Here F is our neural network, q is a density
function, f are the parameters of that network, d is the strong
lensing image, ξ are the physical parameters that we wish to
constrain, and Ωint is a prior distribution on the parameters ξ.
The generation of the training set described in Section 3.1 can
be thought of as first sampling lensing parameters from our
training distribution ξk∼ p(ξ|Ωint) and then using our simulator,
g, to generate an image, dk∼ g(ξk). To train the network
weights, f, we then minimize the loss function:

( ) ( ) ( )( )L qlog . 9
k

N

F d k
1

,kåf x= - f
=

In the limit where N→∞ and q is sufficiently flexible,
Equation (9) guarantees that the network will learn
qF(d,f)(ξ)→ p(ξ|d, Ωint) (for a proof of this statement, see
Papamakarios & Murray 2016, Appendix A). While the prior
Ωint is never explicitly enforced in our loss function, it is
implicitly learned via the distribution of parameters ξk that the
network is exposed to. We have chosen to label this
distribution Ωint because it is an interim choice; it is a prior
that is optimized for training, but it is not necessarily the
distribution we expect real lenses to follow. In Section 3.3, we
will discuss our hierarchical inference methodology for
extracting the true distribution of a population of lenses.

For the model architecture, F(d, f), we implement
xResNet-34 (He et al. 2016, 2019). For the density function
q, we use a multivariate Gaussian with a full precision
matrix (see Section 3.1 of Wagner-Carena et al. 2021 for
implementation details). The final fully connected layer of our
xResNet-34 architecture is modified to predict the 54 parameters
of our multivariate Gaussian (nine means and 45 free parameters
of the precision matrix), and the first layer’s filters are adapted to
read monochromatic images. All layer weights are randomly
initialized using the Xavier uniform initialization.
The model presented here is implemented using the TENSOR-

FLOW (Abadi et al. 2015) library in Python and trained on a
NVIDIA GeForce RTX 2080 Ti GPU. The model is first trained
for 100 epochs to predict the mean and the diagonal elements of
the precision matrix. Then the model is trained for a further 100
epochs with the full precision matrix, but only the parameters for
the final layer of the network are updated. This training scheme
helps reduce the instability generated by the precision matrix
terms in the loss function. We use a batch size of 256 and the
Adam optimizer. The learning rate is set to 1× 10−5, and the
default Adam parameter values of β1= 0.9, β2= 0.999, and
ò= 1× 10−7 are used. A decay rate of 0.98 is applied to the
learning rate at the end of each epoch. In total, training takes
≈96 hr.
Each individual image is normalized to have a standard

deviation of 1, and the network is trained to predict output
parameters that are normalized to have mean zero and standard
deviation 1 on the full training set. The constants used for this
normalization are saved so that the network outputs can be
translated back to the physical parameters. As an additional
training augmentation, each batch of images is randomly
rotated before being fed into the network, and the lensing
parameters are corrected accordingly. At inference time, we
find that repeating this same random rotation improves the
quality of inference. Therefore, all of the mean predictions,
except those for xlens, ylens, are averaged over 100 random
rotations of the input image. The covariance predictions are not
averaged over rotations.

3.3. Hierarchical Inference

The final goal of our analysis is to constrain the distribution
governing the normalization of the SHMF, Σsub, given a set of
strong lensing images. We can write this as p(Ω|{d}), where Ω
is the population-level distribution for our lensing parameters
{ξ}, and {d} is our set of strong lensing images. As we
introduced in Section 3.2, the model does not approximate the
likelihood p(ξ|d) but rather the posterior p(ξ|d, Ωint). We must
chose Ωint at training time; therefore, we cannot vary it to
calculate p(Ω|{d}). Instead, we must reweight our network’s
posterior estimates, qF(d,f)(ξ), by the ratio of the likelihood of
drawing a parameter ξ given the proposed distribution Ω versus
the training distribution Ωint:
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A more detailed derivation of Equation (10) can be found
in Appendix C of Wagner-Carena et al. (2021). Note that only

21
We tried inferring the logarithm of these normalization parameters instead

but saw increased non-Gaussianity in the joint posteriors with other parameters,
such as θE.
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the first and third terms of the right-hand side depend on Ω. The
first term is simply a hyperprior on the distribution Ω,22 the
second term is a constant normalizing factor, and the third term
encodes all of the constraining power provided by the
population of images. The ratio of p(ξ|Ω) to p(ξ|Ωint) is often
called an importance-sampling weighting. To keep the integral
tractable, we must chose Ωint such that the term
p(ξ|Ω)/p(ξ|Ωint) is finite for all ξ. Practically speaking, this
means that the training distribution Ωint must be broader than
any distribution Ω we would like to infer. Similarly, while it is
possible to evaluate the integral numerically (see Wagner-
Carena et al. 2021), having an analytic solution for the integral
allows for faster sampling of p(Ω|{d}). These two constraints
inform our choice of training distribution (broad Gaussian
distribution) and test distributions (narrow Gaussian
distributions).

We use Equation (10) to place constraints on the distribution
of Σsub. To do this, we first pass the lens images in our test set
through our trained network. This gives us the posterior
prediction ( )qF d ,k jf

for each lens k and network j. We then

sample Equation (10) to get the posterior on Ω. For the
experiments conducted in this work, both Ω and Ωint are
described by nine means and nine standard deviations. These
means and standard deviations describe the distribution of our
eight main deflector parameters and the SHMF normalization,
Σsub. To sample the posterior, we use an ensemble sampler
with affine invariance (Goodman & Weare 2010) implemented
through the EMCEE package23 (Foreman-Mackey et al. 2013).

4. Results

4.1. Performance on Individual Lenses

As an initial test of the performance of our neural posterior
estimator, we run the network on our validation set. As
discussed in Section 3.1, our validation set draws from the
same underlying parameter distributions used for the training
set but uses a held-out set of 99 galaxy sources. In Figure 4, we
show the posterior predictions for one randomly selected
validation image. The most notable feature is that the posteriors
on Σsub are nearly as wide as the training distribution. The
neural posterior estimator predicts a standard deviation of
1.0× 10−3 kpc−2 for the SHMF normalization, Σsub, compared
to the standard deviation of 1.1× 10−3 kpc−2 used to draw the
SHMF normalization in the training data set. The network
posterior also includes a strong covariance between the SHMF
normalization and the Einstein radius, θE. This covariance is a
product of our definition of the Einstein radius; as we add more
subhalos to our simulation, we increase the effective mass of
our main deflector and therefore increase the observed radius of
the ring in the image. However, the “true” value of the Einstein
radius only accounts for the mass in our PEMD main deflector.
Therefore, simultaneously decreasing the Einstein radius of the
main deflector and increasing the mass in subhalos produces a
similar observation. The negative correlation output by our
network is a consequence of that degeneracy.24

Figure 5 compares the predicted mean values of SHMF
normalization and the Einstein radius to the true value across
the entire validation data set. The Einstein radius appears to be
well constrained by the data, with the predicted mean being
tightly correlated to the true value (ρ= 0.991).25 While not
visualized in Figure 5, the same is true for all eight of the main
deflector parameters our network predicts (see Appendix I).
The SHMF normalization, however, is rather poorly con-
strained, with the mean predictions clustering around the
training set mean of 2.0× 10−3 kpc−2 and weakly correlated to
the true value (ρ= 0.281). In agreement with previous work
(Perreault Levasseur et al. 2017; Pearson et al. 2021; Wagner-
Carena et al. 2021), the network is capable of precisely and
accurately constraining the main deflector parameters. But the
estimated posteriors for the SHMF normalizations are domi-
nated by the training prior, with little information extracted
from any individual lens. The signal produced by a fixed
SHMF normalization is highly stochastic (see Appendix E for
examples), so the comparatively weak correlation produced by
our network likely reflects the poor information content of
the data.
However, as we will explore in Section 4.2, a weakly

correlated but statistically consistent posterior can be sufficient
to extract population constraints. Figure 5 colors the predicted
means according to their distance from the truth in units of the
predicted standard deviation. Because the one-dimensional
predictions are Gaussian, a statistically consistent posterior
would have the true values Gaussian distributed around the
mean. That is what we find on the validation set: 69%, 95%,
and 99% of the true values fall within one, two, and three
standard deviations of the mean, respectively.

4.2. Reconstructing the SHMF

To test the network’s ability to constrain a population of
lenses, we run our hierarchical inference pipeline on the 20 test
sets described in Section 3.1. We first pass the 1000 images in
each of our test sets through our neural posterior estimator.
Then, we use Equation (10) to simultaneously constrain the
population distribution of the SHMF normalization and the
eight main deflector parameters. Figures 6 and 7 show
the inferred SHMF distribution for test sets 12 (Σsub,pop= 2.4×
10−3

) and 4 (Σsub,pop= 0.8× 10−3
), respectively. The con-

straints on the SHMF include the uncertainty on the inferred
population mean, Σsub,μ, and standard deviation, Σsub,σ, of the
SHMF normalization. The constraining power at very low
subhalo mass (<108M

e
) is driven by our prior assumption

about the SHMF slope, γsub. For test set 12, 10 lenses are
sufficient to strongly disfavor the existence of halos without
subhalos. As we push the analysis from 10 to 1000 lenses, the
inferred SHMF converges toward the true test distribution, with
the uncertainty in the mean and scatter in the 1000 lens analysis
being subdominant to the intrinsic variation in the lens
population. For test set 4, the 10 lens analysis fails to exclude
the existence of halos without subhalos within its 95%
confidence interval, but the 50 lens analysis already strongly
disfavors that scenario. Unlike test set 12, we can see an upward
bias in the inferred SHMF for the 1000 lens analysis, but the 10,
50, and 100 lens analyses are consistent with the truth.
In Figure 8, we show the constraints on the population

mean of each test set as a function of the true population

22
This hyperprior allows for us to enforce physical constraints on the

proposed distribution, including constraining the inferred population mean of
the SHMF normalization to be greater than zero.
23

https://emcee.readthedocs.io
24

Due to the strength of this degeneracy, we include additional tests in
Appendix G that confirm that the inferred Σsub for a test population of lenses is
not systematically biased by shifts in the underlying distribution of θE.

25
Here ρ is the Pearson correlation coefficient.
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mean. Despite the weak correlation discussed in Section 4.1, the
analysis pipeline returns a nearly linear response between the
true and inferred population means. For the 10, 50, and 100 lens
analyses, we find that the pipeline returns unbiased results for
all but the largest values of Σsub,pop. For Σsub,pop> 3.6×
10−3 kpc−2, the inferred population mean for 10, 50, and 100
lenses is an underestimate. When we push the analysis to 1000
lenses, the inferred mean is still linearly determined by the truth,
but it now exhibits a systematic bias for nearly all values of
Σsub,pop. Specifically, it pushes its estimates toward the training
prior, overestimating values of Σsub,pop less than 2× 10−3 and
underestimating values of Σsub,pop greater than 2× 10−3. This
pattern of bias suggests that the network has an imperfect

understanding of the training prior Ωint. In order to map from the
prior-dominated constraints shown in Figure 5 to the hierarchical
results in Figure 8, we divide by the interim prior as shown in
Equation (10). This division should cancel the influence of the
training prior in the network’s posterior. However, the network
learns the training prior implicitly from the training data set. If
the network’s learned estimate of the training prior is too wide,
the division will undercorrect the network posteriors and bias the
overall estimate toward the training prior mean. This is
consistent with the shift we see in Figure 8 for the 1000 lens
analysis. The discrepancy in the learned and true training prior is
sufficiently small that it does not appear to meaningfully impact
the 10, 50, or 100 lens analyses.

Figure 4. Example of the estimated posteriors output by our network for a simulated observation. The black points, labeled “true value,” represent the input
parameters used to simulate the image in the upper right. The yellow contours represent the multivariate Gaussian output by our neural posterior estimator. The darker
and lighter contours correspond to the 68% and 95% confidence intervals, respectively. The posterior output for γ2, e2, and ylens has been omitted to avoid visual
clutter.
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Figure 8 also includes the range of SHMF normalizations for
≈1013M

e
halos found in a suite of high-resolution cosmolo-

gical dark matter–only (DMO) zoom-in simulations (E. Nadler
et al. 2022, in preparation). The SHMF normalization has been
measured at a redshift of z= 0.5 and includes the subhalos
within the projected virial radius with masses in the
range [9.4× 108M

e
, 1× 1010M

e
]. We plot the region

containing 68% and 100% of the SHMF normalizations. The
“host-to-host” scatter in the measured SHMF normalization is
connected to the secondary properties of the main deflector

halo and its assembly history (see Mao et al. 2018 for a
review). Distinguishing between a mean SHMF normalization
in the upper and lower halves of this range would enable
meaningful measurements of the concentration of main
deflector halos and the environment in which they form.
Alternatively, if a strong lensing analysis returned a Σsub,hier

constraint that did not overlap with this region, then there
would exist a tension between strong lensing measurements
and DMO predictions that could not be explained by selection
effects. The 50, 100, and 1000 lens analyses produce

Figure 5. Comparison of the network predicted means and the true input values for all of the lenses in our validation set. The left panel shows the comparison for the
SHMF normalization Σsub, and the right panel shows the comparison for the Einstein radius θE. For both panels, one point corresponds to the predictions of one lens.
The color of the point is defined by the distance between the predicted mean and the truth in units of the predicted standard deviation. The color bar for both panels is
on the far right. The upper left includes a visualization of the average standard deviation being predicted by the network (equivalent to the 68% confidence interval).
The ρ value printed in the plots represents the Pearson correlation coefficient between the predicted mean and the truth. The remaining parameters are shown in
Figure 14.

Figure 6. The SHMF constraints for test set 12 as a function of the number of lenses used in the analysis. In the left panel, the black solid and dashed lines show the
range containing 95% of the SHMFs coming from the test distribution. The colored regions show the hierarchical inference estimate, which includes marginalizing
over the uncertainty in the mean and standard deviation of Σsub. The gray region labeled “potential dark halos” shows the current limits on halos without luminous
counterparts from Milky Way satellites (Nadler et al. 2020). The right panel shows the lenses included in the 10, 50, 100, and 1000 lens analyses with the colors
corresponding to the regions in the left panel.
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constraints smaller than the DMO-predicted host-to-host
variation in the SHMF normalization, and even the 10 lens
analysis can detect a tension between strong lensing measure-
ments and DMO predictions for sufficiently high Σsub,pop. In
terms of detecting the existence of subhalos (i.e., inferring
Σsub,hier> 0), 50 lenses are sufficient for the full range of
SHMF normalizations present in the DMO simulation suite.
The 50, 100, and 1000 lens analyses provide a 32%, 22%, and
6% precision measurement of the normalization in the region
favored by the DMO simulation suite.

5. Discussion

We have presented a pipeline for inferring the SHMF
normalization of a large population of lenses and probed the
robustness of that pipeline on test data sets with a wide range of
SHMF normalizations and main deflector parameters. In this
section, we will discuss the limitations of our analysis, ways in
which these limitations can be addressed, and avenues for
future work.

Despite weak, prior-dominated constraints on the level of
individual lenses, analyzing the neural posterior estimator
output hierarchically allows us to accurately reconstruct the
SHMF normalization across a wide portion of parameter space.
This includes inference on data sets that are built with
COSMOS sources not seen during training and marginalizing
over the effects of line-of-sight halos and the mass–concentra-
tion relation. The results also scale well to large data sets, as
adding more lenses to our analysis consistently improves the
constraining power of our network and has a negligible impact
on the computational time of the pipeline. However, for the
1000 lens analysis and the high SHMF normalization region,
the normalizations inferred by the pipeline show systematic
bias. Therefore, with the current choices, the analysis we
present is limited to lens populations with ≈100 lenses or
inferred SHMF normalizations that are well sampled by the
training set. There are a number ways to potentially circumvent
this limitation. For example, we could conduct sequential
neural posterior estimation (SNPE), a scheme of iterative
retraining where the inferred SHMF population is used as a

prior for a new training set (see Greenberg et al. 2019 for a
review of SNPE implementations). By construction, this
additional training would ensure that the inferred SHMF
normalizations fall in a region well sampled by the training
distribution, reducing the tension between the test population
and the assumptions made during training. We leave introdu-
cing retraining to our methodology for future work.
Additionally, while we have made significant efforts to create

realistic and complex simulations, there are still assumptions in
our current analysis that will need to be modified for observed
lenses. For example, the use of COSMOS galaxies for our
sources enables us to marginalize over realistic morphological
source complexity but requires cutting on nearby, well-resolved
galaxies. This selection assumes that low-redshift galaxies are
representative of high-redshift galaxies. The population-level
differences in the morphology of high- and low-redshift galaxies
may be degenerate with the small-scale subhalo perturbations
and could generate a bias on the inferred SHMF. One approach
would be to develop more realistic simulated images of high-
redshift source galaxies that can be realized at the required
superresolution and input into our simulation pipeline.
We have also assumed a fixed cosmology throughout our

analysis. Modifying the cosmological parameters would affect
our halo profiles, the volume from which we sample line-of-
sight halos, and the distances that set the angular size of the
galaxies and halos in our simulation. Similarly, we have
assumed broad priors on the mass–concentration parameters,
the slope of the SHMF, and the line-of-sight halo mass
function.26 This allows us to probe the sensitivity of our
analysis when it is marginalized over the existing theoretical
uncertainties, but a broad, mis-centered prior can systematically
shift the inferred SHMF normalization. On real data, we could
choose a carefully constrained set of theoretical priors and
recognize that the analysis is conditioned on those assumptions.
Alternatively, the parameters governing the source population,
SHMF slope, mass–concentration parameters, and line-of-sight

Figure 7. Same SHMF constraints as in Figure 6 but for test set 4.

26
In Appendix H, we explore how changing the distribution of line-of-sight

halo normalizations affects the inferred SHMF normalization.
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halos can be fit on a lens-by-lens level as we do for the main
deflector parameters. We could then infer these parameters
hierarchically from the data. The multivariate Gaussian
posterior we use is not sufficiently expressive for this task,
but a network leveraging normalizing flows or another more
flexible posterior could circumvent this limitation. For the
parameters on which we assume broad priors, either more
constrained priors or a hierarchical inference approach would
yield tighter constraints than the marginalization we use in this
work. In that respect, the sensitivity to the SHMF normalization
discussed in Section 4.2 is conservative. We leave exploring
this extension of our hierarchical approach for future work.

Lastly, while our simulation and inference pipelines account

for the full complexity of low-mass halos, we have focused our

analysis on the normalization of the SHMF. Similarly, we have

only considered the use of HST images. These choices allow us

to illustrate our ability to infer dark matter parameters from large

samples of lenses but leave two major avenues for future work:

exploring the use of different imaging data sets and quantifying

low-mass halo parameters beyond the SHMF normalization. In

terms of data sets, interferometers like the Atacama Large
Millimeter/submillimeter Array are capable of returning higher-
resolution images of strong lenses, albeit with the addition of
significant data complexity (Hezaveh et al. 2013b). No part of
our methodology is inherently resolution-limited. Incorporating
interferometry measurements would require either modifying
the observational effects to include the artifacts introduced from
Fourier space measurements or modifying the network
architecture to take the Fourier space signal as input. In turn,
these higher-resolution images could yield substantially more
constraining power on the SHMF. In terms of the parameters we
measure, future studies will also want to constrain a low-mass
cutoff for both the SHMF and line-of-sight mass functions. This
cutoff captures the behavior expected in several alternative dark
matter models and would allow us to better quantify what mass
range our model is sensitive to as a function of the number of
lenses in our analysis.27

Figure 8. Inferred (Σsub,hier) vs. true (Σsub,pop) mean of the SHMF normalization distribution (top) and the difference between these quantities (bottom). Each set of
bars represents constraints using 10, 50, 100, or 1000 lenses from one of our 20 test sets. For a given test set, all analyses have the same Σsub,pop, but the coordinates of
the plotted points have been slightly offset for visual clarity. The gray shaded regions contain 68% and 100% of the SHMF normalizations for ≈1013 M

e
host halos at

redshift z = 0.5 measured on a suite of high-resolution cosmological DMO zoom-in simulations (E. Nadler et al. 2022, in preparation). The error bars on the inferred
Σsub,hier show the 68% interval derived from the hierarchical inference pipeline.

27
For some preliminary discussion of our sensitivity to the mass cutoff, see

Appendix E.
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6. Conclusions

We present a simulation-based inference methodology for

measuring the SHMF normalization of strong lensing systems.

Leveraging our simulation package, PALTAS, we have trained a

neural posterior estimator on a set of 500,000 synthetic lens

systems with sources pulled directly from the COSMOS field,

realistic low-mass halo distributions, and HST observational

effects. We have tested this network against a series of test data

sets and demonstrated its ability to generalize to COSMOS

galaxies not seen in the training data set. Our network returns

SHMF normalization constraints that are dominated by the

prior on the individual lens level, but our hierarchical inference

can extract unbiased constraints for populations with 10, 50,

and 100 lenses across a wide range of normalizations, including

the SHMF normalizations predicted by DMO simulations.

Analyses with 1000 lenses are computationally accessible and

improve the precision at the cost of some systematic bias. We

discuss how iterative retraining of the network using simulated

data sets that match the inferred population would likely

alleviate this bias.
Galaxy–galaxy strong gravitational lenses are sensitive

to dark matter on the small scales that best constrain

alternatives to CDM. Previous work with strong lenses,

including in the subhalo context, has shown that neural

density estimators can extract accurate and precise parameter

estimates and scale to populations with thousands of images.

Extending these analysis techniques to observed lenses

requires simulation tools capable of capturing the complexity

of real data, as well as rigorous testing of the robustness of the

networks. We believe that this work makes significant

contributions to both of these challenges; our simulated data

sets have been carefully constructed to be realistic and are

produced with a publicly available and well-documented

software package. The combined neural posterior estimator

and hierarchical inference method we propose scales to large

lens populations and has been tested for robustness against

unseen COSMOS galaxies, shifts in the main deflector

parameter distribution, and variations in the underlying

SHMF. We have shown that our method performs well across

nearly all of these robustness tests and discussed improve-

ments that can be made to future analyses to address the

shortcomings that do exist. We are confident that the

simulation-based inference pipeline presented in this work is

capable of constraining dark matter substructure using both

the HST strong lensing images that exist today and the data

sets that will become available with the next generation of

wide-field optical imaging surveys.
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Appendix A
Subhalo Profiles

The subhalos in our simulation are modeled as a truncated
NFW radial density profile (Baltz et al. 2009),
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where ρsub is the amplitude of the NFW density function in

units of M
e
kpc–3, r is the radial position in units of kpc, rs,sub

is the scale radius in units of kpc, and rt is the truncation radius

in units of kpc. Both rs,sub and ρsub are calculated from the

mass, msub, and concentration, csub, of the subhalo. The mass is

drawn from Equation (6), and the concentration is drawn from

the mass–concentration relation presented in Gilman et al.

(2020b),
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where c0 is the normalization of the mass–concentration

relation, ζ is the redshift power-law slope, β is the peak height

power-law slope, and mpivot,conc is the mass–concentration

pivot mass. The function ν is the peak height function

(Doroshkevich 1970; Peebles 1980; see Mo et al. 2010 for

the equations) at the subhalo redshift zsub for peak radius
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Here ρm,0 is the matter density at redshift zero. To calculate the

peak height, we use the power spectrum derived from the

Eisenstein & Hu (1998) transfer function. In line with the

literature (Dutton & Maccio 2014; Diemer & Kravtsov 2015;

Diemer & Joyce 2019), we add an additional scatter, σconc, to

Equation (A2). Given the mass and concentration, the scale

radius and amplitude of the density function are given by
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where ρcrit(z) is the critical density of the universe at the

redshift zsub of the subhalo. The truncation radius is determined

by the subhalo’s position in the host using
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where mpivot,trunc is the truncation pivot mass in units of M
e
,

rsub is the radial distance of the subhalo from the host center in

units of kpc, and rpivot,trunc is the truncation pivot radius in units

of kpc.
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Appendix B
Line-of-sight Mass Function

We make two modifications to the Sheth–Tormen halo mass
function. The first is a scaling parameter, δlos, that accounts for
uncertainties in overall normalization of the line-of-sight mass
function. We also include a contribution from the two-point
halo correlation function ξ2 halo(r, mhost, zhost). This term
accounts for the overdensity of halos relative to the mean
matter density of the universe near a massive halo. On large
scales, we can describe the two-point halo correlation
correlation function as

( ) ( ) ( ) ( )r m z b m z r z, , , , . B12 halo host host host lin hostx x=

Here b(mhost, z) is a mass-dependent linear halo bias parameter

(Kaiser 1984; Bardeen et al. 1986; Mo & White 1996;

Jing 1998; see Desjacques et al. 2018 for a review) that must be

included because dark matter halos are biased tracers of the

underlying distribution of matter. The dependence of the bias

parameter on the host mass takes into account high-mass halos

being comparatively more likely in overdense regions and low-

mass halos being comparatively more likely in underdense

regions. In this work, we use the bias model presented in

Tinker et al. (2010). The remaining term, ξlin(r, zhost),

represents the linear matter–matter correlation function at

redshift zhost. We use the correlation function derived from the

Eisenstein & Hu (1998) transfer function. This correlation

function contribution is included for halos within the range

[ ]r r,2halo,min 2halo,max of the host. Recent work has argued that

lensing can produce clustering that exceeds the two-point halo

correlation (Lazar et al. 2021), but we do not model that

additional signal here.
With everything included, the line-of-sight halo mass

function is given by the equation
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The definition of the radius rpeak is given in Appendix A, with

the dependence on mlos and zlos left implicit in Equation (B3)

for conciseness. The peak height, ν, is related to the rms

variance of the linear density field σ(rpeak) by
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with δc(zlos) being the linear overdensity threshold for halo

collapse at redshift zlos (see Mo et al. 2010 for a derivation).

The functional form of νf (ν) is given in Sheth et al. (2001),
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with AST= 0.32218, qST= 0.3, and aST= 0.707. The Sheth–

Tormen halo mass function is nontrivial to draw from;

however, for a relatively small mass range, it can be well

approximated by a power law. Therefore, in practice, we draw

from a power law with normalization and slope set by

minimizing the log squared distance to the Sheth–Tormen

halo mass function in the range [ ]m m,min,los max,los . The

parameters mmin,los and mmax,los also set the minimum and

maximum line-of-sight halo mass that will be rendered.

Appendix C
COSMOS Images

A more detailed summary of the GREAT3 data set we use
can be found in Mandelbaum et al. (2014). The important
points for our use are as follows.

1. The COSMOS images have been processed using
MULTIDRIZZLE (see Fruchter & Hook 2002 for a
summary of the drizzle algorithm and Gonzaga et al.
2012 for a discussion of a modern implementation of the
full pipeline). This pipeline deals with the geometric
distortion, sky subtraction, and cosmic-ray rejection. As
part of this process, it combines several exposures
dithered at subpixel intervals. It is therefore capable of
returning a smaller pixel scale in the final coadded
images, which for the COSMOS patch is set to 0 03.

2. Within the COSMOS patch, the sources are selected
using the strategy outlined in Leauthaud et al. (2007). On
top of the selection cuts described there, there are
additional selection cuts made to reject nongalaxy
objects, galaxies with imaging defects, and galaxies that
do not have a reliable photometric redshift. All objects
with an F814W magnitude above 25.2 are also removed.

3. The cutout for each source is placed at the estimated
source center and extends to approximately five times the
half-light radius of the galaxy (the exact formula can be
found in Mandelbaum et al. 2012). An additional
masking and deconvolution step is applied to the images.
The deconvolution takes advantage of the TinyTim PSF
estimates (Krist et al. 2011), and the masked pixels are
replaced with correlated noise.

Appendix D
DRIZZLE Pipeline

To capture the effects of the DRIZZLEPAC pipeline, PALTAS
conducts the following procedure.

1. Using LENSTRONOMY, a supersampled ray-tracing image
is generated at twice the resolution of the detector (0 02
pixel scale). This version of the image does not include
the detector noise or PSF and is simulated in the sky
plane.

2. Using ASTROPY,28 the supersampled image is mapped to
four dithered detector images with half-pixel offsets
(0 04 pixel scale), corresponding to the standard four-
point dithering strategy (Gonzaga et al. 2012). This is
done through the World Coordinate System (WCS) of the
supersampled image and the dithered images, allowing
for geometric distortion coefficients to be included in the
mapping. However, in this work, we do not include any
geometric distortion coefficients.

28
https://www.astropy.org/
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3. These four dithered images each represent the detector
output for one exposure. Therefore, we convolve these
dithered images with the empirical PSF model and add
the expected sky and detector noise.

4. Using the DRIZZLE package, we drizzle these four images
onto the output WCS with the corresponding output 0 03
pixel scale.

Appendix E
Examples of Subhalo Signal

Before training a network to predict the SHMF, it is
important to develop intuition for how varying the SHMF
impacts the signal in our image. This will help us interpret our
network’s outputs in Section 4.1 and the results of our
hierarchical analysis in Section 4.2. To do this, we simulate a
set of lens images for different SHMF realizations and model
the potential of their main deflector through forward modeling.
We then visualize the remaining “residual” lensing signal that
cannot be described by the smooth potential of the main
deflector. The strength of this residual signal is a direct
indicator of the subhalos present in the lensing field. To keep
the forward modeling tractable for this example, we make a
number of simplifications in this section. We keep the full
complexity of the main deflector and subhalos, but we do not
render the line-of-sight halos or use the full drizzling and
empirical PSF process. Rather, we assume an angular
resolution of 0 04 and a Gaussian PSF with an FWHM of
0 04. We also use a COSMOS source drawn from the same
process described in Section 2.4, but we assume full knowledge
of the source in our simplified model fitting. In the more

realistic scenario we tackle in Section 4, the PSF, source

uncertainty, and line-of-sight halos will all reduce the strength

of the residual subhalo lensing signal. Regardless, for this toy

problem, separating out those uncertainties will help focus on

the effects of the subhalos.
In Figure 9, we show the residual signal generated by

three different SHMFs. All three SHMFs follow the para-

meterization outlined in Section 2.2 but with different values

for the SHMF normalization and slope. The SHMFs 1, 2, and 3

have normalizations of Σsub= 2.4× 10−4, 1.2× 10−3, and

1.2× 10−3
(kpc)−2 and slopes of γsub= −1.83, −1.83, and

−2.00, respectively. We show the residual plots for these three

SHMFs and the case of no subhalos. As expected, without

subhalos and with perfect knowledge of the source light, the

entire lensing signal can be described by our best-fitting main

deflector model. As we introduce a small number of subhalos in

SHMF 1, we see a small residual signal emerge that cannot be

described by our smooth main deflector model ( 2cn: −1.02);

however, that signal is nearly subdominant to even the

simplified noise model we are using in this toy example. With

a factor of 5 larger normalization than SHMF 1, SHMF 2

produces a much stronger residual signal that can be visually

identified over the noise of the instrument ( 2cn: −1.11). Finally,

increasing the steepness of our SHMF, as we do for SHMF 3,

introduces many more low-mass subhalos and leads to an even

stronger residual signal ( 2cn : −1.20). While the simulations in

Figure 9 are simplified, they suggest that for large enough

normalizations and slopes, the presence of subhalos in our

simulated images should be detectable by our modeling tools.

Additionally, we should be able to distinguish between SHMFs

Figure 9. Comparison of the signal imprinted by subhalos for different possible SHMFs. The left panel plots the number of subhalos per unit area as a function of
mass for the three SHMFs. The right panel shows how subhalos drawn from these three functions impact the lens image (first column), the convergence induced by
subhalos (second column), the noiseless residual signal over a smooth main deflector (third column), and the residual signal when normalized by the noise (fourth
column). Even a small number of subhalos is enough to impart some residual signal over the smooth main deflector model; however, that signal is subdominant to the
noise of the observation. As we increase the slope and normalization of the SHMF, we get more subhalo convergence and therefore a larger residual signal. However,
the detectable signal is localized to the brightest regions of the lens.
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with larger slopes and normalizations based on the strength of

this residual signal.
Figure 9 shows only one draw per SHMF. If instead we draw

multiple times from the same SHMF, as we do for SHMF 2 in

Figure 10, a very different picture emerges. With a fixed

amplitude and slope, the convergence maps that are produced

look very similar. However, the exact position of those

subhalos with respect to the path of the lensed light leads to

very different residual signals. Draw 1 returns a strong residual

signal ( 2cn : −1.16), almost comparable with that of SHMF 3 in

Figure 9; draw 2 returns almost no residual signal ( 2cn : −1.05),

comparable with SHMF 1 in Figure 9; and draw 3 is the only

one that returns a signal that looks equivalent to what we

produced for SHMF 2 in Figure 9 ( 2cn : −1.12). The stochastic

nature of the residual signal suggests that any modeling

technique will return a large uncertainty on our SHMF

parameters for an individual lens. This uncertainty is a

consequence of attempting to constrain the SHMF, which is

a statistical summary of the subhalos, rather than attempting to

constrain the thousands of deterministic parameters that

describe the subhalos. While the stochastic nature of the

residual signal may limit what we can say about an individual

lens, it may also allow us to improve our sensitivity to SHMF

with very few subhalos. For example, on average, draws from

SHMF 1 produce residual signals that are subdominant to the

noise. But occasionally, a draw from SHMF 1 will return a

subhalo population that produces a detectable residual signal

and is therefore inconsistent with having no subhalos.

Hierarchically combining these constraints could therefore

allow us to make a meaningful detection of SHMF 1.
We will explore the signal we can extract for a more realistic

population of lenses in Section 4.2. For now, this toy example

leaves us with two takeaways.

1. The stochastic nature of the residual signal for a fixed
SHMF means that we should expect large uncertainties
on constraints derived from individual lenses.

2. These large uncertainties will require us to conduct
hierarchical inference on a population of lenses in order
to accurately constrain the SHMF. For more details on
this hierarchical inference, see Section 3.3.

Appendix F
Data Set Parameters

For the simulated data sets we use in this work, a number of
the parameters associated with the resolution of the simulation
are kept fixed. These include the line-of-sight redshift bin
widths, the mass boundaries for our subhalos and line-of-sight
halos, and the opening angle of our cone. We also assume that
the size and intensity of the COSMOS images are large enough
to ignore the detector noise in our source model. We test the
effect of these choices by generating test data sets with the
same parameter distributions as our training data set but with
modified resolution parameters. In particular, we generate one
test data set where we decrease the minimum subhalo and line-
of-sight halo mass rendered to 5× 106M

e
, one test data set

where the minimum mass is increased to 5× 107M
e
, one test

data set where we increase the opening angle of our cone to
10°, one test data set where we smooth the source images by a
Gaussian PSF with an FWHM of 0 05, and one test data set
where we increase the line-of-sight bin width to 0.02 in redshift
space. We run the same hierarchical inference pipeline as in
Section 4.2 to see if any of these changes in the simulation
choices affect the accuracy of our inference. We only consider
10, 50, and 100 lens analyses, since we have found that the
1000 lens analysis can have systematic bias. The results are
found in Figure 11 and show that none of the changes in the

Figure 10. Same as Figure 9 but with several draws from the same underlying SHMF. Even for a fixed SHMF, the residual signal can vary drastically depending on
how many subhalos overlap with the brightest parts of the image.

18

The Astrophysical Journal, 942:75 (22pp), 2023 January 10 Wagner-Carena et al.



resolution choices produce an inferred population mean more
than 1σ from the true population mean. Each test data set is
statistically independent, so fluctuations within the inference
uncertainties are to be expected. This suggests that the results
of the analysis in this paper are not significantly impacted by
our resolution choices.

Additionally, for this work, we assume a fixed redshift for
the source and main deflector. We also assume a fixed main
halo mass mhost. The main halo mass is independent of the
lensing parameters of the main deflector, and we have absorbed
the dependence of the SHMF on host mass into our definition
of Σsub (see Section 2.2). Therefore, the main impact of this
choice in our simulation is to fix the contribution from our two-
halo term (see Section 2.3).

Appendix G
Further Hierarchical Inference Tests for the Einstein

Radius

As we discuss in Section 3.1, the test sets have an
underlying distribution for the main deflector parameters that
is shifted from the training set. The purpose of this shift is to

demonstrate that our final inference on the SHMF normal-

ization is not biased when the training set assumptions are

violated. This is particularly important for the Einstein radius,

since Figure 4 shows that the network outputs a strong

correlation between the inferred Einstein radius and the

inferred SHMF normalization. In order to further test our

dependence on the assumed distribution of Einstein radii, we

have designed five additional test sets that have identical

distributions to the training set except for the Einstein radius,

which is given a fixed mean value for all lenses. We vary this

fixed value, θE,μ, to span the 2σ contours of the training set

prior. The inferred SHMF normalization can be seen in

Figure 12. We find no evidence of systematic bias in the

inferred mean SHMF normalization as we vary the Einstein

radius of the lens population. If our network were only

sensitive to the Einstein radius and not the underlying signal of

low-mass halos, we would not be able to reconstruct an

accurate and precise mean for the SHMF normalization on

these test sets. Therefore, we conclude that the information our

network is extracting from the images goes beyond the

observed radius of the Einstein ring.

Figure 11. Difference between the inferred population mean, Σsub,hier, and the true population mean, Σsub,pop, for six test sets. The “Fiducial Choices” test set has the
resolution parameters set to the values used throughout this work. The remaining five test sets each change one resolution assumption. The error bars on the inferred
Σsub,hier show the 68% interval derived from the hierarchical inference pipeline. All six test sets have a value of Σsub,pop = 2 × 10−3 kpc−2.

Figure 12. Difference between the inferred population mean, Σsub,hier, and the true population mean, Σsub,pop, for five test sets with varying fixed Einstein radius, θE,μ.
Only the distribution of θE has been changed, and all other parameters are distributed as in the training set. The error bars on the inferred Σsub,hier show the 68%
interval derived from the hierarchical inference pipeline. All five test sets have a value of Σsub,pop = 2.0 × 10−3 kpc−2.
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Appendix H
Line-of-sight Halo Normalization

Throughout this work, we have made a fixed assumption

about the distribution of line-of-sight halo normalizations, δlos.
As we discuss in more detail in Section 2.3, previous studies

have suggested that the line-of-sight halos can produce

deflections that are comparable to the subhalos. To better

understand how constraining our assumed line-of-sight halo

distribution is to our inference, we generate three test sets with

much narrower line-of-sight distributions that span the “lower,”

“middle,” and “upper” regions of the training distribution. This

corresponds to a distribution of ( : 0.25los d m~ , σ: 0.05),

( ): 1.0, : 0.05 m s , and ( ): 1.75, : 0.05 m s , respectively. The

goal of these test sets is to probe how a systematic error in the

average line of sight translates to a bias in the inferred SHMF

normalization, Σsub,hier. To help make a direct comparison, we

fix all of the other parameters for these test sets to the same

values used for training set 7 (see Section 3.1 for more details).

As with the tests in Appendix F, we only consider 10, 50, and

100 lens analyses. The results of the hierarchical inference are

shown in Figure 13. For the lower and middle test sets, the

change in the line-of-sight distribution does not shift the

inferred mean more than 1σ from the true population mean.

Only for the upper test set is the shift more than 1σ, and the

final result is still within the 95% confidence interval. We

conclude that, for the shifts in the δlos distributions we explore

here, the induced bias in Σsub,hier is subdominant to the

uncertainties for 10, 50, and 100 lenses.

Appendix I
Validation Predictions for the Remaining Parameters

In Figure 14, we present the predicted mean values as a

function of the true values for the lens parameters not shown in

Figure 5. The points shown here span the entire validation set.

As with the Einstein radius, the network’s predictions for the

remaining main deflector parameters are strongly correlated

with the truth (ρ>= 0.98).

Figure 13. Difference between the inferred population mean, Σsub,hier, and the true population mean, Σsub,pop, for four test sets with varying distributions of the line-of-
sight mass function normalization, δlos. The “Original” test set corresponds to test set 7 from the main text. For the three test sets to the right of the gray dashed line,
only the distribution of δlos has been changed, and all other parameters are distributed as in test set 7. The error bars on the inferred Σsub,hier show the 68% interval
derived from the hierarchical inference pipeline. All four test sets have a value of Σsub,pop = 1.4 × 10−3 kpc−2.
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