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The effective potential has been previously calculated through three-loop order, in Landau gauge, for a

general renormalizable theory using dimensional regularization. However, dimensional regularization is

not appropriate for softly broken supersymmetric gauge theories, because it explicitly violates super-

symmetry. In this paper, I obtain the three-loop effective potential using a supersymmetric regulator based

on dimensional reduction. Checks follow from the vanishing of the effective potential in examples with

supersymmetric vacua, and from renormalization-scale invariance in examples for which supersymmetry is

broken, either spontaneously or explicitly by soft terms. As by-products, I obtain the three-loop Landau

gauge anomalous dimension for the scalar component of a chiral supermultiplet, and the beta function for

the field-independent vacuum energy.
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I. INTRODUCTION

The quantitative analysis of vacuum expectation values

and spontaneous symmetry breaking in quantum field

theories can be formulated in terms of the Coleman-

Weinberg effective potential [1–3]. The perturbative loop

expansion of the effective potential is evaluated as the sum

of all one-particle-irreducible vacuum diagrams, where the

vertices and propagators depend on the scalar background

fields. For a general field theory, the effective potential is

known at two-loop order [4,5] and three-loop order [6,7].

These results are based on Landau gauge fixing, which

greatly simplifies the expressions; other gauge-fixing

choices have kinetic mixing between scalar and vector

degrees of freedom. Complete effective potential results

for a general field theory at two-loop order in a variety of

other gauge-fixing prescriptions can be found in Ref. [8],

which illustrates the unfortunate complications encoun-

tered. In the special case of the Standard Model, the

four-loop contributions at leading order in QCD are also

known [9].

The three-loop effective potential results of Ref. [7] were

obtained using dimensional regularization (DREG) [10–15]

followed by renormalization with modified minimal sub-

traction known as MS [16,17]. Although MS is the modern

standard for loop calculations of all types in nonsupersym-

metric theories, it is not appropriate for supersymmetric

theories with or without explicit soft breaking terms. This is

because the DREG regularization procedure introduces

explicit supersymmetry violation, due to the fact that in

d ¼ 4 − 2ϵ ð1:1Þ

dimensions there is a nonsupersymmetricmismatch between

the numbers of gauge bosonandgaugino degrees of freedom.

Although this mismatch only has multiplicity 2ϵ, it is

multiplied by poles in ϵ from loop diagrams. After renorm-

alization, this leads to violations of the relationships among

parameters that should be enforced by supersymmetry.

The purpose of this paper is to remedy this problem by

providing a counterpart to the results of Ref. [7] but using

Siegel’s supersymmetric regularization by dimensional

reduction (DRED) [18–20] followed by modified minimal

subtraction.
1
In DRED, loop momenta are still in d

dimensions, but each vector degree of freedom has four

components, so as to avoid the nonsupersymmetric mis-

match between gauginos and gauge bosons. The extra 2ϵ

vector components are called ϵ scalars. When explicit soft

supersymmetry breaking is present in supersymmetric

gauge theories, there is an additional complication, because

in general in the resulting DR renormalization scheme the ϵ

scalars obtain nonzero squared mass contributions in excess

of the corresponding vector squared masses, due to

renormalization. These ϵ-scalar squared mass contributions

are unphysical, in the sense that they have no observable
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Although there are technical problems [21–23] associated

with simultaneously avoiding either inconsistencies or ambigu-
ities of DRED at higher-loop orders while maintaining super-
symmetry, these are not an issue for the three-loop vacuum
diagrams considered in this paper, as demonstrated by the explicit
calculations reported below.
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counterparts. Accordingly, in Ref. [24] it was shown that

these unphysical quantities can be simultaneously eliminated

from the renormalization group equations and from the

relations between on-shell physical quantities and the

Lagrangian parameters, by a parameter redefinition of

the type given in Ref. [25]. The resulting supersymmetric

renormalization scheme based on regularization by dimen-

sional reduction is known
2
as the DR0 scheme, with the

property that the ϵ-scalar squared masses appearing in

propagators are exactly the same as those of the correspond-

ing vector bosons. The two-loop results for the effective

potential in a general softly broken supersymmetric gauge

theory in DR0 were obtained in Ref. [5], and in the present

paper this will be extended to three-loop order.

The notations, conventions, and general strategies of this

paper will follow closely those of Refs. [7,26]. Therefore, to

avoid needless (and lengthy) repetition, the reader is advised

to consult those papers for the relevant definitions. In

particular, the three-loop effective potential is given in terms

of renormalized ϵ-finite basis integrals: AðxÞ at one loop,

Iðx; y; zÞ at two loops, and Fðw; x; y; zÞ, F̄ð0; x; y; zÞ,
Gðv; w; x; y; zÞ, and Hðu; v; w; x; y; zÞ at three loops, along
with convenient combinations Āðx; yÞ, Īðw; x; y; zÞ, and

Kðu; v; w; x; y; zÞ. Here, u; v; w; x; y; z denote propagator

squared mass arguments, and the dependence on the

common renormalization scale Q is suppressed in the lists

of arguments, as it is typically the same everywhere within a

given calculation. These basis functions were defined

explicitly in Sec. II of [7] and Sec. II of [26], and the

computer software library 3VIL provided with the latter

reference provides for their fast and accurate numerical

evaluation. Note that their definitions do not depend on

whether one is using the MS or DR0 scheme. They satisfy

symmetry relations that reflect all of the invariances of the

corresponding underlying Feynman diagrams under inter-

changes of squared mass arguments. They also satisfy

special case relations, which are identities that occur when

the squared mass arguments are nongeneric, meaning that

some of them are equal to each other, and/or vanish.

Examples of these special case relations appeared in

Eqs. (5.82)–(5.86) of Ref. [26] and (2.40)–(2.43) of

Ref. [7]. There are many other identities reflecting the

analytic special cases that occur when there is only one

distinct nonzero squared mass found in Refs. [27–33], and

listed in the notation of the present paper in Sec. V of

Ref. [26]. For convenience, both the symmetry relations and

the known special case relations are provided in the

identities.anc file of the SupplementalMaterial [34].

Since the structure of the three-loop effective potential

has been elucidated already in Ref. [7] at considerable

length, the present paper will assume this as given and

concentrate on the distinctions that are special to super-

symmetric theories and DRED. Furthermore, the explicit

results at three-loop order are extremely complicated, and

therefore mostly useless to the human eye. Hence, they will

be almost entirely relegated to ancillary electronic files,

which are suitable for use with symbolic manipulation

software and numerical evaluation with 3VIL.

II. EFFECTIVE POTENTIAL

IN DIMENSIONAL REDUCTION

Consider a general renormalizable theory, which we will

later assume to be a softly broken supersymmetric gauge

theory. Suppose that the fields with diagonal tree-level

squared masses consist of some real scalars Rj with squared

masses m2
j , two-component fermions ψ I with squared

masses M2
I , and real vector fields A

μ
a with squared masses

m2
a. In the case of the fermions, the masses need not be

diagonal, but may include charged Dirac fermion fields

consisting of pairs ψ I and ψ I0 with off-diagonal masses

MII0 , where M2
I ¼ M2

I0 ¼ jMII0 j2. For Majorana fermions,

one identifies I and I0. There are also field-dependent

interactions

Lint ¼ −

1

6
λjklRjRkRl −

1

24
λjklmRjRkRlRm −

1

2
ðYjIJRjψ IψJ þ c:c:Þ

þ gaJI Aμaψ†I σ̄μψJ − gajkAμaRj∂μRk −
1

4
gabjkAa

μA
μbRjRk −

1

2
gabjAa

μA
μbRj

− gabcAμaAνb
∂μA

c
ν −

1

4
gabegcdeAμaAνbAc

μA
d
ν − gabcAμaωb

∂μω̄
c; ð2:1Þ

where ωa and ω̄c are ghost and antighost fields. The

independent couplings are scalar cubic λjkl, scalar quartic

λjklm, Yukawa YjIJ, vector-fermion-fermion gaJI , vector-

scalar-scalar gajk, vector-vector-scalar gabj, and vector-

vector-vector gabc. By convention, YjIJ ≡ ðYjIJÞ� and

MII0 ¼ ðMII0Þ�. Note that the vector-vector-scalar-scalar

and vector-vector-vector-vector interaction couplings

are not independent of the cubic couplings, as they are

given by

2
Many sources elide the distinction between the DR0 and DR

schemes. It is hard to fault this practice, as the DR scheme as
defined in Ref. [24], and in the present paper (including arbitrary
independent unphysical ϵ-scalar squared masses) it is not of much
practical use.
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gabjk ¼ gajlgbkl þ gaklgbjl; ð2:2Þ

gabcd ¼ gabegcde; ð2:3Þ

respectively. Each of these masses and couplings may

depend on one or more background scalar fields φ, which

correspond to the possible vacuum expectation values.

The loop expansion of the DR0 effective potential can be
written as

Veff ¼ Vð0Þ þ 1

16π2
Vð1Þ þ 1

ð16π2Þ2 V
ð2Þ

þ 1

ð16π2Þ3 V
ð3Þ þ…: ð2:4Þ

The contribution Vð0Þ is the tree-level background-field-

dependent potential, and each VðlÞ is obtained by summing

the contributions of l-loop one-particle-irreducible dia-

grams. At one-loop order, the effective potential in the DR0

scheme is given by the supertrace form

Vð1Þ ¼
X

j

fðjÞ − 2

X

I

fðIÞ þ 3

X

a

fðaÞ; ð2:5Þ

where j, I, and a appearing as arguments of loop integral

functions are shorthand notations for the corresponding

DR0 squared masses, and the one-loop integral function is

fðxÞ ¼ 1

4
x2ðlnðxÞ − 3=2Þ; ð2:6Þ

which depends on the renormalization scale Q through the

definition

lnðxÞ ¼ lnðx=Q2Þ: ð2:7Þ

As explained in Ref. [5], Eq. (2.5) differs from the MS

result, which instead has a one-loop function fVðxÞ ¼
fðxÞ þ x2=6 for the vectors. The difference arises from the

ϵ-scalar contribution to fðxÞ.
The two-loop contribution in either MS or DR0 can be

written in the form

Vð2Þ ¼ 1

12
ðλjklÞ2fSSSðj; k; lÞ þ

1

8
λjjkkfSSðj; kÞ þ

1

2
YjIJYjIJfFFSðI; J; jÞ þ

1

4
ðYjIJYjI0J0MII0MJJ0 þ c:c:ÞfF̄ F̄ SðI; J; jÞ

þ 1

4
ðgajkÞ2fVSSða; j; kÞ þ

1

4
ðgabjÞ2fVVSða; b; jÞ þ

1

2
gaJI gaIJ fFFVðI; J; aÞ þ

1

2
gaJI gaJ

0
I0 M

II0MJJ0fF̄ F̄ VðI; J; aÞ

þ 1

12
ðgabcÞ2fgaugeða; b; cÞ; ð2:8Þ

in terms of two-loop integral functions fSSS, fSS, fFFS,
fF̄ F̄ S, fVSS, fVVS, fFFV , fF̄ F̄ V , and fgauge. The functions

fSSS, fSS, fFFS, and fF̄ F̄ S do not involve vectors or ϵ

scalars, and so are trivially the same in the MS and DR0

schemes. In contrast, the functions fVSS, fVVS, fFFV , fF̄ F̄ V ,

and fgauge are different in the two schemes. The DR0

functions are constructed so as to include the contributions

of the ϵ scalars corresponding to each vector field, with each

ϵ-scalar mass equal to the corresponding field-dependent

vector boson mass. They were obtained in
3
Ref. [5]. The DR0

results for the one-loop function f and the nine two-loop

functions are provided in the functionsDRED.anc file

of the Supplemental Material [34].

As explained in Ref. [7], the three-loop contribution to

the effective potential for a general renormalizable theory

can be expressed in terms of 89 loop integral functions; see

Eqs. (3.2)–(3.32) of that paper for the rather lengthy

expression for Vð3Þ in terms of the functions and the

renormalized couplings. The 89 functions can be divided

into three categories. First, there are 24 functions that do

not involve vector fields or ϵ scalars at all, and so they are

trivially the same in the DR0 and MS schemes:

HSSSSSS; KSSSSSS; JSSSSS; GSSSSS; LSSSS; ESSSS;

HFFF̄SSS; HF̄F̄F̄SSS; HFFSSFF; HFFSSF̄F̄; HFF̄SSFF̄; HF̄F̄SSF̄F̄;

KSSSSFF; KSSSSF̄F̄; KFFFSSF; KFFF̄SSF̄; KF̄F̄FSSF; KF̄FF̄SSF;

KF̄F̄F̄SSF̄; KSSFFFF; KSSFFF̄F̄; KSSF̄F̄F̄F̄; JSSFFS; JSSF̄F̄S: ð2:9Þ

3
Here we have adopted a slightly more efficient notation than in that paper, since fVSSðx;y;zÞ≡fSSVðy;z;xÞþFVSðx;yÞþFVSðx;zÞ,

where the functions on the right side were the ones defined in Ref. [5], and the function fVSS is the one used here. This takes advantage of
Eq. (2.2).
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In a second category are five functions which involve vector

fields, but for which there are no corresponding ϵ-scalar

contributions. This occurs when all Feynman diagram

contributions to the function have only vector lines that

terminate (at one end, at least) in avector-scalar-scalar vertex,

since in that case the vector index will be contracted with a

momentum, which lives in only d dimensions, not four, thus

projecting out the ϵ-scalar components. Therefore, these five

functions are again the same in the DR0 and MS schemes:

HFFFVSS; HFF̄ F̄ VSS; HF̄ F̄ FVSS; HSSSSSV ; HSSSVVV :

ð2:10Þ

The remaining 60 functions do involve ϵ-scalar contributions

in at least one contributing diagram, and are therefore

different in the DR0 and MS schemes:

HVVSSSS; HSSVVSS; HVVVSSS; HVVSSVS; HSSVVVV ; HSVVVSV ;

KSSSSSV ; KSSSSVV ; KSSSVVS; KVVSSSS; KSSSVVV ; KVVSSVS;

KSSVVVV ; KVVSVVS; JSSVSS; JSSVVS; GVSVVS; Hgauge;S;

Kgauge;S; Kgauge;SS; HFFVVFF; HFFVVF̄ F̄; HFF̄VVFF̄; HF̄ F̄ VVF̄ F̄;

HFFFVVV ; HFF̄ F̄ VVV ; KFFFVVF; KFFF̄VVF̄; KF̄ F̄ FVVF; KF̄FF̄VVF;

KF̄ F̄ F̄ VVF̄; KVVFFFF; KVVFFF̄ F̄; KVVF̄ F̄ F̄ F̄; Kgauge;FF; Kgauge;F̄ F̄;

HFFSVFF; HFFSVF̄ F̄; HFF̄SVF̄F; HFF̄SVFF̄; HF̄ F̄ SVF̄ F̄; HFF̄FSVV ;

HFFF̄SVV ; HF̄ F̄ F̄ SVV ; KFFFSVF; KFFF̄SVF̄; KF̄ F̄ FSVF; KF̄FF̄SVF;

KF̄FFSVF̄; KF̄ F̄ F̄ SVF̄; KSSSVFF; KSSSVF̄ F̄; KSSVVFF; KSSVVF̄ F̄;

KVVSSFF; KVVSSF̄ F̄; KVVSVFF; KVVSVF̄ F̄; Hgauge; Kgauge: ð2:11Þ

The main letters E, G, H, J, K, L correspond to the parent

Feynman diagram topology, and the subscripts encode the

information about the types of propagators in a canonical

ordering, as shown in Fig. 1, and explained in detail in

Ref. [7]. The distinction between F and F̄ is that the latter

contains a chirality-flipping fermion mass insertion. Note

that in many cases involving gauge boson interactions,

more than one Feynman diagram contributes to a given

function with a fixed structure of gauge invariants. For

some of these, the word “gauge” in a subscript indicates

combinations of diagram topologies involving multiple

gauge vector boson or ghost propagators with a common

group theoretic structure. The difference in the present

paper is that for each vector propagator, one also includes

the corresponding ϵ-scalar contribution in the DR0 function.
The results of evaluating all 89 functions appearing in Vð3Þ

are given in the functionsDRED.anc file of the

Supplemental Material [34]. These constitute the main

new results of this paper. For any given softly broken

supersymmetric gauge theory, one can plug in the results

for the renormalized field-dependent masses and couplings,

as specified above, into Eqs. (3.2)–(3.32) of Ref. [7] to

evaluate the three-loop effective potential.

At three-loop order, there is a qualitatively new practical

problem not encountered at one-loop and two-loop orders;

the presence of doubled bosonic propagator lines carrying

the same momentum (the propagators labeled 1 and 2 in

topologies J, K, and L of Fig. 1) with small or vanishing

squared masses can give rise to possible logarithmic

infrared singularities. In the case of doubled Goldstone

boson propagators, this problem was noted in the context of

the three-loop effective potential in Ref. [6]. Besides

causing infrared divergence problems when the renormal-

ization-scale choice leads to small Goldstone boson

squared masses, it manifests as imaginary parts of the

effective potential at the minima of its real part when the

FIG. 1. Feynman diagram topologies that contribute to the effective potential at three-loop order. The numbers indicate the canonical

ordering of subscripts denoting propagator types (S, F, F̄, V), and the corresponding squared mass arguments.
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tree-level Goldstone boson squared masses are negative.

These imaginary parts are spurious, in the sense that they are

not associated with any actual instability of the true vacuum

state. This can occur for perfectly reasonable choices of the

renormalization scale, including (see Ref. [6]) in the case of

the actual parameters of the Standard Model. In general, this

problem can be systematically defeated by resummation, as

shown in Refs. [35,36], with further elucidations in

Refs. [7,37–41]. Doubled propagators of massless gauge

bosons can also [7] cause infrared divergences in the effective

potential; these are benign, in the sense that they are also

eliminated in the process of resumming the Goldstone boson

contributions. It was also demonstrated in Ref. [7] that

infrared divergences from doubled massless fermion lines

do not occur at three-loop order.

Even in cases without infrared divergences due to

doubled bosonic propagators, the presence of vanishing

squared mass arguments can cause practical problems,

because the three-loop integral functions for generic

squared mass arguments will often contain individual terms

with denominators with powers of the arguments when

written in terms of the basis integrals. Although these do

not give true infrared singularities, demonstrating this and

obtaining expressions suitable for numerical evaluation

often requires taking limits of basis integral functions that

may not be immediately obvious.

To deal efficiently and systematically with these issues in

particular cases, it is useful to have expansions of the basis

integral functions for small squared mass arguments δ. A

complete list of such expansions for every combination of

squared mass arguments satisfying

0 < δ ≪ u; v; w; x; y; z ð2:12Þ

is provided in the expdelta.anc file of the

Supplemental Material [34]. (Reference [7] provided an

ancillary file expzero.anc with a subset of these

expansions, which was less complete but sufficient for

the special cases needed there, namely, those encountered

in the Standard Model.) These expansions are derived using

the differential equations that the basis integrals satisfy

(obtained in Ref. [26]), and are given to order δ5 for the I,

F, and F̄ functions, order δ4 for the Ī and G functions, and

order δ3 for K and H. At three-loop order, the expansions

can contain up to three powers of lnðδÞ. Whenever a

squared mass argument vanishes, or should be treated as

small, one can replace it with δ, and then use these

expansions to evaluate the leading order contribution to

the effective potential as δ → 0. Poles in δ always cancel,

and possible infrared divergences in individual diagrams

then manifest themselves as residual powers of lnðδÞ,
which must also cancel from the minimization conditions

for the effective potential, and from associated physically

meaningful quantities. This provides a useful check in

examples, including the ones mentioned below.

III. CHECKS FROM UNBROKEN

SUPERSYMMETRY

Consider a supersymmetric theory, with no explicit

supersymmetry-breaking terms. (For reviews of supersym-

metry using notations and conventions consistent with the

following, see Refs. [42,43].) As shown by Zumino in

Ref. [44], at a supersymmetric minimum of the tree-level

potential, the full effective potential must vanish at each

order in perturbation theory. In the case of nongauge

theories like the Wess-Zumino model, this was used in

Ref. [7] as a check on the 24 contributions at three-loop

order in Eq. (2.9) above, which do not involve vector

bosons. I have now extended these checks to various

supersymmetric gauge theory special cases.

For an example that is simple enough to analyze

explicitly in text, consider a supersymmetric Uð1Þ gauge

theory with gauge coupling g and two chiral superfields

Φþ and Φ
−
with charges þ1 and −1, respectively, and a

superpotential mass term

W ¼ μΦþΦ−
: ð3:1Þ

The corresponding complex scalar fields can be written in

terms of canonically normalized real components as

ϕþ ¼ 1
ffiffiffi

2
p ðR1 þ iR2Þ; ϕ

−
¼ 1

ffiffiffi

2
p ðR3 þ iR4Þ: ð3:2Þ

There are three Weyl fermions, ψ1 ¼ ψþ, ψ2 ¼ ψ
−
, and

ψ3 ¼ λ, the latter being the gaugino field. Finally, there is a

single vector boson Aμ. In order to main unbroken

supersymmetry, the background scalar field components

for Φþ and Φ
−
have been chosen to both vanish, leading to

a tree-level potential Vð0Þ ¼ 0. Then, the gaugino and

gauge boson masses vanish, while the chiral fermion

and scalar squared masses are all equal:

M2

3
¼ m2

A ¼ 0; ð3:3Þ

M2

1
¼ M2

2
¼ m2

1
¼ m2

2
¼ m2

3
¼ m2

4
¼ z; ð3:4Þ

with

M12 ¼ M21 ¼
ffiffiffi

z
p
≡ μ: ð3:5Þ

There are no scalar cubic interactions, and the nonvanishing

quartic scalar interactions are

λ1111 ¼ λ2222 ¼ λ3333 ¼ λ4444 ¼ 3g2; ð3:6Þ

λ1122 ¼ λ3344 ¼ g2; ð3:7Þ

λ1133 ¼ λ1144 ¼ λ2233 ¼ λ2244 ¼ −g2; ð3:8Þ

THREE-LOOP EFFECTIVE POTENTIAL FOR SOFTLY BROKEN … PHYS. REV. D 109, 015019 (2024)

015019-5



and permutations thereof, while the nonvanishing Yukawa

couplings stemming from gaugino interactions with scalar

and chiral fermion pairs are

Y113 ¼ iY213 ¼ −Y323 ¼ −iY423 ¼ g; ð3:9Þ

and equal values when the last two (fermion) indices are

interchanged. The nonvanishing vector-scalar-scalar cou-

plings are

gA21 ¼ −gA12 ¼ gA34 ¼ −gA43 ¼ g; ð3:10Þ

and the vector-fermion-fermion couplings are

gA1
1

¼ −gA2
2

¼ g: ð3:11Þ

There are no vector-vector-scalar interactions (because the

gauge symmetry is not spontaneously broken) and no vector-

vector-vector interactions (because the gauge symmetry is

Abelian). The one-loop part of the effective potential

evaluated from Eq. (2.5) is

Vð1Þ ¼ 4fðzÞ − 4fðzÞ ¼ 0; ð3:12Þ

where the two terms come from the scalar and fermion

contributions to the supertrace, respectively, and there is no

contribution from the massless vectors because fð0Þ ¼ 0.

The two-loop contribution from Eq. (2.8) is

Vð2Þ ¼ g2½fSSðz; zÞ þ 4fFFSð0; z; zÞ þ fVSSð0; z; zÞ
þ fFFVðz; z; 0Þ − zfF̄ F̄ Vðz; z; 0Þ�: ð3:13Þ

This also vanishes due to nontrivial cancellations

between these functions obtained by plugging in their

expressions in terms of the basis integrals from

the file functionsDRED.anc in the Supplemental

Material [34]. Finally, the three-loop contribution obtained

from the general form specified in Eqs. (3.2)–(3.32) of

Ref. [7] is

Vð3Þ ¼ g4
�

LSSSSðz; z; z; zÞ þ
3

2
ESSSSðz; z; z; zÞ þ 4zHFF̄SSFF̄ð0; z; z; z; 0; zÞ þ 4JSSFFSðz; z; 0; z; zÞ

þ 4KFFFSSFðz; z; 0; z; z; 0Þ þ 4zKF̄F̄FSSFðz; z; 0; z; z; 0Þ þ 8KFFFSSFð0; 0; z; z; z; zÞ þ 4KSSFFFFðz; z; 0; z; 0; zÞ

−

1

2
HSSVVSSðz; z; 0; 0; z; zÞ − 2JSSVSSðz; z; 0; z; zÞ þ KSSSVVSðz; z; z; 0; 0; zÞ þ KVVSSSSð0; 0; z; z; z; zÞ

þ 1

2
z2HF̄F̄VVF̄F̄ðz; z; 0; 0; z; zÞ þ zHFF̄VVFF̄ðz; z; 0; 0; z; zÞ − 2zHFFVVF̄F̄ðz; z; 0; 0; z; zÞ

þ 1

2
HFFVVFFðz; z; 0; 0; z; zÞ þ z2KF̄F̄F̄VVF̄ðz; z; z; 0; 0; zÞ þ zKF̄F̄FVVFðz; z; z; 0; 0; zÞ

− 4zKF̄FF̄VVFðz; z; z; 0; 0; zÞ þ zKFFF̄VVF̄ðz; z; z; 0; 0; zÞ þ KFFFVVFðz; z; z; 0; 0; zÞ
þ z2KVVF̄F̄F̄F̄ð0; 0; z; z; z; zÞ − 2zKVVFFF̄F̄ð0; 0; z; z; z; zÞ þ KVVFFFFð0; 0; z; z; z; zÞ
þ 4zHF̄F̄FVSSðz; z; 0; 0; z; zÞ þ 4HFFFVSSðz; z; 0; 0; z; zÞ þ 4zKF̄F̄FSVFðz; z; 0; z; 0; zÞ
− 8zKF̄FFSVF̄ðz; z; 0; z; 0; zÞ þ 4KFFFSVFðz; z; 0; z; 0; zÞ − 4KSSSVFFðz; z; z; 0; 0; zÞ

þ 2zKVVSSF̄F̄ð0; 0; z; z; z; zÞ − 2KVVSSFFð0; 0; z; z; z; zÞ
�

: ð3:14Þ

As noted at the end of the previous section, to evaluate this

properly one may first change the 0 arguments to δ, then

after using the results in functionsDRED.anc, apply

the expansions in expdelta.anc to keep only non-

vanishing terms as δ → 0. Most of the functions in

Eq. (3.14) are individually completely smooth in the limit

δ → 0. The exceptions, which have only simple logarithmic

singularities, are

KVVF̄ F̄ F̄ F̄ðδ; δ; z; z; z; zÞ ¼ 12lnðδÞ½zþ AðzÞ�2=z2

þ…; ð3:15Þ

KVVF̄ F̄ FFðδ; δ; z; z; z; zÞ ¼ 12lnðδÞ½zþ AðzÞ�2=z
þ…; ð3:16Þ

KVVFFFFðδ;δ;z;z;z;zÞ¼ 12lnðδÞ½zþAðzÞ�2þ…; ð3:17Þ

where the ellipses represent terms that are finite as δ → 0.

Since these functions appear in Eq. (3.14) with coefficients

proportional to z2, −2z, and 1, respectively, the lnðδÞ terms

are seen to successfully cancel in the complete expression.

In fact, the whole expression for Vð3Þ vanishes in the limit

δ → 0, as required, due to nontrivial cancellations between
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the various functions. This becomes apparent after express-

ing the results in terms of the renormalized three-loop basis

integrals.

The simple example above does not come close

to completely testing the results obtained in

functionsDRED.anc, because of the absence of sca-

lar-scalar-scalar, vector-vector-scalar, and vector-vector-

vector interactions, and the absence of superpotential

Yukawa couplings. I have carried out more detailed tests,

each including many more terms, as follows:

(i) SupersymmetricUð1Þ gauge theory with three chiral
superfields Φ, Φ̄, and Φ0, with charges þ1, −1,

and 0, respectively, and a superpotential W ¼
yΦ0ΦΦ̄þ μΦΦ̄þ 1

2
μ0Φ

2

0
. Supersymmetry is unbro-

ken when the scalar background fields are taken to

vanish.

(ii) Supersymmetric Uð1Þ gauge theory with two chiral

superfields Φ and Φ̄, with charges þ1, −1. There is

no superpotential. The gauge symmetry is sponta-

neously broken by equal magnitude background

fields for the scalars, φ̄ ¼ φ. This is a D-flat

direction, leaving supersymmetry unbroken.

(iii) Supersymmetric SUðnÞ gauge theory with n ¼ 2; 3,

with chiral superfieldsΦj and Φ̄
j in the fundamental

and antifundamental representations with j ¼
1;…; n, and a singlet chiral superfield Φ0. The

superpotential is W ¼ yΦ0ΦΦ̄þ μΦΦ̄þ 1

2
μ0Φ

2

0
.

The background scalar fields are taken to vanish,

leaving the gauge symmetry unbroken and main-

taining unbroken supersymmetry.

(iv) Supersymmetric SUðnÞ gauge theory with n ¼ 2; 3,

with chiral superfieldsΦj and Φ̄
j in the fundamental

and antifundamental representations, with no super-

potential. The scalar fields obtain background values

with equal magnitudes along a D-flat direction

Φj ¼ Φ̄
j ¼ φδj1, breaking the gauge symmetry

but again maintaining unbroken supersymmetry.

In each of these cases, I have checked that Vð1Þ ¼ Vð2Þ ¼
Vð3Þ ¼ 0 as required by unbroken supersymmetry at tree

level. These are highly nontrivial consistency checks on the

results obtained in functionsDRED.anc, relying on

intricate cancellations between the individual contributions

after writing them in terms of the renormalized basis

integrals. (As one might expect, the cancellations of the

individual contributions would not occur if one used the

MS functions instead of the correct DR0 ones.) These

cancellations include terms proportional to the infrared

regulator lnðδÞ in the three-loop part, corresponding to

massless vectors and massless scalars along flat directions.

IV. CHECKS FROM RENORMALIZATION

GROUP INVARIANCE

Another class of checks, applicable for cases of non-

supersymmetric vacua and softly broken supersymmetric

gauge theories, comes from renormalization group invari-

ance. The invariance of the effective potential with respect

to changes in the arbitrary renormalization scale Q can be

expressed as

0 ¼ Q
dVeff

dQ
¼

�

Q
∂

∂Q
þ
X

X

βX
∂

∂X

�

Veff ; ð4:1Þ

where X runs over all of the independent DR0 parameters of

the theory, including the background scalar field(s) φ, the

masses and couplings that may depend on the φ, and a

field-independent contribution to the tree-level potential,

which I will denote below by Λ. The beta functions for the

parameters X are given in a loop expansion by

βX ¼ 1

16π2
β
ð1Þ
X þ 1

ð16π2Þ2 β
ð2Þ
X þ 1

ð16π2Þ3 β
ð3Þ
X þ…; ð4:2Þ

and in the particular case of the background scalar fields,

one writes βφ ¼ −γSφ, where γS is the scalar anomalous

dimension, not to be confused with the chiral superfield

anomalous dimension. Therefore, at each loop order l,

consistency requires

Q
∂

∂Q
VðlÞ þ

X

l−1

n¼0

�

X

X

β
ðl−nÞ
X

∂

∂X
VðnÞ

�

¼ 0: ð4:3Þ

To evaluate the first term in Eq. (4.3), the derivatives

with respect to Q of the basis integrals, and of the nine

two-loop functions and the 89 three-loop functions, are

given for convenience in the file QdQDRED.anc of the

Supplemental Material [34]. Since most of the βX functions

are known from previous work, evaluating Eq. (4.3) for

each l in particular cases in principle gives nontrivial

checks on the results of the present paper in the file

functionsDRED.anc. However, there are two missing

pieces of information. First, although the two-loop and

three-loop contributions to the anomalous dimensions of

the chiral superfields were calculated in Refs. [45,46], the

anomalous dimensions of the scalar components are differ-

ent and were only previously known to two-loop order.

Second, the beta function of the field-independent vacuum

energy Λ was only previously known at two-loop order.

Therefore, by demanding that Eq. (4.3) holds for l ¼
1; 2; 3 in a variety of cases, I have been able to derive and

then check these missing results. I will first provide these

results and then briefly review the list of special case

models used to infer and check them.

Consider a supersymmetric gauge theory with chiral

superfields Φi and a superpotential

W ¼ 1

6
yijkΦiΦjΦk þ

1

2
μijΦiΦj ð4:4Þ
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involving Yukawa couplings yijk and supersymmetric

masses μij, and soft supersymmetry-breaking terms

−Lsoft ¼
�

1

6
aijkϕiϕjϕk þ

1

2
bijϕiϕj þ

1

2
Maλ

aλa
�

þ c:c:

þ ðm2Þijϕiϕ
�j þ Λ; ð4:5Þ

where ϕi are the scalar components of Φi, and λa are the

gaugino fields. Here, aijk and bij are holomorphic scalar

cubic and scalar squared mass terms, respectively, Ma are

the gaugino masses, and ðm2Þij are the nonholomorphic

scalar squared masses. The last term, the field-independent

vacuum energy Λ, is irrelevant to the (nongravitational)

dynamics of the theory and therefore generally omitted, but

its presence is necessary to maintain renormalization-scale

invariance of Veff . Note that in all checks below, I have

assumed that there are no tadpole couplings in W or −Lsoft

associated with gauge-singlet chiral superfields. I also

assume that there is at most one Uð1Þ component in the

gauge group to avoid the complication of kinetic mixing

between different Abelian gauge fields. Both of these

assumptions hold in the case of the minimal supersym-

metric Standard Model (MSSM).

The gauge group is assumed to have couplings ga with

generators ðtaÞij. The notation for group theory invariants

will closely follow that of the review in Chap. 11 of

Ref. [43]. For each distinct group component, the dimen-

sion (number of Lie algebra generators) and the quadratic

Casimir invariant are denoted da and Ga, respectively. The

quadratic Casimir invariant of an irreducible representation

carrying a flavor index i is denoted CaðiÞ, where

ðtataÞij ¼ CaðiÞδji : ð4:6Þ

For an irreducible representation r, the Dynkin index is

TaðrÞ defined by

Trr½tatb� ¼ δabTaðrÞ; ð4:7Þ

and the sum of the TaðrÞ over all of the chiral super-

multiplet representations is

Sa ¼
X

r

TaðrÞ: ð4:8Þ

Similarly, define

Sab ¼
X

r

TaðrÞCbðrÞ; ð4:9Þ

Sabc ¼
X

r

TaðrÞCbðrÞCcðrÞ: ð4:10Þ

For example, for a supersymmetric Uð1Þ gauge theory with
chiral superfields Φi with charges qi, one has da ¼ 1,

Ga ¼ 0, CaðiÞ ¼ q2i , Sa ¼
P

i q
2
i , Saa ¼

P

i q
4
i , and

Saaa ¼
P

i q
6

i . For a supersymmetric SUðncÞ gauge theory
with nf flavors of fundamental and antifundamental chiral

superfields, one has da ¼ n2c − 1, Ga ¼ nc, CaðiÞ¼
ðn2c−1Þ=ð2ncÞ≡Cf for each i, and Sa¼nf, Saa ¼ nfCf,

and Saaa ¼ nfC
2

f.

The DRED beta functions for the gauge couplings ga
were found at two-loop order in [47,48], and at three-loop

order in [49] by making use of results in [50,51]. Using the

notations above, they are

β
ð1Þ
ga ¼ g3aðSa − 3GaÞ; ð4:11Þ

β
ð2Þ
ga ¼ 2g5aGaðSa − 3GaÞ þ 4g3ag

2

bSab − g3ay
ijkyijkCaðiÞ=da; ð4:12Þ

β
ð3Þ
ga ¼ g7aGaðSa − 3GaÞð7Ga − SaÞ þ 8g5ag

2

bGaSab þ 6g3ag
4

bSabð3Gb − SbÞ − 8g3ag
2

bg
2
cSabc − 2g5ay

ijkyijkCaðiÞGa=da

þ g3ag
2

by
ijkyijk½CbðiÞ − 6CbðjÞ�CaðiÞ=da þ g3ay

ijkyijlykmny
lmn½3CaðiÞ=2þ CaðkÞ=4�=da: ð4:13Þ

The anomalous dimension of the chiral superfield Φi and the anomalous dimension of its scalar component ϕi have the

same general form

γ
ð1Þj
i ¼ 1

2
yikly

jkl þ n1δ
j
ig

2
aCaðiÞ; ð4:14Þ

γ
ð2Þj
i ¼ −

1

2
yikly

jkmylnpymnp þ g2ayikly
jkl½n2CaðkÞ þ n3CaðiÞ� þ δ

j
ig

2
aCaðiÞ½n4g2aSa þ n5g

2

bCbðiÞ þ n6g
2
aGa�; ð4:15Þ
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γ
ð3Þj
i ¼ −

1

8
yikly

jpqykmnypmny
lrsyqrs −

1

4
yikly

jkmylnpysnpy
sqrymqr þ yikly

jkmylnpymnqy
qrsyprs þ

3

2
ζ3yikly

jpqykmnylrsypmryqns

þ g2ayikly
jkmylnpymnp½n7CaðiÞ þ n8CaðkÞ þ n9CaðlÞ þ n10CaðpÞ�

þ g2ag
2

byikly
jkl½n11CaðiÞCbðiÞ þ n12CaðiÞCbðkÞ þ n13CaðkÞCbðkÞ þ n14CaðkÞCbðlÞ�

þ g4ayikly
jkl½n15SaCaðiÞ þ n16SaCaðkÞ þ n17GaCaðiÞ þ n18GaCaðkÞ�

þ δ
j
ig

2
aCaðiÞfg4a½n19S2a þ n20SaGa þ n21G

2
a� þ g2ag

2

b½n22SaCbðiÞ þ n23GaCbðiÞ þ n24Sab�
þ n25g

2

bg
2
cCbðiÞCcðiÞ þ n26g

2
ay

klmyklmCaðkÞ=dag: ð4:16Þ

However, as is well known, some of the coefficients n1;…; n26 of the gauge-coupling-dependent terms differ for the chiral

superfield and its scalar component. Indeed, the coefficients for the scalar component are dependent on the choice of gauge

fixing, while the coefficients for the chiral superfield are not. For the chiral superfield anomalous dimension, the results

are [45,46]

n1 ¼−2; n2 ¼ 2; n3 ¼−1; n4 ¼ 2; n5 ¼ 4; n6 ¼−6; n7 ¼ 2þ 3ζ3; n8 ¼ 1− 3ζ3;

n9 ¼ 4− 6ζ3; n10 ¼−4þ 6ζ3; n11 ¼ 4− 15ζ3; n12 ¼−8þ 12ζ3; n13 ¼−12− 6ζ3;

n14 ¼−2þ 18ζ3; n15 ¼−1; n16 ¼−4; n17 ¼ 3− 3ζ3; n18 ¼ 12− 6ζ3; n19 ¼ 2;

n20 ¼−2þ 24ζ3; n21 ¼−12; n22 ¼−4; n23 ¼ 12; n24 ¼ 20− 24ζ3; n25 ¼−16; n26 ¼−5: ð4:17Þ

For the scalar component, I find that the Landau gauge coefficients are instead,

n1 ¼−1; n2 ¼ 2; n3 ¼−1; n4 ¼ 1; n5 ¼ 2; n6 ¼−9=4; n7 ¼ 2þ 3ζ3; n8 ¼ 1− 3ζ3;

n9 ¼ 4− 6ζ3; n10 ¼−4þ 6ζ3; n11 ¼ 4− 12ζ3; n12 ¼−8þ 12ζ3; n13 ¼−12; n14 ¼−2þ 12ζ3;

n15 ¼−1; n16 ¼−4; n17 ¼ 7=2− 9ζ3=2; n18 ¼ 12− 6ζ3; n19 ¼ 1; n20 ¼−9=4þ 12ζ3;

n21 ¼−13=16−63ζ3=8; n22 ¼−2; n23 ¼−1þ 15ζ3; n24 ¼ 10− 12ζ3; n25 ¼−12; n26 ¼−5=2: ð4:18Þ

The first six of these are not new, having been obtained in

Ref. [5] from the DR0 two-loop effective potential.

The different roles played by the chiral superfield

anomalous dimension and the scalar component field

anomalous dimension are as follows. The former enters

into the beta functions for superpotential parameters

according to

βyijk ¼ γiny
njk þ ði↔ jÞ þ ði↔ kÞ; ð4:19Þ

βμij ¼ γinμ
nj þ ði↔ jÞ; ð4:20Þ

valid at all orders in perturbation theory. The scalar

component field anomalous dimension γS is instead related

to the beta function of the background scalar fields φi

according to

βφi
¼ −ðγSÞjiφj; ð4:21Þ

for use with X ¼ φi in Eq. (4.3).

For the sake of completeness, I also review the beta

functions for the soft supersymmetry-breaking parameters

as needed below, again following closely the notation of the

review in Chap. 11 of Ref. [43]. This can be done most

efficiently in terms of differential operators in coupling-

constant space that act on the chiral superfield anomalous

dimensions:

Ω ¼ 1

2
Maga

∂

∂ga
− aijk

∂

∂yijk
; ð4:22Þ

Ω
� ¼ 1

2
M�

aga
∂

∂ga
− aijk

∂

∂yijk
: ð4:23Þ

The beta functions for Ma, a
ijk, and bij were found at two-

loop order results in Refs. [25,52–54] and extended by

Refs. [55,56] to all orders in perturbation theory,

βMa
¼ 2Ωðβga=gaÞ; ð4:24Þ

βaijk ¼ ½γinanjk−2ynjkΩðγinÞ�þði↔ jÞþði↔ kÞ; ð4:25Þ

βbij ¼ ½γinbnj − 2μnjΩðγinÞ� þ ði↔ jÞ ð4:26Þ
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using spurion methods as proposed in Ref. [54]. However, in cases with gauge-singlet chiral superfields, βbij contains extra

terms not captured by the above. The results were given in Refs. [25,53,54] at two-loop order:

β
ð1Þ
bij

¼ 1

2
bilylmny

mnj þ 1

2
yijlylmnb

mn þ μilylmna
mnj

− 2ðbij − 2Maμ
ijÞg2aCaðiÞ þ ði↔ jÞ; ð4:27Þ

β
ð2Þ
bij

¼ −

1

2
bilylmny

pqnypqry
mrj

−

1

2
yijlylmnb

mrypqry
pqn

−

1

2
yijlylmnμ

mrypqra
pqn

− μilylmna
npqypqry

mrj
− μilylmny

npqypqra
mrj þ 2yijlylpqðbpq − μpqMaÞg2aCaðpÞ

þ ðbilylpqypqj þ 2μilylpqa
pqj

− 2μilylpqy
pqjMaÞg2a½2CaðpÞ − CaðiÞ�

þ ð2bij − 8μijMaÞg2aCaðiÞ½g2aSa þ 2g2bCbðiÞ − 3g2aGa� þ ði↔ jÞ: ð4:28Þ

This will be sufficient for the examples considered below. Away of finding βbij at arbitrary loop order in terms of the chiral

superfield anomalous dimension is given in Ref. [57]. For the nonholomorphic soft squared masses ðm2Þji , the result is [58]

βðm2Þj
i
¼ g2aðtaÞijAa þ

�

2ΩΩ� þ ðjMaj2 þ XaÞga
∂

∂ga
þ ½ðm2Þnkykpq þ ðm2Þpkynkq þ ðm2Þqkynpk�

∂

∂ynpq

þ ½ðm2Þknykpq þ ðm2Þkpynkq þ ðm2Þkqynpk�
∂

∂ynpq

�

γ
j
i ; ð4:29Þ

with

Xa ¼
1

16π2
X
ð1Þ
a þ 1

ð16π2Þ2 X
ð2Þ
a þ…; ð4:30Þ

Aa ¼
1

16π2
A
ð1Þ
a þ 1

ð16π2Þ2 A
ð2Þ
a þ 1

ð16π2Þ3 A
ð3Þ
a þ…; ð4:31Þ

where the results needed for three-loop order βðm2Þj
i
are [58,59]

X
ð1Þ
a ¼ 2g2a½GajMaj2 − ðm2ÞkkCaðkÞ=da�; ð4:32Þ

X
ð2Þ
a ¼ g4að10Ga − 2SaÞGajMaj2 − 4g4aGaðm2ÞkkCaðkÞ=da − 4g2ag

2

bSabjMbj2 þ g2ay
kpqynpqðm2Þnk

�

CaðpÞ þ
1

2
CaðkÞ

�	

da

þ g2aa
kpqakpqCaðkÞ=2da; ð4:33Þ

and the special contributions from Abelian group factors are [60]

A
ð1Þ
a ¼ 2ðtaÞklðm2Þkl ; ð4:34Þ

A
ð2Þ
a ¼ ðtaÞkl½8g2bCbðkÞðm2Þkl − 2ðm2Þknynpqylpq�; ð4:35Þ

A
ð3Þ
a ¼ ðtaÞkl

�

3ðm2Þnl ykpqynpryrstyqst −
3

2
ðm2Þnl ykpqypqryrstynst − 4yknpypqry

rstylstðm2Þqn − 2aknpanpqylrsy
qrs

−

5

2
aknpalrsy

qrsynpq þ 16g2bCbðkÞyknpylnpjMbj2 þ ð8 − 24ζ3Þg2bCbðkÞaknpalnp
þ ð12ζ3 − 10Þg2bCbðkÞ½aknpylnpM�

b þ yknpalnpMb� þ g2bðm2Þnl ykpqynpq½ð10 − 24ζ3ÞCbðkÞ − 12CbðpÞ�
þ ð16 − 48ζ3Þg2bCbðkÞyknpylrpðm2Þrn − 16g2bg

2
cCbðkÞCcðkÞðm2Þkl þ g2bg

2
cCbðkÞCcðkÞ½ð96ζ3 − 64ÞjMbj2

þ ð48ζ3 − 40ÞMbM
�
c�δkl þ 12g4bCbðkÞð3Gb − SbÞðm2Þkl

�

: ð4:36Þ
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Finally, renormalization group invariance of the effective potential requires nontrivial running of the field-independent

vacuum energy X ¼ Λ in Eq. (4.3). The one-loop and two-loop contributions were found in Ref. [5] from the two-loop DR0

effective potential:

β
ð1Þ
Λ

¼ ðm2Þjiðm2Þij þ 2ðm2Þjiμikμjk þ bijbij − dajMaj4; ð4:37Þ

β
ð2Þ
Λ

¼ −yijkyijl½ðm2Þmk ðm2Þlm þ ðm2Þmk μmnμ
ln þ μknμ

mnðm2Þlm þ μkmðm2Þmn μnl þ bmlbkm�
− aijkaijl½ðm2Þlk þ μkmμ

lm� − 2yijkyilmðm2Þljμknμmn
− yijkaijlμkmb

ml
− yijka

ijlμkmbml

þ 4g2aCaðiÞ½ðm2Þjiðm2Þij þ bijbij −Maμ
ijbij −M�

aμijb
ij þ 2ðm2Þjiμikμjk þ 2μijμijjMaj2�

þ g2adað4Sa − 8GaÞjMaj4: ð4:38Þ

From the special case examples described below, I was able to deduce the general three-loop result, which is divided into

parts with 0, 2, and 4 powers of gauge couplings:

β
ð3Þ
Λ

¼ β
ð3aÞ
Λ

þ β
ð3bÞ
Λ

þ β
ð3cÞ
Λ

; ð4:39Þ

where

β
ð3aÞ
Λ

¼ 2yilmyklny
npqympq½ðm2Þjiðm2Þkj þ ðm2Þjiμjrμkr þ μirμ

jrðm2Þkj þ μijðm2Þjrμkr þ bijb
jk�

þ yikmyjlny
npqympqðm2Þlk

�

1

2
ðm2Þji þ 2μirμ

jr

�

þ yimnyjmpy
kqpylqnðm2Þlk½3ðm2Þji þ 4μirμ

jr�

−

1

2
yilmyknpylmqy

npq½ðm2Þjiðm2Þkj þ ðm2Þjiμjrμkr þ μirμ
jrðm2Þkj þ μijðm2Þjrμkr þ bijb

jk�

−

1

4
yimnylmnyjpqy

kpqðm2Þlk½ðm2Þji þ 2μirμ
jr� − yiklyjkmy

nqrypqrμlnμ
mpðm2Þji

− yikmyjklðm2Þji ½μmrμ
nrynpqy

lpq þ μnrμ
lrympqy

npq�
þ 2yikmyjklμirμ

jr½ðm2Þnmynpqylpq þ ðm2Þlnympqy
npq�

−

1

2
yijkyijly

mnpymnq½μlqμkrðm2Þrp þ μkpμ
lrðm2Þqr �

þ 12ζ3y
ijkylpnylmryknqðm2Þriμjpμmq þ 6ζ3y

ijkylmnyimpyknq½μjlμqrðm2Þpr þ μqpμjrðm2Þrl �
þ 2½aiklajkmympqylpq þ yiklyjkma

mpqalpq þ aiklyjkmy
mpqalpq þ yiklajkma

mpqylpq�μirμjr

−

1

2
½aijkaijlylmnypmn þ aijkyijly

lmnapmn þ yijkaijla
lmnypmn þ yijkyijla

lmnapmn�μkrμpr

−

1

2
½aijkaijlympqynpq þ aijkyijly

mpqanpq�μlnμkm −

1

4
yimnykmny

jpqylpqbijb
kl

þ 2½aiklajkmympqylpq þ aiklyjkmy
mpqalpq þ yiklajkma

mpqylpq�ðm2Þji

−

1

2
½aijkaijlylmnypmn þ aijkyijly

lmnapmn þ yijkyijla
lmnapmn�ðm2Þpk

þ ½2yklmailnynpqympq þ 2yklmyilny
npqampq −

1

2
yimny

kpqymnlapql −
1

2
aimny

kpqymnlypql�bijμjk

þ ½2yklmailnynpqympq þ 2yklmy
ilnynpqa

mpq
−

1

2
yimnykpqymnla

pql
−

1

2
aimnykpqymnly

pql�bijμjk

−

1

2
½yijkaijlblmμknynpqympq þ yijka

ijlblmμ
knynpqy

mpq� − 1

4
aijkaijla

lmnakmn

þ 3ζ3½ðyijkblm þ 2aijkμlmÞðyilnbjp þ 2ailnμjpÞykmqy
npq�; ð4:40Þ
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β
ð3bÞ
Λ

¼ 6g2aCaðiÞaijkaijkjMaj2 þ g2aa
ijkaijlðm2Þlk½ð12ζ3 − 8ÞCaðiÞ þ ð4 − 18ζ3ÞCaðkÞ�

þ g2aðyijkaijlMa þ aijkyijlM
�
aÞðm2Þlk½ð8 − 12ζ3ÞCaðiÞ þ ð6ζ3 − 6ÞCaðkÞ�

þ 5g2aCaðiÞðyijkaijkMa þ aijkyijkM
�
aÞjMaj2 − 10g2ay

ijkyijkCaðiÞjMaj4

þ g2ay
ijkyijlðm2ÞlkjMaj2½14CaðkÞ − 4CaðiÞ�

þ g2ay
ijkyijlðm2Þnkðm2Þln½ð12ζ3 − 8ÞCaðiÞ þ ð8 − 18ζ3ÞCaðkÞ�

þ g2ay
ijkyilnðm2Þljðm2Þnk ½ð12ζ3 − 2ÞCaðiÞ þ ð12 − 24ζ3ÞCaðjÞ�

þ g2a½ð12ζ3 − 8ÞCaðiÞ þ ð10 − 18ζ3ÞCaðkÞ�fðaijk − yijkMaÞðaijl − yijlM
�
aÞμknμln

þ yijkyijl½ðbnl − μnlMaÞðbkn − μknM
�
aÞ þ ðm2Þnkμnpμlp þ μkpμ

npðm2Þln þ μknðm2Þnpμpl�
þ ½yijkyilnðm2Þlj þ yijkyjlnðm2Þli�μkpμnp þ yijkaijlμknb

ln þ aijkyijlbknμ
lng; ð4:41Þ

β
ð3cÞ
Λ

¼ g4ada½ð4 − 24ζ3ÞG2
a þ ð96ζ3 − 26ÞGaSa þ 10S2a�jMaj4

þ g2ag
2

bdaSabjMaj2½ð20 − 24ζ3Þð2jMaj2 þMaM
�
b þM�

aMbÞ − 24jMbj2�
þ g2aCaðiÞfg2a½ð84 − 120ζ3ÞGa − 36Sa� þ g2bCbðiÞð96ζ3 − 64Þgðm2ÞiijMaj2

þ g2ag
2

bCaðiÞCbðiÞ½ð48ζ3 − 40Þðm2Þii þ ð48ζ3 − 56Þμijμij�MaM
�
b

þ g2aCaðiÞ½g2að18Ga − 6SaÞ − 8g2bCbðiÞ�ðm2Þjiðm2Þij þ g4aCaðiÞ½ð56 − 24ζ3ÞGa − 16Sa�μijμijjMaj2

þ g2aCaðiÞ½ð24 − 12ζ3Þg2aGa − 8g2aSa þ ð24ζ3 − 28Þg2bCbðiÞ�½2ðm2Þjiμjkμik

þ ðbij − 2Maμ
ijÞðbij − 2M�

aμijÞ� þ 8g4aðm2Þii½ðm2Þjj − μjkμjk�CaðiÞCaðjÞ=da: ð4:42Þ

Note that βΛ vanishes in the case of no supersymmetry-

breaking terms.

To obtain the three-loop beta function for Λ, I found that

it was more than sufficient to consider Eq. (4.3) for the

following example models, chosen somewhat arbitrarily.

Since the goal here was only to obtain the beta function for

the field-independent vacuum energy, the background

values of all scalar fields were simply set to 0.

(i) Supersymmetric theory with no gauge symmetry and

six chiral superfields Φ1;2;3;4;5;6, with superpotential

W¼yΦ1Φ2Φ3þy0Φ1Φ4Φ5þy00Φ2Φ4Φ6þ1

2
μ1Φ

2

1
þ

1

2
μ2Φ

2

2
þ1

2
μ3Φ

2

3
þ1

2
μ4Φ

2

4
þ1

2
μ5Φ

2

5
þ1

2
μ5Φ

2

6
and soft

supersymmetry-breaking Lagrangian −Lsoft¼
m2

1
jϕ1j2þm2

2
jϕ2j2þm2

3
jϕ3j2þm2

4
jϕ4j2þm2

5
jϕ5j2þ

m2

6
jϕ6j2þΛ.

(ii) Supersymmetric theory with no gauge symmetry

and six chiral superfields Φ1;2;3;4;5;6, with super-

potential W¼yΦ1Φ2Φ3þy0Φ1Φ4Φ5þy00Φ2Φ4Φ6þ
μ12Φ1Φ2þμ34Φ3Φ4þμ56Φ5Φ6 and soft super-

symmetry-breaking Lagrangian −Lsoft¼m2

1
jϕ1j2 þ

m2

2
jϕ2j2þm2

3
jϕ3j2þm2

4
jϕ4j2þm2

5
jϕ5j2þm2

6
jϕ6j2þΛ.

(iii) Supersymmetric theory with no gauge symmetry

and two chiral superfields, with the most general

superpotential (including four independent Yukawa

couplings and three mass terms) and the most

general soft supersymmetry-breaking Lagrangian.

(iv) Supersymmetric Uð1Þ gauge theory with six chiral

superfields with charges q1;−q1; q2;−q2; 0, and 0,

with the most general allowed superpotential and the

most general soft supersymmetry-breaking Lagran-

gian consistent with these charge assignments.

(v) Supersymmetric Uð1Þ gauge theory with six chiral

superfields with charges q1;−q1; q2;−q2; ðq1 þ q2Þ,
and−ðq1 þ q2Þ, with themost general allowed super-

potential and soft supersymmetry-breaking Lagran-

gian consistent with these charge assignments.

(vi) Supersymmetric SUð2Þ gauge theory, with three

doublet chiral superfields Φ1, Φ2, and Φ3 and one

singlet S, with superpotential W ¼ yΦ1Φ2S, and

soft supersymmetry-breaking Lagrangian −Lsoft ¼
ðaϕ1ϕ2s þ 1

2
MλλÞ þ c:c: þ m2

1
jϕ1j2 þ m2

2
jϕ2j2 þ

m2

3
jϕ3j2 þ m2

s jsj2 þ Λ.

(vii) Supersymmetric SUð2Þ gauge theory, with four

doublet chiral superfields Φ1, Φ2, Φ3, Φ4, and

one singlet S, with superpotential W ¼ yΦ1Φ2Sþ
y0Φ3Φ4S, and soft supersymmetry-breaking Lagran-

gian −Lsoft ¼ ðaϕ1ϕ2sþ a0ϕ3ϕ4sþ 1

2
MλλÞþc:c:þ

m2

1
jϕ1j2þm2

2
jϕ2j2þm2

3
jϕ3j2þm2

4
jϕ4j2þm2

s jsj2þΛ.

(viii) Supersymmetric SUð2Þ × Uð1Þ gauge theory, with

chiral superfields transforming as ð2;þ1Þ, ð2;−1Þ,
and ð1; 0Þ, and the most general allowed superpoten-

tial and soft supersymmetry-breaking Lagrangian.
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(ix) Supersymmetric SUð3Þ gauge theory, with triplet and
antitriplet chiral superfields Φ, Φ̄, and one singlet S,

with superpotential W ¼ yΦΦ̄S, and soft super-

symmetry-breaking Lagrangian −Lsoft ¼ ðaϕϕ̄sþ
1

2
MλλÞ þ c:c:þm2jϕj2 þ m̄2jϕ̄j2 þm2

s jsj2 þ Λ.

The expression for β
ð3Þ
Λ

in Eqs. (4.39)–(4.42) was obtained

by writing the most general possible form for it with

unknown coefficients, and then solving for the coefficients

by demanding the vanishing of Eq. (4.3) for l ¼ 1; 2; 3.
These examples also produced numerous redundant

checks.

To obtain the previously unknown values of the three-

loop scalar field anomalous dimension coefficients

n7;…; n26 in Eq. (4.18), I found that it was again more

than sufficient to consider Eq. (4.3) for each of the

following example models:

(i) Supersymmetric Uð1Þ gauge theory with six chiral

superfields Φ1;2;3;4;5;6, with charges q1; q2; q3; q4;

−ðq1 þ q2Þ, and −ðq1 þ q3Þ, and a superpotential

W ¼ yΦ1Φ2Φ5 þ y0Φ1Φ3Φ6. To avoid a gauge

anomaly, q3
4
¼q3

1
þ3q2

1
q2þ3q1q

2

2
þ3q2

1
q3þ3q1q

2

3
.

The effective potential is a function of the Yukawa

couplings y, y0, the gauge coupling g, and the

background values of the scalar components of

Φ1 and Φ2, which are taken to be independent.

(ii) Supersymmetric SUð2Þ ×Uð1Þ gauge theory with

chiral superfields transforming as Φ1 ¼ ð2; q1Þ,
Φ2 ¼ ð2; q2Þ, Φ3 ¼ ð2; q3Þ, Φ4 ¼ ð1; q4Þ, Φ5 ¼
ð1;−q1 − q2Þ. There is a Yukawa interaction W ¼
yΦ1Φ2Φ5. To avoid gauge anomalies, q3¼−q1−q2,

and q3
4
¼ q3

1
þ 9q2

1
q2 þ 9q1q

2

2
þ q3

2
. The effective

potential is a function of the Yukawa coupling y, the
gauge couplings g and g0, and the background values
of the scalar components of Φ1 and Φ2, which are

taken to be independent.

(iii) Supersymmetric SUð2Þ gauge theory with chiral

superfields consisting of one doublet Φ and one

triplet Σ, with superpotential W ¼ yΦΦΣ. The

effective potential is a function of the Yukawa

coupling y, the gauge couplings g, and the back-

ground values of the scalar components Φ and Σ,

which are taken to be independent.

(iv) Supersymmetric Uð1Þ, SUð2Þ, and SUð3Þ gauge

theories with chiral superfields Φ and Φ̄ in funda-

mental and antifundamental representations, with

superpotentialW ¼ μΦΦ̄ and −Lsoft¼Λþm2jϕj2þ
m̄2jϕ̄j2þðbϕϕ̄þ 1

2
Mλaλaþc:c:Þ. The background

scalar field components of ϕ and ϕ̄ were taken to

be nonzero and equal along a D-flat direction, but

supersymmetry is explicitly broken by soft terms, so

the effective potential does not vanish.

In addition to determining the scalar field anomalous

dimension coefficients, these models again produced

numerous redundant checks of Eq. (4.3).

V. OUTLOOK

In this paper, I have provided the three-loop effective

potential in Landau gauge for a general softly broken

supersymmetric theory, using a regularization and renorm-

alization scheme that respects supersymmetry. As by-

products, the beta function for the field-independent

vacuum energy and the Landau gauge anomalous dimen-

sion of scalars have been obtained.

It should be noted that the results obtained in this paper

apply only to models with softly broken supersymmetry.

This is because if there is supersymmetry violation in the

dimensionless couplings (or simply in the field content) of

the theory, then it was shown in Refs. [61,62] that while

dimensional reduction can be applied in a consistent way,

renormalization requires that there are evanescent cou-

plings that are different (at all but at most one renormal-

ization scale) for ϵ scalars and vectors. This is inconsistent

with the procedure followed in the present paper, where the

contributions of ϵ scalars and vectors have been combined

due to always having the same gauge interactions. This is a

feature only of softly broken supersymmetry.

I have checked the consistency of the three-loop effective

potential for numerous toy models, as described above. An

obvious more practical application of the results obtained

here is to the MSSM, which could well describe our world

even though there are increasingly stringent bounds on

superpartners coming from direct searches at the Large

Hadron Collider. This would extend the two-loop results of

Ref. [63] and allow a more precise determination of the

relations between the Higgs vacuum expectation values

and the other renormalized Lagrangian parameters.

Implementing the general results found here in the special

case of the MSSM is in principle straightforward, although

the combinatorics appear to be somewhat intimidating.

This is left as an exercise for the clever and courageous

reader.
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