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ABSTRACT
Motivated by the pressing needs for dissecting heterogeneous relationships in gene expression data, here
we generalize the squared Pearson correlation to capture a mixture of linear dependences between two
real-valued variables, with or without an index variable that specifies the line memberships. We construct
the generalized Pearson correlation squares by focusing on three aspects: variable exchangeability, no
parametric model assumptions, and inference of population-level parameters. To compute the generalized
Pearson correlation square from a sample without a line-membership specification, we develop a K-lines
clustering algorithm to find K clusters that exhibit distinct linear dependences, where K can be chosen in
a data-adaptive way. To infer the population-level generalized Pearson correlation squares, we derive the
asymptotic distributions of the sample-level statistics to enable efficient statistical inference. Simulation
studies verify the theoretical results and show the power advantage of the generalized Pearson correlation
squares in capturingmixtures of linear dependences. Gene expression data analyses demonstrate the effec-
tiveness of the generalized Pearson correlation squares and the K-lines clustering algorithm in dissecting
complex but interpretable relationships. The estimation and inference procedures are implemented in the
R package gR2 (https://github.com/lijy03/gR2). Supplementary materials for this article are available online,
including a standardized description of the materials available for reproducing the work.
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1. Introduction

In biomedical research, Pearson correlation and its rank-based
variant Spearman correlation remain the most widely used
association measures for describing the relationship between
two scalar-valued variables, for example, two genes’ expression
levels. The reason underlying the two measures’ popularity is
2-fold: linear and monotone relationships1 are widespread in
nature and interpretable to researchers. In many cases, however,
the interesting relationship between two variables often depends
on another hidden categorical variable.

For example, in a gene expression dataset of Arabidopsis
thaliana, a plant model organism, many genes exhibit different
linear dependences between root and shoot tissues (Li et al.
2008; Kim et al. 2012). Figure 1(A) shows pairwise relationships
of flavin-monooxygenase (FMO) genes’ expression levels, and
all these relationships differ between root and shoot tissues. In
particular, FMO GS-OX2 and FMO GS-OX5 exhibit a positive
(sample-level Pearson) correlation in shoots (black dots) but a
negative correlation in roots (gray circles). Imagine an idealistic,
extreme scenario (Figure 1(B)) where two genes have a positive
(population-level Pearson) correlation ρ ∈ (0, 1) in the shoot
tissue but a negative correlation −ρ in the root tissue, and the
two tissues are equally sampled; then the two genes would have
a zero correlation if not conditional on the tissue.

CONTACT Jingyi Jessica Li jli@stat.ucla.edu Department of Statistics and Data Science, University of California, Los Angeles, Los Angeles, CA.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

1Monotone relationships becomes linear after values of each variable are transformed into ranks.

Real scenarios are usually not so extreme, but many of them
exhibit a mixture relationship composed of two linear depen-
dences (Li 2002), and they may show the “Simpson’s Paradox”
where the overall correlation and the conditional correlations
have opposite signs. Under such scenarios, Pearson correlation
is a misleading measure, as it specifically looks for a single
linear dependence. These scenarios often lack an index variable
(e.g., the shoot/root tissue type) that segregates observations into
distinct linear relationships. Moreover, numerous variable pairs
(e.g., 108 gene pairs) often need to be examined to discover
unknown, but interesting and interpretable associations. There-
fore, an association measure is in much demand to capture such
relationships that are decomposable into a (possibly unknown)
number of linear dependences, in a powerful and efficient way.

In the literature of scalar-valued association measures (also
known as dependence measures), many measures have been
developed to capture dependent relationshipsmore general than
the linear dependence. The first type of measures aims to cap-
turemore general functional (i.e., one-to-one) relationships. For
monotone relationships, the Spearman’s rank correlation and
the Kendall’s τ are commonly used. For functional relationships
more general than monotonicity, there are measures includ-
ing the maximal correlation efficient, measures based on non-
parametric estimation of correlation curves (Bjerve and Dok-
sum 1993) or principal curves (Delicado and Smrekar 2009),
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Figure 1. A: Pairwise expression levels of A. thaliana genes. B: A simulated toy example. Gray circles and black dots indicate data from root and shoot tissues,
respectively.

generalized measures of correlation that deals with asymmet-
rically explained variances and nonlinear relationships (Zheng,
Shi, and Zhang 2012), measures for detecting local monotone
patterns using count statistics (Wang, Waterman, and Huang
2014), the G2 statistic derived from a regularized likelihood
ratio test for piecewise-linear relationships (Wang, Jiang, and
Liu 2017), and the recently proposed Chatterjee’s rank correla-
tion ξ (Chatterjee 2021). The second type of measures aims to
capture general dependence so that they only give zero values
to independent random variable pairs. Examples include the
maximal correlation coefficient and Chatterjee’s rank correla-
tion ξ , which also belong to the first type, and other measures
including the Hoeffding’s D, the mutual information, kernel-
based measures such as the Hilbert-Schmidt Independence Cri-
terion (HSIC) (Gretton et al. 2005), the distance correlation
(Székely, Rizzo, and Bakirov 2007; Székely and Rizzo 2009) and
its generalization as the multiscale graph correlation (MGC)
(Shen, Priebe, and Vogelstein 2019), the maximal informa-
tion coefficient (Reshef et al. 2011), the Heller-Heller-Gorfine
(HHG) association test statistic based on ranks of distances
(Heller, Heller, and Gorfine 2012), and the semiparametric ker-
nel independence test for handling excess zeros (Lee and Zhu
2021). Specifically, the following measures are not restricted
to comparing real-valued random variables: the Hoeffding’s D,
the mutual information, the HSIC, the HHG test statistic, the
distance correlation, and the MGC, among which the first four
measures have the range [0,∞) instead of having absolute values
under 1.

The aforementioned two types ofmeasures have complemen-
tary advantages and disadvantages. Measures of the first type
are generally interpretable but cannot capture the widespread
nonfunctional (i.e., not one-to-one) relationships. In contrast,
measures of the second type, though being versatile and having
desirable theoretical properties, do not provide a straightfor-
ward interpretation of their captured relationships. As Figure 1
shows, many relationships are decomposable into a small num-
ber of linear dependences. Since the linear dependence is the
simplest andmost interpretable relationship, amixture of a small
number of linear dependences is also interpretable and often of
great interest in biomedical research. For example, if researchers
observe that a gene positively regulates a vital cancer gene in one
cancer subtype but exhibits adverse regulatory effects in another
subtype, different treatment strategies may be designed for the
two cancer subtypes. However, mixtures of linear dependences
remain challenging to capture: they are often missed by the
first type of measures and cannot be distinguished from other
less interpretable relationships by the second type of measures.
Although mixtures of linear regression models have been of

broad interest in fields including statistics, economics, social
sciences, and machine learning for over 40 years (Quandt and
Ramsey 1978;Murtaph andRaftery 1984; DeVeaux 1989; Jacobs
et al. 1991; Jones andMcLachlan 1992;Wedel andDeSarbo 1994;
Turner 2000; Hawkins, Allen, and Stromberg 2001; Hurn, Justel,
and Robert 2003; Leisch 2008; Benaglia et al. 2009; Scharl, Grün,
and Leisch 2009), they did not propose an association measure
to capture mixtures of linear dependences, and neither do they
trivially lead to a reasonable association measure, as we will
explain below.

In this work, we propose generalized Pearson correlation
squares, for which the squared Pearson correlation is a special
case, to capture a mixture of linear dependences. Our proposal
addresses the practical need to screen variable pairs that exhibit
complex yet interpretable relationships. These relationships can
be decomposed into linear components, where at least one
component demonstrates statistical significance. We consider
two scenarios: the specified scenario where an index variable
indicates the linemembership of each observation, and themore
common unspecified scenario where no index variable is avail-
able. Under the specified scenario, we aim for our new measure
to quantify the “informativeness” of the index variable, indicat-
ing whether it specifies distinct linear relationships. To achieve
a reasonable generalization of the Pearson correlation, our new
measures adhere to an essential property embraced by most
existing association measures—the exchangeability of the two
variables.2 Additionally, we seek to provide both population-
level parameters and sample-level statistics for our measures,
enabling statistical inference and the assessment of statistical
significance for observed measure values.

First, under the unspecified scenario, can we directly use
the existing work on mixtures of linear regression models? The
answer is no because these models require a specification of the
response and predictor variables; that is, they do not consider
the two variables symmetric. Except for the degenerate case
where only one linear component exists, that is, the linearmodel,
these models do not lead to a measure exchangeable for the two
variables.

Second, still under the unspecified scenario, how to assign
observations to lines to ensure the exchangeability? A good
assignment should be able to handle general cases where obser-
vations from each line do not follow a specific distribution

2Note that a linear model with group-specific slopes and intercepts (groups
specified by the index variable Z) does not provide a desirable measure
under the specified scenario. The reason is that the exchangeability is not
satisfied: the linearmodelR2 wouldbedifferent ifwe swap the twovariables
X and Y ; that is, the two linear models (written in R commands) lm(Y ~ Z
+ X:Z) and lm(X ~ Z + Y:Z) do not give the same R2.
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(as is required by model-based clustering) or have a spherical
shape (as is required by the K-means clustering). To handle
such cases, we propose the K-lines clustering algorithm in
Section 2.2.1.

Third, how to define population-level measures to enable
proper inference? A critical point is that the specified and
unspecified scenarios need different population-level measures;
otherwise, it would be impossible to construct unbiased estima-
tors for both scenarios without distributional assumptions. We
will elaborate on this point in Section 3.

Fourth, when an index variable is available, should we always
use it to specify line memberships? Surprisingly, the answer is
no because the index variable may be uninformative or irrel-
evant to the segregation of lines. In that case, it can be more
informative to directly estimate line memberships from data by
clustering. We will demonstrate this point using real data in
Section 5.1.

This article is organized as follows. In Section 2, we define
generalized Pearson correlation squares at the population and
sample levels, under the line-membership specified and unspec-
ified scenarios. For the unspecified scenario, we develop a K-
lines clustering algorithm, following the subspace clustering lit-
erature (Vidal 2010). In Section 3, we derive the asymptotic dis-
tributions of the corresponding sample-level measures to enable
efficient statistical inference. In Section 4, we conduct simu-
lation studies under various settings to verify the asymptotic
distributions and evaluate the finite-sample statistical power
of the proposed measures. In Section 5, we demonstrate the
use of the generalized Pearson correlation squares and the K-
lines clustering algorithm for dissecting gene expression het-
erogeneity in two real datasets, followed by discussions in Sec-
tion 6. Supplementarymaterial includes all the proofs of lemmas
and theorems, convergence properties of the K-lines algorithm,
more simulation results, another real data application, real data
description, more tables and figures, and additional references.

2. Generalized Pearson Correlation Squares and
K-Lines Clustering Algorithm

The Pearson correlation is the most widely used measure to
describe the relationship between two random variables X,Y ∈
IR. At the population level, the Pearson correlation of X and Y
is defined as ρ = cov(X,Y)/{var(X)var(Y)}−1/2 ∈ [−1, 1],
where cov(X,Y) = IE[{X − IE(X)}{Y − IE(Y)}], var(X) =
IE{[X − IE(X)]2}, and var(Y) = IE{[Y − IE(Y)]2} denote the
covariance betweenX and Y , the variance ofX, and the variance
of Y , respectively. We say that X and Y are linearly dependent if
ρ �= 0.

At the sample level, the Pearson correlation R = {∑n
i=1(Xi −

X̄)(Yi−Ȳ)}/{∑n
i=1(Xi−X̄)2

∑n
i=1(Yi−Ȳ)2}1/2 is defined based

on a sample {(Xi,Yi)}ni=1 from the joint distribution of (X,Y),
where X̄ = n−1∑n

i=1 Xi and Ȳ = n−1∑n
i=1 Yi. Motivated by

the fact that R2, the Pearson correlation square, is commonly
used to describe the observed linear dependence in a bivariate
sample, we develop generalized Pearson correlation squares to
capture a mixture of linear dependences.

We define the line-membership specified scenario as the case
where we also observe an index random variable Z ∈ {1, . . . ,K}

that specifies the linear dependence between X and Y , and K
is the number of linear dependences. In parallel, we define the
line-membership unspecified scenario as the case where no index
variable is available. In the special case ofK = 1, we have Z ≡ 1.

There may exist more than one index variable, and cor-
respondingly there could be multiple specified scenarios. For
example, in the A. thaliana gene expression dataset (Table S4
in the supplementary material), there are four index variables
(condition, treatment, replicate, and tissue) that
correspond to four different specified scenarios. As we will
show in Section 5.1, only the tissue specification leads to a
reasonable separation of linear relationships (Figures 1 and S5–
S8 in the supplementarymaterial). Hence, a specified scenario is
not always preferred to the unspecified scenario when the goal
is to capture an informative mixture of linear dependences.

2.1. Line-Membership Specified Scenario

2.1.1. Population-Level Generalized Pearson Correlation
Square (Specified)

As the index variableZ is observable under the line-membership
specified scenario, we denote pkS = IP(Z = k), k = 1, . . . ,K.
Conditional on Z = k, the population-level Pearson correlation
between X and Y is ρkS = cov(X,Y | Z = k)/{var(X |
Z = k)var(Y | Z = k)}1/2, if var(X | Z = k) > 0 and
var(Y | Z = k) > 0; otherwise, ρkS = 0. In the special case
of K = 1, ρ2

1S = ρ2 = cov2(X,Y)/{var(X)var(Y)} is the
population-level Pearson correlation square that indicates the
population-level strength of a linear dependence. Motivated by
this, we combine ρ2

1S, . . . , ρ
2
KS into one measure to indicate the

overall strength of K linear dependences.

Definition 2.1. At the population level, when the line member-
ship variable Z is specified, the generalized Pearson correlation
square between X and Y is defined as

ρ2
GS = IEZ

(
ρ2
ZS
) = IEZ

{
cov2(X,Y | Z)

var(X | Z)var(Y | Z)

}
=

K∑
k=1

pkS ρ2
kS ,

(2.1)

a weighted sum of ρ2
1S, . . . , ρ

2
KS, that is, the strengths of

the K linear dependences, with weights as p1S, . . . , pKS. Note
that the subindex G stands for generalized, and S stands for
specified.

2.1.2. Sample-Level Generalized Pearson Correlation Square
(Specified)

To estimate ρ2
GS, we consider a sample {(Xi,Yi,Zi)}ni=1 from the

joint distribution of (X,Y ,Z) ∈ IR2 × {1, . . . ,K}.
Definition 2.2. At the sample level, when observations
{(Xi,Yi)}ni=1 have line memberships {Zi}ni=1 specified, the
generalized Pearson correlation square is defined as

R2GS =
K∑

k=1
p̂kS ρ̂2

kS , (2.2)

where the subindex G stands for generalized, S stands for speci-
fied, p̂kS = 1

n
∑n

i=1 1I(Zi = k),
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ρ̂2kS =
{∑n

i=1(Xi − X̄kS)(Yi − ȲkS)1I(Zi = k)
}2{∑n

i=1(Xi − X̄kS)21I(Zi = k)
} {∑n

i=1(Yi − ȲkS)21I(Zi = k)
} ,

X̄kS = n−1
kS
∑n

i=1 Xi1I(Zi = k), ȲkS = n−1
kS
∑n

i=1 Yi1I(Zi = k),
and nkS =∑n

i=1 1I(Zi = k).

TheR2GS measure is a weighted sum of theR2’s of all line com-
ponents, that is, ρ̂2

1S, . . . , ρ̂
2
KS. Note that X and Y are exchange-

able in R2GS. We next define the counterpart of R2GS under
the more common scenario in which no index variable Z is
observable.

2.2. Line-Membership Unspecified Scenario

Under the line-membership unspecified scenario, we investigate
a mixture of K linear dependences between X and Y without
observing any index variable Z. For this scenario, we start
with formulating the sample-level measure as a counterpart of
R2GS because generalization from the specified scenario to the
unspecified scenario is more straightforward at the sample level
than the population level. We consider a sample {(Xi,Yi)}ni=1
from the joint distribution of (X,Y) ∈ IR2.

2.2.1. K-Lines Clustering Algorithm
As no line-membership information is available, we will first
assign each (Xi,Yi) to a line. Because we would like X and Y
to be exchangeable in the new measure, a reasonable way is to
assign (Xi,Yi) to the closest line in the perpendicular distance.
We use a shorthand notation β = (θ , c)T, θ ∈ [0, 2π] and c ∈ IR,
to denote the line {(x, y)T : cos θ · x + sin θ · y − c = 0} ⊂ IR2.
The perpendicular distance from (x, y)T to β is

d⊥
(
(x, y)T,β

) = | cos θ · x + sin θ · y − c| . (2.3)

Then we define the sample-level unspecified line centers as the K
lines that minimize the average squared perpendicular distance
of data points to their closest line.

Definition 2.3. Let BK = {β1, . . . ,βK} be a multiset of K
lines with possible repeats. We define the average within-cluster
squared perpendicular distance as

W(BK ,Pn) = 1
n

n∑
i=1

min
β∈BK

d2⊥
(
(Xi,Yi)

T,β
)
, (2.4)

where Pn is the empirical measure that places mass n−1 at each
of (X1,Y1), . . . , (Xn,Yn). Then we define the multiset of sample-
level unspecified line centers as

B̂KU ∈ argmin
BK

W(BK ,Pn) , (2.5)

where the subindex U stands for unspecified. We write each
solution to (2.5) as B̂KU = {β̂1U , . . . , β̂KU}, where β̂kU =
(θ̂kU , ĉkU)T is the kth line center.

To find B̂KU , we propose the K-lines clustering algorithm,
which is inspired by the well-known K-means algorithm (Lloyd
1982). The K-means algorithm cannot account for within-
cluster correlation structures but can only identify spherical
clusters under a distance metric, for example, the Euclidean

distance. In contrast, the K-lines algorithm finds clusters
that exhibit strong within-cluster correlations; it is specifically
designed for applications where two real-valued variables have
distinct correlations in different hidden clusters. We note that
the K-lines algorithm is a special case of subspace clustering
(Vidal 2010).

As an iterative procedure, the K-lines clustering algorithm
includes two alternating steps in each iteration. The recentering
step uses the current cluster assignment (i.e., line memberships)
to update each cluster line center, which minimizes the within-
cluster sum of squared perpendicular distances of data points to
the line center. The assignment step updates the cluster assign-
ment based on the current cluster line centers: assign every
data point to its closest cluster line center in the perpendicular
distance. The two steps alternate until the algorithm converges.
Figure 2 illustrates the K-lines clustering algorithm.

The recentering step updates each cluster center using the
major axis regression, which minimizes the sum of squares of
the perpendicular distances from points to the regression line.
Themajor axis regression line is the first principal component of
the two variables’ sample covariance matrix (Jolliffe 1982; Smith
2009). Given the cluster assignment in the (t − 1)th iteration:
C(t−1)
1 , . . . , C(t−1)

K , the updated kth cluster center is

β̂
(t)
kU = argmin

β

∑
i∈C(t−1)

k

d2⊥
(
(Xi,Yi)

T,β
)

= (θ̂kU , û12,kX̄kU − û11,kȲkU
)T , (2.6)

where cos θ̂kU = û12,k, sin θ̂kU = −û11,k, and (̂u11,k, û12,k)T is
the first eigenvector of the sample covariance matrix

∣∣∣C(t−1)
k

∣∣∣−1

⎡⎢⎣
∑

i∈C(t−1)
k

(Xi − X̄kU )2
∑

i∈C(t−1)
k

(Xi − X̄kU )(Yi − ȲkU )∑
i∈C(t−1)

k
(Xi − X̄kU )(Yi − ȲkU )

∑
i∈C(t−1)

k
(Yi − ȲkU )2

⎤⎥⎦ ,

with X̄kU = |C(t−1)
k |−1∑

i∈C(t−1)
k

Xi and ȲkU = |C(t−1)
k |−1∑

i∈C(t−1)
k

Yi .
Similar to theK-means clustering algorithm, theK-lines clus-

tering algorithm is not guaranteed to find the global minimizer,
argminBK W(BK ,Pn). Empirically, we run theK-lines clustering
algorithm forM times with random initializations and obtainM
multisets of unspecified line centers B(1)

K , . . . ,B(M)
K . Then we set

B̂KU ∈ argminBK∈{B(1)
K ,...,B(M)

K } W(BK ,Pn). Regarding the effects
of M, see Section B.3 in the supplementary material. In the R
package gR2, the default setting is M = 30 if n ≥ 50, and
M = 	1500/n
 if n < 50.

Remark 2.1. Normalization. Regarding whether X1, . . . ,Xn
and Y1, . . . ,Yn should be separately normalized before the K-
lines algorithm is applied, the decision is problem-specific and
depending on the scales of X and Y , same as for K-means
clustering.

Remark 2.2. Computational complexity.The complexity of the
K-lines algorithm is O(nKT), the same as Lloyd’s implementa-
tion of the K-means algorithm for a given initialization with T
iterations. The reason is that the K-lines algorithm and Loyld’s
K-means algorithm have only two differences: (a) calculation of
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Figure 2. An illustration of the K-lines clustering algorithm.

Initialization: Assign random initial clusters C(0)
1 , . . . ,C(0)

K , such that ∪K
k=1C

(0)
k = {1, . . . , n}.

The algorithm proceeds by alternating between two steps. In the tth iteration, t = 1, 2, . . .
Recentering step: Calculate the cluster line centers β̂

(t)
1U , . . . , β̂

(t)
KU based on the cluster assignment C(t−1)

1 , . . . ,C(t−1)
K by (2.6).

Assignment step: Update the cluster assignment for k = 1, . . . ,K
C(t)
k =

{
i : d⊥

(
(Xi,Yi)T, β̂

(t)
kU

)
≤ d⊥

(
(Xi,Yi)T, β̂

(t)
sU

)
, for all s = 1, . . . ,K

}
.

Stop the iteration when the cluster assignment no longer changes.
Output: Cluster assignment C1, . . . ,CK ; Sample-level unspecified line centers β̂1U , . . . , β̂KU .

Algorithm 1: K-lines clustering algorithm

K cluster centers, whose complexity is O(22n + 23) = O(n) for
finding the first principal components inK-lines versusO(n) for
calculating the arithmetic means in K-means; (b) calculation of
distances from data points to cluster centers, whose complexity
is O(n) in both K-means and K-lines.

Remark 2.3. Data-driven choice of K.When users do not have
prior knowledge about the value ofK, how to chooseK becomes
an important question in practice. Some methods for choosing
K inK-means clustering can be adapted. For example, the elbow
method, though not theoretically principled, is visually appeal-
ing to practitioners and widely used. It employs a scree plot
whose horizontal axis displays a range of K values, and whose
vertical axis shows the average within-cluster sum of squared
distances corresponding to each K. For our K-lines algorithm,
it is reasonable to use a scree plot to show how W(BK ,Pn), the
average within-cluster squared perpendicular distance defined
in (2.4), decreases as K increases.

Alternatively, when it is reasonable to assume that (X,Y) |
(Z = k) follows a bivariate Gaussian distribution for all k =
1, . . . ,K, one may use the Akaike information criterion (AIC)
to choose K. Specifically, AIC is defined as

AIC(K) = 2(6K − 1) − 2
n∑

i=1
log p

(
Xi,Yi | {̂pkU , μ̂kU , �̂kU}Kk=1

)
= 2(6K − 1) − π−1

n∑
i=1

log

[ K∑
k=1

p̂kU
∣∣�̂kU

∣∣−1/2 (2.7)

exp
{
−1
2
(
(Xi,Yi)

T − μ̂kU
)T

�̂−1
kU
(
(Xi,Yi)

T − μ̂kU
)}]

,

where the first term is 2(6K − 1) because there are 6 parameters
for each component and the component proportions sum to 1;
in the second term, p̂kU = |Ck|/n, μ̂kU = (X̄kU , ȲkU

)T,
�̂kU = |Ck|−1[ ∑

i∈Ck
(Xi − X̄kU)2

∑
i∈Ck

(Xi − X̄kU)(Yi − ȲkU)∑
i∈Ck

(Xi − X̄kU)(Yi − ȲkU)
∑

i∈Ck
(Yi − ȲkU)2

]
.

We will demonstrate the elbow method and the AIC method in
Section 4.2.

2.2.2. Sample-Level Generalized Pearson Correlation Square
(Unspecified)

Powered by the K-lines algorithm, we introduce the sample
surrogate indices Ẑi ∈ {1, . . . ,K}, i = 1, . . . , n, based on which
we then define the sample-level generalized Pearson correlation
square for this line-membership unspecified scenario.

Definition 2.4. Suppose that Algorithm 1 outputs K unspecified
line centers β̂1U , . . . , β̂KU . Also suppose that the probability that
(Xi,Yi) is equally close to more than one line center is zero. For
each (Xi,Yi), we define its sample surrogate index

Ẑi = argmin
k∈{1,...,K}

d⊥
(
(Xi,Yi)

T, β̂kU
)
, i = 1, . . . , n . (2.8)

Definition 2.5. At the sample level, when observations
{(Xi,Yi)}ni=1 have line memberships unspecified, the generalized
Pearson correlation square is defined as

R2GU =
K∑

k=1
p̂kU · ρ̂2

kU , (2.9)



6 J. J. LI ET AL.

where G stands for generalized,U stands for unspecified, p̂kU =
1
n
∑n

i=1 1I(̂Zi = k),

ρ̂2
kU =

{∑n
i=1
(
Xi − X̄kU

) (
Yi − ȲkU

)
1I(̂Zi = k)

}2{∑n
i=1
(
Xi − X̄kU

)2 1I(̂Zi = k)
} {∑n

i=1
(
Yi − ȲkU

)2 1I(̂Zi = k)
} ,

X̄kU = n−1
kU
∑n

i=1 Xi1I(̂Zi = k), ȲkU = n−1
kU
∑n

i=1 Yi1I(̂Zi = k),
and nkU =∑n

i=1 1I(̂Zi = k).

Remark 2.4. Besides R2GU , the cluster-specific Pearson correla-
tion squares ρ̂2

1U , . . . , ρ̂
2
KU are useful for identifying the clusters

(subgroups of data points) that exhibit distinct, strong linear
dependences.

2.2.3. Population-Level Generalized Pearson Correlation
Square (Unspecified)

Analogous to the definition of sample-level unspecified line cen-
ters (Definition 2.3), we define the population-level unspecified
line centers as the K lines that minimize the expected squared
perpendicular distance of (X,Y) to its closest line.

Definition 2.6. We define the expected within-cluster squared
perpendicular distance as

W(BK ,P) = IE
{
min
β∈BK

d2⊥
(
(X,Y)T,β

)}
, (2.10)

where P is the joint probability measure of (X,Y). Then we
define a multiset of population-level unspecified line centers,
BKU = {β1U , . . . ,βKU}, where βkU = (θkU , ckU)T is the kth line
center, as

BKU ∈ argmin
BK

W(BK ,P) , (2.11)

where the subindex U stands for unspecified.

Provided that BKU is uniquely determined, we define a ran-
dom surrogate index Z̃ ∈ {1, . . . ,K} as the index of the line
center to which (X,Y) is closest.

Definition 2.7. Suppose that the unspecified line centers
β1U , . . . ,βKU at the population level are unique. Also, suppose
that the probability that (X,Y) is equally close to multiple line
centers is zero. We define a random surrogate index as

Z̃ = argmin
k∈{1,...,K}

d⊥
(
(X,Y)T,βkU

)
. (2.12)

Motivated by ρ2
GS, we define the population-level generalized

Pearson correlation square for the line-membership unspecified
scenario, based on (X,Y , Z̃).

Definition 2.8. At the population level, when no line mem-
bership variable is specified (the “unspecified scenario”), the
generalized Pearson correlation square between X and Y is

ρ2
GU =

K∑
k=1

pkU ρ2
kU , (2.13)

where the subindex G stands for generalized, U stands for
unspecified, pkU = IP(̃Z = k), and ρ2

kU = cov2(X,Y | Z̃ =
k)/{var(X | Z̃ = k) var(Y | Z̃ = k)}.

Remark 2.5. Relations and distinctions between the specified
and unspecified scenarios.

1. ρ2
GU ≥ ρ2

GS. The proof is in the supplementary material.
2. R2GU is not an estimator of ρ2

GS; rather, it is an estimator of
ρ2
GU . Hence, the consistency ofR

2
GU does not rely on a specific

distributional assumption, for example, bivariate Gaussian
mixture model, just like the R2. If the goal were to use R2GU
as an estimator of ρ2

GS, a specific mixture model must be
assumed. Then the K-lines algorithm should be replaced by
the Expectation-Maximization (EM) algorithm to decide the
sample surrogate indices Ẑ1, . . . , Ẑn.When the EM algorithm
converges to the global optimum and returns the maximum-
likelihood estimates of mixture model parameters, the corre-
sponding R2GU will be an asymptotically unbiased estimator
of ρ2

GS.

3. Asymptotic Distributions of Sample-Level
Generalized Pearson Correlation Squares

To enable statistical inference of the population-level measures
ρ2
GS (2.1) and ρ2

GU (2.13), we derive the first-order asymptotics
of the sample-level measures R2GS (2.2) and R2GU (2.9). In the
asymptotic results below, we consider all parameters as fixed and
only allow the sample size n to go to infinity.

Theorem 3.1. Under the line-membership specified scenario, we
define

μXcYd ,kS = IE
{(

X − IE(X | Z = k)
var(X | Z = k)1/2

)c

(
Y − IE(Y | Z = k)
var(Y | Z = k)1/2

)d
∣∣∣∣∣Z = k

}
, c, d ∈ IN.

AssumeμX4,kS < ∞ andμY4,kS < ∞ for all k = 1, . . . ,K. Then

√
n
(
R2GS − ρ2

GS
) d−→ N

⎛⎝0, K∑
k=1

(AkS + BkS) + 2
∑∑
1≤k<r≤K

CkrS

⎞⎠ ,

(3.1)
where

AkS = pkS
[
ρ4
kS
(
μX4,kS + 2μX2Y2,kS + μY4,kS

)
−4ρ3

kS
(
μX3Y ,kS + μXY3,kS

)+ 4ρ2
kSμX2Y2,kS

]
,

BkS = pkS
(
1 − pkS

)
ρ4
kS , and CkrS = − pkS prS ρ2

kS ρ2
rS .

Note that Theorem 3.1 does not rely on any distributional
assumptions. When it is applied to the special case where
(X,Y) | Z follows a bivariate Gaussian distribution, we obtain
a much simpler form of the first-order asymptotic distribution
of R2GS.

Corollary 3.1. Under the special case where (X,Y) | (Z = k)
follows a bivariate Gaussian distribution for all k = 1, . . . ,K,
the asymptotic variance of

√
n(R2GS − ρ2

GS) in Theorem 3.1 is
simplified and becomes
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K∑
k=1

[
4 pkS ρ2

kS
(
1 − ρ2

kS
)2 + pkS

(
1 − pkS

)
ρ4
kS

]
(3.2)

− 2
∑∑
1≤k<r≤K

pkS prS ρ2
kS ρ2

rS , (3.3)

which only depends on pkS and ρ2
kS, k = 1, . . . ,K.

To derive an analog of Theorem 3.1 and Corollary 3.1 for
the unspecified scenario, we need to show that each sample
surrogate index Ẑi, i = 1, . . . , n, converges in distribution to
the random surrogate index Z̃. A sufficient condition is the
strong consistency of theK sample-level unspecified line centers
B̂KU = {β̂1U , . . . , β̂KU} to the K population-level unspecified
line centers BKU = {β1U , . . . ,βKU}.

Theorem 3.2. Suppose that
∫ ∥∥(x, y)T∥∥2 IP ((dx, dy)T) < ∞

and that for each k = 1, . . . ,K there is a unique multi-
set BkU = argminBk W(Bk,P). Also assume that the glob-
ally optimal sample-level unspecified line centers B̂KU =
argminBK W(BK ,Pn) is attained and unique. Then as n → ∞,
B̂KU → BKU andW (̂BKU ,Pn) → W(BKU ,P) almost surely.

The first statement of Theorem 3.2 means that there exists an
ordering of the elements in B̂KU = {β̂1U , . . . , β̂KU} and BKU =
{β1U , . . . ,βKU} such that as the sample size n → ∞,

β̂kU → βkU almost surely , k = 1, . . . ,K .

Based on Theorems 3.1 and 3.2, we derive the asymptotic
distribution of R2GU .

Theorem 3.3. Under the line-membership unspecified scenario,
we define

μXcYd ,kU = IE

{(
X − IE[X | Z̃ = k]
var(X | Z̃ = k)1/2

)c

(
Y − IE[Y | Z̃ = k]
var(Y | Z̃ = k)1/2

)d∣∣∣∣∣ Z̃ = k

}
, c, d ∈ IN ,

where Z̃ is the random surrogate index defined in (2.12). Assume
μX4,kU < ∞ and μY4,kU < ∞ for all k = 1, . . . ,K. Then
√
n
(
R2GU − ρ2

GU
)

(3.4)

d−→ N

⎛⎝0, K∑
k=1

(AkU + BkU) + 2
∑∑
1≤k<r≤K

CkrU

⎞⎠ ,

where

AkU = pkU
[
ρ4
kU
(
μX4,kU + 2μX2Y2,kU + μY4,kU

)
−4ρ3

kU
(
μX3Y ,kU + μXY3,kU

)+ 4ρ2
kUμX2Y2,kU

]
,

BkU = pkU
(
1 − pkU

)
ρ4
kU , and CkrU = − pkU prU ρ2

kU ρ2
rU .

Corollary A.1 presents a simpler form of Theorem 3.3 under
an unrealistic assumption that (X,Y) | Z̃ follows a bivariate
Gaussian distribution. Despite being unrealistic, this simpler
form empirically works well in numerical simulations (Sec-
tion 4.1).

Remark 3.1. When K = 1, the asymptotic distributions of
R2GS and R2GU in Theorems 3.1 and 3.3 both reduce to the
asymptotic distribution of R2. In the special case that K = 1 and
(X,Y) follows bivariate Gaussian distribution with correlation
ρ, the asymptotic distribution of R2GS in Corollary 3.1 reduces to√
n(R2 − ρ2)

d−→ N
(
0, 4ρ2 (1 − ρ2)2).

Proofs are in the supplementary material. In Section 4.1,
we will numerically show that the asymptotic distribution in
Theorem 3.3 works well when K is chosen by the AIC.

4. Numerical Simulations

In this section, we perform simulation studies to numerically
verify the theoretical results in Section 3 and to compare our
generalized Pearson correlation squares with multiple exist-
ing association measures in terms of statistical power. We
also demonstrate the effectiveness of our proposed approaches
for choosing K, the number of line components in the line-
membership unspecified scenario.

4.1. Numerical Verification of Theoretical Results

We first compare the asymptotic distributions in Section 3 with
numerically simulated finite-sample distributions under 8 set-
tings (Table 1), where (X,Y) | Z follows a bivariate Gaussian
distribution under the first 4 settings and a bivariate t distribu-
tion under the latter 4 settings. Under each setting, we generate
B = 1000 samples with sizes n = 50 or 100, calculate R2GS and
R2GU on each sample, and compare the simulated finite-sample
distributions of R2GS and R2GU to the corresponding asymptotic
distributions. In the first 4 settings, the asymptotic distributions
are fromCorollaries 3.1 and A.1 (the bivariate Gaussian results);
in the latter 4 settings, the asymptotic distributions are from
Theorems 3.1 and 3.3 (the general results). The comparison
results (Figure 3) show that the finite-sample distributions and
the asymptotic results have good agreement, justifying the use
of the asymptotic distributions for statistical inference of ρ2

GS or
ρ2
GU on a finite sample.
In practice, K often needs to be found in a data-driven

way under the line-membership unspecified scenario. To verify
the behavior of R2GU when K is chosen by the AIC in (2.7),
we conduct another simulation study to compare R2GU ’s finite-
sample distributions with the asymptotic distributions. The
results (Fig. S1 in the supplementary material) show that when
n = 100, finite-sample and asymptotic distributions still agree
well.

However, the asymptotic distributions in Section 3 involve
unobservable parameters in the asymptotic variance terms. A
classical solution is to plug-in estimates of these parameters.
Another common inferential approach is to use the boot-
strap, which is computationally more intensive, instead of the
closed-form asymptotic distributions. Here we numerically ver-
ify whether the plug-in approach works reasonably well for
statistical inference of ρ2

GS and ρ2
GU . Under each of the eight

settings, we simulate two samples with sizes n = 50 and
100, respectively. We then use each sample to construct a 95%
confidence interval (CI) of ρ2

GS and ρ2
GU as R2GS ± 1.96se(R2GS)
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Figure 3. Comparison of the asymptotic distributions and the finite-sample distributions of R2GS and R
2
GU . A: Example samples with n = 100; colors and symbols represent

values of Z. B–C: Finite-sample distributions n = 50 or 100 (black solid curves) versus the asymptotic distribution (black dotted curves) of R2GS ; the vertical dashed lines
mark the values of ρ2GS . D: Example samples with n = 100; colors and symbols represent values of Z̃ inferred by the K-lines algorithm. E–F: Finite-sample distributions of
n = 50 or 100 (black solid curves) versus the asymptotic distribution (black dotted curves) of R2GU ; the vertical dashed lines mark the values of ρ2GU .
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Table 1. Eight settings in simulation studies (Section 4), with each setting indicating a mixture of linear dependences.

Setting K Population Parameters

1 K = 2 p1 = p2 = 0.5
μ1 = (0,−2)T,μ2 = (0, 2)T

�1 = �2 =
[
1 0.8
0.8 1

]
2 K = 2 Specified: p1 = p2 = 0.5

IP(Z = k) = pk μ1 = μ2 = (0, 0)T

(X , Y) | (Z = k) ∼ N (μk ,�k) �1 =
[
1 0.8
0.8 1

]
,�2 =

[
1 −0.8

−0.8 1

]
k = 1, . . . , K

3 K = 2 p1 = 0.3, p2 = 0.7
Unspecified: μ1 = (0,−2)T,μ2 = (0, 2)T∑K

k=1 pk N (μk ,�k) �1 =
[
1 0.8
0.8 1

]
,�2 =

[
1 −0.8

−0.8 1

]
4 K = 3 p1 = 0.25, p2 = 0.5, p3 = 0.25

μ1 = (0,−2)T,μ2 = (0, 6)T,μ3 = (−2, 2)T

�1 =
[
1 0.8
0.8 1

]
,�2 =

[
1 −0.7

−0.7 1

]
,�3 =

[
1 0.9
0.9 1

]

5 K = 2 p1 = p2 = 0.5, ν1 = ν2 = 8
μ1 = (0,−2)T,μ2 = (0, 2)T

�1 = �2 =
[
1 0.8
0.8 1

]
6 K = 2 Specified: p1 = p2 = 0.5, ν1 = ν2 = 8

IP(Z = k) = pk μ1 = μ2 = (0, 0)T

(X , Y) | (Z = k) ∼ tνk (μk ,�k) �1 =
[
1 0.8
0.8 1

]
,�2 =

[
1 −0.8

−0.8 1

]
k = 1, . . . , K

7 K = 2 p1 = 0.3, p2 = 0.7, ν1 = ν2 = 8
Unspecified: μ1 = (0,−2)T,μ2 = (0, 2)T∑K

k=1 pk tνk (μk ,�k) �1 =
[
1 0.8
0.8 1

]
,�2 =

[
1 −0.8

−0.8 1

]
8 K = 3 p1 = 0.25, p2 = 0.5, p3 = 0.25

ν1 = ν2 = ν3 = 8
μ1 = (0,−2)T,μ2 = (0, 6)T,μ3 = (−2, 2)T

�1 =
[
1 0.8
0.8 1

]
,�2 =

[
1 −0.7

−0.7 1

]
,�3 =

[
1 0.9
0.9 1

]

NOTE: In the settings 1–4, N(μk ,�k) represents a bivariate Gaussian distribution with the mean vector μk and the covariance matrix�k . In the settings 5–8, tνk (μk ,�k)
represents a bivariate t distribution with the degrees of freedom νk , the location vectorμk and the shape matrix�k .

and R2GU ±1.96se(R2GU), respectively.We construct the standard
errors se(R2GS) and se(R2GU) in two ways: square roots of (a) the
plug-in estimates of the asymptotic variances of R2GS and R2GU ,
or (b) the bootstrap estimates of var(R2GS) and var(R

2
GU).We also

calculate the true asymptotic variances of R2GS and R
2
GU based on

true parameter values and use them to construct the theoretical
CIs. The results (Figure S2 in the supplementary material) show
that the plug-in and bootstrap approaches construct similar CIs
on the same sample. When n increases from 50 to 100, the CIs
constructed by both approaches agree better with the theoretical
CIs.

We also evaluate the coverage probabilities of the 95% CIs
constructed by the plug-in approach and compare them with
those of the theoretical CIs. Table S3 in the supplementary
material summarizes the results. The theoretical CIs have cov-
erage probabilities close to 95% under all the eight settings,
providing additional verification of the asymptotic distributions.
Overall, the plug-in confidence intervals have good coverage
probabilities, which are increasingly closer to 95% as n increases;
their coverage probabilities are in general closer to 95% under

the first four bivariate Gaussians settings than under the last
four bivariate t settings. The reason is that mixtures of bivariate
Gaussians are more concentrated on K lines and better allow
the K-lines algorithm to find the sample-level unspecified line
centers, thus, reducing the unwanted variance due to failed algo-
rithm convergence and making the plug-in variance estimate of
R2GU more accurate. Comparing the line-membership specified
and unspecified scenarios, the plug-in confidence intervals, as
expected, have better coverage probabilities under the specified
scenario that has less uncertainty. Table S3 also shows that the
two plug-in options do not have obvious differences, suggesting
that the first plug-in option (“P1”), which uses the asymptotic
variances in the special bivariate Gaussian forms (Corollaries 3.1
and A.1), is robust and can be used in practice for its simplicity.

4.2. Use of Scree Plot and AIC to Choose K

Following Section 2.2, here we demonstrate the performance
of the scree plot and the AIC in choosing K under the eight
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simulation settings. For each setting, we simulate a sample of
size n = 100 and evaluate W(BK ,Pn) in (2.4) and AIC(K) in
(2.7) on this sample for K ranging from 1 to 10 (Figure S3 in
the supplementary material). For all the eight settings, the scree
plots and theAICboth suggest the correctK values. Even though
Settings 5–8 violate the bivariate Gaussian assumption required
by the AIC, the AIC results are still reasonable. In practice, users
may use the scree plot together with the AIC to choose K.

4.3. Power Analysis

To confirm that R2GU is a powerful measure for capturing mixed
linear dependences, we conduct a simulation study to compare
R2GU(K = 2) with six popular association measures or tests:
the squared Pearson correlation (R2), the maximal correlation
(maxCor) estimated by the alternating conditional expectation
algorithm (Breiman and Friedman 1985), the distance corre-
lation (dCor) (Székely, Rizzo, and Bakirov 2007; Székely and
Rizzo 2009), themaximal information coefficient (MIC) (Reshef
et al. 2011), Chatterjee’s rank correlation ξ (xiCor), and the
Heller-Heller-Gorfine (HHG) test for independence.3 All these
measures4 have values in [0, 1].5 Our simulation procedure
follows Simon and Tibshirani (2014), where each relationship
between two real-valued random variablesX andY is composed
of a marginal distribution of X ∼ N(0, 52), a noiseless pattern
(i.e., relationship) between X and Y , and a random error from
N(0, σ 2) added to Y . The null hypothesis is that X and Y are
independent, while the alternative hypothesis is specified by
the noiseless pattern and σ . Given a sample size n = 30, 50
or 200, we simulate B = 1000 samples from the alternative
hypothesis. On each of these alternative samples, we randomly
permute the Y observations to create a null sample. Then for
each n we calculate the association measures on the B null
samples and decide a rejection threshold for each measure as
the (1 − α) quantile of its B null values, where α = 0.05 is
the significance level. Next, we calculate the association mea-
sures on the B alternative samples, compare each measure’s B
alternative values to its rejection threshold, and estimate the
measure’s power as the proportion of alternative values above
the rejection threshold. Figure S4 in the supplementary material
illustrates each measure’s empirical distribution across alterna-
tive samples at eachn andσ ; allmeasures’ variances decrease asn
increases.6

Figure 4 shows that R2GU is the most powerful measure when
the pattern is a mixture of positive and negative linear depen-
dences.When the pattern is a mixture of nonlinear relationships
that can be approximated by a mixture of linear dependences,
R2GU is still the most powerful. When the pattern is linear,
R2 is expectedly the most powerful, and the other measures
including R2GU also have perfect power up to σ = 3 at n =
30. Under a parabola pattern, which can be approximated by

3For the implementation of these measures, see Table S2 in the supplemen-
tary material.

4TheHHG test statistic is not an associationmeasure, so (1−HHG testp-value)
is used as a measure.

5Note that xiCor may take negative values at the sample level.
6The HHG test is not included because (1−HHG test p-value) is too close to 1
most of the time.

two intersecting lines (i.e., the “V” pattern), R2GU still has good
power and is comparable to xiCor, maxCor, dCor, HHG, and
MIC. These results confirm the application potential of R2GU in
capturing complex relationships that can be approximated by
mixtures of linear dependences.

5. Real Data Applications

5.1. Analysis of the A. thaliana Gene Expression Dataset

Back to our motivating example in A. thaliana, here we use
this gene expression dataset (Li et al. 2008) to demonstrate the
use of our generalized Pearson correlation squares to capture
biologically meaningful gene–gene relationships. The glucosi-
nolate (GSL) biosynthesis pathway has been well studied in A.
thaliana, and 31 genes in this pathway have been experimentally
identified (Kim et al. 2012). Since genes in the same pathway are
functionally related, their relationships should be distinct from
their relationships with the other genes outside of the pathway.
Hence, a powerful association measure should distinguish the
pairwise gene–gene relationships within the GSL pathway from
the relationships of randomly paired GSL and non-GSL genes.

The dataset (Table S4 in the supplementary material) con-
tains n = 232 samples, 26 GSL genes, and four index vari-
ables: condition (oxidation, wounding, UV-B light, and
drought), treatment (yes and no), replicate (1 and
2), and tissue (root and shoot). We observe that only the
tissue variable is a good indicator of linear dependences, as
illustrated in Figures 1 and S5–S8 in the supplementarymaterial.

Figure 5(A) shows the values of R2, maxCor, dCor, MIC,
xiCor, HHG,7 and R2GU(K = 2), all of which do not use
index variables, as well as R2GS, which uses the index variable
as condition, treatment, replicate, or tissue. All
these measures are computed for the

(26
2
) = 325 GSL gene

pairs and 2600 random gene pairs, each of which consists of
a GSL gene (out of 26 GSL genes) and a randomly selected
non-GSL gene (out of 100 randomly selected non-GSL genes).
Among these measures, only R2GS(tissue) and R2GU(K = 2)
show significantly stronger relationships (at the significance
level of 0.01) within the GSL pathway than in random gene
pairs (with respective p-values 1.29 × 10−28 and 7.65 × 10−20

from one-sidedWilcoxon rank-sum test). Hence, R2GS is a useful
and powerful measure when a good index variable is available;
otherwise, R2GU is advantageous in capturing complex but inter-
pretable gene–gene relationships without knowledge of index
variables8.

To verify the agreement between the K-lines clusters and
the tissue index variable, for every GSL gene pair, we com-
pare the K = 2 sample clusters identified by the K-lines
algorithm with the sample groups defined by each of the four
index variables (condition,treatment,replicate, and
tissue) using Fisher’s exact test9 and the adjusted mutual

7TheHHG test statistic is not an associationmeasure, so (1−HHG testp-value)
is used as a measure.

8In this application, the two variables X and Y refer to two genes with
comparable expression levels, so no normalization is performed before K-
lines clustering.

9A smaller p-value more strongly rejects the null hypothesis that the K-lines
clusters are independent of an index variable.
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Figure 4. Power analysis. Simulation studies that compare the statistical power of seven measures/tests: the squared Pearson correlation (R2), the maximal correlation
(maxCor), the distance correlation (dCor), themaximal information coefficient (MIC), Chatterjee’s rank correlation (xiCor), the Heller-Heller-Gorfine (HHG) test, and R2GU with
K = 2. In each row, the noiseless pattern illustrates a relationship between two real-valued random variables X and Y when no noise is added (σ = 0). Under the null
hypothesis, X and Y are independent. Varying alternative hypotheses are formed by the noiseless pattern with noise ∼ N(0, σ 2) at varying σ added to Y . Under each
alternative hypothesis corresponding to one σ , we estimate the power of the seven measures/tests given each sample size n (columns 2–4).

information10. The results in Table 2 confirm that the K-lines
clusters exhibit higher consistency with the tissue variable
compared to the other three index variables across the 325 GSL
gene pairs, suggesting that the K-lines algorithm separates the
samples in good accordance with their tissue types.

10A larger adjusted mutual information indicates a better agreement
between the K-lines clusters and an index variable.

5.2. Identification of Beta Cell Subtypes by K-Lines
Clustering

The second example is from a single-cell gene expression dataset
of mouse pancreas (Baron et al. 2016). A previous study found
that using projective nonnegative matrix factorization (PNMF)
to project cells from a high-dimensional (7838) gene expression
space to a low-dimensional space of PNMF factors, some PNMF
factors exhibited heterogeneous linear relationships with the cell
library size (i.e., the total number of sequencing reads mapped
to each cell), and each relationship corresponded to a known
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Figure5. Real data applications ofR2GS ,R
2
GU , and theK-lines clustering algorithm.A: Analysis of theArabidopsisgeneexpressiondataset.We compare 11measures, including

seven unspecified measures (R2, maxCor, dCor, MIC, xiCor, HHG, and R2GU with K = 2) and four R2GS measures with different index variables, in terms of measuring pairwise
gene relationships within the GSL pathway (“GSL”) versus relationships between a GSL gene and a randomly paired non-GSL gene (“random”). For each measure, the
one-sided Wilcoxon rank-sum test is used to compare the measure’s values in the two groups (“GSL” vs. “random”), and the resulting p-value is marked in each panel. At
the significance level of 0.01, R2GS(tissue) and R2GU(K = 2) are the only two measures indicating that the gene pairs within the GSL pathway have significantly stronger
relationships than the random GSL-nonGSL gene pairs do. B: Beta cell clusters found by Seurat (left) or the K-lines clustering algorithm (right).

cell type (Song et al. 2021). Motivated by this finding, here we
apply the K-lines clustering algorithm to n = 894 beta cells’
PNMF factors and library sizes. For each of 10 PNMF factors,
we pair it up with the cell library size and apply the K-lines
clustering algorithm,11 which finds a notable K = 2 pattern (by
AIC) for PNMF factor 4 versus cell library size (Figure S9A).
Comparing the resulting two beta cell clusters to the default
clustering results by themost popular pipeline Seurat using PCA
and UMAP visualization, we find that the default Seurat leads
to eight clusters including many hardly separable ones, while
the two K-lines clusters are distinct in both PCA and UMAP
visualization (Figures 5(B) and S9B).

We verify the two K-lines clusters by conducting literature
review and performing KEGG pathway enrichment analysis.
First, based on the review by Miranda, Macias-Velasco, and
Lawson (2021), wemap the clusters 1 and 2 to the immature and
mature beta subtypes respectively by verifying that mature cell
marker genes Gck, Ins1, and Iapp are significantly more highly
expressed in cluster 2 than cluster 1 (with one-sided Wilcoxon
rank-sum test p-values 0.001001, < 2.2 × 10−16, and < 2.2 ×
10−16, respectively). Second, we confirm this mapping result
by using (a) the FindMarkers() function in Seurat to find
clusters 1 and 2’s respective marker genes and (b) the R package
clusterProfiler 4.0 to find the enriched KEGG pathways within
each cluster’s marker genes (Tables S5–S6 in the supplementary
material). The results suggest that beta cell cluster 1 is related to

11In this application, the two variables X and Y refer to the cell library size and
a PNMF factor, whose values are on the same scale, so no normalization is
performed before K-lines clustering.

Table 2. Comparison of the K-lines clusters and the four index variables
(condition,treatment,replicate, andtissue) in theA. thalianagene
expression dataset.

Fisher’s exact test p-value Adjusted mutual information

<0.05 <0.005 <0.0005 Mean 3rd quartile Max

condition 29.54% 19.69% 11.08% 0.007 0.010 0.090
treatment 34.15% 22.46% 14.77% 0.013 0.019 0.152
replicate 1.85% 0.00% 0.00% −0.001 0.000 0.019
tissue 72.00% 63.38% 58.77% 0.293 0.578 1.000

NOTE: In columns 1–3, each percentage represents the percentage of the 325 GSL
gene pairs whose K-lines clusters have a significant p-value (given a threshold)
when compared with an index variable by Fisher’s exact test. In columns 4–6, the
mean, 3rd quartile, and maximum of the adjusted mutual information values are
reported for the325GSLgenepairswhoseK-lines clusters are comparedwitheach
index variable.

the insulin resistance, while cluster 2 is related to the insulin sig-
naling pathway, consistent with previous findings that immature
beta cells are over-represented in insulin resistant patients and
mature beta cells are responsible for regular insulin secretion,
respectively (Miranda, Macias-Velasco, and Lawson 2021).

6. Discussion

The generalized Pearson correlation squares extend the classic
and popular Pearson correlation to capturing heterogeneous lin-
ear relationships. This new suite ofmeasures has broad potential
use in scientific applications. In addition to gene expression
analysis, statistical genetics is a potential application domain
because genetic variants could exhibit heterogeneous effects on



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 13

a phenotype. When known subpopulations, for example, race,
gender, and geography, cannot explain heterogenous associa-
tions between a genetic variant and a phenotype, R2GU and the
K-lines algorithm could be useful.

A future direction is to extend the generalized Pearson cor-
relation squares to be rank-based. This extension will make the
measures robust to outliers and capable of capturing a mixture
of monotone relationships.

Another future direction is to generalize the K-lines cluster-
ing algorithm to theK-hyperplanes clustering algorithm, follow-
ing the subspace clustering literature (Vidal 2010). Specifically,
for p ≥ 2 variables, the kth cluster center becomes the (p − 1)-
dimensional hyperplane defined by the top (p − 1) principal
components of the data points (p-dimensional vectors) assigned
to the kth cluster, k = 1, . . . ,K. In this generalization, we only
need to generalize the recentering step in the K-lines clustering
algorithm (Algorithm 1) while keeping the assignment step as
assigning every data point to the closest hyperplane based on the
perpendicular distance. Then, we can generalize a multivariate
dependence measure by calculating the weighted sum of the
measure’s values across the K clusters.

Supplementary Materials

The online supplementary materials (Supplements.zip) contain 1. the
AuthorContributionsChecklist form (acc_form.pdf); 2. the Supplementary
Material file (supplementary_material.pdf) containing proofs of theorems,
convergence properties of the K-lines algorithm, more simulation results,
another real data application about the dependence of glioma patient sur-
vival onCD44 expression, real data description,more tables and figures, and
additional references; 3. the reproducibility_materials.zip file including (1)
a README.md file, (2) an Rmd file to reproduce the results and the html
file knitted from the Rmd file, (3) a data folder containing the datasets and
data_description.txt, (4) a results folder containing the intermediate results,
(5) a code folder containing R code used in the Rmd file, and (6) the pdf files
of Figure S9A and Figure S9B.
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