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Abstract

A C*-algebra satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and
Schochet if it is equivalent in Kasparov’s K K -theory to a commutative C *-algebra.
This paper is motivated by the problem of establishing the range of validity of the
UCT, and in particular, whether the UCT holds for all nuclear C *-algebras.

We introduce the idea of a C *-algebra that “decomposes” over a class € of C*-
algebras. Roughly, this means that locally there are approximately central elements
that approximately cut the C *-algebra into two C*-subalgebras from € that have
well-behaved intersection. We show that if a C *-algebra decomposes over the class
of nuclear, UCT C *-algebras, then it satisfies the UCT. The argument is based on a
Mayer—Vietoris principle in the framework of controlled K K-theory; the latter was
introduced by the authors in an earlier work. Nuclearity is used via Kasparov’s Hilbert
module version of Voiculescu’s theorem, and Haagerup’s theorem that nuclear C *-
algebras are amenable.

We say that a C*-algebra has finite complexity if it is in the smallest class of
C *-algebras containing the finite-dimensional C *-algebras, and closed under decom-
posability; our main result implies that all C *-algebras in this class satisfy the UCT.
The class of C*-algebras with finite complexity is large, and comes with an ordinal-
number invariant measuring the complexity level. We conjecture that a C *-algebra
of finite nuclear dimension and real rank zero has finite complexity; this (and sev-
eral other related conjectures) would imply the UCT for all separable nuclear C*-
algebras. We also give new local formulations of the UCT, and some other necessary
and sufficient conditions for the UCT to hold for all nuclear C *-algebras.

Keywords. Amenable C *-algebra, decomposition of a C *-algebra, controlled
K K -theory, Universal Coefficient Theorem
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Chapter 1

Introduction

Our aim in this memoir is to present some new techniques to establish the Universal
Coefficient Theorem in C *-algebra K-theory, and some new necessary and sufficient
conditions for the Universal Coefficient Theorem to hold for all nuclear C *-algebras.

Unless otherwise stated, anything in this introduction called A or B is a separable
C*-algebra.

1.1 The universal coefficient theorem

A C*-algebra A satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and
Schochet [55] if for any C *-algebra B, there is a canonical short exact sequence

0 — Ext(Kx(4), K«(B)) — KK(A, B) — Hom(Kx(A), K+ (B)) — 0.

Equivalently (see [55, p. 456] or [60, Proposition 5.2]), A satisfies the UCT if it is
K K -equivalent to a commutative C *-algebra.

The UCT is known to hold for a large class of C *-algebras. The fundamental
examples are the C *-algebras in the bootstrap class N . This is the smallest collec-
tion of separable, nuclear C *-algebras that contains all type I C *-algebras, and that
is closed under the following operations: extensions; stable isomorphisms; inductive
limits; and crossed products by R and Z. Rosenberg and Schochet [55] showed that
any C*-algebra in N satisfies the UCT. Another important class of examples was
established by Tu in [64, Proposition 10.7]; building on the work of Higson and Kas-
parov [35] on the Baum—Connes conjecture for a-T-menable groups, Tu showed that
the groupoid' C *-algebra of any a-T-menable groupoid satisfies the UCT. In particu-
lar, Tu’s work applies to the groupoid C *-algebras of amenable groupoids.

There has been other significant work giving sufficient conditions for the UCT
to hold, and in some cases also necessary conditions as well as the work mentioned
already, one has for example [60, Proposition 5.2], [53, Corollary 8.4.6], [21], [43,
Remark 2.17], [6, Theorem 4.17], [4], and [5]. Nonetheless, the bootstrap class and
the class of C *-algebras of a-T-menable groupoids, which are defined in terms of
global properties of the C*-algebras involved, remain the most important classes of
C *-algebras known to satisfy the UCT.

To be more precise, we need standard assumptions so that the groupoid C*-algebra is
defined and separable. Here, appropriate assumptions are that the groupoid is locally compact,
Hausdorff, and second countable, and that it admits a Haar system.
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On the other hand, Skandalis [60, p. 571] has shown? that there are C *-algebras
that do not satisfy the UCT. Skandalis’s examples are quite concrete; they are reduced
group C *-algebras of countably infinite hyperbolic groups with property (T), and
in particular are exact [44, Section 6.E]. Looking to more exotic examples, failures
of exactness can also be used to produce non-UCT C *-algebras; see for example
[14, Remark 4.3].

Despite these counterexamples, there are no known nuclear C *-algebras that do
not satisfy the UCT. Whether or not the UCT holds for all nuclear C*-algebras is
a particularly important open problem. One reason for this is the spectacular recent
progress (see for example [11,23,24,26,27,42,50,63]) in the Elliott program [22]
to classify simple, separable, nuclear C*-algebras by K-theoretic invariants. Estab-
lishing the range of validity of the UCT is now the only barrier to getting the “best
possible” classification result in this setting.

On the other hand, work inspired by the Elliott program has led to recent, and
again spectacular, success in the general structure theory of nuclear C *-algebras,
including the recent solution of a large part of the Toms—Winter conjecture [12, 13].
Our motivation in the current paper is to try to bridge the gap between properties
that are relevant in this structure theory — in particular the theory of nuclear dimen-
sion [70] introduced by Winter and Zacharias — and properties that imply the UCT.
In particular, our aim is to give local conditions that imply the UCT, in contrast to
the global conditions from the work of Rosenberg and Schochet [55] and Tu [64]
mentioned above.

1.2 Decompositions and the main theorem

We now introduce our sufficient condition for the UCT. For the statement below, if
X is a metric space, S is a subset of X, x € X, and ¢ > 0 we write “x €, S” if there
exists s € S with d(x, s) < e.

Definition 1.1. Let € be a class of unital C*-algebras. A unital C*-algebra’® A
decomposes over € if for every finite subset X of the unit ball of A and every ¢ > 0
there exist C *-subalgebras C, D, and E of A that are in the class € and contain 14,
and a positive contraction & € E such that

@ [k, x]|| <eforall x € X;
(i) hxe.,C,(1—h)x €, D,and h(1 —h)x €, E forall x € X;
(iii) for all e in the unitball of E, e €, C and e €, D.

2See also the exposition in [34, Sections 6.1 and 6.2].

3Not necessarily separable. For applications to the UCT, only the separable case is relevant,
but the definition admits interesting examples in the non-separable case, and it seems plausible
there will be other applications.
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One should think of C and D as being approximately (unitizations of) ideals in
A such that C + D = A, and E being approximately equal to (the unitization of)
C N D. We will discuss examples later.

Here, is our main theorem, which was inspired by our earlier work on the Kiinneth
formula (in collaboration with Oyono-Oyono) [48, 67], and by our earlier work on
finite dynamical complexity and finite decomposition complexity (in collaboration
with Guentner and Tessera) [29,31]. See Corollary 7.5 below for the proof.

Theorem 1.2. If A is a separable, unital C*-algebra that decomposes over the class
of separable, nuclear C*-algebras that satisfy the UCT, then A is nuclear and satis-
fies the UCT.

One can thus think of decomposability as an addition to the closure operations
that are used in the definition of the bootstrap class N .

1.3 C*-algebras with finite complexity

Following the precedent established by [30] in coarse geometry, the notion of decom-
posability suggests a complexity hierarchy on C *-algebras.

Definition 1.3. Let £ denote a class of unital C *-algebras. For an ordinal number «,
(i) ifa =0, let Dy be the class of C*-algebras D that are locally* in D;

(i) if @ > 0, let Dy be the class of C*-algebras that decompose over C*-
algebras in (g, Dp.
A unital C*-algebra D has finite complexity relative to D if it is in D, for some «.
If D is the class of finite-dimensional C *-algebras, we just say that D has finite
complexity.

If a unital C *-algebra D has finite complexity relative to D, the complexity rank
of D relative to D is the smallest o such that D is in D,. If D is the class of finite-
dimensional C*-algebras, we just say the complexity rank of D with no additional
qualifiers.

The following result is equivalent to Theorem 1.2 above. However, we think the
reframing in terms of complexity is quite suggestive.

Theorem 1.4. Let € be a class of separable, unital, nuclear C*-algebras that satisfy
the UCT. Then, the class of separable, unital C*-algebras that have finite complexity
relative to € consists of nuclear C*-algebras that satisfy the UCT.

4A C*-algebra is locally in a class D if for any finite subset X of D and any & > 0 there is
a C™*-subalgebra C of D thatis in £, and such that x €, C forall x € X.
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In particular, every separable C*-algebra of finite complexity is nuclear and sat-
isfies the UCT.

Examples 1.5. We can now give some non-trivial examples of C *-algebras that
decompose over natural, simpler, classes.

(i)  InProposition A.1, we show that for
2<n< oo,

the Cuntz algebra (9, has complexity rank one.

(i) In [31], Guentner and the authors introduced “finite dynamical complex-
ity” for groupoids, which also comes with a notion of complexity rank. In
Proposition A.8 we show that if G is a locally compact, Hausdorff, étale,
principal, ample groupoid with compact base space, then the complexity
rank of C(G) is bounded above by that of G. The class of groupoids
with finite dynamical complexity is quite large; see Examples A.9 and A.11
below.

Combining part (ii) above with Theorem 1.4 gives a new proof of the UCT for the
groupoid C *-algebras of a large class of groupoids. However, we cannot claim any
genuinely new examples; this is because the groupoids involved are all amenable, so
the UCT for their C *-algebras also follows from Tu’s theorem [64] (see Remark A.13
below for more details).

1.4 Kirchberg algebras

Generalizing the Cuntz algebras from (i) above, recall that a Kirchberg algebra is a
separable, nuclear C *-algebra A such that for any non-zero a € A, there are b,c € A
such that bac = 14. Kirchberg algebras are closely connected to the UCT problem for
nuclear C *-algebras thanks to the following theorem of Kirchberg; see [53, Corollary
8.4.6] or [43, Remark 2.17].

Theorem 1.6 (Kirchberg). To establish the UCT for all separable, nuclear C*-
algebras, it suffices to establish the UCT for any Kirchberg algebra with zero K-
theory. ]

Theorems 1.4 and 1.6 imply that if any Kirchberg algebra with zero K-theory
has finite complexity, then the UCT holds for all separable, nuclear C*-algebras.
Conversely, if the UCT holds for all separable, nuclear C *-algebras, then from the
Kirchberg—Phillips classification theorem [42, 50] (see also [53, Corollary 8.4.2] for
the precise statement we want here), any unital Kirchberg algebra with zero K-theory
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will be isomorphic to the Cuntz algebra ,, and so will have complexity rank one by
Examples 1.5 (i). We summarize this discussion in the theorem below.

Theorem 1.7. The following are equivalent:
(1)  Any Kirchberg algebra with zero K -theory has complexity rank one.
(i1)  All separable nuclear C*-algebras satisfy the UCT. |

Generalizing Examples 1.5 (i) above Jaime and the first author show in [37] that
a Kirchberg algebra that satisfies the UCT has complexity rank one if and only if its
K group is torsion free, and that moreover any UCT Kirchberg algebra has com-
plexity rank at most two. From Theorem 1.7, if one could prove this without the UCT
assumption, then the UCT for all separable nuclear C *-algebras would follow.

The paper [37] also discusses several other connections between complexity rank,
real rank zero, and nuclear dimension. We will not go into this any more deeply
here; suffice to say that these other connections inspired us to make the following
conjectures.

Conjecture 1.8. Any separable unital C*-algebra with real rank zero and finite nuc-
lear dimension has finite complexity.

Conjecture 1.9. Any separable unital C*-algebra with finite nuclear dimension has
finite complexity relative to the class of subhomogeneous® C *-algebras.

Thanks to Theorem 1.7 and the fact that all Kirchberg algebras have nuclear
dimension one (see [9, Theorem G]) and real rank zero (see [72]), either of these
conjectures implies the UCT for all separable, nuclear C *-algebras. There are many
other related conjectures one could reasonably make that imply the UCT for all nuc-
lear C *-algebras. About the strongest such conjecture would be that any separable,
nuclear C*-algebra with real rank zero has finite complexity®. One of the weakest is
that any Kirchberg algebra with zero K-theory has finite complexity.

1.5 A local reformulation of the UCT

We now discuss the methods that go into the proof of Theorem 1.2.

SRecall that a C *-algebra C is subhomogeneous if there is N € N and a compact Hausdorff
space X such that C is a C*-subalgebra of My (C(X)); see for example [8, Section IV.1.4]
for background.

6Tt would also be natural to drop the real rank zero assumption, and then only ask for finite
complexity relative to the subhomogeneous C *-algebras, or even just relative to the type I
C*-algebras.
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In our earlier work [68], we introduced controlled K K -theory groups KK (X, B)
associated to a C*-algebra B, a finite subset X of a C*-algebra A and a constant
& > 0. Very roughly (we give more details below), one defines these by representing
A in “general position” inside the stable multiplier algebra M(B ® K) of B. The
group KK (X, B) then consists of the “part of the K-theory of B that commutes
with X, up to &”.

To be more precise about this, assume that A and B are C *-algebras, and assume
for simplicity’ that A is unital. Let 7 : A — M(B ® X) be a faithful, unital, and
strongly unitally absorbing® representation. Fixing such a representation, identify A
with a diagonal subalgebra of M,(M(B ® X)) via the representation 7 @ 7. For
a finite subset X of the unit ball of A and & > 0, define (X, B) to be the set
of projections in M>(M(B ® X)) such that p-(49) is in M>(B ® X), and such
that ||[p, x]|| < & for all x € X. The associated controlled K K -theory group’ is then
defined to be the set

KK2(X, B) := no(Pe(X, B))

of path components in #;(X, B). One can show that this group is determined up to
canonical isomorphism by the subset inclusion X C A, by B, and by ¢; it does not
depend on the choice of representation.

Note that if X = &, then KKS (2, B) is canonically isomorphic to the usual
K-theory group Ko(B) (for any ¢); this is what we mean when we say K K.(X, B)
consists of the “part of the K-theory of B that commutes with X, up to &”.

Now, if 0 < § <eandif Y D X are finite subsets of 41, then there is an inclusion
Ps(Y, B) C P.(X, B) that induces a “forget control map”

KK3(Y, B) — KK:(X, B).

In [68, Theorem 1.1], we showed that there is a short exact “Milnor sequence” relat-
ing the inverse system built from these forget control maps to the usual K K-group
KK(A, B); see Theorem 2.13 below for details. This sequence is an analogue of the
Milnor sequence appearing in Schochet’s work [56, 57]; however, unlike Schochet’s
version, it is local in nature, and does not require the UCT.

Our first goal in this memoir is to use the Milnor sequence to establish the fol-
lowing “local reformulation” of the UCT.

"The theory also works for C *-algebras that are not unital, but the definitions are a little
more complicated.

8Roughly, a strongly unitally absorbing representation is one that satisfies the conclusion
of Voiculescu’s theorem for all representations of A on Hilbert B-modules; for the current
discussion, it is just important that such a representation always exists. See Definition 2.5 below
for details.

°It is canonically a group, with the operation given by Cuntz sum in an appropriate sense.
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Theorem 1.10. Let A be a unital C*-algebra. Then, the following are equivalent:
(1) A satisfies the UCT.

(ii) Let B be a separable C*-algebra such that K«(B) = 0, and let w : A —
M(SB ® K) be a strongly unitally absorbing representation into the stable
multiplier algebra of the suspension of B. Then, for any finite subset X of
A and any & > 0 there exists a finite subset Y of A containing X and § < &
such that the canonical forget control map

KKs(Y,SB) > KK (X, SB)
Jor the suspension of B is zero.

This is a key ingredient in our main results, but we hope it will prove to be useful
in its own right. Note in particular that there are no assumptions on A other than that
it is separable and unital'’.

There is a technical variation of Theorem 1.10 that applies to nuclear C *-algebras,
and that plays an important role in our arguments. The key point is one of order of
quantifiers; condition (ii) from Theorem 1.10 starts with quantifiers of the form

“YBVYrn VX VedY 36...7.
If A is nuclear, the same statement is true with the order of quantifiers replaced with

“Yed§ VBV VX IY ...”,

i.e., 6 depends only on ¢ and not on any of the other choices involved. To establish
this, we adapt an averaging argument due to Christensen, Sinclair, Smith, White, and
Winter [17, Section 3], which is in turn based on Haagerup’s theorem that nuclear
C *-algebras are amenable [33].

1.6 Strategy for the proof of the main theorem

Assume that A4 is a nuclear, unital C *-algebra that decomposes with respect to the
class of nuclear UCT C *-algebras as in the statement of Theorem 1.2. Assume more-
over that K, (B) = 0. Thanks to Theorem 1.10 above, to establish the UCT for 4 it
suffices to show that for any finite subset X of the unit ball A; of A, and any ¢ > 0
there exist ¥ 2 X and § < & such that the canonical forget control map

KKJ(Y,SB) — KK2(X, SB)

is zero.

10Unitality is not really necessary — we do not do it in this memoir, but similar techniques
establish the result above for non-unital separable C *-algebras, with appropriately reformu-
lated controlled K K-groups.
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Our approach to this is inspired directly by our earlier work with several col-
laborators; this includes the work on the Kiinneth formula of Oyono-Oyono and the
second author [48], and separately by the first author [67]; the work of Guentner and
the authors on the Baum—Connes conjecture for transformation groupoids with finite
dynamical complexity [31]; and the work of Guentner, Tessera, and the second author
on the stable Borel conjecture for groups of finite decomposition complexity [29].
These other papers all use controlled K-theory as opposed to K K-theory; the sem-
inal result along these lines is the second author’s work on the Novikov conjecture
for groups with finite asymptotic dimension [71].

In the current context, we use decomposability and a Mayer—Vietoris argument.
Let y > 0 be a very small constant, which is in particular smaller than &. Then, any
suitably small'' § > 0 will have the following property. Let 4 and C, D, and E be
nuclear UCT algebras as in the definition of decomposability for the given set X and
parameter §. Let Y¢, Yp and Yg be finite subsets of the unit balls C;, D1, and E;
respectively that contain X U {h}, (1 —h)X U {h}and k(1 — h) X U {h} respectively
up to §-error, and so that Y¢ and Yp both contain Yg up to §-error. Let

Y=YcUYpUYgUJX.

Then, one can construct a diagram'? of the form

@
KKY(Y,SB) 8 KK (Yc,SB) ® KK (Yp, SB)

l

KK,(Yg,S2B) —2— KK°(X.SB)
(1.1)

where the vertical arrow is the canonical forget control map. This diagram has the
“exactness” property that if [p] goes to zero under the map

kc ®kp : KKJ(Y,B) > KK (Yc,SB) ® KK3(Yp, SB) (1.2)

then the image of [p] under the forget control map KKJ (Y, SB) — KK2(X, SB) is
in the image of the map

d: KK,(Yg,S?B) — KK2(X, SB). (1.3)

"'The size of y depends linearly on ¢ and the size of § depends linearly on y; the constants
involved are very large.

12The form of this diagram is not new; the basic idea is modeled on [29, Diagram (5.8)]
from the work of the Guentner, Tessera, and the second author on the stable Borel conjecture
for groups with finite decomposition complexity. See also [31, Proposition 7.6] from work of
the Guentner and the authors in a more closely related context.
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However, as K«(B) = 0, if y and § are small enough, one can use Theorem 2.15 (in
the stronger form for nuclear C *-algebras) to choose Y¢, Yp, and Yg large enough
so that the maps in lines (1.2) and (1.3) are zero. This completes the proof.

In the detailed exposition below we structure the proof to give it as “local” a flavor
as possible, partly as we suspect that the ideas might be useful in other contexts. The
two main “local”(ish) technical results are recorded as Propositions 7.1 and 7.2 below.

The argument above is directly inspired by the classical Mayer—Vietoris principle.
Indeed, assume that C and D are nuclear ideals in A with intersection E, and such
that

A=C+D.

Then, there is'’ an exact Mayer—Vietoris sequence
...— KK°(E,SB) - KK°(A,B) -> KK°(C,B) ® KK°(D,B) — --- .

In particular, if the groups at the left and right are zero, then the group in the middle
is also zero. Our analysis of the diagram in line (1.1) is based on a concrete construc-
tion of this classical Mayer—Vietoris sequence that can be adapted to our controlled
setting. The idea has its roots in algebraic K-theory, going back at least as far as
[46, Chapter 2]. Having said this, there is significant work to be done adapting these
classical ideas to the analytic superstructure that we built in [68], and the resulting
formulas and arguments end up being quite different.

Remark 1.11. It would be very interesting to remove the nuclearity hypothesis from
Theorem 1.2, or at least to replace it with something weaker such as exactness. Let
us explain how nuclearity is used in the proof of Theorem 1.2, in the hope that some
reader will see a way around it.

The first use of nuclearity is to show that any nuclear, unital C *-algebra admits
strongly unitally absorbing representations whose restriction to any nuclear, unital
C *-subalgebra is also strongly unitally absorbing; see Corollary 2.7 below. The proof
of this is based on Kasparov’s version of Voiculescu’s theorem for Hilbert modules
[40, Section 7]. It seems plausible from the discussion in Remark 2.8 below that some
form of nuclearity is necessary for this to hold, but we do not know this.

The second place nuclearity is used is via an averaging argument due to Chris-
tensen, Sinclair, Smith, White, and Winter [17, Section 3]; this is applicable to nuc-
lear C *-algebras thanks to Haagerup’s theorem that nuclear C *-algebras are always
amenable [33]. This lets us prove a stronger version of Theorem 1.10; see Corol-
lary 2.22 below. We do not know if this result holds without nuclearity; see Remark
2.19 for a more detailed discussion.

131t is not in the literature as far as we can tell. For nuclear C *-algebras, it can be derived
from the usual long exact sequence in K K-theory using, for example, the argument of [69,
Proposition 2.7.15].
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1.7 Notation and conventions

For a subset S of a metric space X, x € X and ¢ > 0, we write “x €, S if there is
s € § with d(x,s) < e. For elements x, y of a metric space X, we write “x &2, y” if
d(x,y) <e.

We write £2 for £2(N). Throughout, the letters A and B are reserved for separable
C *-algebras. The letter C will refer to a possibly non-separable C *-algebra. The unit
ball of C (or a more general normed space) is denoted by C1, its unitization is C T, its
multiplier algebra is M (C), its suspension is SC, and its n-fold suspension is S”C.
We write M,, or M, (C) for the n x n matrices, and M, (C) for the n x n matrices
over a C*-algebra C.

Our conventions on Hilbert modules follow those of Lance [45]. We will write
Hp := {?> ® B for the standard Hilbert B-module, and £p, respectively Kp, as
shorthand for the C*-algebra £(Hp) of adjointable operators on Hp, respectively
the C*-algebra J (Hp) of compact operators on Hpg. We will typically identify £p
with the “diagonal subalgebra” 1y, ® £p of M, ® £ = M,(£p). Thus, we might
write “[x, y]” for the commutator of x € £p and y € M,(£p), when it would be
more strictly correct to write something like “[137, ® x, ¥]”.

The symbol “®” always denotes a completed tensor product: either the external
tensor product of Hilbert modules (see [45, Chapter 4] for background on this), or the
minimal tensor product of C *-algebras (see for example [10, Chapter 3]).

We will sometimes write 0, and 1, for the zero matrix and identity matrix of
size n when this seems helpful to avoid confusion, although we will generally omit
the subscripts to avoid clutter. If n < m, we will also use 1, € M,,(C) for the rank
n projection with n ones in the top-left part of the diagonal and zeros elsewhere.
Given an n X n matrix a and an m X m matrix b, a @ b denotes the “block sum”
(n + m) x (n + m) matrix defined by

a 0
aEBb.—(O b)'

Finally, K«(A) := K¢(A) & K;1(A) denotes the graded K-theory group of a
C*-algebra, and KK*(A, B) := KK°(A, B) ® KK (A, B) the graded K K -theory
group. We will typically just write KK (A, B) instead of KK°(A, B).

1.8 Outline of the paper

Chapter 2 gives our reformulation of the UCT in terms of a concrete vanishing condi-
tion for controlled K K-theory. The key ingredients for this are the Milnor sequence
from [68, Theorem 1.1], and some ideas around the Mittag—Leffler condition from
the theory of inverse limits (see for example [66, Section 3.5]). We also show that
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a stronger vanishing result holds for nuclear, UCT C *-algebras using an averaging
argument of Christensen, Sinclair, Smith, White, and Winter [17, Section 3]; the aver-
aging argument is in turn based on Haagerup’s theorem [33] that nuclearity implies
amenability.

Chapter 3 discusses our controlled K K°-groups. We introduced these in [68],
but we need a technical variation here. This is essentially because in [68] we were
setting up general theory, and for this it is easier to work with projections in a fixed
C*-algebra. In this memoir we are doing computations with concrete algebraic for-
mulas, where it is more convenient to work with general idempotents, and to allow
taking matrix algebras. We will, however, use both versions in this memoir, as we
need to relate our work back here to the general theory of [68]. We also introduce
controlled K K !-groups in a concrete formulation using invertible operators; in our
earlier work [68] we (implicitly) defined controlled K K!-groups using suspensions,
but here we also need the more concrete version.

Chapter 4 collects together some technical facts. These are all analogues for
controlled K K-theory of well-known results from K-theory; for example, we prove
“controlled versions” of the statements that homotopic idempotents are similar, and
that similar idempotents are homotopic (up to increasing matrix sizes). Some argu-
ments in this chapter are adapted from the work of Oyono-Oyono and the second
author [47] on controlled K -theory.

Chapter 5 revisits the vanishing conditions of Chapter 2. Using the techniques
of Chapter 4, we reformulate these results in the more flexible setting allowed by
Chapter 3. This gives us the vanishing conditions that are the first main technical
ingredient needed for Theorem 1.2.

Chapter 6 establishes the second main technical ingredient needed for Theorem
1.2. Here, we construct a “Mayer—Vietoris boundary map” for controlled K K -theory,
and prove that it has an exactness property. The construction is an analogue of the
usual index map of operator K-theory (see for example [54, Chapter 9]), although
concrete formulas for the Mayer—Vietoris boundary map unfortunately seem to be
missing from the C *-algebra literature. The formulas we use are instead inspired by
classical formulas from algebraic K-theory [46, Chapter 2], adapted to reflect our
analytic setting.

Finally, in the main body of the paper, Chapter 7 puts everything together and
gives the proofs of Theorem 1.2 and Theorem 1.4. We also include technical “local”
vanishing results that we hope to elucidate the structure of the proof, and might be
useful in other contexts.

The paper concludes with Appendix A, which gives examples of C*-algebras
with finite complexity. We first use a technique of Winter and Zacharias [70, Sec-
tion 7] to show that the Cuntz algebras (9,, with 2 < n < oo have complexity rank
one. We then use our joint work with Guentner on dynamic complexity [31] to show
that ample, principal, étale groupoids with finite dynamical complexity and compact
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base space have C *-algebras of finite complexity; we also get a similar result without
the ampleness assumption if we allow C *-algebras with finite complexity relative to
subhomogeneous C *-algebras.



Chapter 2
Reformulating the UCT

In this chapter (as throughout), if B is a separable C *-algebra, then £p and Kp are
respectively the adjointable and compact operators on the standard Hilbert B-module
’® B.

Our goal in this chapter is to recall the definition of the controlled K K-theory
groups, and then to reformulate the universal coefficient theorem in these terms.

We first recall the definition of the controlled K K-theory groups from [68]; to be
precise, we need the version from [68, Sections A.1 and A.2] that is specific to unital
C *-algebras. We need a definition.

Definition 2.1. Let B be a separable C *-algebra. Choose a unitary isomorphism
0? =~ C? ® {?> ® {2, which induces a unitary isomorphism

PRB=(C?0?®(*®B

of Hilbert B-modules. With respect to this isomorphism, let e € £ be the projection
corresponding to (§ §) ® 1y2g¢2¢p. We call e the neutral projection. A subset X of
£Lp is called large if every x € X is of the form 1¢2g2 ® y for some y € £({? ® B)
with respect to this decomposition.

Definition 2.2. Let B be a separable C *-algebra. Let ¢ > 0, let X be a finite, large,
subset of the unit ball of £p and let e € £p be the neutral projection as in Defini-
tion 2.1. Let P (X, B) consist of those projections p in &£p such that

(i) p—ee Kp;and
(i) ||[p,x]|| < eforall x € X.
Define KK, (X, B) to be the set o(FP: (X, B)) of path components of (X, B). We

write [p] € KK (X, B) for the class of p € #.(X, B).
Choose now isometries t1,t, € B({?) satisfying the Cuntz relation

nty + nty =1,

and define s; 1= 12 ® 1; ® 1y2gp € £p. Define an operation on K K (X, B) by the
Cuntz sum
[p] + lg] := [s1psy + s2955].

The same proof as [68, Lemma A.4] shows that K K.(X, B) is an abelian group,
with identity element given by the class [e] of the neutral projection.

We finish this section with two ancillary lemmas. The first is extremely well-
known; we include an argument for completeness as we do not know a convenient
reference.
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Lemma 2.3. Let a and b be elements of a unital C*-algebra with b normal. Then,
any z in the spectrum of a is contained within distance ||a — b|| of the spectrum of b.

Proof. We need to show that if z is further than |ja — b|| from the spectrum of b, then
a — z is invertible. Indeed, in this case the continuous functional calculus implies that
(b —2z)"1| < |la —b|~". Hence,

l@a=2)b—2"" =1 <l@=2)=b-=2lIG-2)7"| <1,
whence (a — z)(b — z)™! is invertible, and so a — z is invertible too. ]

Lemma 2.4. Let B be a separable C*-algebra, let ¢ > 0, and let X be a finite, large,
subset of the unit ball of £ . With notation as in Definition 2.2, the group KK (X, B)
is countable.

Proof. As B is separable Kp is separable, and so the set P.(X, B) is also separable.
Let S be a countable dense subset of #;(X, B). It suffices to show that the map
S — KK.(X, B) defined by p — [p] is surjective.

Let p € P.(X, B) be arbitrary, and define

§ := min {%(8 — max Iy, x11D), %}
Let ¢ € S be such that |p —¢|| < 8, and let p; := (1 —t)p + tq for ¢t € [0, 1].
Then, for each ¢ € [0, 1], |p; — pll < 6, so Lemma 2.3 and that p, is a positive
contraction implies that the spectrum p; is contained in [0,8) U (1 — 6, 1]. Let y
be the characteristic function of (%, 00). Then, ||x(p:) — p:|l < 8 for all ¢, whence
lx(p:) — pll < 26 for all ¢, from which it follows that ||[x(p;), x]|| < & for all ¢ and
all x € X. As p; —e € Kp forall ¢, it follows from the fact that Kp is an ideal in £p
that y(p;) — e € Kp too. Hence, (x(p:)):efo,1] is a path connecting p and g within
P:(X, B) so [p] = [q], and we are done. ]

2.1 The general case

We need a special class of representations on Hilbert B-modules, essentially taken
from work of Thomsen [62, Definition 2.2] (see also [68, Definition A.11]). We do
not need the details of the definition below, and only include it for completeness; all
we really need are the facts about existence of such representations in Lemma 2.6
below.

Definition 2.5. Let A be a separable, unital C*-algebra, and let B be a separable
C*-algebra. A representation ¢ : A — £Lp is unitally absorbing if for any unital
completely positive map ¢ : A — £ p there exists a sequence of isometries (v,) in £p
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such that ||vyo(a)v, —¢(a)|| — 0 asn — oo, and such that v o (a)v, — ¢ (a) € Kp
forall n € N.

For arepresentationo : A > £p = £(Hp),letc>®: A — :fi(H§9°°) be its infinite
amplification, which we identify with a representation c*° : A — £ p via a choice of
unitary isomorphism (¢2)®> = ¢ as in the string of identifications below

LHE™®) = 2((1? @ B)®®) = L((P)®° @ B) =~ £(> ® B) = £5

(all of the identifications labeled “=" are canonical). A unital representation 7 : A —
£ p is strongly unitally absorbing if there is a unitally absorbing representation

OZA—)Q@B

such that 7 = g®®,

Note that a (strongly) unitally absorbing representation is faithful. The following
result is essentially due to Thomsen and Kasparov. Our main use of part (ii) occurs
much later in the paper.

Lemma 2.6. Let A be a separable, unital C*-algebra, and let B be a separable
C*-algebra. Then,

(1)  There exists a strongly unitally absorbing representation w : A — £p.

(i) Assume in addition that A or B is nuclear. Let 0 : A — B({?) be any
faithful unital representation, let 1 : B({*) — £ g be the canonical inclusion
arising from the decomposition Hg = (> ® B, and let w : A — £ be the
infinite amplification of 1 o 0. Then, 1 is strongly unitally absorbing.

Proof. For part (i), Thomsen shows in [62, Theorem 2.4] that a unitally absorbing
representation o : A — £p exists under the given hypotheses. Its infinite amplifica-
tion m is then strongly unitally absorbing.

For part (ii), note first that identifying (1 o 0)* with (1 o (6©%°))® we may
assume o is the infinite amplification of some faithful unital representation A —
B(£?). Having made this assumption, note that o (4) N K (£2) = {0}. In [40, Theorem
5], Kasparov shows that if A is a separable, unital C*-algebra and o : 4 — B(£?)
is a faithful representation such that o(4) N K (£?) = {0}, and moreover if either A
or B is nuclear, then the composition ¢ o ¢ satisfies the condition Thomsen gives in
[62, Theorem 2.1, condition (4)]. Comparing [62, Theorem 2.1] and Definition 2.5,
we see that ¢ o o is unitally absorbing. Hence, 7 = (1 0 0)® is strongly unitally
absorbing. [

The following corollary is immediate from part (ii) of Lemma 2.6.

Corollary 2.7. Let A be a separable, unital, nuclear C*-algebra, and let B be a
separable C*-algebra. Then, there exists a strongly unitally absorbing representation
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7w . A — £p such that the restriction of 7 to any unital, nuclear C *-subalgebra of A
is also strongly unitally absorbing. ]

Remark 2.8. Corollary 2.7 is one of the two places nuclearity is used in the proof of
Theorem 1.2, so it would be interesting to establish the corollary under some weaker
assumption than nuclearity. The following observation shows that the method we used
to establish Corollary 2.7 cannot extend beyond the nuclear case, however.

Let A be a separable, unital C*-algebra, and let A = B. Leto : A — B({?) be
a unital representation, and let 7 := (00 : A — £4 be as in Lemma 2.6 (ii). We
claim that if 7 is unitally absorbing, then 4 is nuclear'. Let ¢ : 4 — £4 be the *-
homomorphism a — 1,2 ® a. If 7 is unitally absorbing then for any ¢ and finite subset
X of A there is an isometry v € £4 such that |[v*7w(a)v — ¢(a)| < eforalla € X.
For each n, let p, € B(£?) be the orthogonal projection onto £2({1,...,n}), and let
qn = pn ® 14 € £4. Note that ¢, £4¢; identifies canonically with A, and up to this
identification q;¢(a)q1 = a for all a € A, so in particular ||g;v*7(a)vg; —al < ¢
forall @ € X. As (g,) converges strictly to the identity in £4, and as ;v € K4, we
have moreover that ¢;v*g, 7 (a)g,vq; converges in norm to ¢;v*m(a)v*qy, so there
is n such that ||g v*qn 7, (a)gnvg1 — a|| < € for all a € X. We thus have ucp maps

gn(BU?) @ 14)gn = M, (C) M 4

a>qnr(a)qn

A

whose composition agrees with the identity on X to within € error. As X and ¢ were
arbitrary, this implies nuclearity of A (see for example [10, Chapter 2]).

To state the main result of [68], we need some more definitions.

Definition 2.9. Let A be a separable, unital C*-algebra, and let B be a separable
C*-algebra. A representation 7w : A — Lp is large if there is a unitally absorbing
representation o : A — £p such that with respect to the choice of isomorphism

CPeB=C’’R®B
of Definition 2.1, we have 7(a) = I¢2gp2 ® o(a) foralla € A.

Lemma 2.6 (i) implies that large representations exist for any (separable) 4 and B.
Note that if 7 is large in the sense of Definition 2.9 then for any X C A, the subset
7(X) C £p is large in the sense of Definition 2.1. In particular, if we identify X with
7w (X), the group KK (X, B) of Definition 2.2 makes sense.

Definition 2.10. Let C be a C *-algebra, and let X¢ consist of all pairs of the form
(X, &) where X is a finite subset of Cq, and & > 0. Put a partial order on X¢ by

IThe following argument is inspired by [60, Théoreme 1.5, Definition 1.6, and Remarque
1.7].
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stipulating that (X, e) < (¥, 8) if § < ¢, and if for all x € X there exists y € Y with
lx = yll < 5(e—9).

A good approximation of C is a cofinal sequence’ ((Xp, €,))S, of elements
of Xc.

Note that if X C Y and § < g, then (X, &) < (Y, §); in particular, this implies
that X ¢ is a directed set. Note also that good approximations exist if and only if C is
separable: if () is a decreasing sequence that tends to zero, and (X},) is an increasing
sequence with dense union in Cy, then ((X,, &,))5—; is a good approximation; and
if ((Xn,€2))32, is a good approximation, then (_J;- ; X, is a countable dense subset
of C1 .

Definition 2.11. Let B be a separable C *-algebra, and let X ¢, be the directed set
from Definition 2.10 above for the C *-algebra £p. If (X, &) < (¥,4) and X and Y
are both large in the sense of Definition 2.1, then with notation as in Definition 2.2
there is an inclusion

Ps(Y,B) € P.(X, B). (2.1)

We call the canonical map
KKs(Y,B) > KK.(X, B)

induced by the inclusion in line (2.1) above a forget control map.

We now briefly recall some terminology from homological algebra; see for exam-
ple [66, Section 3.5] or [58, Section 3] for more background on this material®. An
inverse system of abelian groups consists of a sequence of abelian groups and homo-
morphisms

on bn—1 bn—2 ¢2 @1

An A2 Al.

Associated to such a system is a homomorphism

¢ 1_[ A, — l_[ A, (an) = (Pn(an+1)).

neN neN
The inverse limit, denoted liin Ay, s defined to be the kernel of id — ¢, and the li(r_nl-
group, denoted limlAn, is defined to be the cokernel of id — ¢. Note that if m > n,

there is a canonical homomorphism A, — A, defined as ¢, o ¢p,+1 0+ 0 Pp—_1.
The inverse system satisfies the Mittag—Leffler condition if for any n there is N > n

2A sequence (s,,)32_; in a partially ordered set S is cofinal if s; < 52 < s3 <--- and if for
all s € S there is n such that s < s,,.
3Readers interested in a more sophisticated and general treatment can also see [38].



Reformulating the UCT 18
such that for all m > N, the image of the canonical map A4,, — A, equals the image
of the canonical map Ay — A4,.

Proposition 2.12. Let (A;) be an inverse system of abelian groups. If (Ay) satisfies
the Mittag—Leffler condition, then lim' A, = 0. Conversely, if lim' A,, = 0 and each
<« <~

Ay, is countable, then the inverse system satisfies the Mittag—Leffler condition.
Proof. 1t is well-known that the Mittag—Leffler condition implies vanishing of
lim'4, = 0;
<«
see for example [66, Proposition 3.5.7]. The converse in the case of countable groups
follows from [28, Proposition on page 242]. ]

Now, let A be a separable, unital C*-algebra, let B be a separable C *-algebra,
and use a large representation 7 : A — £p (see Definition 2.9) to identify A with a
C*-subalgebra of £p. Let ((X,,e,));2; be a good approximation of A4 as in Defini-
tion 2.10, so the forget control maps of Definition 2.11 form an inverse system

-+ —> KK, (X»,B) > KK, ,(Xp—1,B) > -+ = KK, (X1, B)

from which we define lim KK, (X, B) and lim' KK,, (X, B) as above.
The following is [68, Proposition A.10].

Theorem 2.13. Let A and B be separable C*-algebras with A unital. Let
T:A—> &L B

be a large representation, and use this to identify A with a C*-subalgebra of £ p. Let
((Xn,en));2, be a good approximation for A. Then, there is a short exact sequence

0 — lim' KKs, (Xn. SB) — KK(A, B) — lim KK, (Xn. B) — 0. -

We are now almost ready to state and prove our reformulation of the UCT. It
will be convenient to use the following well-known reformulation of the UCT; see
[55, p. 457] or [60, Proposition 5.3] for a proof.

Theorem 2.14. A separable C*-algebra A satisfies the UCT if and only if for any
separable C*-algebra B such that K«(B) = 0 we have that

KK(A,B) = 0. n

Theorem 2.15. Let A be a separable C*-algebra. The following are equivalent:
(i) A satisfies the UCT.
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(ii) Let B be a separable C*-algebra with K (B) = 0. Let
w:A— Lsp

be a large representation, and use this to identify A with a C*-subalgebra
of £sp. Then, for any (X, y) in the set X4 of Definition 2.10, there is
(Z,e) € Xq with (X,y) < (Z, ¢) and so that the forget control map

KK.(Z.SB) — KK, (X, SB)

of Definition 2.11 is zero.

Proof. Assume first that A satisfies condition (i), and let X, e, B and 7 be as in
condition (ii). Let ((X5, &x))5>, be a good approximation of 4 with X; = X and
&1 = y. As A satisfies the UCT and as K«(B) = 0, we have KK(A, B) = 0. Hence,
using Theorem 2.13, liianKen (Xn,SB) = 0. Lemma 2.4 implies that the groups
KK, (X, SB) are all countable, whence by Proposition 2.12, the inverse system
(KK, (X, SB));2, satisfies the Mittag—Leffler condition. On the other hand, as
A satisfies the UCT and K«(SB) = 0, we have KK (A, SB) = 0 by Theorem 2.14.
Hence, by Theorem 2.13 again, liin KK,, (X, SB) = 0, whence the definition of the

inverse limit implies that for any #,

() Image(KKe,, (Xm.SB) — KK,,(X,.SB)) = 0.

mZn
The Mittag—Leffler condition implies that there is N > n such that

() Image(K K, (Xm. SB) — KK, (Xy. SB))

m>n

= Image(KKgN (Xn,SB) - KK, (Xn, SB))
so we may conclude that the forget control map
KK\ (Xn,SB) - KK, (X,.SB)

is zero. In particular, such an N exists forn =1, and we may set Z = Xy and e = ey.

Conversely, say A satisfies condition (ii). Using Theorem 2.14, it suffices to show
that if B is a separable C *-algebra with K.«(B) = 0, then KK(A, B) = 0. Let
7wy A — Lg2p (respectively, w3 : A — Lg3p) be a large representation, and use
this to identify A with a C*-subalgebra of &£ g2 5 (respectively, £ g3 5). Using condi-
tion (ii) we may construct a good approximation ((X, &,));—, for A in the sense of
Definition 2.10 such that for any n the maps

KK Xn+1,S>B) — KK, (X,,S>B) (2.2)

sn+1(
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and
KK, (Xp41.S?B) > KK, (Xn, S*B) (2.3)

are zero. As the maps in line (2.2) are all zero, the inverse system
(KK, (Xn.S?B))32,
satisfies the Mittag—Leffler condition, whence by Proposition 2.12 we have that

lim' KK, (X,.S>B) = 0.

On the other hand, the fact that the maps in line (2.3) are all zero and the definition

of the inverse limit immediately imply that limK K, (X,,, S*B) = 0. Hence, in the
P

short exact sequence

0 — lim' KK, (X,,S*B) — KK(A, S*B) — lim KK, (X,,S*B) — 0
<« <«

from Theorem 2.13 the left and right groups are zero, whence KK (A, S?B) = 0.
Hence, by Bott periodicity, KK(A4, B) = 0 as desired. ]

We include the following remark as the comparison to the existing literature might
help orient some readers; it also gives a sense of why Corollary 2.7 is useful (our main
use of that corollary will come later in the paper).

Remark 2.16. Theorem 2.15 can be used to deduce a weak version of a theorem
of Dadarlat [21, Theorem 1.1]. Dadarlat shows that if A is a separable nuclear C *-
algebra such for any finite subset X of A and any ¢ > 0, one has a UCT subalgebra C
of A such that x €, C for all x € X, then A satisfies the UCT. Theorem 1.2 implies
the special case of Dadarlat’s theorem where the subalgebras C can also be taken
nuclear.

To see this, note first that as a C*-algebra satisfies the UCT (respectively, is
nuclear) if and only if its unitization satisfies the UCT (respectively, is nuclear) by
[55, Proposition 2.3 (a)] (respectively, by [10, Exercise 2.3.5]), we may assume that
A is unital. We aim to establish the condition in Theorem 2.15 (ii). Let then B be
a separable C *-algebra with K.(B) = 0. Using Corollary 2.7, there exists a large
representation 7 : A — £gp such that the restriction of 7 to any unital nuclear C *-
subalgebra of A is also large. Let X be a finite subset of A1, and let ¢ > 0. Let C be
a nuclear, unital, UCT C *-subalgebra of A such that x €,/5 C forall x € X.Let X’
be a finite subset of C; such that for each x € X there is x’ € X’ such that

lx —x'|| < 2e/5.
Then, the forget control map

KKqy/s(X'.SB) > KK.(X, B) (2.4)
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of Definition 2.11 is defined. As C satisfies the UCT, and as the restriction of 7= to C
is also large, condition (ii) from Theorem 2.15 gives a finite subset ¥ of C; and § > 0
such that the forget control map

KKs(Y,SB) — KKg/5(X', SB) 2.5)

is defined and zero. Composing the forget control maps in lines (2.4) and (2.5), we
have established the condition from Theorem 2.15 (ii) for A, and are done.

It would be interesting if one could use these techniques to recover Dadarlat’s
theorem without the extra nuclearity assumption on the UCT subalgebras. This would
seem to require better control over the representations involved; however, compare
Remark 2.8 above.

2.2 The nuclear case

In this section, we prove a stronger version of Theorem 2.15 in the special case that
the C*-algebra A is nuclear. The key ingredient for this is an averaging argument
due to Christensen, Sinclair, Smith, White, and Winter [17, Section 3], which in turn
relies on Haagerup’s theorem [33] that nuclear C *-algebras are amenable.

Let us recall some terminology about bimodules.

Definition 2.17. Let A be a unital C *-algebra. An A-bimodule is a Banach space E
equipped with left and right module actions of A such that 14¢ = el4 = e for all
e € E,and such that ||ae||g < ||a|lalle|lg and ||ea||g < |lel|E|la||4 for all a € A and
ecE.

The following reformulation of nuclearity is implicitin [17, Section 3]; the reader
is encouraged to see that reference for further background.

Lemma 2.18. Let A be a unital C*-algebra. Then, the following are equivalent:
(i)  Ais nuclear,

(ii) for any e > 0 and any finite subset X of A, there exist contractions
ai,...,a, € A
and scalars tq, . .., ty € [0, 1] such that Z?:l t; = 1, such that

n
14 — Ztiaiaf

i=1

<,
A

and such that for any A-bimodule E, any e € Ey, and any x € X,

n n
X(Ztiaiea;k) — (Ztiaiea;")x

i=1 i=1

< é&. (2.6)

E
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Proof. We will need to recall the projective tensor product of Banach spaces. Let
E and F be (complex) Banach spaces, and let £ © F denote their algebraic tensor
product (over C). The projective norm of g € E © F is defined by

n
lgll :=inf > llesllz 11 /il - @7

i=1

where the infimum is taken over all ways of writing g as a sum » ;_, ¢; ® f; of
elementary tensors. The projective tensor product of E and F', denoted E ®F , 1S the
completion of E © F for the projective norm. If A is a C *-algebra, we make 4 ® A
into an A-A-bimodule via the actions defined on elementary tensors by

ab®c)=ab®®c and (b Qc)a:=bRca. (2.8)

Now, it is shown in [17, Lemma 3.1]* that a unital C *-algebra is nuclear if and only
if the following holds: “for any & > 0 and any finite subset X of A, there exist con-
tractions ai,...,a, € A and scalars tq, ... ,t, € [0, 1] such that er'l=1 t; = 1, such

that
n
14 — Z t,-aiaf

i=1

<e,
A

and such that

<e (2.9)
ARA

n n
x(Ztiai ®a;‘) — (Ztiai ®a?)x

i=1 i=1

for all x € X.” For the sake of this proof, let us call this the “CSSWW” condition. It
suffices for us to show that condition (ii) is equivalent to the CSSWW condition.

First assume A satisfies condition (ii) above. Then, taking £ = A ® Aand e =
14 ® 14 shows that A4 satisfies the CSSWW condition. Conversely, say A satisfies the
CSSWW condition. Let X be a finite subset of A and let ¢ > 0, and let aq, ..., a,
and 71, ..., t, satisfy the properties in the CSSWW condition with respect to this X
and . Let E be an A-bimodule, and e € E;. Consider the map

T:AQA—E, a®b+> aeb

from the algebraic tensor product (over C) of A with itself to £. Using the definition
of the projective tensor norm (line (2.7) above), it is straightforward to check that &

4This is based on several deep ingredients: the key points are the result of Connes [20),
Corollary 2] that amenability for a C *-algebra implies nuclearity; the converse to this due
to Haagerup [33, Theorem 3.1]; and Johnson’s foundational work on amenability and virtual
diagonals [39, Section 1].



The nuclear case 23

is contractive for that norm, whence it extends to a contractive linear map
7:A® A— E.

Moreover, the extended map 7 is clearly an A-bimodule map for the bimodule struc-
ture on A ® A defined in line (2.8). Applying 7 to the expression inside the norm in
line (2.9) therefore implies the inequality in line (2.6), so we are done. |

Remark 2.19. We will only need to apply Lemma 2.18 in the special case that the
bimodule E in part (ii) is a C *-algebra containing A as a unital C *-subalgebra, with
the bimodule actions defined by left and right multiplication. The corresponding,
formally weaker, variant of condition (ii) still implies nuclearity, as we now sketch’.
Let A be a unital C *-algebra satisfying the variant of condition (ii) from Lemma 2.18,
where FE is a C*-algebra containing A as a unital C *-subalgebra. Let 7 : A — B(H)
be an arbitrary unital representation, which we use to make B(H) an A-bimodule.
Let I be the directed set consisting of all pairs i = (X, &) where X is a finite subset of
A, and ¢ > 0, and where (X,e) < (Y,8)if X CY and§ <e.Foreachi = (X,¢) € I,
let aii), . ,a,(fl.) and tl(i), - t,g? have the properties in Lemma 2.18 (ii). For each i,
define a ccp map

n;
¢i - B(H) - B(H), b Zt;i)n(a](-i))bn(a](-i))*,
j=1
and let ¢ : B(H) — B(H) be any point-ultraweak limit point of the net (¢;) (such
exists by [10, Theorem 1.3.7], for example). Then, one checks that ¢ is a conditional
expectation from B (H ) onto 7 (A)’, whence the latter is injective. As 7 was arbitrary,
this implies that A is nuclear; indeed, applying this to the universal representation
implies that 7 (A)’ is injective, whence

A** — JT(A)H
is injective by [8, Theorem IV.2.2.7], whence A is nuclear by the main result of [16].

Variants of the next lemma we need are well-known; see for example the lemma
on page 332 of [3], which we could have used for a purely qualitative version. For the
sake of concreteness, we give a quantitative® version.

SThis also gives an approach to the theorem of Connes that amenable C *-algebras are
nuclear that is maybe slightly more direct than the original argument from [20, Corollary 2].
However, it still factors through the theorem that injective von Neumann algebras are semi-
discrete (see [19, Theorem 6] for the case of factors, and [65] for the general case), so cannot
really be said to be genuinely simpler.

The estimate it gives is optimal in some sense; to see this consider C = M>(C), x =

(0125)- and e = (})-
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Lemma 2.20. Let § € [0, %), and let x be a self-adjoint element in a C*-algebra C
with spectrum that does not intersect the interval (8,1 — §). Let x be the characteristic
function of (%, 00). Then, for any ¢ € C,

1
1-24

(). elll = I, el

Proof. Let N > ||x||. Let y be the positively oriented rectangular contour in the
complex plane with vertices at % 4+ iN, and 2N £ iN. Then, by the holomorphic
functional calculus, y(x) = ﬁ fy(z — x)"!dz. Hence, for any ¢ € C, [y(x),c] =
1

T fy[(z —x)71, c]dz. Applying the formula
[(z—x)7 el = (=2 e, x](z —x)"

and estimating gives
I[[e. x]I _
IExeonell = M5 [ 1 -0 Pl 2.10)
T Jy

Let y; be the side of y described by {% +it | =N <t < N}, and let y; be the union
of the other three sides. Then, for z in the image of y,, the continuous functional

calculus implies that
Iz =)~ = (N = fIxID~".

As the length of y; is 4N, we thus see that

- 4N
Iz =) Id |z

< 2.11
. = N @1

On the other hand, for z = % + it in the image of y;, the continuous functional
calculus gives ||(z — x)7!|| < ((% —8)2 4 t?)"1/2, whence

N 1
[||<z—x)—1||2d|z|s/ S
. N8R 412

< / Tl - (2.12)
B —oo(%—8)2+12 %—5' .
Combining lines (2.10), (2.11), and (2.12) we get
I[[e. x]Il 4N il
Ix (). elll = + :
2 \(N— =2 " 15
Letting N — oo gives ||[x(x),c]|| < %, which is the claimed estimate. ]

The following lemma is our key application of Lemma 2.18.



The nuclear case 25

Lemma 2.21. Let ¢ € (0, 1). Let B be a separable C*-algebra, and let A be a sep-
arable, unital, nuclear C*-algebra. Let w : A — £sp be a large representation (see
Definition 2.9), and use this to identify A with a C*-subalgebra of £sp.

Let X be a finite subset of Ay, and let (Y, 8) be an element of the set X4 of
Definition 2.10 such that (X, e) < (Y, 8). Then, there exists a finite subset Z of Ay
containing X and a homomorphism

¢« : KK;3(Z, B) — KK5(Y, B)
such that the following diagram
KK./3(Z,B)
o
KKs(Y,B)—— KK.(X, B)
(where the unlabeled maps are forget control maps as in Definition 2.11) commutes.

Proof. Let X, Y, and § be as in the statement. If § > ¢/8, we may just take Z = Y
and ¢, the forget control map. Assume then that § < £/8. According to Lemma 2.18
there exists contractions a1,...,a, € Aand ty,...,t, € [0, 1] such that Z?Zl i =1,

such that
n
14 — Z tiaia;“
i=1 A
and such that for all y € Y and b in the unit ball of £p,

n n
y(Zt,-aiba;k) — (Zt,-aiba;k)y
i=1 i=1

Weset Z := X U {aj,...,a,}, and claim this works.
Let p € P¢/3(Z, B), lete € £ g be the neutral projection (see Definition 2.1), and

define
n n
a(p) = Ztiaipa;" + (e — Ztiaiea;k) c £p.
i=1 i=1

As the representation is large, we may use the fixed isomorphism > ® B =~ C? ®
02 ® B to identify £p with M,(£p) and have that with respect to this identification,
operators in A are diagonal matrices, and e = ((1) 8). In particular, e commutes with

all the a;, and so we have
(1 — Zt,a a; )

n
(1 —Zt,'aiai)
i=1
<-4 4- (2.14)

8§ & &
4 8 4

< §/4,

< §8/4. (2.13)

Lsp

Ip —a(p)l < +Zrl lailp.afll +
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Asd <e/8andase < 1,weseethat |p—a(p)| < %. As p is a projection, Lemma 2.3
implies that
spectrum(a(p)) N (1/4,3/4) = @. (2.15)

Let y be the characteristic function of (%, 00), s0 x is continuous on the spectrum
of a(p) and we may define ¢(p) := y(x(p)). The rest of the proof will be spent
showing that the formula [p] — [¢(p)] defines a homomorphism

¢« : KK;6(Z, B) — KK5(Y, B)

with the claimed properties.
We first claim that if p € $;/3(Z, B), then ¢(p) is in Ps(Y, B). Note first that

n
a(p)—e =) tiai(p—ea;,
i=1
which is in Kp. As Kp is an ideal in £p, it follows f(a(p)) — f(e) is in Kp for
any polynomial f. Letting (f;) be a sequence of polynomials that converges uniform
to y on the spectrum of a(p) and letting n — oo, we see that y(«(p)) — e is in Kp.
Letnow y € Y and apply the inequality in line (2.13) once with » = p and once with
b = e (and use that [e, y] = 0) to deduce that

[lee(p), y1Il < 8/2. (2.16)

Lines (2.16), (2.15), and Lemma 2.20 imply that ||[y(«¢(p)), y]|| < §, completing the
proof that ¢ (p) is an element of P5(Y, B). Moreover, it is straightforward to see that
the assignment

Pess(Z.B) > Ps(Y. B), p+>d(p)

takes homotopies to homotopies and Cuntz sums to Cuntz sums. Hence, we do indeed
get a well-defined homomorphism

¢« : KKe3(Z, B) > KKs5(Y.B),  [p] — [¢(p)]

as claimed.
It remains to show that the diagram

KK&‘/S(Z? B)
¢*J
KKs(Y, B) — KK.(X, B)

commutes. For this, let p € $;/3(Z, B) represent a class in KK,/3(Z, B), and for
t €10, 1], define
pri=010=0)p+ta(p).
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Then, by line (2.14), we have that |[p, — p|l < § + 85 < 4 forall £ € [0, 1], so in
particular

spectrum(p,;) N (1/3,3/4) = @ forallt € [0, 1]. (2.17)

Hence, y(p;) is a well-defined projection for all ¢ € [0, 1]. We claim that y(p;) is an
element of (X, B) forall ¢ € [0, 1]; as y(p1) = x(x(p)) and x(po) = p, this will
complete the proof.

For this last claim, note first that p, — e € Kp for all ¢ € [0, 1], whence (ana-
logously to the case of y(a(p)) argued above) y(p;) —e € Kp for all ¢ € [0, 1].
Moreover, forall z € Z,

e 6 e €
P21 < e = o2l + P2l < 2(5 +5) + 5 < 5

where the last inequality used that § < &/8. Hence, by line (2.17) and Lemma 2.20,
lx(ps), z]|| < eforall z € Z, and so in particular for all z € X. This completes the
proof that y(p;) € P=(X, B) forall ¢ € [0, 1], so we are done. ]

Corollary 2.22. Let A be a separable, unital, nuclear C *-algebra. The following are
equivalent:

(1) A satisfies the UCT.
(i) Lete € (0,1), and let B be a separable C*-algebra B with K.(B) = 0.

Let
w:A— Lsp

be a large representation, and use this to identify A with a C*-subalgebra
of £sp. Then, for any finite subset X of Ay there is a finite subset Z of Ay
such that (X, e) < (Z, ¢/8) in the sense of Definition 2.10, and so that the
forget control map

KK:3(Z,SB) — KK:(X,SB)
of Definition 2.11 is zero.

Proof. Using Theorem 2.15, it suffices to show that condition (ii) from that theorem
implies condition (ii) from the current corollary (the converse is immediate). Let then
g, B, m, and X be as in the statement. Then, condition (ii) from Theorem 2.15 gives
(Y,8) > (X, ¢) in the sense of Definition 2.10 such that the associated forget control
map

KKgs(Y,SB) > KK.(X,SB)

of Definition 2.11 is zero. Lemma 2.21 then gives a finite subset Z of A, containing
X and a homomorphism

¢« - KKe3(Z,SB) — KK5(Y,SB), [p]+— [¢(p)]
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such that the following diagram

KK, /s(Z,SB)

|

KKs(Y,SB) — KK.(X, SB)

commutes (the unlabeled arrows are forget control maps). Hence, the diagonal forget
control map in the above diagram is zero, which is what we wanted to show. ]



Chapter 3

Flexible models for controlled K K -theory

In this section (as throughout), if B is a separable C *-algebra, then £p and Kp
denote respectively the adjointable and compact operators on the standard Hilbert
B-module {> ® B. For each n, we consider £ as a subalgebra of M, (£p) via the
“diagonal inclusion” £3 = 1y, ® £p €S M, @ £p = M,(LB).

Our goal in this chapter is to give flexible models for controlled K K -theory that
will be useful for computations. Contrary to the usual conventions of C *-algebra K -
theory, we base our new even and odd groups on idempotents and invertibles rather
than projections and unitaries. The extra flexibility this allows is very useful for com-
putations. The main reason for not writing the whole paper using the more flexible
model is that we previously established Theorem 2.13 in [68] using the version of
controlled K K-theory from Definition 2.2 above, so need to use that model where we
are directly applying Theorem 2.13. Moreover, we need the results from Chapter 4
in the current paper (which are also independently needed in Chapter 6) to relate the
two models.

3.1 The even case

Our goal in this section is to define a variant of the controlled K K-theory groups of
Chapter 2, but based on idempotents rather than projections. For the next definition,
we recall that C ™ denotes the unitization of a C *-algebra C, and that if a € M,,(C)
and b € M,,(C) are matrices over a C *-algebra, then a @ b denotes the matrix (& )
in My 4m(C).

Definition 3.1. Let B be a separable C *-algebra, let X be a subset' of the unit ball
of £p,letk > 1,lete > 0, and let n € N. Define &, (X, B) to be the collection of
pairs (p, g) of idempotents in M, (JC;) satisfying the following conditions:

@ lpl =«and g <«;
@)  ||[p,x]ll < eand|[g,x]|| <& forall x € X;

(iii) the classes [o(p)], [0(q)] € Ko(C) defined by the images of p and ¢ under
the canonical quotient map o : M,, (JC;) — M, (C) are the same.

!'Unlike Definition 2.2, we do not require X to be “large” in the sense of Definition 2.1.
Essentially, largeness is needed to ensure that the sets K K¢ (X, B) of Definition 2.2 are groups;
we show the sets we define in Definition 3.1 are groups by using matrix arguments and a weaker
equivalence relation in this definition.
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Define o
yoo,/c,s(X, B) = I_l j)n,K,s(X’ B),
n=1

i.e., Poo,e(X, B) is the disjoint union of all the sets P, (X, B).

Equip each £, (X, B) with the norm topology it inherits from M,(£p) &
M, (£p), and equip Poo (X, B) with the disjoint union topology. Let ~ be the
equivalence relation on P (X, B) generated by the following relations:

@ (p,q) ~(p ®r,qg@®r) for any element (r,r) € Poo (X, B) with both

components the same;

(i)  (p1,4q1) ~ (p2,q2) whenever these elements are in the same path compon-

ent of Pog ke (X, B).?
Define KK ,9, (X, B) tobe equal as a set to Poo (X, B)/ ~, and provisionally define
a binary operation + on KK? (X, B) by

(P1.q1] + [p2.92] := [P1 ® q1. P2 ® q2].
The next lemma is essentially the same as [68, Lemma A.21].

Lemma 3.2. With notation as in Definition 3.1, KK,?,E(X,B) is a well-defined abelian
group with identity element the class [0, 0] of the zero idempotent.

Proof. Checking directly from the definitions shows that K K,?,S(X , B) is a well-
defined (associative) monoid with identity element the class [0, 0]. A standard rotation
homotopy shows that KK ,?,8 (X, B) is commutative. To complete the proof we need
to show that any element [p, g] has an inverse. We claim that this is given by [¢, p].
Indeed, applying the rotation homotopy

p 0 cos(t) sin(t)\ (g O\ f(cos(t) —sin(¢)
, . . , 1el0,m/2
((0 q) (— sin(t) cos(¢)) \O p) \sin(¢) cos(t) € [0.7/2]
shows that (p ® ¢,q ® p) ~ (p B ¢q, p ® q), and the element (p B g, p P q) is
equivalent to (0, 0) by definition of the equivalence relation. ]

The following lemma gives a useful description of cycles (p, ) € Pook,e(X, B)
that define the zero class in KK? (X, B).

Lemma 3.3. With notation as in Definition 3.1, let (p,q) € P (X, B), and assume
that [p,q] = 0 in KKBJE(X, B). Then, there is m € N and an element (s, s) of
Prt2mue(X, B) such that (p @ 1y ® O, q ® 1y @ Op) is in the same path com-
ponent of Pnyom21.e(X, B) as (s, 5).

2Equivalently, both are in the same %, (X, B), and are in the same path component of
this set.
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Proof. For elements (p1,q1) and (p2, g2) in Pooc,e(X, B) let us write (p1,g1) —
(p2.q2) if

(P2.92) = (P1®T.q1 D7)
for some (7,7) € Poo ke (X, B); (P1,41) 9 (p2,q») if there is a path connecting these
elements; and (p1,q1) < (p2,92) if (p2,q2) = (p1,41). Then, [p, g] = 0 means that
there is some sequence of moves from {—, <, !i} starting at (p, ¢) and finishing at

(0, 0). It is not difficult to see the following: any time a move from {—, <, !\l«} is
consecutively repeated we may replace it by a single move of the same type; any

h h
occurrence of “~—" may be replaced by an occurrence of “—~""; any occurrence
h h
of “<—~” may be replaced by an occurrence of “~<—"; any occurrence of “<——" or

h h . .
“«—~—" may be replaced by “—~<«-"" (we leave the details to the reader in each
case). Using these replacements, we see that our moves relating (p, ¢) to (0, 0) may
be assumed to be of the form

(p.q) =2 (0,0),

or in other words that there are elements (7, r) and (¢, ¢) in Poo (X, B) such that
(p ®r,q & r) is homotopic to (¢, 1).

To complete the proof, note then that (p ®r b 1 —r,g & r & 1 —r) is homotopic
tot®1—r,td1—r) Fort €[0,n/2], define

P 0 + cos(t) —sin(¢)) (0O O cos(t) sin(¢)
7 o o sin(¢)  cos(t) 0 1—r/)\—sin(r) cos(t)
s0 (7t)¢e[0,7/2] is a path connecting r @ 1 —r and 1 @ 0. One computes that ||r;|| <

1 4+ k < 2« for all ¢, and that ||[r;, x]|| < e forall x € X. Hence, withs =t ® 1 —r
we get the claimed result. =

We will need a more general variation of Definitions 2.10 and 2.11.

Definition 3.4. Let C be a C*-algebra. Let X, consist of all triples of the form
(X, k, ) where X is a finite subset of the unit ball of C, x > 1, and ¢ > 0. Put a
partial order on X, by (X,«,¢) < (Y,A,8)if§ < e, A <« and if for all x € X there
exists y € Y with ||x — y| < ﬁ(e —9).

Let now B be a separable C*-algebra. Then, if (X,«,¢) < (Y, A,6) in X/, 5> one
checks that for each n we have

J)HA,S(Y7 B) gg)n,K,S(Xv B) (31)
We call the canonical map
KK s(Y.B) > KK (X.B)

induced by the inclusions in line (3.1) above a forget control map.
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3.2 The odd case

Our goal in this section is to introduce an odd parity version of the controlled K K-
theory groups of the previous section. For the statement, recall that C* denotes the
unitization of a C *-algebra C.

Definition 3.5. Let B be a separable C *-algebra, let X be a subset of the unit ball of
£p,letk > 1,1lete > 0,and let n € N. Define U, (X, B) to be the subset of those
invertible elements u in M, (JC;) satisfying the following conditions:

@ full < xand [u'] < «;

(i) ||, x]|| < eand ||[u~",x]|| <eforall x € X.
Define

o0
uoo,/c,s(X, B) = I_l cun,/c,s(X» B)7

n=1
i.e., Uoo,k,e(X, B) is the disjoint union of all the sets U, (X, B).
Equip each U, (X, B) with the norm topology it inherits from M, (£g), and
equip |_|>2; Un (X, B) with the disjoint union topology. Define an equivalence
relation on Uso ¢, (X, B) to be generated by the following relations:

(i) forany k € N,if 1x € Uk (X, B) is the identity element, then
u~udlg;

(i)  uj~uy if both are elements of the same path component of U oo 2¢.¢(X,B).

Define KK,LS(X, B) tobe Ueo ks (X, B)/ ~, and provisionally define a binary oper-
ation 4+ on KK, ,(X, B) by

[u1] + [uz] := [u1 & uz].

Lemma 3.6. With notation as in Definition 3.5, KK ,g (X, B) is a well-defined abelian
group with identity element the class [1g] of the unit of B.

Proof. 1tis straightforward to check that K K ,} (X, B) is amonoid, and the class [1] is
neutral by definition. A standard rotation homotopy shows that K K ,:’E(X , B) is com-
mutative. It remains to show that inverses exist. We claim that for u € U, (X, B),
the inverse of the class [u] is given by [u~!]. Indeed, consider the homotopy

= (v O) (s —sin@)Y (10 ) (costr) - sin()
U 1= (() 1) (sin(t) cos(t))(o u—l) (—sin(t) cos(t))’ t €[0,7/2].

3Equivalently, both are in the same U, 2«.-(X, B), and are in the same path compon-
ent of this set. Notice also the switch from k to 2« here, which is needed for our proof that
KK,LS(X, B) is a group.
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This connects u @ u~' and 15, so it suffices to show that this passes through
Uzn 2¢,6(X, B). For the commutator condition, we compute that fora € X and ¢ €

[0,27]
_ (la.u] 0 cos?(t)  cos(t)sin(t)
la el = ( 0 [u_l,a]) (cos(t) sin(t)  —cos?(t) ) '

The scalar matrix on the right has norm |cos(?)|, and the matrix on the left has norm
at most max{||[a, u]|[, ||[@, u™']||} < &, so ||[a,u;]|| < e. For the norm condition, we
compute that

o (u 0 )( cos?(t) cos(?) sin(l)) ( sin?(¢) —cos(?) sin(t))
t— .

0 —u~')\cos(t)sin(t) —cos?(t) cos(t) sin(t) sin?(¢)

The first scalar matrix appearing above has norm |cos(?)|, and the second has norm
|sin(z)|. We thus have that |u;|| < «|cos(z)| + |sin(¢)|, which is at most* 2k as
required. u

Definition 3.7. Let C be a C*-algebra, and let X ’C be the directed set of Definition
3.4 above. Let B be a separable C *-algebra. Then, if (X,x,e) < (Y, A,8) in XZZB,
one checks that for each n we have

un,A,S(Y, B) g un,K,S(X7 B) (32)
for all n. We call the canonical map
KK, 5(Y.B) € KK, .(X.B)

induced by the inclusions in line (3.2) above a forget control map.

4We suspect the optimal estimate is x — this is the case if u is normal, for example — but
were unable to do better than +/1 + 2 in general.






Chapter 4

Homotopies, similarities, and normalization

In this chapter (as throughout), if B is a separable C *-algebra, then £p and Kp
denote respectively the adjointable and compact operators on the standard Hilbert
B-module ¢> ® B. For each n, we consider £ as a subalgebra of M, (£p) via the
“diagonal inclusion” £3 = 1y, ® £p S M, @ £p = M,(LB).

Our goal is to establish some technical lemmas about the controlled K K-groups
KK (X,B)and KK, (X, B) and the underlying sets of cycles Peo (X, B) and
Uook,e(X, B) from Definitions 3.1 and 3.5 respectively. These are all variants of
standard facts from C*-algebra K-theory, but the arguments are more involved as
we need to do extra work to control commutator estimates. Some of the material
is adapted from the foundational work of Oyono-Oyono and the second author on
controlled K-theory [47]; those authors work in the “dual” setting to us in some
sense, and similar techniques are often useful.

Most of the results in this chapter come with explicit estimates. We have generally
not tried to get optimal estimates, but as it might be useful for future work we have
tried to point out where one might expect the estimates to be optimal where this is
simple to do.

4.1 Background on idempotents

In this section we look at idempotents in C *-algebras and their relationship to pro-
jections. Most of this is well-known; nonetheless, we give proofs for the sake of
completeness where we could not find a good reference.

To establish notation, let us first note that if p € B(H) is an idempotent, then
with respect to the decomposition H = Image(p) @ Image(p)*, p has a matrix rep-

resentation
1 a
= 4.1
P (0 0) (4.1)

for some a € B(Image(p)*, Image(p)); conversely, any operator admitting a mat-
rix of this form with respect to some orthogonal direct sum decomposition of the
underlying Hilbert space defines an idempotent.

Lemma 4.1. If p is an idempotent bounded operator on a Hilbert space that is
neither zero nor the identity, then

I1=pll=1lpl and |p—p*l <lpl.
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Proof. Writing p as in line (4.1) (and using that neither Image(p) nor Image(p)* are
the zero subspace), we compute that

Ipl* = llpp* = 1 +aa*| =1+ ||a|? (4.2)
and moreover that
1= plI> =11 = p)*( = p)ll = |1 +a*al = 1+ |al* = ||Ip]*.

Looking now at p — p*, we see that

" wx_( 0 a\(0 —a\ _(aa* O
(p—r)p—pr") —(_a* O)(a* 0)_(0 a*a),

whence || p — p*|I> = [la|* < [ p|*. "

Corollary 4.2. Ifx > 1, and p is any idempotent in a C *-algebra with || p|| < k, then
I1=pl <k llp—p*Il =« and |2p — 1]| < 2.

Proof. The estimates for |1 — p|| and || p — p*|| are immediate from Lemma 4.1 (and
direct checks for the degenerate cases p = 0 and p = 1). The estimate for 2p — 1
follows as

2p—1=p—(1-p). ]

It will be convenient to formalize a standard construction in C *-algebra K -theory
for turning idempotents into projections (compare for example [7, Proposition 4.6.2]).

Definition 4.3. Let p be an idempotent in a C *-algebra C. Define
z:=1+(p—-pH)p*—peC™,
and note that z > 1+ so z is invertible. Define
ri=pp*z7",
which is an element of C. We call r the projection' associated to p.

Remark 4.4. If C is a concrete C *-algebra and p is an idempotent with matrix
representation as in line (4.1), then one computes that the associated projection has

matrix representation
1 0
= 4.3
=5 o) @3)

with respect to the same decomposition of the underlying Hilbert space. In particular,
r is the projection with the same image as the idempotent p.

Tt will be shown to be a projection in the next lemma.
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Lemma 4.5. Let p be an idempotent in a C*-algebra C, and assume that || p| < «
for some k > 1. Let r be the projection associated to p as in Definition 4.3, and for
t €10, 1] define ry := (1 —t)p + tr. Then, the following hold:

(i)  The element r is a projection in C, and there is an invertible u € C* such
that upu™! l,
and u is connected to the identity through a path of invertibles such that
all the invertibles in the path and all of their inverses have norm at most
L+l

(ii)  Each ry is an idempotent such that ||r¢|| < « for all t, and the map t +— r,
is k-Lipschitz.

= r. Moreover, u and its inverse have norm at most 1 + || p

(iii) Foranyc € C andt € [0, 1] we have
Ilre.clll = (L4 20)[1[p. clll + ¢l [p. ¢*]Il-
(iv) The map
{(peClp=pt—>{peClp=p"=p"
that takes an idempotent to its associated projection is 1-Lipschitz.

Proof. Part (i) as in line (4.1), we may write p = ((1) g), and note as in line (4.2) that
Izl = +/1+ ||la||?, so in particular ||a|| < || p||. Using the discussion in Remark 4.4
we see that u = ((1) ‘1’) satisfies upu~™! = r, and that the path u, = ((1) ’1”) connects u
to the identity through invertibles of norm at most 1 + ||ta|| < 1 + || p||. The claims
on the norms of the inverses follow as (§ /¢ )_1 = (§719).

(Or see for example the proof of [7, Proposition 4.6.2]).

For part (ii), we write p as in line (4.1), note that ||a|| < k, and also that r has the
matrix representation as in line (4.3). This implies the claimed properties.

For part (iii), we again write p as a matrix as in line (4.1). Let ¢ € C, and with
respect to the same decomposition of the underlying Hilbert space, let us write

. (6’11 012)
c = .
€21 €22
Then, one computes that

ac C12 +acyy —cr1a
[p,c] = ( 21 12 22 11 ) (4.4)
—C21 —C214

As the conditional expectation that sends a matrix to its diagonal is contractive, we

have
acypy 0
<
‘( 0 —C21a) = lllp.clll
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and combining this with line (4.4) gives

0 C12 +acyy —cr1a
—C21 0

One computes that the top right entry of [p — p*, ¢] is acas — ¢11a, whence

= 2{[p.lll- (4.5)

laczs = cnall < lllp = p*. clll = lllp.clll + llp. ]Il

This and line (4.5) together imply that

0 c12
—C21 0

As r has the matrix representation from line (4.3), the left-hand side of the inequal-
ity in line (4.6) equals ||[r, c]||, and so line (4.6) can be rewritten as the inequality
Ilr. clll < 3l[p.clll + lI[p. ¢*]ll. As rs = (1 —t)p + tr, this implies the claimed
estimate.

For part (iv) we may assume that C is a concrete C *-algebra. As noted in Remark
4.4, the projection r associated to an idempotent p is then simply the orthogonal
projection with the same image as p. In this language, part (iv) is [41, Chapter One,
Theorem 6.35]. ]

] <30p.clll + lp. el 4.6)

4.2 From similarities to homotopies

Our goal in this short section is to establish an analogue of the standard K-theoretic
fact that similar idempotents are homotopic, at least up to increasing matrix sizes.
Compare for example [7, Proposition 4.4.1].

Proposition 4.6. Let B be a separable C*-algebra, let X be a subset of the unit ball
of £p, and let k > 1 and & > 0. Let (po,q) and (p1, q) be elements of P (X, B),
and letu € U, (X, B) be such that upou~' = py. Then, the elements (po ® 0,,q @
0n) and (p1 @ On,q @ 0y) are in the same path component of P, 3 3x2.(X, B), and
in particular, (po, q) and (p1,q) define the same class in KK’? ’

The analogous statement holds with the roles of the first (“p”) and second (“q”)
components reversed.

Proof. Define
_ (cos(t) —sin(t)) (1 O) ( cos(?) sin(l)) € Moy (K)
- 2n B/

sin(¢)  cos(?) 0 u) \—sin(t) cos(?)
Then, the path

1+ (Vi (po ® 0p)v; ' g BO,), 1 €[0,7/2]
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connects (po ® On,q @ 0,) to (p1 ® 04, g ® 0,) through Py, 3 3,2,(X, B). We
leave the direct checks involved to the reader. n

4.3 Normalization

Our goal in this section is to show that cycles for KK,?’S(X, B) and KK,LE (X, B) can
be assumed to have prescribed “scalar part”, at least up to some deterioration of k
and ¢.

The following lemma is well-known without the Lipschitz condition?; see for
example [7, Theorem 4.6.7] or [36, Corollary 4.1.8].

Lemma 4.7. Let L > 0. Then, if (pt)+e[o,1] is an L-Lipschitz path of projections in a
unital C*-algebra C, there is a (3L)-Lipschitz path (u)e[o,1] of unitaries in C such
that ug = 1, and such that p; = u; pouy forallt € [0, 1].

We need a preliminary lemma.
Lemma 4.8. Let n > 1, and let C be a unital C*-algebra. Then, the map
{ceCle=ny>C, cr 712
is %773/ 2_Lipschitz’.

Proof. For any positive real number ¢, one has
2 o0
e —/ (A% +1)7dA,
T Jo
whence for any positive invertible elements ¢, d € C
2 o0
V2 g2 = ;/ (A +o) ' =2 +d) N)da. 4.7
0

Using the formula

Mo ' -+ =R+ d - +a)!

Vand d > n~!, the continuous functional calculus implies

and assuming that ¢ > n~
that

132 + )7 = A2+ )7 = e =dI(A* + 07 )72

The constant 3 appearing in the statement is not optimal; one can see from the proof that
3 can be replaced with 2 + ¢, for any ¢ > 0. We do not know what the optimal constant is.
3The constant is optimal in some sense; this follows as the absolute value if the derivative

of the function # — ¢t ~1/2 on [y~!, o0) has maximum value %773/2.
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This inequality and line (4.7) imply that

Hle — 00
||C—1/2 _ d—1/2|| < ”C d” [ (12 + U_l)_zd)t.
4 0

The integral on the right-hand side equals (7%/2)/4, whence the result. n

Proof of Lemma 4.7. We first claim that it suffices to show we can choose a § > 0 such
that if [¢1, 5] is a sub-interval of [0, 1] of length at most §, and ¢ +— p; is a projection-
valued L-Lipschitz function on [f1, t5], then there is a unitary-valued (3 L)-Lipschitz
function t > u; on [t1, 1] such thatug = 1 and p; = u, pouj forall¢ € [t;,;]. Indeed,
if we can do this, thenlet 0 =7y < t; <--- <ty = 1 be a partition of the interval [0, 1]

such that each subinterval has length at most §, and for each i € {0,..., N — 1} choose
a unitary-valued (3L)-Lipschitz function 7 — u'” on [t;, #j11] such that ug) =1

and p; = uﬁi)p,i (ugi))* for all ¢ € [t;, ti+1]. The function on [0, 1] defined on each
subinterval [t;, t;+1] by

t ugi)ug_l)ugjz) . --ug?)

then has the right properties to establish the lemma.
Let us then establish the statement in the claim. Let ¢ > 0 be small enough that

(1-2+8e) 2+ (1 +e)21-2+e)e)/? <3,

and let § > 0 be such that if 7, s € [0, 1] satisfy |t — 5| < §, then || ps — p¢]| < &. Let
[t1, 2] be an interval of length at most §. For ¢ € [t1, t,], define

Xt = pipy, + (1= pe)(1 = pyy)
and note that
x: — 1 = 12p: — D(pey — PNl < 12p = Ul pry — pell <&,

and so each x;, is invertible, ||x;|| < 1 + &, and also || x; | < (1 —&)~! by the Neu-
mann series formula for the inverse. One computes that x; p;;, = p; p;, = p:X;, and
SO x,p,lxt_l = p:. Moreover, p; x; = x] p;, and S0 ps, X xX; = X prXs = X[ Xt Pty
i.e., x;x; commutes with p;,. If we define w; := x,(x;“x,)_l/z, we have that w; is
unitary and moreover

-1 *_\—1/2 *_\1/2.—1 -1
Wt Pty Wy =xt(xt Xt) / Ptl(x, Xt) / Xy = Xepy Xy = Pt

It remains to show that the path defined on [¢1, t2] by  — wy, is (3L)-Lipschitz.
We first note that for 5,7 € [t1, 1], we have that

lxs = xell = (Pt = Ps)2pey — DIl = |l pe — psll < Lls — 1] (4.8)
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by assumption that (p;) is L-Lipschitz. Using that ||x;|| < 1 + &, this implies that for
any s,t € [tq, t2]

7 xe — x5xsll < [l = xg el + x5 Hlxe — x5l < 2(1 +e)Ls —¢].
Moreover, |1 —x/x;|| < (2 4+ ¢)e, whence 1 — (2 + ¢)e < x[x; and so in particular
||(xt*xt)_1/2|| <(1=Q2+¢e)" V2 foralls € [t1,1]. 4.9)
Hence, moreover Lemma 4.8 (with 7 = (1 — (2 + &))~!) implies that for any s, €
11, 22]
l(fx) ™2 = () T2 = (A= @+ 0)e) P+ )Lls —1]. (4.10)
Lines (4.8), (4.10), and (4.9) combined with the fact that
lx:]l <1+e
forall ¢ € [t1, t,] implies that for any s, ¢ € [t1, t3]
e = well < e = X120 ™21+ sl o) ™2 = ()2
<(1=Q+ee) V2L|s —t| + (1 + &)*(1 — 2+ e)e) >2L|s — 1]
which implies the desired estimate by choice of ¢. |

For the statement of the next definition, recall that for [ € {1,...,n}, we let
1; € M, (C) be the rank / projection with / ones in the top-left part of the diagonal
and zeros elsewhere.

Definition 4.9. With notation as in Definition 3.1, define

P ce(X.B) :={(p.q) € Pue(X.B) |3l €N such that (p,q) — (1;. 1))
is in My (Kp) & My (Kp)}.

Define J’OIO’K’S(X , B) to be the disjoint union of these sets as n ranges over N.

Here, is the first of our main goals for this section; it allows control of the “scalar
part” of cycles for KK (X, B).
Proposition 4.10. Let B be a separable C*-algebra. Let X be a self-adjoint* subset
of the unit ball of £p, let e > 0, let k > 1, and let n € N.

(i) Any element Py (X, B) is in the same path component of P, 4,3 (X, B)
as an element of P! , 5 (X, B)’.

4We mean here that X = X *, not the stronger assumption that every x € X is self-adjoint.
SIf k = 1, one can replace 453 with 1 in the statement; we leave the details to the reader.
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(ii)  If two elements (po, qo) and (p1,q1) of r)an (X, B) are connected by a
path in P (X, B), then they are connected by a path in K 4:(X, B).
Moreover, if L > 1 is such that there is an L-Lipschitz path in Py (X, B)
connectlng (po, qo) and (p1, q1), then there is a (20k L)-Lipschitz path in

P k,46(X. B) connecting (po. qo) and (p1.q1).

Proof of Proposition 4.10. For part (i), we assume that (p, ¢) is an element of
P x.e(X, B). Hence, by definition of P, (X, B), if X4 is the unitization of Kp
ando : My, (JC;) — M, (C) is the canonical quotient map then the classes [0 (p)] and
[0(q)] in Ko(C) are the same, so in particular the idempotents o (p) and o (q) have
the same rank. Using Lemma 4.5 (i), there are paths of invertibles (u,);c[o,1] and
(v¢)¢ef0,1] in M, (C) and projections r, s such that u; = vy is the identity, such that
uorug' = o(p), such that vosvy ' = o(¢), and such that the norms of all the u,, all
the v, and their inverses are all at most 1 + x < 2x. On the other hand, r and s have the
same rank, whence there are paths of unitaries (1;);e[1,2) and (v;)sefo,1] in M, (C)
such that u; = vy is the identity, and such that u,ruj = 1;, and vpsvy = 1;. As
scalar matrices commute with X, the path ((u; pu; ', v;qv; ') e(0,2) passes through
Py a3, (X, B), and connects (p, ¢) to an element of !Pn1’4k3,8(X, B) as required.

For part (ii), we just look at the statement involving Lipschitz paths; the case of
general continuous paths follows (in a simpler way) from the same arguments, and is
left to the reader. Assume that (pg, go) and (p1,q1) are elements of J’nl «.e (X, B) that
are connected by an L-Lipschitz path that passes through 5, .. (X, B). In particular,
there exists / € N such that 6(pg) = 0(q9) = 1; = 6(p1) = 0(g1). Let ro be the
projection associated to pg as in Definition 4.3. As in Lemma 4.5 (ii), the path defined
fort € [0,1] by t — (1 — 1) po + tro is k-Lipschitz and connects py and rg through
idempotents of norm at most k. Moreover, Lemma 4.5 (iii) implies that for all x € X
and all ¢ € [0, 1]

(1 =) po + tro. x]Il = (1 4 20)|l[po. ]Il + tll[po. x™]II.

As X = X*, this implies that ||[(1 — ) po + tro, x]|| < 4eforallx € X,and all f €
[0, 1]. Note also that o ((1 — t) pg + trg) = 1; for all ¢. Similarly, we get so which has
the same properties with respect to go. We have thus shown that (pg, go) is connected
to the element (rg, o) via a k-Lipschitz path in n v.4¢(X, B). Completely analog-
ously, ( pl, q1) is connected to its associated projection (71, s;) via a x-Lipschitz
path in § n ‘. 4¢(X, B). Moreover, using Lemma 4.5 (iv), we have that (ro, so) and
(r1, s1) are connected by an L-Lipschitz path of projections in &, 1 4¢(X, B), say
(("t,St))ze[o,l .

Now, consider the path (o(r/), 0(5¢))se[0,1] in M, (C) & M, (C), which is also
L-Lipschitz. Lemma 4.7 gives (3L)-Lipschitz paths (u;)se[0,1] and (v¢)efo,1] of
unitaries in M, (C) such that o(r;) = u;0(ro)uy and o(s;) = v;0(so)v; for all
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t € [0, 1]. The path ((u;rsus, v;s;v¢))refo,1] then passes through 5)”1’1,48()(, B), is
(6L)-Lipschitz, and connects (7o, so) to (uiriuy, vysivy).
Summarizing where we are, we have the following paths:

(1) A «-Lipschitz path through {Pnl,K, 4¢(X, B), parametrized by [0, 1], and that
connects (po, go) and (ro, So)-

(i) A (6L)-Lipschitz path through {Pnl,l’ 4¢(X, B), parametrized by [0, 1], and
that connects (rg, so) and (ujriuy, vysivy).

(iii) A k-Lipschitz path through £}, (X, B), parametrized by [0, 1], and that

connects (p1,¢1) and (r1, 51).

k4

We claim that there is a 2w-Lipschitz path passing through ;7’”151’ 4¢(X, B), paramet-
rized by [0, 1] and connecting (v} r1u1, visiv1) and (r1, s1). Concatenating this new
path with the three paths above (and using that ¥ > 1 and that L. > 1), and rescaling the
two x-Lipschitz paths by 1/12, the 6 L-Lipschitz path by 4/12, and the 67-Lipschitz
by 6/12, this will give us a (20« L)-Lipschitz path connecting (po, go) and (p1,q1)
through £, ,. (X, B), which will complete the proof.

To establish the claim note that 1#; commutes with 1;, and is therefore connec-
ted to the identity in M, (C) via a w-Lipschitz path of unitaries that all commute
with 17, say (1) e[1,2). Similarly, we get a w-Lipschitz path (v;);e[1,2] with the same
properties with respect to vy. The path ((u}r1u;, v;'S1V:))sef1,2] then passes through

‘7)?11,1,48(X’ B), is 2m-Lipschitz, and connects (ujriu, visivy) to (r1, s1), so we are
done. n

We now move on to results that let us prescribe the “scalar part” of cycles for
KK, which is much simpler.

Definition 4.11. With notation as in Definition 3.5, define
Up o(X.B) :={u € Unee(X, B) |u—1¢€ My(Kp)}.

Define ‘Lléo,x’s (X, B) to be the disjoint union of these sets as n ranges over N.

We need a slight variant of the well-known fact that the group of invertibles in a
C *-algebra deform retracts onto the group of unitaries.

Lemma 4.12. Let k > 1, let C be a unital C*-algebra, and let C.! be the set of
invertible elements u € C such that ||u| < k and |u™"|| < k. Then, the unitary group
of C is a deformation retract of C'. In particular, M, (C);! is connected.

Proof. Letu € C;!, and for ¢ € [0, %] define u; := u(u*u)~". This is a homotopy
between the identity u > 1o on C,~ ! and the map u > u,; the latter is a retraction
of C 1 onto the unitary group of C, giving the first part. In particular, it follows that
C. ! is connected if and only if C; ! is connected; as the unitary group of M, (C) is
connected, this gives the last statement. |
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Proposition 4.13. Let B be a separable C*-space, let X be a subset of the unit ball
of £p, lete > 0, let k > 1, and let n € N.

(i) Anyelementv € Up (X, B) is connected to an element of‘u; (X,B)
by a pathin U, ;2 ,..(X, B).

. 1
(i) If two elements vo,v1 € U, , .

Un ke (X, B), then they are in the same path component of ‘ujl

K2 ke

(X, B) are in the same path component of
(X, B).

K2 .Kke

Proof. For part (i), let JC; be the unitization of Kpg, let o : M, (JC;) — M,(C) be
the canonical quotient map, and set w = o (u~!). Using Lemma 4.12, there is a path
(w¢)sefo,1] of invertibles connecting w = w to the identity and all with norm at most
«. Then, the path (w;v)sefo,1] is in U, 42 (X, B) and connects v to the element
u := wyv, which satisfies o(u) = 1,andso 1 —u € M,(Kp).

For part (ii), let (v);e[o,1] be a path in Uy, i (X, B) connecting vo and v;. Let
w; = a(vt_l), and note that wg = wy; = 1. Moreover, ||w;| < « for all ¢. Then,

U; 1= w; v, is a path connecting vo and v; in ‘L(}ll 2 (X, B) as required. ]

4.4 From homotopies to similarities

Our goal in this section is to establish a controlled variant of the fact that homotopic
idempotents are similar; compare for example [7, Proposition 4.3.2]. This requires
some work, as we need to control the “speed” of the homotopy in order to control the
commutator estimates for the invertible element appearing in the similarity. The final
target is Proposition 4.17 below; the other results build up to it.

Lemma 4.14. Let k > 1, and let po and py be idempotents in a C*-algebra C with
norm at most k, and such that || po — p1|| < 1/(12«?). Then, there is a path (p¢)te[o.1]
of idempotents connecting po and p1, and with the following properties:

(1)  each p; is an idempotent in C of norm at most 2k ;
(i1) forallc € C andt €]0,1],

lfe. poll = 212 max e, pil:
(iii) the function t — p; is 1-Lipschitz.
Proof. Foreacht € [0, 1], define r; := (1 —t)po + tp1 € C, and define
ur = (1 —r)(1—po) +ripoeC™.
Corollary 4.2 implies that ||2po — 1| < 2k, whence

IT—uell = 1(2po — D(po —ro)ll < 2¢llpo — p1ll = 1/6.
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In particular, u, is invertible, ||u;| < 7/6, and |lu;!|| < 6/5 by the Neumann series
formula of the inverse. Define p; := u; pout_l, which is an idempotent in C. We claim
that the path (p;);e[o,1] has the desired properties. Note first that ro = po, whence
uo = 1, and so the path (p;);e[o,1] does start at the original pg. On the other hand,
Ui po = r1po = pP1Po = piu1, whence ulpgul_l = p1. Thus, the path (p;) does
connect py and p.

For part (i), note that as u; pg = r; po, we get

6 i 6 <2
K=+ k= < 2.
12625 5~

1pell = llre pouy 'l < 1(re = po) pous || + Il pouy Il <

For part (ii), let § = max;—o,; ||[c, p;]||. We compute using the identity 1 —u, =
(2po — 1)(po — r¢) that

[z, clll = 1 —u. ]l < [[[2po — 1. clllll po — 72l + 12po — 1l[I[Po — rz. ]l
= 2l[po. clllll po = rell+112po — LI (Il[po- clll 4Nl [r+. 11D

Using that ||2po — 1|| < 2« again, this implies that

1 1
e ]l < 2855 + 2 - 28 = (4/< + @)8.

Hence, also

_ _ _ 36 1
Iyt el = luy e u du Ml < E(mc + m)5||c||

and so

I(pes dll = ll[ue pou; . |l
< Iue, clllll polllle; Il + el {pos ey I + Nlueellll ol [z el
<<4 4 )5 6 7547 36(4 + )5
K+ —)8k=+ =8 + —k— 4k + —
= 62/ 5 T 5% 6 s o2
< 21«28

as claimed. Finally, for part (iii), we again use that ||2po — 1|| < 2« to compute that
for any 5,1 € [0, 1],

1
lhes —uell = 11@2po = D(rs —ro)ll = 12po = 1ls —tllpo — pall = 2kls =t 5

= —ls — 1
6K

and so

36 1
—1 -1 —1 —1
u —Uu = ||U Uy —Ug))U < ——|8s—t| = —|5 — 1.
” Ky t ” ” t ( t S) s ” — 25 6K| | 25K| I
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Hence,
1pe = psll < G —us) pouy | + llug pouy —ug M)
< sl 4 D s ]
—s — ;c —Kk—|s —
~ 6k 6 25k
<|s—1]
as claimed. n

The next lemma gives universal control over the “speed” of a homotopy between
idempotents (at the price of moving to larger matrices). The basic idea is not new; see
for example [47, Proposition 1.31]. We give a complete proof, however, as we need to
incorporate commutator estimates and work with idempotents rather than projections.

Lemma 4.15. Let B be a separable C*-algebra, let X be a subset of the unit ball of
£p, lete > 0, and let n € N. Let (po, qo) and (p1,q1) be elements of the same path
component of P xc.¢(X, B). Then, there is k € N and a homotopy ((r1,5¢))ze[0,1] in
Pak+1)n,2¢,21626 (X, B) such that (ri,si) = (pi ® luk @ Onk, qi @ luk @ Onk) for
i €10, 1}, and such that the map t > (ry, s;) is (16«)-Lipschitz.

Proof. Let ((p:.q:))tefo,1] be an arbitrary homotopy in 5 (X, B) connecting
(po.qo) and (p1,¢q1). Let § > 0 be such that if 5,7 € [0, 1] satisfy |s — ]| < §, then
Ips = pell < 1/(126?) and |lgs — q¢]| < 1/(12?). Let 0 = tg < 11 <--- <t = 1
be a sequence of points in [0, 1] such that ; ., — ¢; < 6 for all i. We claim that this
k works, and to show this we build an appropriate homotopy by concatenating the
various steps below.

(i) Connect (po @ lnk @ Onk,qo ® 1nk @ Oni) to

(Po®(1n ®0) D ®(1nD0y), qo® (1, D0,) @+ ® (1, HOy) )

k times k times

via a 2-Lipschitz rotation homotopy parametrized by [0, /2] and passing through

‘?(Zk-i-l)n,K,E(Xv B)
(ii) In the ith “block” 1, & 0,, use the homotopy

l—p,; O i cos(t) —sin(¢)) (0 O cos(t)  sin(?)
0 0 sin(¢)  cos(t) 0 ps; ) \—=sin(z) cos(t)
(parametrized by ¢ € [0, 7/2]) to connect 1, & 0, to 1 — p;, ® p;;, and similarly

for g. In order to compute commutator estimates, note that rearranging gives that the
homotopy above is the same as

10 py 0 —cos?(1) —sin(?) cos(t)
(0 0) + ( 0 pzi) (— sin(z) cos(t) cos?(t) ) , t€[0,m/2].
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The scalar matrix appearing on the right above has norm |cos(?)|, whence every ele-
ment in this homotopy has norm at most 2«. Hence, our homotopy connects the result
of the previous stage to

(Po®1—pt,®pr, @Bl —py Py Go®1—q1, ®Gs, B D1 —q1, Dqyy.)

through Pk 4 1)n,2¢,6 (X, B), and is 2«-Lipschitz.

(iii) From Corollary 4.2, each idempotent 1 — p,, has norm at most . For eachi €
{1,....k},using that | (1 — ps,) — (1 — ps;_,)|| <1/(12«?), Lemma 4.14 gives a path
of idempotents connecting 1 — p,, and 1 — p,,_, and with the following properties:
it is 1-Lipschitz; it consists of idempotents of norm at most 2«; each idempotent r in
the path satisfies ||[r, x]|| < 21«2e for all x € X. We get similar paths with respect to
the elements 1 — g, , and use these paths to connect the result of the previous stage to

(Po®l = pty®pt; @+ @1 — pr_ @ Py, qoDl — ey DG, -+ ®1 — g1, DGy)

via a 1-Lipschitz path in Pk 11y 2¢ 21626 (X B).
(iv) Use an analog of the homotopy in step (ii) in each block of the form p;, @
1 — py; (and similarly for ¢) to connect the result of the previous stage to
((ln ©0,) DD (1 D0p) ®py,(1n ®0n) & --- & (1 & 0y) EB‘Itk)-

k times k times

This passes through P2k +1)n,2¢,6(X, B), and is 2k-Lipschitz.

(v) Finally, noting that p;, = p; and q;, = ¢1, use a rotation homotopy paramet-
rized by [0, 7w /2] to connect the result of the previous stage to (p1 @ 1,x D Onr,q1 ©
1,k @ Opg). This passes through Pk 41)n.c,6(X, B) and is 2k-Lipschitz.

Concatenating the five homotopies above gives a 2k-Lipschitz homotopy, para-
metrized by [0, 27 4 1], that passes through Pk 41y 24, (X, B) and connects (po ®

Lk @ Onk,qo ® lug @ 0,%) and (p1 & Lug @ Ok, g1 D 1k D 0,%). Reparametriz-
ing by [0, 1], we get a (16«)-Lipschitz homotopy as required. ]

Before we get to the main result of this section, we give one more elementary
lemma; we record it as it will be used multiple times below.

Lemma 4.16. Say x and yq, ..., y, are elements of a C*-algebra such that
Ilx, yilll <8 and |yill <m

foralli. Then, if y := y1y2 -+ yn, we have ||[x, y]|| < nm"™18.

Proof. This follows from the formula

[xd’]:i:( l_[ yj)[va’i]( l_[ yj),

i=1 1<j<i i<j<n
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which itself follows from induction on n and the usual Leibniz formula [x, y1 2] =
yilx, y2] + [x, y1ly2. ]

Here, is the main result of this section. The basic idea of the proof is contained
in [47, Corollary 1.32], but as usual we need to do more work in order to get our
estimates.

Proposition 4.17. Let B be a separable C*-algebra, let X be a self-adjoint subset
of the unit ball of £p, let k > 1, and let ¢ > 0. Let M = 201000 " Wirh notation
as in Definition 4.9, let n € N, and let (p, q) be in the same path component of
J’,},K’s(X , B) as an element (r, r) with both entries the same. Then, there is m € N
and (with notation as in Definition 4.11) an element u € urlt+2m,M,Ms(X’ B) such
that

u(p @ 1p, 690m)“_1 =q® Ly ® Op.

Proof. Let k € N be as in the conclusion of Lemma 4.15, so there exists a (16«)-
Lipschitz homotopy in Pk 4 1y,,2¢,21k2¢ (X, B) between (p @ 1,k @ Onk,q & Lk @
0nr) and (r & 1,5 @ Opi, 7 & 1,k @ 0,1). Set m = kn. Proposition 4.10 gives a
(20« - 16«k)-Lipschitz path ((p:, g¢))zefo,1] passing through °{Pn1+2m,2/<,84:<28(X’ B)
that connects (p @ 1,k @ 0k, g D Lux D 0yx) and (r & 1,5 B Oppe, v & 1y S 011).
To simplify notation, note this path is (2°x2)-Lipschitz, and that it passes through
j)rll+2m,2K,27K28(X’ B).

Define N := [2'3k3] (where [y] is the least integer at least as large as y), and
define ; = i/N fori € {0, ..., N}. As the path ((ps, 4¢))ref0.1] is (2°«?)-Lipschitz,
foranyi € {1,....,N} ||ps, — pt;_, | < (16k)~ . Fori € {1,..., N}, define

V; 1= pt,-,lpt,: + (l - Ptl-,l)(l - pt,:)'
As || ps; || < 2« for all i, Corollary 4.2 implies that
12py; — 1| < 4« (4.11)

for all 7, and so

I —=vill = 2Py, = D(pri_y = Pe)ll < 4 - (1616)7H <

N =

It follows that each v; is invertible, ||v;|| < 2, and (by the Neumann series formula
for the inverse) ||vi_1 | < 2. Note also that as the homotopy ((p:.qr))se[0,1] Passes

1 173 99
through & (2k+1)n,2x,27lc28(X’ B) all the elements p;, must have the same “scalar part

(i.e., the same image under the canonical map My 42, (,K;) — My42m(C)), and so
the elements v; must satisfy

1 —v; € Mytom(Kp).
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Moreover, for x € X, using line (4.11) again we see that

ITvi. Xl = [[[vi = 1. x]|
= ||[(2Pt,~_1 - 1)(Pt,-_1 - Pt,-)’x]”

< 2Mpe_y» X Pty |+ e D H 0208, — I P2y > XTI+ gy - X111
< 12k - 27k 2.

Hence, moreover

o7 X)) = o7 e, vilo | < 4+ 126 - 27k%e < 2833,

1
n+2m,2,213,3¢"

Note also that v; ps;; = ps;_, pr; = Pr;_, Vi and s0 v; p;;v;' = p;, | foreachi.
Define v to be the product viv; -+ - vy, so v satisfies v_lpov = p1, or in other words

At this point we have that each v; is an element of U

VI p @ 1n @0 =7 @1, 0,

Note that 1 — v € My42m(Kp). As ||v;| <2 and |Jo; || < 2 for each i, we have that
[v]| < 2" and similarly |[v~"|| < 2¥. Moreover, for any x € X, Lemma 4.16 gives
v, x]|| < N2N¥=1.2133¢ and similarly ||[v!, x]|| < N2N~1.213k3¢. Applying
the same construction with (¢;) in place of (p;), we get an invertible element w
such that w™'(q ® 1,, ® Opp)w =71 @ 1,5, ® Opy, such that 1 — w € My 42, (KB),
such that ||w] < 2V, |Jw™"|| < 2%, and such that ||[w, x]|| < N2¥~1.213k3¢ and
I[w=!, x]|| < N2N~1.21343¢ for all x € X. Define u = wv™'. As N = [213«3],
this has the claimed properties. |






Chapter 5
Reformulating the UCT II

In this chapter (as throughout), if B is a separable C *-algebra, then £p and Kp
denote respectively the adjointable and compact operators on the standard Hilbert
B-module ¢> ® B. For each n, we consider £ as a subalgebra of M, (£p) via the
“diagonal inclusion” £3 = 1y, ® £p S M, @ £p = M,(LB).

Our goal in this chapter is to reformulate the vanishing results on the UCT of
Chapter 2 in terms of the groups KK, ,’;’8 (X, B) of Chapter 3. We look at the even
(i = 0)and odd (i = 1) cases separately.

5.1 The even case

Lemma 5.1. Let k > 1 and ¢ > 0. Let B be a separable C*-algebra, and let X be

a self-adjoint subset of the unit ball of £p. Then, there is a homomorphism V. :
KK:€/4(X, B) — KK (X, B) such that the diagrams

KK? (X, B)

P* \ (5.1)

KK?, ,(X.B)— KK? (X.B)

and
KK?,8/4(X’ B)—— KK?,E(X, B)

\ w*T (5.2)

0
KKK’£/4(X, B)
commute, where the unlabeled arrows are the forget control maps of Definition 3.4.

Proof. Let (p, q) be an element of &,  ./4(X, B). Let r and s be the projections
associated to p and g respectively as in Definition 4.3. Using Lemma 4.5 parts (i)
and (iii) we may define a map

VA :7),,,,(,8/4()(, B) — an,l,s(X, B), (p.q) v~ (r.9).

Allowing n to vary, and noting that the process of taking associated projections takes
homotopies to homotopies (by part (iv) of Lemma 4.5) and block sums to block sums,
we get a well-defined homomorphism

Vit KK, 4(X, B) > KK (X, B).
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To check commutativity of the diagram in line (5.1), it suffices to show that if
(r,8) € Pn1,6(X, B) is the pair of projections associated to (p,q) € P, «¢/4(X, B)
as above, then (7, s) and (p, g) are in the same path component of %, (X, B).
This follows from parts (ii) and (iii) of Lemma 4.5. Commutativity of the diagram
in line (5.2) is immediate; if (p, g) is in &, ,1,(X, B) for some n, then p and g are
themselves projections, so equal their associated projections. |

The following lemma records some results from [68, Section A.3] that we will
need. For the statement, recall the notion of a unitally strongly absorbing representa-
tion from Definition 2.5 above.

Lemma 5.2. In the statement of this lemma, all unlabeled arrows are forget control
maps as in Definitions 2.11 and 3.4. Let A be a separable unital C*-algebra, and
let B be a separable C*-algebra. Let w : A — £ p be a strongly unitally absorbing
representation of A, which we use to identify A with a C*-subalgebra of £p.

Let ¢ > 0, and let X be a finite subset of A1. Then, there exist homomorphisms

«: KK? (X, B) - KKs¢(X, B)

and

B: KK.(X,B) — KK} (X, B)

that are natural with respect to forget control maps; more precisely if (X,e) < (Y, §)
in X4 as in Definition 2.10 then the diagrams

KKD,(1.B) —— KK (CB)  KKDgy (4 B)—— KKD5, (X, B)
lﬂ lﬂ and aT aT
KKJ(Y,B) —— KKJ(X, B) KKJ(Y,B)— KK2(X, B)

are defined and commute.
Moreover, the diagrams

KK?’s(X, B) —— KK?,SS(X, B)
o
l /
KKs:(X, B)

and
KK .(X,B)—— KKs5.(X, B)

b
KK (X, B)

commute.
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Proof. Letw : A — M»(&£p) be (the amplification of) our fixed representation. In the
language of [68, Appendix A.2], the groups KK (X, B) are the same as the groups
that are called there K K."? (X, B), while in the language of [68, Appendix A.3], the
groups KK ?,8 (X, B) would there be called KK7°™ (X, B). The lemma thus follows
from the arguments of [68, Lemmas A.22, A.23, and A.24]. n

We are now able to deduce a version of Corollary 2.22 for the groups of Defini-
tion 3.1.

Corollary 5.3. Let A be a separable, unital, nuclear C*-algebra. The following are
equivalent:

(1) A satisfies the UCT.
(i) Letk > 1ande € (0,1). Let B be a separable C*-algebra with K«(B) = 0.
Let m : A — Lsp be a strongly unitally absorbing representation, which we

use to identify A with a C*-subalgebra of £sp. Then, for any finite subset
X of Ay, there is a finite subset Z of Ay such that

(X.,k,€) < (Z,k,£/160)
in the sense of Definition 3.4, and such that the forget control map
KK/(C),E/IGO(Z’ SB) — KKB,E(X, SB)

of Definition 3.4 is zero.

(iii) There exist k > 1 and v > k with the following property. Let y > 0, let B
be a separable C*-algebra with K (B) = 0, and let X be a finite subset of
Aq. Let
w:A— Lsgp

be a strongly unitally absorbing representation, which we use to identify A
with a C*-subalgebra of £ sp. Then, there is ¢ > 0 and a finite subset Z of
Ay such that (X,v,y) < (Z,«k,¢) in the sense of Definition 3.4, and such
that the forget control map

KK (Z.SB) — KK (X.SB)
of Definition 3.4 is zero.

Proof. In the following proof, all unlabeled arrows are forget control maps as in
Definition 2.11, or Definition 3.4. Assume first that condition (i) from the statement
holds, and let « > 1 and ¢ > 0; we may assume moreover that ¢ < 1. Let a finite subset
X be given as in condition (ii). Then, by the equivalence from Corollary 2.22, there
is a finite subset Z of A; such that the forget control map

KKqy/5(Z, SB) — KKo(X.SB)
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is zero. Replacing Z by Z U Z* if necessary, we may assume that Z is self-adjoint.
Lemma 5.2 gives a commutative diagram

KK./3(Z.SB) —— KK.(X.SB)
« B
KK?,8/40(Z’ SB) — KK{ (X.SB),

whence the bottom horizontal map is zero. On the other hand, Lemma 5.1 (see in
particular line (5.1)) gives a map ¥, such that the bottom triangle in the diagram
below

KK, ,0(Z.SB) —— KK (X.SB)

KK?

K,g/lﬁ()(Zs SB) — KKK,E(X, SB)

commutes. The top triangle also commutes as all the maps involved are forget control
maps, whence the bottom horizontal map is zero. This gives us condition (ii) from the
statement.

Condition (ii) clearly implies condition (iii), so it remains to show that condi-
tion (iii) implies condition (i). For this, it suffices to establish condition (ii) from
Theorem 2.15, so let y > 0 and a finite subset X of A; be given. Then, according to
condition (iii) there are v > x > 1, & > 0 and a finite subset Z of A; such that the
forget control map

KK (Z,SB) > KK}, ,,(X,SB)

is defined and zero. Replacing Z with Z U Z* if necessary, we may assume Z is
self-adjoint. Using Lemma 5.1 (see in particular line (5.2)) there is a map ¥« such
that the top right triangle in the diagram below commutes

KK?,E(Z, SB) —_— KKI,V/20(X’ SB) —_— KKI,V/S(X’ SB)
VY

KK? (Z,SB) —— KK, y/20(X, SB) — KK® ., (X, SB).

The rest of the diagram also commutes, as all the arrows are forget control maps,
whence the composition

KK?’S(Z,SB) — KK ,/20(X,SB) — KK ,,/5(X,SB)
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of the two top horizontal maps is zero. Using Lemma 5.2, there is a commutative
diagram
KK (Z,SB) —— KK, (X, SB)

/| T

KK?,E(Z, SB) — KK, ,/5(X,SB).

The top horizontal map is therefore zero; this is the conclusion we need for The-
orem 2.15, condition (ii), so we are done. [ ]

5.2 The odd case

For the statement of the next lemma, consider the Hilbert module 2 ® SB associated
to the suspension SB =Cy((0, 1), B) of a separable C *-algebra B. Let Cs, (X, M(C))
denote the C*-algebra of bounded and strictly continuous functions from a locally
compact space X to the multiplier algebra M(C) of a C*-algebra C. For any C*-
algebra C there are canonical identifications

fc = M(C ® X)

(see for example [45, Theorem 2.4]) and M(Cy(X, C)) = Cgp(X, M(C)) (see for
example [1, Corollary 3.4]). Hence, there is a canonical identification

xSB = Csb((ov 1)7 xB) (53)

We identify £3 = £(¢{? ® B) witha C *-subalgebraof £55 = £({> ® B ® C(0,1))
via the *-homomorphism a — a ® 1¢,(0,1)- We recall also that JC; denotes the
unitization of Kpg.

Lemma 5.4. Let B be a separable C*-algebra. Let k > 1, ¢ > 0, and let X be a
subset of the unit ball of £p. Then,

(i)  Elements of Py (X, SB) (see Definition 3.1) identify canonically with
continuous paths (pr, qt)sefo,1] of idempotents in My (JC;{) b M, (,K;)
satisfying the following conditions:

(@) forallt €[0,1], [ pell <« and |lg:|| < «;

(b) forallt € [0,1]andall x € X, |

(c) there are p,q € M,(C) such that po = p1 = p, g0 = q1 = q and
such that if o : M, (JC;) — M, (C) is the canonical quotient map
theno(py) = pando(q,;) = q forallt € [0,1].

Moreover, the element (p,q) is in the subset P! . (X, SB) of Definition 4.9

n,Kk,e

if and only if p and q are equal to 1; for some | € N.

[pe. x]| < e and ||[g:. x]I| <&
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(ii)  Elements of Unk,e(X, SB) (see Definition 3.5) identify with continuous
paths (Uz)se[o,1] of invertibles in M, (JC;) satisfying the following condi-
tions:

(@) forallt €[0,1], |lu;| <« and |u;t| < «;
(b) forallt € [0,1]and all x € X, ||[us, x]|| < e and ||[u;?, x]|| < &
(¢) thereisu € My,(C) such that uy = uy; = u and such that if

o My(Kg5) —> My(C)

is the canonical quotient map then o(uy) = u forall t € [0, 1].

Moreover, the element is in the subset U} . (X, SB) of Definition 4.11 if

n,K,e
and only if u is the identity.
Proof. We have a canonical identification
Kip =/ € C(0,1], K5) | o(f(1)) = f(0) = f(1) forall 7 € [0,1]}.

Part (i) follows directly by comparing this with Definitions 3.1 and 4.9; similarly,
part (ii) follows from comparing this with Definitions 3.5 and 4.11. We leave the
details to the reader. ]

Lemma 5.5. For any k > 1 there exists a positive constant M with the following
property. Let € > 0, let A be a separable, unital, nuclear C*-algebra that satisfies the
UCT, and let B be a separable C*-algebra with K,(B) = 0. Let w : A — £sp be a
strongly unitally absorbing representation that factors through the subalgebra B(£?)
(such exists by Lemma 2.6), and use this to identify A with a C*-subalgebra of £sp.

Then, for any finite subset X of Ay there exists a finite subset Z of Ay such that
the forget control map

KK} (Z,SB) — KK1}41 ,:(X. SB)

of Definition 3.7 is defined and zero.

8)3

Proof. We claim M, = 2(200<*)” . 320x7 works. Using Corollary 5.3 there is a finite
subset Z of A; such that the forget control map

KK? (Z.SB) — KK? (X,SB) (5.4)

8 2k0¢ 8.320k0¢

of Definition 3.4 is zero. We claim this set Z works.
Let u be an arbitrary element of U, (Z, B). Using Proposition 4.13 (i), and
with notation as in Definition 4.11, there is an element v of U! (Z, B) in the

n,k2,ke
same path component of U, ,2 ,.(Z, B) as u. Define now a path (v¢)¢[o,1] by

__(cos(mt/2) —sin(mt/2)\ (1 O)( cos(xt/2) sin(wt/2)) (v! 0
V= (sin(ﬂt/Z) cos(mt/2) ) (0 v) (— sin(rt/2) cos(nt/2)) ( 0 1)'
(5.5)
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: 1
Note that each v; is an element of u2n’x4’2K3s(z, B). Define

. 10 -1
Pt = V¢ 0 0 Uy .

Write p for the path (p;), and note that according to Lemma 5.4 (i), we may identify
the pair (p, 1, @ 0,) with (using the notation of Definition 4.9) an element of
°{P21n,/<8,2/<7:(z’ SB), and therefore also a class [p, 1, @ 0] € KK38’2K78(Z, SB).
By assumption, the forget control map in line (5.4) is zero, and therefore the image
of [ p.1.® 0,]in K K38’320K7£(X , SB) is zero. For notational simplicity, at this point
let us define &1 := 320« ¢.

Now, Lemma 3.3 gives m € N and (s, 5) € Pp(4m) 248, (X, SB) such that
(pd1ly &0y, 1, 00, & 1, &0,) and (s, s) are in the same path component
of the set Pon+m) 2686, (X, SB). Let x be a unitary matrix in M3 4.m)(C) such
that x(1, ® 0, & 1, ® 0,)Xx™ = Ly D Opgm. As x is connected to the identity
through unitaries, the element (x (p @ 1, @ 0,)x™, 114m @ 054+ ) is also homotopic
10 (5,8) in Py 4m), 28,6, (X SB); moreover (with notation as in Definition 4.9), it is

in ;7’21(n )28 ey (X, SB). We may now apply Proposition 4.17 to see that if

M = 2(200x8)3

then there is k € N and an element w of u%(n+m+k),M,M81 (X, SB) such that

W (P @ 1 @ 0m)x* @ 1 @ 0w ™" = lyym ® Opm ® 1z @ Og.

Write v for the path defined in line (5.5) above, which naturally defines an element of
&£ sp using the identification in line (5.3). Then, if we define

yi=w(x @ lag)(© D lam+k)) € LB,
we have
V1, @0, B 1y @0 ® 1 ®0k)y ™ =1, D0, Ly & 0 & 1z & O
In other words, the element y commutes with 1, &0, & 1,, ® 0, D 1 & 0. Define
2:=(1n @0 D1y @0 ® 1k ®0%)y(1, & 0p & Ly & O & 11 B Op).

Using Lemma 5.4 (ii), we may think of z as a continuous path (z;);e[o,1] in
Upnsm+k,m,me, (X, B). Now, write w as a path (w;)se[o,1], and note that as w is in
ué(n-l—m-l—k),M,Msl (X, SB), then by Lemma 5.4 (ii), wo = w1 = l3(4+4m). Moreover,
vo = 1o, by definition. Hence, zg = x @ 1. On the other hand vi = u u~! @
Logn+k) and so z; = (x @ 1) (u @ 1,,4%). Hence, (x @ 1x)*z defines a homotopy
in Up4mtk,mme, (X, B) between 1,4, 11 and u @ 1,, 1. This implies [u] maps to
zero in KKy 4r, (X, SB), which completes the proof. ]






Chapter 6

A Mayer-Vietoris boundary map

In this chapter (as throughout), if B is a separable C *-algebra, then £p and Kp
denote respectively the adjointable and compact operators on the standard Hilbert
B-module ¢> ® B. For each n, we consider £ as a subalgebra of M, (£p) via the
“diagonal inclusion” £3 = 1y, ® £p S M, @ £p = M,(LB).

Our goal in this chapter is to construct and analyse a “Mayer—Vietoris boundary
map” in controlled K K -theory. The main results of the chapter prove the existence of
this boundary map (Proposition 6.1) and show it has an exactness property (Proposi-
tion 6.6). These results are the technical heart of the paper.

6.1 Existence

Here, is the construction of the boundary map.

Proposition 6.1. Define an increasing function Ny : [1, 00) — [0, 00) by the formula
No(k) = 2%7k?*. This function has the following properties.

Let k > 1, let Ny = Ny(k), let ¢ > 0, let B be a separable C*-algebra, and let
X be a subset of the unit ball of £p. Let h € £ be a positive contraction such that
[, x]|| < e forall x € X. Then, there is a homomorphism

9: KK, (h(1—h)X U{h}, B) > KK} n (X U{h}, B)

defined by applying the following process to a class from KK;’S(h(l —h)XU{h}, B):

(i)  Choose a representative w € Uy  (h(1 —h)X U {h}, B) for the class, and
use Proposition 4.13 (i) to find an element

u€ Uy o, (h(1—=h)X U{h}, B)

that is in the same path component as w in U, 2 ,..(h(1 —h)X U {h}, B).
(i) Define

c=cu,h):=hu+0—-h), d=du,h):=hu'+1—-h) 6.1)

in M,(£p), and

1 ¢ I 0\ /1 ¢ 0 1
v=v(u,h):= (0 1) (—d 1)(0 1) (_1 O)EMzn(é@B). (6.2)
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wr=[o(5 )6 9)]

Moreover, the boundary map is “natural with respect to forget control maps”; pre-
cisely, if for some k < A and & < 8, the boundary maps

(iii)) Define

: KKy (h(1 —h)X U{h}, B) = KK () Nowors(X U {1}, B)

and
d: KKijS(h(l —h)X U{h}, B) —> KKXIO(A),NO(A)S(X U{h}, B)

both exist, then the diagram

9
KK (h(1—h)X U{h}, B) —— KK?]O(K),NO(K)&‘

|

.Noys (X ULih}, B)

(X U {h}. B)

KK} 5(h(1 = )X U {h}, B) —— KKY,

0
(with vertical maps the forget control maps of Definitions 3.4 and 3.7) commutes.

In order to make the proof more palatable, we split off some computations as
lemmas. The proofs of these lemmas are elementary, but the second one is quite
lengthy. We record them for the sake of completeness, but recommend the reader
skips the proofs.

Lemma 6.2. Let B be a separable C*-algebra. Let u € M, (£p) be an invertible
element such that 1 —u € M, (Kp), and let h € £p be a positive contraction. Then,
the elements ¢ = c¢(u, h) and d = d(u, h) from line (6.1) above have the following
propetrties.
(1)  The elements cd — 1 and dc — 1 are in M,,(Kp).
() Ifk > 1and s> 0 are such that |u|| <k, ||[u=| < «, ||[h, u]|| <e and
I[h, u=Y]|| <& then cd — 1 and dc — 1 are both closer than (k + 1)e to
h(1—h)(u +ut —2).

Proof. We just look at the case of cd — 1 for both parts (i) and (ii); the case of dc¢ — 1
is similar. Note first that because 1 — u is in M, (Kp) and M, (Kp) is an ideal in
M, (£p), we must have that 1 —u~! is in M, (Kp) also. We compute that

cd —1 = huhu™' + (1 — hhu™' + hu(1 — h) —2h + h?

=h% + hulh,u™ )+ h(1 = h)u™!
+ h(1 = h)u + [h,u](1 — h) — 2h + K2, (6.3)
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Using that  and u~! equal 1 modulo the ideal M,, (K g), we compute that this equals
0 modulo M, (Kp). Hence, cd — 1 isin M, (Kp)

Looking at part (ii), note that the terms hu[h, u~'] and [, u](1 — k) in line (6.3)
above have norms at most k¢ and ¢ respectively. Hence, cd — 1 is within (k + 1)e of
h? +h(1—h)u~' +h(1 —h)u —2h + h?, whichequals h(1 —h)(u +u=1 —2). =

Lemma 6.3. Let B be a separable C*-algebra. Let k > 1, ¢ > 0, and let X be a subset
of the unit ball of £p. Let h € £p be a positive contraction such that ||[h, x]|| < &
for all x € X, and let u be an element of the set ‘l,l,ll,,(,a(h(l —h)X U {h}, B) from
Definition 4.11. Let ¢ = ¢(u, h) and d = d(u, h) be as in line (6.1) above, and let
v = v(u, h) be as in line (6.2).

Then, ||v| < (k +2)3, [[v7| < (k + 2)3, and the pair

; 1 0 - 1 0
00 "\0 0
is an element of ‘7)21;1 36,6 216,5. (X U {h}, B) from Definition 4.9.

Proof. From the definition of v in line (6.2) above,

_(c(dc—=2) 1—cd
”‘( de—1  —d ) ©®
and
1 _ (0 =1\ (1 —c\ (1 O\ (1 —c\ _ [ —d dec—1
R V| o) 0 1 (d 1) \o 1)_(1—cd c(de—-2))
Hence,
1 0\ _; (cd2—cd) c(dc—2)(dc—1)
”(o 0)” _((1—dc)d (de —1)2 )
and so

1 0\ _ 1 0\ _ [—(cd—-1)?* (cd—1)c(dc—2)
”(o 0)” 1_(0 0)_((1—dc)d (dc —1)2 ) ©3)

This formula, part (i) of Lemma 6.2, and the fact that M, (Kp) is an ideal in M, (£p)

imply that
10\ _; (10
v(O 0)v —(0 O)eMzn(Jch

whence v(§ §)v!is in M2, (K7 ), and v(} §)v" and (§ §) have the same image
under the image of the canonical quotient map

o MZn(J{I_g'—) — M2, (C).
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Note moreover that ||v]| < (x + 2)3 and |[v™!|| < (« + 2)* from the formula for v
(whence also v™!) as a product of four matrices in line (6.2). As k > 1, this implies

that
v 1o v!
0 0

To complete the proof that the pair

. 1 0 - 1 0
00 "\0 O
defines an element of £

2n,36x6,216:<53(X , B) it remains to check the relevant com-
mutator estimates, i.e., condition (ii) from Definition 3.1 with x in X U {h} and &
replaced by 2!6x%¢. As ((1) 8) (and indeed, any scalar matrix) commutes with ele-
ments of X U {h} exactly, it suffices to show that

(o o) (o o))

for all x € X U {h}. We focus on the case when x is in X; the case when x = h
follows from similar (and much simpler) estimates that we leave to the reader.
Working towards the estimate in line (6.6), we compute that the element in line

(6.5) equals
cd —1 0 l—cd c(dec—-2)
( 0 dc—l)(—d dc—l)' ©.D

The second matrix above satisfies

1—cd c(dc—2)
( —d dc—l)

<(k + 2)6 < 3%,

< 21645 (6.6)

< 1 =cdll + [cllllde = 2] + |d]| + llde =1

<((k+D>+1)+ K+ Dk +1)*+2)
+ K+ 1D+ ((k+1D>+1).

As k + 1 > 1, we therefore see that
1—cd c(dc—2)
—d de —1
On the other hand, using part (ii) of Lemma 6.2, the first matrix in line (6.7) above
is closer than e(k + 1) to A(1 — h)(u + u~! — 2) (we identify this as usual with

the diagonal matrix with both entries equal to A(1 — h)(u + u~! — 2)). Hence, the
difference in line (6.5) is closer than 8(k + 1)°¢ to

< 8(k + D*. (6.8)

h(1—h)u +u"t—2) (1 —ed clde— 2)) .

—d de —1
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Hence, for x € X,
. 1 0 bl 1 0
’ 0 0 0 0

[x,h(l—h)(u+u —2)( ;d c(ddcc__lz))”‘. (6.9)

< 16(k + 1)°¢ +

As ||[x, h]|| < &, we have ||[x, (1 — h)]|| < 2&; combining this with line (6.8) gives

|:x,h(1—h)(u+u —2)( ;d CEJCZCC__IZ))]H

<2e-8(k +1)° + Hh(l—h)[x (u+u~ —2)( & C(dc_z))]”'

—d de —1

Combining this with line (6.9) gives

o) =60

<32(K+1)58+Hh(1—h)|:x (4 u! 2)( ;d "(ddcc 2))]H (6.10)

Every entry of the matrix (v + u~! — 2)( 1-cd clde—2)

dc—1
of at most 30 terms, each of which is a product of at most 5 elements from the set
{u,u™!, h, 1}, each of which has norm at most k. As ||[2(1 — h)x, y]|| < & for all

y € {u,u™', h,1}, Lemma 4.16 gives

H[h(l—h)x (u+u! 2)( ;d C(ddcf?__lz))}

On the other hand, ||[[2(1 — h), y]|| < 2¢e forall y € {u,u~"' h, 1}, whence

H[h(l h), i+ u~ —2)( ;d C(ddc‘f__lz))}x

Finally, note that

h(l—h)|:x,(u+u —2)( ;d c(d"_z))}

) can be written as a sum

<4.30-5-k*.  (6.11)

<4.30-5-k*.  (6.12)

de—1
= [h(l —h)x,(u+u " -2 ( afd c(ddcc_—IZ)) :|

+[h(1—h),(u+u 2)( ;d C(d‘lcc__lz))}x,
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so combining lines (6.10), (6.11), and (6.12) implies

[x, v ((1) 8) vl — ((1) 8) :| H < 1232(k + 1)°¢.

Recalling that k > 1, this is enough for the estimate in line (6.6). [

We are now ready for the proof of Proposition 6.1.

Proof of Proposition 6.1. Assume that w € U, . (h(1 — h)X U {h}, B), and let

ue Ul (h(1 —h)X U {h}, B)

n,k2,ke

be in the same path component as w in U,, 42 4. (A(1 —h)X U {h}, B); u is guaranteed
to exist by Proposition 4.13 (i). Define v := v(u, k) as in line (6.2), so Lemma 6.3
gives an element

1 0\ _; (1 0
(6 8)7 (5 o)) e Pmscasncr v

Moreover, if uy := u, and u; is another choice of element in

ut (h(1 —h)X U {h}, B)

n,k2,ke

that is connected to w in U, 2 . (h(1 —h)X U {h}, B) then Proposition 4.13 (ii)
implies that there is a homotopy (u;);<[0,1] that connects 1o and 1 through

‘u;mm(h(l —h)X U {h}, B).

Let v; := v(u;, h) be as in line (6.2). Then, Lemma 6.3 implies that the path

(oo (s ) vemo

has image in !/’21,!,361624’21616218(X U {h}, B). In particular, the class

dw] € KK36K245216K218(X U {h}, B)
does not depend on the choice of u, so at this point we have a well-defined set map
Un e (h(1 —h)X U {h}, B) — KK36K24,216K218(X U {h}, B).

We next claim that this map sends block sums on the left to sums on the right.
For this, assume that w; and w; are elements of Uy, (7 (1 —h)X U {h}, B). Let
u1 and u, be elements of ‘u; 2.¢e (1 —h)X U{h}, B) that are connected to w; and
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w, respectively in ‘ul (B —h)X U{h}, B). Fori € {1,2} letv; = v(ui, h) be
as in line (6.2), and let V= =v(u; D uz, h) € My, (£p). Then, the pairs

(g S)een(y o)t (5 ) 9)
(5 0 (5 0)

in My, (J{;) D Myy (J{;) differ by conjugation by the same (scalar) permutation
matrix in each component, and so define the same class in KK _26/<24 H1621, (X U

{h}, B).

At this point, we have a semigroup homomorphism

Un e,e(h(1 —h)X U {h}, B) — KK:(;)6K24’216K215(X U {h}, B).

and

We claim that it respects the equivalence relation defining K K ,} (h(1—=h)X U{h},B).
First, we check that w @ 1 goes to the same class as w. As we already know
we have a semigroup homomorphism, it suffices to show that 1; goes to zero in
KK26K24,216K208(X U {h}, B). For this, note that if v := v(lg, k) is as in line (6.2),
then v = 1,;, whence the image of 1; in KK26K24,216K21£(X U {h}, B) is the class
[1x @ Ok, 15 @ O], which is zero by definition.

Let us now show that elements of Uy« (h(1 —h)X U {h}, B) that are homo-
topic through U, 2¢.c(h(1 —h)X U {h}, B) go to the same class. For this, say that
wp and w; are homotopic through U, 2¢.¢(A(1 —h)X U {h}, B). Choose ug and u
in ‘Ul (Bl —h)X U {h}, B) that are connected to wo and w; respectively in
Uy k2, Ka(h(l — h)X U {h}, B) as in Proposition 4.13 (i). Using Proposition 4.13 (ii),
uo and u are connected by a homotopy (u;);e[o,1] in ‘un oy 2eeM(1=h) X U{h}, B).
Let v; := v(uy, h) be as in line (6.2). Then, Lemma 6.3 1mphes that the path

(o o) (o 5))

defines a homotopy between the images of wg and w; in ;7’21”’31 4,624,227’(218(X u
{h}, B). We thus see that Ny (k) := 227«2* has the desired property, and we are done
with the existence of 0.

As the formulas for the boundary map d do not depend on the constants x and &
the naturality statement is clear. |

6.2 Exactness

We now turn to the exactness property of the boundary map. In order to state this, we
need two lemmas.
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Lemma 6.4. Let B be a separable C*-algebra. Let X and Y be subsets of the unit
ballof £p, ¢ > 0and k > 1. Let h € £ p be a positive contraction such that ||[h, x]|| <
¢ for all x € X. With notation as in Definition 3.1, let

(P.q) € Pnye(X UY U{h}, B)

(respectively, with notation as in Definition 4.9, let (p,q) € f/’,f,l,z,g(X UY uU{h},B)).
Then,
(P+q) € Pnype(hX UY U{h}, B)

(respectively, (p,q) € P! ., .(hX UY U {h}, B)).

n,k,2¢e
In particular, there are homomorphisms

mn: KK (X UY U{h}, B) > KK2,.(hX UY U {h}, B)
and

M—n: KKQ (X UY U{h}, B) > KKQ,,(1—h)X UY U {h}, B)

K,2¢
induced by the identity map on cycles (p, q).

Proof. We compute that for x € X,
o, ax]ll < Al Lo, XTI + . A1l x|l < & + €.

These estimates hold similarly for ¢ so (p,q) € :Pnl’K,ZS(hX UY U{h}, B). As the
identity map on cycles takes homotopies to homotopies, and block sums to block
sums, existence of the homomorphism 7y, is clear. Existence of 11—z follows on not-

ing that the assumptions on 4 also holds for 1 — A. ]
We leave the direct checks needed for the proof of the next lemma for the reader.

Lemma 6.5. Let B be a separable C*-algebra. Let X and Y be subsets of the unit
ball of £, € > 0 and k > 1. Assume moreover that there is § > 0 such that for
ally €Y, x €5 X. Then, for any y > k6 + ¢ and A > «, the forget control map of
Definition 3.4

KK .(X.B) —> KK, , (Y, B)

is well-defined. |

The next proposition is the exactness property of the Mayer—Vietoris boundary
map that we are aiming for. We refer the reader to Section 1.6 for motivation behind
the statement. For the statement, recall that for an element x and subset Y of a metric
space, and for ¢ > 0, we write “x €, S” to mean that there is y € Y with d(x, y) <
£. Moreover, in the statement below, all unlabeled arrows between controlled K K -
groups are the forget control maps of Definition 3.4 or Definition 3.7.
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Proposition 6.6. The increasing functions N1, N> : [1,00) — [1, 00) defined by
Ni(A) = 990000004 . 4 Na(p) = 2372,

satisfy the following properties.
Let k > 1, and let ¢ > 0. Let A > «, and let § > 3ke. Let N1 := N1(A), and let
W > N1 and y > N18. With notation as in Proposition 6.1, define

No := No(u),

and let Ny := Ny ().

Let B be a separable C*-algebra, and let X be a self-adjoint subset of the unit
ball of £p. Let h € £p be a positive contraction such that ||[h, x]|| < eforall x € X.
Let Yy, Y1_p, and Y be self-adjoint subsets of the unit ball of £p such that y €. Y,
and y €. Y1y for all y € Y. With notation as in Definition 4.9, let (p, q) be an
element ofj)nl,K,S(X U Y, UYi_p U{h}, B). With ny, and ni—y, as in Lemma 6.4, and
suing Lemma 6.5 to define the right hand vertical maps in each case, assume that the
images of [p, q] under the maps

KKQ (X UY,UY_,U{h},B)

l

KK2, (X UYyU{h), B) — " KK, (hX UY, U{h},B)  (6.13)

K,2¢

KK} 5(hX UY U {h}, B)

and

KK? (X UY,UY_; U{h},B)

|

KK2,(X UYi_j U {h}, B) 7% KKO, (1 — )X UYi_, U{h}, B) (6.14)

|

KK} s(hX UY U{h}, B)

are zero.
Then, with notation as in Definition 4.11, there exists an element

= ‘u;o,N],ng(h(l —h)X U{hlUY,B)
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such that in the diagram below

KK}VMN](S(h(l —h)XU{h}UY,B) KK? (X UY,UY_, U{h}, B)

| |

il
KK, ,(h(1 =h)X U{h}, B) —————— KK} n . (X U{h}, B)

KKY, n,, (X U{h}. B)

the images of the classes [u] € KK}Vl Nlb‘(h(l — X U{htUY)and
[p.q] € KK (X UY, UY,_; U{h}. B)
in the bottom right group KKR’LNZV(X U {h}, B) are the same.

Just as for Proposition 6.1, to make the argument more palatable, we split off
some computations as two technical lemmas. As in that earlier case, the arguments
we give for these lemmas are elementary, but quite lengthy (in fact, much longer than
the earlier ones). We record them for the sake of completeness, but again recommend
that the reader skips the proofs.

Lemma 6.7. Let B be a separable C*-algebra. Let v > 1 and let y > 0. Let X
and Y be self-adjoint subsets of the unit ball of £p. Let h € £p be a positive con-
traction such that ||[h, x]|| < y forall x € X. Let (p,q) € J/"nl,v,y(X UY U{h}, B)
(see Definition 4.9 for notation), and let ujy € Cl,(,ll,v,y(h)( U{h}UY,B)andu,_p €
‘u},,w((l —h)X U{h} UY, B) (see Definition 4.11 for notation).

Then, the element

u:=u—p(1—p)+uyp (6.15)
(h(1 —h)X U{h}UY, B).

is in cu111,2v2,10vy
Proof. We split the computations into the points labeled (i), (ii), (iii), (iv), and (v)
below.

(i) Asup —1e M, (Kp)andui—; — 1 € M,(Kp), we compute from line (6.15)
thatu — 1 € M, (Kp).

(i1) Note that

[T—pl=v (6.16)

by Corollary 4.2. Hence, max{||uy ||, |41=x|. | 2|, ||1—p|I} < v, and so by line (6.15),
lul| < 2v2.

(iii) Let y € Y. Then, by definition, ||[a, y]|| < y foralla € {uy,u1_s, p,1 — p}.

Hence, the definition of u from line (6.15) implies that ||[y, u]|| is bounded above by

Iy, wrnl T = Pl + llea—rllllly, 1 = Pl + 1Ty wnlllll 2l + lun Ly, p1IF < 4vy.
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(iv) Using the definition of u from line (6.15) and the assumptions on up, u;_p
and p directly together with line (6.16) implies that

e, AUE < s wa—n]INIT = PN+ ller—n | IT2, 1 = p|
+ 10 unl PN+ a2, P
< 4vy.

(v) Let x € X and note that
[A(1 = h)x,up] = A = h)[hx,up] + [A,up](1 = h)x.

As ||[[hx, up]ll <y, as ||[k, up]|| < v, as h is a positive contraction, and as x is a
contraction, we get

(A1 = h)x, uplll < lTAx. up] |1 = Al 4+ |Ax ]I = 2 up]ll < 2y (6.17)
Completely analogously, we see that
AL = h)x,ui—nlll < 2y. (6.18)
We see also that

A1 = m)x. plIl < lllx. plIHIAQ =)+ [I1 = A, plllII2x]l + [[7. pIIHI(E = R)x]|
< 3y.

Combining this with lines (6.16), (6.17), (6.18), we get
A1 = R)x, ull| < [[R(1 = R)x, ur—p] |11 = pll + ller—p [[I[2(1 = h)x, 1= p]|
+ [[[R(1 = h)x, up]lll | + lluglll[2(1 = h)x, p]

<2vy 4+ 3vy 4+ 2vy + 3vy
= 10vy.

Putting the points (i), (ii), (iii), (iv), and (v) above together (and using that v >
1) we conclude that, u is an element of ‘Llrll 22 10vy(h(l —h)X U{h}UY,B) as
claimed. u

Lemma 6.8. With assumptions as in Lemma 6.7, let
u:=u_p(1 —p)+upp e u}l,w,mw(h(l —h)X U{h}UY,B)
be the element considered there. Let v := v(u, h) be as in line (6.2) above, and define

_ (ul—h(l - p) —q

P (1- p)ul‘_lh) € Man(L).

Then, w is invertible, and vw™" is in Uap,(20)8 23725y (X U {h}, B).
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Proof. Using the assumptions on || p||, |[u1-z|l ||u1__1h|| and line (6.16) to estimate
I1— p|l, we have

lwll < llur—a(1 = P+ llgll + 12l + 1= puil, | < 402,

A direct computation shows that w is invertible with inverse

-1 _ (1 _P)u__lh V4
voT ( —q 1 ui—n(l —p))' (6.19)

This satisfies the same norm estimate as w, and so we get the norm estimates
lwl < @2v)* and [lw™'|| < (2v)*. (6.20)

Lemma 6.3 and the fact that ||u|| < 2v? implies that |[v|| < (2v? +2)3 and ||[v™!|| <
(2v2 4+ 2)3. As v > 1, we thus see that

vl < (21})6 and ||v_1|| < (21))6. (6.21)
Lines (6.20) and (6.21) then imply
||vw_1|| < (21))8 and ||wv_1|| < (2v)8. (6.22)

To complete the proof, we need to show that for all x € X U {h}, we have
I[vw™, x]|| < 237v?°y and |[[wv™!, x]|| < 237v2%y. We focus first on the case of
vw™!, and look first at [, vw™!].

Let ¢ := hu + (1 —h) and d := hu™' + (1 — h) be as in line (6.1). It will be
technically convenient to define

S:={h,1—h,pg,1—p,1 —q,uh,u;l,ul_h,ul__lh,u,u_l,c,d}, (6.23)

and to define S” to be the set of all products of at most n elements from S. Note that
for every s € S we have ||s|| < (2v)2, and ||[s, k]| < 10vy. Hence, by Lemma 4.16,
for allm € N we have

s € 8" = ||[hs]]| < n@v)>*D10vy. (6.24)
Using the formula in line (6.4) above,

([cdc, h] —2[c.h] [cd, h])
[h,v] =
[h, dc] [d, h]

and so

A vlll < [lfede, pIIl + 2|l[e. ]Il + ll[ed., Al + I [R. de]ll + Nl[d. A1l



Exactness 71

Each summand on the right-hand side above is of the form ||[/, s]|| where s € S3 for
S as in line (6.23). Hence, line (6.24) implies that

[A, V]|l < 6-3-@v)*-10vy <213y, (6.25)

We also compute that

] = ([h,(l —puil,] [, p] )
lg,h] [, u1—p(1 = p)]

whence
I w11 < (A, (1 = p)urt, )+ A I+ g A1l + (1[h.u1—n (1 = p)]II.

Each commutator appearing above is of the form [, s] for some s € S? as in line
(6.23), whence line (6.24) gives

[, w™ | < 4-@2v)?-10vy <27v3y. (6.26)
On the other hand,
T2, vw™ I < 10 o1 ™ ]+ (ol w1

Combining this with lines (6.20), (6.21), (6.25), and (6.26), as well as that v > 1, we
see that
I[7, vw ™| < 23y - 2v)% 4+ 2v)0 - 2713y < 2149y, (6.27)

Now, let us look at [x, vw™!] for x € X. The definition of v from line (6.2) gives
1 _(ede—=1) 1—cd\ _; (c 0) _4
o= ( de —1 o )¥ 0o d)”

_fcd -1 0 c =1y .y (c O\ 4
Lo de—1)\1 o)V 0o d)%

Hence, the formula for w™! from line (6.19) gives

vw !l = (Cd -1 0 ) (C(l —pul, ep—urp(l— P))

0 de—1 1- p)ul__lh p
Y1
1_

o _lq Upp

—u,q l=p

y2
1— —1
—(1—h) (1= Py, P . (6.28)
—q ur—p(1 = p)

Y3



A Mayer—Vietoris boundary map 72

We now estimate ||[[vw ™!, x]|| for each x € X by looking at each of the terms y, y»,
and yj3 separately.
(1) First, we look at y; from line (6.28). Let x € X. Lemma 6.2 implies that

d—1 0 )
H (c 0 dc—l)_h(l_h)(”+“ =) <@+ Dy (6.29)

(where, as usual, we identify (1 — /) (u + u~! — 2) with the corresponding diagonal
matrix). Let

_ -1 _ _
. <6(1 purl, ep—ui(l p)>. (6.30)

( —p)ul__lh p
As in line (6.16), |1 — p|| < v, whence using that v > 1,
Izl < el = U, |+ lelllpll + lu-rllit = p]
+ 1= plluilyll + D2l
<@+ D24+ Qv+ Dy + v 02 4
<w* (6.31)

Combining this with line (6.29), we see that
Iyr =h(1=h) @ +u™" = 2)z]|
cd —1 0 1
< — — _
< ” ( 0 de — 1) h(1—=h)(u +u 2)

<*(v + 1y < Q2Qv)°y.

[zl

As ||x]|| < 1, this implies that

1B, yall < NIy = h(1 =) +u™" = 2)z1]|
+ 1P A =) +u™" = 2)z4]]
<@y + v A=) +u™t =2)z]].

Hence, we see that
I, y1ll < @v)°y + [l[lx. 2(L=R)], (u 4 u™" = 2)z4]]|

+ I[h (1= R)x, (u +u~" = 2)z4]|
+ [ (1 = h), (u +u~t —2)z1]x]|. (6.32)

Looking at line (6.30), every entry of the matrix (u 4+ u~! — 2)z; is a sum of at most
8 elements from the set S#, where S is as in line (6.23). Hence, by line (6.24), we see
that

I —h), (u+u"t—2)z1]| <4-2-8-4-2v)8- 1202y <2188y, (6.33)
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We have ||[x, 2(1 — h)]|| < 2y, and line (6.31) implies
[ +u™t —2)z1| < (402 +2)-9* <2508,

whence
I[lx. (1= R)], (u 4+ u™" —2)z1]|| < 2%0°. (6.34)

Combining lines (6.32), (6.33), and (6.34) thus implies that
B, yalll = 2208y + (1 = h)x, (u +u™! = 2)z4]]. (6.35)

Note now that for every element s € S we have that at least one of the following
holds: (a) ||[s, x]|| < 16v?y for all x € X; or (b) ||[s, (1 — h)x]|| < 16v?y for all
x € X;or(c)|[s, (1 —h)x]|| < 16v?y forall x € X;or (d) ||[s, (1 — h)x]|| < 16v?y
for all x € X. In any of these cases, using that ||[s, 4]|| < 12v2y forany s € S, we get
that for any s € S and x € X, ||[s, h(1 — h)x]|| < 40v?y. Applying Lemma 4.16, we
therefore see that

s € 8" = ||[h(1 = h)x,s]| < n(2v)>*~D40v2y. (6.36)

As we have observed above already, every entry in the matrix (u + u~! —2)z; is a
sum of at most 8 elements from the set S*, where S is as in line (6.23). From line
(6.36) we therefore see that

A1 —R)x, (u +u~" = 2)z1]|| <4-4-(2v)*- 4007y < 2'%,.
Combining this with line (6.35) above therefore implies
Il vl < 22%0%y.

(i1) Now, we look at the element y, from line (6.28) above. If x € X, we see that

_ l—q upp l—q upp
[x? y2] - |:Xh’ (_ul:lq 1— p)] + |:h, (-M;lq 1 — » X. (637)

We have that
[h ( =g upp )] _ ( [q. 7] [h,uhp])
\-uylg 1=p [ gkl [p.h]
Each entry in the matrix on the right is the commutator of & with an element of S2,
where S is as in line (6.23) above. Hence, by line (6.24), we see that

(ot )]

<4-2-2v)% 1207y < 2%v4y.
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Combining this with line (6.37) gives

q Upp 9 4

eyl < s (L0152 ) ]+ 2 639
On the other hand
)l )]
xh, _ = |[x,h], _

[ (—Mhlf] l—p [ ] _uhlq 1—]7
+ [hx,( =4 ”“’)}. (6.39)

—u,q l=p

As ||[h, x]|| < y, we have

o (Gt ) Jl=2l (Gt 125))

As |1 — p|| <vand ||l —¢| < v by Corollary 4.2, every entry of the matrix on the
right has norm at most v2, and so

[ (it 1)

Hence, line (6.39) implies that

Hxh,(l__f] ”“’)} |:hx,(1__1q ”hp)]H+23u2y. (6.40)
—u,q l—p —u,q l-p

The commutator appearing on the right above equals

( g, hx] (hx, up]p + up[hx, P])

<232y

[y, hxlg — g . g] [p. hx]

Using that uy, € un vy(hX, B), and applying Lemma 6.4, the norm of each entry
above is at most 2vy, whence

[ Caty 125)]

Combining this with lines (6.38) and (6.40) therefore implies that

< 23vy.

Iix, a2l < 2%v%y.

(iii) Finally, we look at y3 from line (6.28). This can be handled very similarly
to the case of y,, giving the estimate ||[x, y3]|| < 2!%v*y for all x € X; we leave the
details to the reader.
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Putting together the concluding estimates of points (i), (ii), and (iii) above, we
see that ||[x, vw™!]|| < 22'v8y forall x € X. Combining this with line (6.27), we see
that

I[x, vw™ || <2210y (6.41)

forall x € X U {h}.
To complete the proof, let us estimate ||[x, wv™!]|| for x € X U {h}. Using the
formula [x, wv™!] = wv Hvw ™!, x]Jwv ™!, we see that

-1 -1 -1 -1
I, wo™ | < Jlwo ™l fvw™, x]{{{wv™".

Lines (6.41) and (6.22) therefore imply that
e, wo ™| < 270y

and we are finally done. |
Finally, we are ready for the proof of Proposition 6.6.

Proof of Proposition 6.6. With notation as in the statement, let

(P.q) € Py, (X UY,UY_, U{h}, B),

n,K,e

and assume that the images of [p, q] in KK} (hX UY U {h}, B) and KK} s((1 —
h)X UY U {h}, B) under the maps in lines (6.13) and (6.14) are zero.

Note first that the map in line (6.13) is induced by the identity map on cycles, so
Lemma 3.3 applied to the cycle (p, q) in $#, 5 5(hX UY U {h}, B) implies that there
exists k € N such that (p @ 1x @ Ok, q & 1x @ Of) is in the same path component of
Prt2k,22,8(hX UY U {h}, B) as an element of the form (r, r). Replacing (r, r) with
(yry*, yry™*) for some appropriate unitary y € M,,;,x(C) and using that the unitary
group of M, 1, (C) is connected, we may assume that (r, r) is in j)rtl+2k,2)\,8 (hX U
Y, U {h}, B) (see Definition 4.9 for notation). Moreover, as

(p.q) € P, ; 5(X UY, UY1_, U{h}, B)

there is a unitary z € My, 1, (C) such that (z(p & 1 ® 0x)z*,z(q B 1 & 0x)z*) is
in J’nl’x’b,(hX UY U {h}, B). As the elements (r,7) and (z(p & 1 & 0r)z*, z(q ®
1 ®0z)z*) of ‘(Pnl,zx,a (hX UY U{h}, B) are connected by a path P, 1 s(h X UY U
{h}, B), we may use Proposition 4.10 (ii) to connect them by a path in Jljnl,zk,zw (hX U
Y U {h}, B). Precisely analogously (increasing k if necessary), we may assume that
C(p@® 1y ®O0p)z*,z(q & 1x D 0r)z™) is in the same path component of

P 2nas(1=m)X UY,_; U{h}, B)

as an element of the form (s, s).
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For notational simplicity, write m = n + 2k, and let M := 4 - 2(200)° Thep
(with notation as in Definition 4.11), Proposition 4.17 gives j € N and elements

up € Upy i pg s (WX ULRYU Y, B)

and
ui—h € Upy o yps(1 =X U{RYUY, B)

such that
upz(p® Lk ®0)z" ® 1; & Oj)u,:1 =z(g® 1 ®0)z" B 1; ®0; (642)
and
U@L ®0)z* D1, @)U, =2(¢® L ®0)z* D 1; ®0;. (6.43)

For notational simplicity, rename z(p @ 1x @ 0x)z* @ 1; ® 0; and z(p & 1x &
Ox)z* @ 1; @ 0; as p and g respectively and rewrite m + 2j as n; if the conclu-
sion of the proposition holds for this new pair then it also holds for the original pair
thanks to the definition of the controlled KK° groups (see Definition 3.1), so this
makes no real difference. In this new language, lines (6.42) and (6.43) can be rewrit-
ten uhpuzl = ¢q and ul_hpul__lh = ¢ respectively.
Define now
u:=u—p(1 = p)+unp,

which we claim has the properties in the statement. Using Lemma 6.7 with v = M
and y = M§, we see that (with notation as in Definition 4.11), u is an element of

. 3
urlz,zMZ,loMZA’(h(l —h)X U{h} UY, B). Recalling that M = 4 - 220" e see
that

Ni(A) = 2900000043

has the desired property.

To complete the proof, it remains to show that if N, = N, (u)
then 8[u] = [p,q] in KK .. (X U {h}, B).

Now, v := v(u, h) is as in line (6.2), we have

w=[( 9 (0 3]

_ (ul—h(l - p) —q
p (1 - p)ul__lh

— 2252000000#3
b

Define now

) € M, (ch)-
Applying Lemma 6.8 with

v=M and y= MS§,
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we see that w is in Uy, (2p1)8 237 p255 (X U {h}, B). For notational simplicity, set
M, := 237 M?°. Proposition 4.6 implies that in KKI?/I (X U{h},B)

=[5 o)™ (6 o))
g ORI ]
=[G o) (o))

Computing, we see that

3 3
3.3M38

whence
. l1—gq O 1 0
=[("5" ) o)) s
in the group KK}%I?,3M136(X U {h}, B).
Note now that the matrix ( 1;‘1 lzq) € M, (X4 ) has norm at most 22 (as [|¢|| <

k < A,and so ||l —¢| < A by Corollary 4.2), and that it satisfies

(7 2]

for all x € X U {h}. Hence, (1;‘1 1€q) € Uap2a,5(X U {h}, B). Applying Proposi-

tion 4.6 again and using that A < M, the identity

(226 o () =(" )

shows that the class on the right-hand side of line (6.44) is the same as the class

1—gqg O 1—gq O
0 pJ 7L 0 ¢
in KK (X U {h}, B). Using a rotation homotopy, this is the same as [p, ¢] by

MO9M?S

definition of KKJ?J{?QM{’& (X U {h}, B); recalling that

M, = 237M25, M = 4.2(200/1)3’

and that p > 290000004% e qee that Na(i) = 237425 indeed has the right prop-
erties. ]






Chapter 7

Main theorems

In this chapter (as throughout), if B is a separable C *-algebra, then £p and Kp are
respectively the adjointable and compact operators on the standard Hilbert B-module
(?> ® B. We identify £ with the “diagonal subalgebra” 1 M, QLB M, @ Lp =
M, (£p) for each n.

In this chapter we prove our main result; that is, the class of separable and nuclear
C *-algebras with the UCT is closed under decomposability.

7.1 Two technical “local’” controlled vanishing results

In order to make the structure of the proof of Theorem 1.2 as clear as we can, in
this section we split off two “local” technical results. These are based on our work in
Chapters 5 and 6; given the material in these earlier chapters, at this point the proofs
are essentially bookkeeping.

The next result is the first key technical ingredient we need; it is based on the
material from Chapter 5. For the statement, recall that if x and S are respectively an
element and subset of a metric space, and € > 0, then “x €, S” means that there is
s € S withd(x,s) <e.

Proposition 7.1. There exists a function M : [1,00) — [1, 00) with the following
property. Let k > 1, and let M := M (). Let B be a separable C*-algebra such that

Let ¢ > 0, and let X be a finite subset of the unit ball of £sp. Let F C £sp be a
separable, nuclear, unital C*-subalgebra of £ sp such that the identity representation
F — £Lsp is strongly unitally absorbing (see Definition 2.5), such that for all x € X,
x €¢ F, and such that F satisfies the UCT.
Then, for each i € {0, 1} there exists a finite subset Z of Fy such that the forget
control map
KK; (Z,B) —> KKj; y1,(X. B)

of Definition 3.4 (for i = 0) or Definition 3.7 (fori = 1) is zero.

Proof. Let us focus on the case of i = 0 first. Let ¥ be a finite subset of F; such that
for all x € X there exists y € Y with ||x — y|| < e. Then, for any n, any § > 0, we
see that with notation in Definition 3.1

f?n,/c,b’(Y’ SB) - ‘(/-)n,K,S-‘rZKE(X’ SB)
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Hence, the forget control map

KKQs(Y.SB) > KK s, .(X.SB) (7.1)

is defined. On the other hand, Corollary 5.3 implies that there is a finite subset Z of
F1 such that the forget control map
KK (Z.SB) — KK 160.(Y.SB)

is defined and zero. Taking § = 160¢, and composing this with the forget control map
in line (7.1) above, we see that the forget control map

KK{ (Z,SB) > KK

K,(160+2K)8(Y’ SB)

is well-defined and zero. We are therefore done in the case i = 0; any function M sat-
isfying M (k) > 160 + 2k will work. The case of i = 1 is similar (although requiring
a much larger M (x)), using Lemma 5.5 in place of Corollary 5.3. |

The second key technical result we need is as follows; it is based on the material
from Chapter 6.

Proposition 7.2. Let X be a finite subset of the unit ball of £p, let ¢ > 0, and let
k > 1. Assume there exists a positive contraction h € £p, finite self-adjoint subsets
Zh, Zi—p, and Zyp—py of the unit ball of £, and A, v > 1 and 8,y > 0 with the
following properties:

@ |I[h, x]|| < eforall x € X;
(ii) foreachz € Zp(—py, z €c Zpand z €5 Zy_p;
(iii) with N1 := N1(A) as in Proposition 6.6, the forget control map

KKy, ns(h(1—m)X U{h}U Zpa-p) — KK}, , (h(1 — )X U {h}, B)

of Definition 3.7 is defined and zero;
(iv) the forget control map

KK 5, (Zn UhX U {h}, B)
— KK s(hX U{h} U Zpa-py. B)

of Definition 3.4 is defined and zero;

(v)  the forget control map

KK® , (Zi_pU (1 —h)X U{h}, B)

42 2¢

— KKE,B((I — )X U {h} U Zpi—n), B)

of Definition 3.4 is defined and zero.
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Then, if Z .= Zy U Z1_;, U X U{h} and N, := N,(u) is as in Proposition 6.6, we
have that the forget control map

KK (Z.B) > KK}, n,,(X.B)
of Definition 3.4 is zero.

Proof. We need to show that an arbitrary class @ € KK, B,g(X , B) vanishes under the
forget control map
KK] (Z.B) — KKy, n,,(X.B).

Using Proposition 4.10 (i), with notation as in Definition 4.9, we may assume that
there is a cycle (p,q) € Jn PREIA (Z, B) such that [p,q] € KK e (Z, B) agrees
with the image of « under the forget control map

KK (Z,B) > KK} (Z, B).

It thus suffices to show that [p,¢q] € K K2K3 .(Z, B) vanishes under the forget control
map
KK} (Z, B) = KKy, n,, (X, B)

(we leave the check that this map is defined under our assumptions to the reader).
Now, with notation as in Proposition 6.6, the composition

KK? , (XUZ,UZ_,U{h},B)

J

KK, (XU ZyU{h}, B)—"— KK, , (hX U Z U {h}. B)

|

KKE,S(hX U Zpa-ny U ih}, B)

422

(compare line (6.13)) is the zero map; indeed, the right-hand vertical map is zero by
assumption (iv). Similarly, using assumption (v), we see that the composition

KK, (XUZyUZ_,U{h},B)

l

KK, (X UZy_y U}, B) —""" KKO, , (1= )X U Z_ U {h}. B)

|

KK (1 =h)X U Zpa—py U {h}. B)
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(compare line (6.14)) is zero. Hence, Proposition 6.6 gives us an element
u € UL, ny w5 (L= M) X U{h} U Zi—py, B)
such that in the diagram below (with Ny = Ny(w) as in Proposition 6.1)

KK}

Ny s (ML =) X Uh} U Zp—py, B) KK°

4k22¢

J |

KK} ,(h(1=h)X U {h}, B) —"—— KK$_ v, (X U{h}.B) (1.2)

J

KK$, n,, (X U {h}. B)

(Z.B)

the images of the classes [u] € KK}Vl’le(h(l —h)X U{h} U Zya-p)) and [p,q] €
KK,?,e(Z, B) in the bottom right group KKg,z,Nzy(X U {h}, B) are the same; a for-
tiori their images are also the same if we further compose with the forget control
map

KKR, n,y (X U{h}, B) > KK}, n,. (X.B).

Assumption (iii) implies, however, that the left-hand vertical map in line (7.2) is zero,
however, so we are done. [

7.2 Proof of the main theorems

We are now ready for our main results. For the statement of the first of these, we
recall what it means for a C*-algebra to decompose over a class of C *-algebras
from Definition 1.1 above. After giving a proof of this, we will use it to establish the
theorems from the introduction.

Theorem 7.3. Let k > 1 and y > 0. Let My := M(4) be as in Proposition 7.1.
Let N1 := N1(My) be as in Proposition 6.6. Let M, := M(Ny) be as in Proposi-
tion 7.1. Let Ny := N2(M>3) be as in Proposition 6.6. Then, any v > N, and ¢ €
(0, y(2N2M> Ny M1)~Y) have the following property.

Let A be a separable, unital C*-algebra that decomposes over the class of nuc-
lear C*-algebras that satisfy the UCT. Let B be any separable C*-algebra such that
K« (B) = 0. Then, for any finite subset X of Ay, and & > 0, there is a finite subset Z
of Ay, such that the forget control map

KK (Z,SB) — KK} (X,SB)

of Definition 3.4 is defined and zero.
In particular, A satisfies the UCT.
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Proof. The claim that A satisfies the UCT follows as the vanishing property in the
statement of Theorem 7.3 implies condition (iii) from Corollary 5.3. It thus suffices
to prove the vanishing property. Let v and ¢ satisfy the given assumptions.

As A is decomposable with respect to the family of nuclear C *-subalgebras that
satisfy the UCT, there are nuclear, UCT C *-subalgebras C, D and E of A and a pos-
itive contraction i € E such that forall x € X, ||[h, x]|| <&, hx €. C,(1 — h)x €, D,
and h(1 — h)x €, E,and such that all e € E we have thate €, C,and e €, D. Repla-
cing C, D, and E by the C*-subalgebra of A spanned by the algebra and the unit of
A, we may assume that C, D, and E are unital subalgebras of A (note that the unitiz-
ation of a nuclear C *-algebra that satisfies the UCT is nuclear and satisfies the UCT;
see [10, Exercise 2.3.5] for nuclearity and [55, Proposition 2.3 (a)] for the UCT).

Represent A on £gp using a representation with the properties in Corollary 2.7
(with B replaced by SB), and identify A (therefore also C, D, and E) with unital
C *-subalgebras of £gp using this representation. Note that the restrictions of this
representation to each of E, C, D, (and the representation of A itself) are strongly
unitally absorbing.

Throughout the rest of the proof, all unlabeled arrows are forget control maps as
in Definitions 3.4 or 3.7 as appropriate.

Using Proposition 7.1 there exists a finite self-adjoint subset Zj1_p) of E7 such
that the forget control map

KK, anyaye(h(1L = )X U Zyay U {h}, SB)
— KK, ontonymye(h(1 = )X U {h}, SB) (7.3)
is zero. Similarly, Proposition 7.1 and the facts that forall z € Z,_p) € E1,z €, C

and z €, D gives finite self-adjoint subsets Zj; and Z;_j of C; and D, respectively
such that the forget control maps

KKQ,,(hX U Zy U{h},SB)
— KK opg,e(hX U Zp—iy U {h}. SB) (7.4)

and
KK ,.(1—h)X U Z1_ U {h}, SB)
— KKpyp, 2g,6((1 = )X U Zpi—py U {h}. SB) (7.5)

are defined and zero. Expanding Zj and Z,_j, if necessary (using that for all e € E,
e €, C,and e €, D), we may assume that,

forallze Z, z e, Zyandz €, Z1_y,. (7.6)

We are now in a position to apply Proposition 7.2 with the given € and k, A = M1,
8 =2Mie, u = M, and y as given: assumption (i) follows by choice of /; assump-
tion (ii) follows from line (7.6); assumption (iii) follows as the map in line (7.3) is
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zero; assumption (iv) follows as the map in line (7.4) is zero; and assumption (v) fol-
lows as the map in line (7.5) is zero. Therefore, Proposition 7.2 implies that the forget
control map

KK? (Z,SB) — KK} ,(X,SB)

is zero and we are done. ]
To establish the main results as stated in the introduction, we need a basic lemma.

Lemma 7.4. The class of unital, nuclear C*-algebras is closed under decomposab-
ility.
Proof. Let A be a unital C *-algebra that decomposes over the class of unital nuclear

C *-algebras. Let a finite subset X of A and ¢ € (0, 1) be given. To show that A is
nuclear, it will suffice to construct a finite rank ccp map

p:A— A

such that ¢ (x) ~, x for all x € X (compare for example [8, Lemma IV.3.1.6, (iii)]).
We may assume that X contains the unit of A.

Let then C, D, E', and & be as in the definition of decomposability (Defini-
tion 1.1) with respect to the finite set X and the parameter § = %(8/ (1 +¢))?, and
with C and D nuclear. Note that for any x € X, ||[1'/2, x]|| < 3||[h. x]||'/? by the
main result of [49], whence

5 5
hx — BY2xhV2| < Z||[h, x]|| V2 < 281/% < 28V/2; (1.7)
4 4

ashx €5 C,and as § < 1, this implies that hl/2xp1/2 €551/2 C. Choose a finite subset
Y of C such that for all x € X thereis y, € ¥ with

lyx — h'/2xh'/?|| < 381/2, (7.8)
Similarly, there is a finite subset Z of D such that for all x € X there is z, € Z with
lzx — (1 = h)Y2x(1 = h)'/?|| < 3§1/2,

Now, as C and D are nuclear there are diagrams
C C D C
N N
and
Fc Fp

!One does not actually need E at all in the proof.
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where all the arrows are ccp maps; F¢ and Fp are finite dimensional C *-algebras;
andforall y e Y,andallz € Z,

$c(Yc(y) =172y and Yp(¢p(2)) =512 2. (7.9)

Using Arveson’s extension theorem (see for example [10, Theorem 1.6.1]), extend
Yc and Y¥p to ccp maps defined on all of A, which we keep the same notation for.
Define

goiA— A ar> dcWehxh'?) + ¢p(Up (1 =)' Px(1 =)'/,

and note that ¢ is completely positive. For any x € X, let y, have the property in
line (7.8). As ¥ ¢ is contractive, this and lines (7.9) and (7.7) imply that

e (e (h2xht2) g0 d(We (v2)) X517 yx ~asie hY2xhY2 mog10 b
Precisely analogously, for any x € X,
$p(Yp((1 —h)'"2x(1 = )'/?)) ~os1/2 (1= h)x

and so for any x € X, ¢po(x) ~gs1/2 x. Applying this to x = 1 implies in particular
that ||go || = [l¢o(1)] = 1 — 188'/2. Hence, if we define

$o(a)
o (1)l

p:A—> A, ar—

then ¢ is a ccp map such that

1851/2

l¢(x) — x| < 1 1881/2

for all x € X. Using the choice of §, this completes the proof. u

The next corollary is Theorem 1.2 from the introduction; it is an immediate con-
sequence of Lemma 7.4 and Theorem 7.3.

Corollary 7.5. If a separable, unital C*-algebra decomposes over the class of nuc-
lear, unital C*-algebras that satisfies the UCT, then it is nuclear and satisfies the
UCT. .

The next result is Theorem 1.4 from the introduction. For the definition of finite
complexity and the classes £, used below, see Definition 1.3.

Corollary 7.6. Let € be a class of separable, unital, nuclear C *-algebras that satisfy
the UCT. Then, the class of separable unital C*-algebras that have finite complexity
relative to € consists of nuclear C*-algebras that satisfy the UCT.

In particular, every separable C*-algebra of finite complexity is nuclear and sat-
isfies the UCT.
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Proof. With notation as in Definition 1.3, let Dy = €, and for each ordinal «, let
Dy sep consist of the separable C *-algebras in the class O, from Definition 1.3. We
proceed by transfinite induction to show that each Dy sep consists of nuclear, UCT
C*-algebras. If o = 0, this is just the well-known fact that AF C*-algebras satisfy
the UCT. If « > 0 (and either a successor or limit ordinal) then any C*-algebra in
Dy sep decomposes over C*-algebras in Uﬂ<a Dg sep> and so is nuclear and UCT
by Corollary 7.5 and the inductive hypothesis. ]



Appendix A

Examples

In this appendix we give some examples of C *-algebras with finite complexity.

A.1 Cuntz algebras

The material in this section is based closely on work of Winter and Zacharias [70,
Section 7]'. Our aim is to establish the following result.

Proposition A.1. For any n with2 < n < 0o, the Cuntz algebra O, has complexity
rank one.

We should remark that the proof of Proposition A.1 uses classification results for
Cuntz algebras, and so depends on prior knowledge of the UCT; it therefore cannot
be said that Proposition A.1 gives a new proof of the UCT for Cuntz algebras (and
even if it did, it would be quite a complicated one!). Indeed, the main point of estab-
lishing Proposition A.1 for us is to use it as an ingredient in Theorem 1.7 from the
introduction, not to establish the UCT.

We should also remark that Proposition A.1 was subsequently generalized in [37,
Theorem 1.5]; nonetheless, we hope that the different argument given here still has
some interest.

We now embark on the proof of Proposition A.1. We will follow the notation from
[70, Section 7]. Fix n € N with n > 2. Let H be an n-dimensional Hilbert space, with

fixed orthonormal basis {eq, ..., e,}. Define
o
r(n):=PH®. (A.1)
=0

where H®! is the /th tensor power of H (and H ®° is by definition a copy of C). Let
W), be the set of all finite words based on the alphabet {1, ..., n}. In symbols

o0
W= | {1.....m}*
k=0

(with {1, ...,n}° by definition consisting only of the empty word). For each y =
(i1,....1k) € Wy, define e, :=e;, ® -+ ® e;,, and define ey to be any unit-length

More specifically, it is based on the slightly different approach to the material in [70,
Section 7] suggested in [70, Remark 7.3].
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element of H®® = C. Then, the set {¢,, | 1 € W, } is an orthonormal basis of T'(n).
For u € W, write || for the length of u, i.e., |4| = k means that

/L=(i1,...,ik)

for some iy,...,ix € {1,...,n}. Then, the canonical copy of H®k inside I'(n) from
line (A.1) has orthonormal basis {e,, | |u| = k}.
Foreachi € {1,...,n} let T; be the bounded operator on I' () that acts on basis
elements via the formula
T; ey~ e @ey.

The Cuntz—Toeplitz algebra T, is defined to be the C *-subalgebra of B(I"(n)) gen-
erated by 71, ..., T,. We note that each T; is an isometry, and that 1 — Z?:l T; Tl*
is the projection onto the span of eg. It follows directly from this that 7; contains
all matrix units with respect to the basis {e, } of I'(n), and therefore contains the
compact operators K on I'(n). Moreover, in the quotient 7, /KX, the images s; of the
generators 7; satisfy the Cuntz relations s;*s; = 1 and h - s;s} =1, and therefore
the quotient is a copy of the Cuntz algebra ,,.
Now, for x € R, define [x] := min{n € N | n > x}, and define’

2k—1 2k+[k/2]
Toj:=EP H® and Typ:= P HE. (A.2)
I=k I=k+[k/2]

Fori € {0, 1}, define Bl.((,? := Bl x). Foreach [, m € N, we identify H® ® H®™

with H®U+™) via the bijection of orthonormal bases
(e ® - @ei) ®(ejy ®-®¢j,) & e @B ey Ve @ D¢y,

Fix for the moment k € N (it will stay fixed until Lemma A.2 below). Then, for each
Jj € N we get a canonical identification

2k—1 (+1Dk-1
rO,k ® H®]k — @ H®l ® H®]k — @ H®l,
I=k I=jk

Combining this with line (A.1) we get a canonical identification

k—1 o)
C(n) = (EB H®’) @(@ Tox ® H®jk).
=0 j=0
N e’
=ZHO

2In [70, Section 7], Io,x is written 'k 2x and I'1 g is written Ik 414 /27,26 41k /27-
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Let id be the identity representation of Béolz on I'p x and write By x for the image of

B(()?,z in the representation on I'(n) that is given by

o0
On, @ (@id ® 1H®jk)
k=0

with respect to the above decomposition above. Similarly, we get a decomposition

k+Tk/21—1 o) )
C(n) = ( ¢ H®l> @(@Fl,k ® H®fk)
=0

Jj=0

=1H1

and define B x to be the image of B folz under the representation

o0
0m, ® (@id ® 1H®jk).
k=0

Now, let f : [0, 1] — [0, 1] be the piecewise linear function that takes the value 0
on [0, 1/6] and [5/6, 0], the value 1 on [2/6, 4/6], and interpolates linearly between 0
and 1on[1/6,2/6] and [4/6,5/6]. Let h(()(’),)c € Bé?lz be the operator on I'g  that acts on
the summand H ®’ from line (A.2) by multiplication by the scalar f((I —k)/(k — 1)).
Similarly, let hi(’)])c € B1(113 be the operator on I'; x that acts on the summand H ®! from
line (A.2) by multiplication by the scalar 1 — f((! —k — [k/2])/(k —1)). Let ho x
and h; x be the images of hg’),)c and h(l(,)])c in By x and Bj j respectively. Note that the
operator on hg g + hy on I'(n) acts on the summand on H®! from line (A.1) by
multiplication by 1 as long as [ > k + [k/2]. In particular,

ho,x + h1x equals the identity on I" () up to a finite rank perturbation.  (A.3)

We will need two technical lemmas about these operators.

Lemma A.2. For any T in the Cuntz—Toeplitz algebra T, and i € {0, 1}, we have
that ||[hi k., T]|| = 0 as k — oo.

Proof. We will focus on hg; the case of hj i is essentially the same. It suffices
to consider the case where T is one of the canonical generators 7; of the Cuntz—
Toeplitz algebra. Let e, be a basis element with |u| = jk + [ for some j,/ € N
with [ € {0,...,k — 1}. Then, we compute that [k, Ti]le,, = 0if j = 0, and that
otherwise

[ho. Tilew = (f(U + 1)/ (k — 1) — f(I/(k —1))e; ® ey
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As the elements {e; ® e;, | u € W, } are an orthonormal set, this implies that

Aok Tilll < jehax | f(+1D/(k=1) = f/(k=D)I.

gevey

The choice of function f implies that the right-hand side above is approximately
6/k, so we are done. [

Lemma A.3. For any T in the Cuntz—Toeplitz algebra T, we have that
(i) fori €{0,1}, d(hjxT, Bix) = 0ask — oo;
(11) d(l’l()’khl,kT, B()’k n Bl,k) — 0ask — oo.

Proof. We will focus on the case of /g ; the other cases are similar. It suffices to
consider T a finite product S ---S,,, where each S; is either one of the generators
T; or its adjoint. Using Lemma A.2, we see that [h(l)’/kl, Sj] - 0as k — oo forany j,
and any / € N with [/ > 1. Hence, the difference

hos St Sm = (gl ™ Sthgy"™) (g™ S2hgi"™) -+ (™™ Smg’™)

tends to zero as k — oo. It thus suffices to prove that the distance between each of

the terms h(l)/,gzm)th(l)/lgzm) and By x tends to zero as k — oo. Define py to be the

strong operator topology limit of h(l)/ kl as [ — oo; in other words, py is the support

projection of &g k. Then, we have that h(l)/,?m)Sj h(l)/lgzm) = h(l)/,?m)pk S; pkhé/,fzm).
As h(l)/ ]§2m) isin By, it suffices to prove that the distance between pi T; pr and By x
tends to zero as k — oo. However, pi T; py is actually in By, so we are done. ]
Now, as in the discussion on [70, p. 488], define
k—1
Ti(n) =P H®.
=0
For a word u € W, in {1, ..., n}, we may uniquely write & = pop1, where the

lengths |o| and |1 | satisfy |io| €40, ...,k — 1}, and |u1| € kN. Then, the bijective
correspondence of orthonormal bases

€u < epp Q ey,
gives rise to a decomposition
['(n) = Tk(n) ® T (n%).

Identify the C*-algebra B(I'x(n)) ® T« with its image in the representation on
I'(n) arising from the above decomposition. The following is essentially part of [70,
Lemma 7.1].
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Lemma A.4. With notation as above, 8(I'y (n)) ® T,,x contains the finite-dimensional
C*-algebras we have called By and B;, and in particular also contains hg x
and hy .

Proof. In the notation of [70, Lemma 7.1], Box = Ag(B(ITk,2x)), and
By = Ak (BTk1k/21,2k+Tk/21)-
Part (i) of [70, Lemma 7.1] says exactly that the image of Ay is contained in
BT (1) ® T
however, so we are done. n

It is explained on [70, p. 488] that B(I'x(n)) ® T, contains 5, so we get a
canonical inclusion.
Tp = BTk (n)) & Tk (A4)

The dimension of 'y (n) is dx := 1 + n + n*> 4+ --- + n¥~1, so we may make the
identification B(I'x(n)) ® T« = Mgy, (T,x). With respect to this identification, the
inclusion in line (A.4) takes the compact operators on I'(n) to My, (K (T (n*))). Tak-
ing the quotient by the compacts on both sides of line (A.4) thus gives rise to an
inclusion

L:Op = Mg, (0,1). (A.5)

In this language, we get the following immediate corollary of Lemmas A.2 and A.3.
To state it, let ¢ : B(I'(n)) — Q(I'(n)) be the quotient map from the bounded oper-
ators on I'(n) to the Calkin algebra.

Corollary A.5. Forany a € Oy, we have that the following all tend to zero as k — oo:
g (ho k). t(@)]ll, g Ry i), (@]l d(gq(hoi)e(a).q(Bo)). d(q(hyk)i(a).q(By)),
and d(q(hoxhyx)i(a),q(Boi N Bi)). u

We are finally ready for the proof of Proposition A.1.

Proof of Proposition A.1. Lete > 0, and let X be a finite subset of the unit ball of ,,.
Corollary A.5 implies that for any large k we have that for alla € X andi € {0, 1}, the
quantities [|[q (h:). (@)1l d(q (hi)¢(@). q(Bi)). and d(q(ho k1 )u(@).q(Bo N
B x)) are smaller than £/2. We may assume moreover that k = 1 modulo n — 1. Fix
this k for the remainder of the proof.

As discussed on [70, p. 488], we have a canonical unital inclusion @, — O, by
treating suitable products of the generators of @, as generators of O, . Moreover,
dy is equal to k modulo n — 1. It follows that the K-theory of My, (O,) is given
by Z/(n — 1)Z in dimension zero and zero in dimension one, with the class [1] of
the unit in Ky represented by the residue of k in Z/(n — 1)Z. Hence, the K-theory
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invariants of My, (O,) and O, agree, as we are assuming that k = 1 modulon — 1. In
particular, the Kirchberg—Phillips classification theorem (see for example [53, Corol-
lary 8.4.8]) gives a unital isomorphism Mg, (©,) = O,. Combining this with the
inclusion @,x — O, mentioned above gives a unital inclusion

B My (Onc) = Oy (A.6)

Now, the composition 8 ot : O, — O, of B as in line (A.6) and ¢ as in line (A.5) is
a unital inclusion, whence necessarily induces an isomorphism on K-theory. As O,
satisfies the UCT, f o ¢ is therefore a K K-equivalence (see for example [55, Proposi-
tion 7.3]). Hence, the uniqueness part of the Kirchberg—Phillips classification theorem
(see for example [53, Theorem 8.3.3, (iii)]) implies that 8 o ¢ : O, — O, is approx-
imately unitarily equivalent to the identity. Thus, there is a sequence (u,,) of unitaries
in O, such that
la —umBr(@)ugy| — 0

forall a € O,. Choose m large enough so that ||a —u,,Bi(a)u;,| <e/2foralla € X.

Set h := umpP(q(ho )z, Co = umpP(q(Boi))up, Do = umpP(q(B1i)upy,
and Eo := umB(q(B1x N Box))uy,. Set C to be the C*-subalgebra of @, spanned
by Cp and the unit, and similarly for D and E. Our choices, plus the fact that

g(hox +hix) =1

(see line (A.3)), imply that this data satisfies the definition of decomposability (Defin-
ition 1.1), so we are done. ]

A.2 Groupoids with finite dynamical complexity

In this section, we give another interesting class of C*-algebras with finite com-
plexity, that is, C *-algebras of groupoids with finite dynamical complexity. To avoid
repeating the same assumptions, let us stipulate that throughout this appendix the
word “groupoid” means “locally compact, Hausdorff, étale groupoid”; we will often
also assume that G has compact base space, but not always. For background on this
class of groupoids and their C *-algebras, we recommend [10, Section 5.6], [51, Sec-
tion 2.3], or [59].

Note that if G is a groupoid in this sense, then any open subgroupoid H of G
(i.e., H is an open subset of G that is algebraically a groupoid with the inherited
operations) is also a groupoid in this sense. Again, to avoid too much repetition, let
us say that the word “subgroupoid” means “open subgroupoid”.

The following definitions are essentially contained in the authors’ joint work with
Guentner [31, Definition A.4].
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Definition A.6. Let G be a groupoid, let H be a subgroupoid of G, and let € be a
set of subgroupoids of G. We say that H is decomposable over € if for any compact
subset K of H there exists an open cover {Uy, Uy} of r(K) U s(K) such that for each
i € {0, 1} the subgroupoid of H generated by

{h e K|s(h) €U}
is contained in an element of €.

Definition A.7. For an ordinal number o,

(1) if o =0, let € be the class of groupoids G such that for any compact
subset K of G there is a subgroupoid H of G such that K € H, and such
that the closure of H is compact;

(i) if o > 0, let €y be the class of groupoids that decompose over the collection
of their subgroupoids in the class | J4 ., Cp.

We say that a groupoid G has finite dynamical complexity if G is contained in €, for
some ordinal «. If G has finite dynamical complexity, the complexity rank of G is the
smallest « such that G is in €,.

The main result of this section is as follows. For the statement, recall that a group-
oid is ample if it has totally disconnected base space, and principal if the units are the
elements g € G that satisfy s(g) = r(g). Recall also that a C *-algebra is subhomo-
geneous if it is isomorphic to a C *-subalgebra of My (C(X)) for some N € N and
compact Hausdorff space X. Recall finally the notion of complexity rank relative to
a class of C *-algebras from Definition 1.3.

Proposition A.8. Let G be a groupoid with compact base space.

(i)  The complexity rank of C}(G) relative to the class of subhomogeneous
C*-algebras is bounded above by the complexity rank of G.

(ii) If G is ample and principal, then the complexity rank of C}(G) (relative
to the class of finite-dimensional C*-algebras) is bounded above by the
complexity rank of G.

In particular, if G is second countable and has finite dynamical complexity, then
C} (G) satisfies the UCT.

Before getting into the proof of this, let us discuss some remarks and examples.

Example A.9. Let G(X) be the coarse groupoid associated to a bounded geometry
metric space X; see [61, Section 3] or [52, Chapter 10] for background. For such
spaces X, Guentner, Tessera and Yu [29] introduced a notion called finite decompos-
ition complexity; it comes with a natural complexity rank, defined to be the smallest
ordinal « such that X is in the class ®, of [30, Definition 2.2.1]. Then, [31, The-
orem A.7] shows that G(X) has finite dynamical complexity if and only if X has
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finite decomposition complexity?; moreover, inspection of the proof shows that the
two complexity ranks agree. It follows from this and [30, Theorem 4.1] that for any
n € N there are spaces X such that G(X) is not in €,, but is in €y for some finite
N > n. Moreover, it follows from [30, discussion below Definition 2.2.1] or the main
result of [15] that there are spaces X such that G(X) is in €, for some infinite o, but
not for any finite .

Example A.9 shows that the range of possible values of the complexity rank for
groupoids is quite rich. As we do not know the corresponding fact for C *-algebras,
the following question is natural.

Question A.10. Are there any circumstances when the complexity rank of C*(G) is
bounded above by that of G?

It seems very unlikely that there is a positive answer in general, but it is conceiv-
able that there could be a positive answer for coarse groupoids.

Example A.11. Transformation groupoids provide natural examples with finite com-
plexity rank. Using the main result of [2], the complexity rank of the transforma-
tion groupoid associated to any free action of a virtually cyclic group on a finite-
dimensional space is one. We guess that the techniques used in the proof of [18,
Theorem 1.3] should show that for many discrete groups I', any free action on the
Cantor set X gives rise to a groupoid X x I with finite dynamical complexity; how-
ever, we did try to look into the details, and would be interested in any progress here.
These ideas lead to the following conjecture.

Conjecture A.12. If T has finite decomposition complexity then X x I has finite
dynamical complexity for any free action of I" on the Cantor set.

Remark A.13. Proposition A.8 does not give new information on the UCT; this is
because all groupoids with finite dynamical complexity are amenable by [31, The-
orem A.9], whence their groupoid C *-algebras satisfy the UCT by Tu’s theorem [64,
Proposition 10.7]. However, it seems interesting to have an approach to the UCT for a
large class of groupoids that does not factor through the Dirac-dual-Dirac machinery
employed by Tu.

We now turn to the proof of Proposition A.8. For a subgroupoid H of a group-
oid G, write
H =HUG©,

which is also a subgroupoid of G.

3This result was one of the key motivations for the definition of finite dynamical complexity,
and also motivates the terminology.
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Lemma A.14. Let G be a groupoid with compact base space, and let H be a sub-
groupoid in €. Then, H U G© is a subgroupoid of G that is also in €.

Proof. We proceed by transfinite induction on «. For the base case « = 0, let H be
a subgroupoid of G in €y, and let K’ be a compact subset of H'. As the base space
in an étale groupoid is open, K := K’ \ G© is also a compact set, and is contained
in H. As H is in €, there exists a subgroupoid L of H that contains K, and that has
compact closure. Hence, L’ is a subgroupoid of H' that contains K’ and has compact
closure. Thus, H’ is in €y too. The inductive step follows the same idea. ]

The lemma below is very similar to [67, Lemma B.3].

Lemma A.15. Let G be a groupoid with compact base space. Let H be a sub-
groupoid of G that decomposes over some class € of subgroupoids of G. Then, H’
decomposes over the collection of subgroupoids L', where L is a subgroupoid of H
that is in €.

Proof. Let X be a finite subset of the unit ball of C;*(H’), and ¢ > 0. As C.(H) +
C(G®) is dense in C*(H'), perturbing X slightly, we may assume that X is con-
tained in a subset of C*(H’) of the form C.(K) + C(G©®), where K is an open
and relatively compact subset of H. The proof of [67, Lemma B.3] gives us open
subgroupoids H; and H, of H and a positive contraction % in C,(H 1(0)) C CY(Hy)
such that Hy, H, and H; N H, are in the class €, and such that for all x € X,
hx € C}r(Hy), (1 —h)x € C}(H3), and (1 — h)hx € C¥(H; N H»). Then, the data
h, C := C}(H{), D = C}(H}), and E = C;*(H{ N H}) give the desired decom-
posability statement. ]

Proof of Proposition A.8. For part (i), fix a groupoid G. We show by transfinite in-
duction on « that if H is an open subgroupoid of G in the class €, and if

H =HUGO,

then C;*(H’) is in the class D, of Definition 1.3, where we define 9, relative to
the class of subhomogeneous C *-algebras. Applying this to H = G then gives the
desired conclusion for C*(G).

For the base case, we need to show that if H is an open subgroupoid of G in
the class € and if H' = H U G, then C*(H’) is locally subhomogeneous. Let a
finite subset X of C,*(H’) and ¢ > 0 be given. As C.(H’) is dense in C;*(H'), up to
a perturbation, we may assume X is contained in C,(K) for some open and relatively
compact subset K of H’. Lemma A.14 implies that H’ is in €y, whence there is an
open subgroupoid L of H’ with compact closure that contains K, and therefore so
that X is contained in C;*(L). On the other hand, C;*(L) is subhomogeneous by the
proof [32, Lemma 8.14], so we are done with the base case.
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Assume now that o > 0 (and is either a successor ordinal or limit ordinal), and let
H be a subgroupoid of G in the class €. According to Lemma A.15, we have that
H’ decomposes over

{Cr* (L") | L an open subgroupoid of H' in U ‘Cﬂ}

B<a

which completes the proof of part (i) by inductive hypothesis.

We now look at part (ii), so let G be principal and ample. We will show that if G
is in €, then C*(G) is locally finite dimensional; thanks to our work in part (i), this
will suffice for the proof.

Let then G be an element of €,. We claim that for any compact subset K of G
there is a compact open subgroupoid of H of G that contains K. The claim shows
that C¥(G) is locally finite-dimensional. Indeed, up to a perturbation we can assume
any finite subset of C;*(G) is contained in C.(K) for some open and relatively com-
pact subset K of G, and so in C,* (H) for some compact, open subgroupoid of G. It
is well-known that a compact, Hausdorff, étale, principal groupoid with totally dis-
connected base space has a locally finite-dimensional C *-algebra; for example, this
follows directly from the structure theorem for “CEERs” in [25, Lemma 3.4].

To establish the claim, let a compact subset K of G be given. According to the
definition of €, there exists an open subgroupoid L of G with compact closure such
that K is contained in L. Note first that as L has compact closure, there is some
m € N such that L is covered by m open bisections from G. Hence, in particular,
for any x € L©, we have that the range fibre L* has at most m elements. Working
entirely inside L, it suffices to prove that if K is a compact subset of a principal,
ample groupoid L such that sup ;) |L*| = m < oo, then there is a compact, open
subgroupoid H of L that contains K.

Now, as L is ample (and étale), each point [ € K is contained in a compact, open
subset of L. As finitely many of these compact, open subsets cover K, there is a
compact, open subset K’ of L such that K C K’. Let H be the subgroupoid of L
generated by K’. A subgroupoid generated by an open subset is always open (see for
example [32, Lemma 5.2]), so it suffices to prove that H is compact. Let (;);e; be an
arbitrary net consisting of elements from H . Each &; can be written as a finite product
h; = kl-(l)---kl.(ni), with kl.(j) in K" := K" U(K")"'Us(K’') Ur(K’'). As each range
fibre from L has at most m elements, we may assume that n; < m for all m; in fact we
may assume it is exactly m, as otherwise we can just “pad” it with identity elements.
Write then h; = kl.(l) e ki(m). As K" is compact, we may pass to a subnet of I, and
thus assume that each net (ki(j ))ie 7 has a convergent subnet, converging to some k()
in K”. It follows on passing to this subnet that (h;) converges to k... k™ As we
have shown that every net in H has a convergent subnet, H is compact, completing
the proof. ]
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