Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

Contents lists available at ScienceDirect

COMPUTATIONAL
ANDSTRUCTURAL
BIOTECHNOLOGY
M. JOURNAL

Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

ELSEVIER

Research article ' A

Check for

Exploring the optimization of autoencoder design for imputing single-cell [T
RNA sequencing data

Nan Miles Xi®, Jingyi Jessica Li b,c,d,e,*

@ Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA

b Department of Statistics and Data Science, University of California, Los Angeles, CA 90095-1554, USA
¢ Department of Human Genetics, University of California, Los Angeles, CA 90095-7088, USA

4 Department of Computational Medicine, University of California, Los Angeles, CA 90095-1766, USA

€ Department of Biostatistics, University of California, Los Angeles, CA 90095-1772, USA

ARTICLE INFO ABSTRACT

Keywords:
ScRNA-seq

Data imputation
Autoencoder design
Benchmark

Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell
RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural
network architecture and the hyperparameter choice. So far, literature in the single-cell field lacks a formal
discussion on how to design the neural network and choose the hyperparameters. Here, we conducted an
empirical study to answer this question. Our study used many real and simulated scRNA-seq datasets to examine
the impacts of the neural network architecture, the activation function, and the regularization strategy on
imputation accuracy and downstream analyses. Our results show that (i) deeper and narrower autoencoders
generally lead to better imputation performance; (ii) the sigmoid and tanh activation functions consistently
outperform other commonly used functions including ReLU; (iii) regularization improves the accuracy of
imputation and downstream cell clustering and DE gene analyses. Notably, our results differ from common
practices in the computer vision field regarding the activation function and the regularization strategy. Overall,
our study offers practical guidance on how to optimize the autoencoder design for scRNA-seq data imputation.

1. Introduction

Single-cell RNA-sequencing (scRNA-seq) enables the measurement
of genome-wide gene expression at the single-cell level [1-3].
State-of-the-art scRNA-seq technologies can measure tens of thousands
of genes and up to millions of cells [4], allowing the investigation of
cell-to-cell heterogeneity [5], the identification of cell types [6], and the
inference of cell state transitions [7]. A notable characteristic of
scRNA-seq data is the high proportion of zeros (i.e., high sparsity).
Depending on the sequencing platform and sequencing depth, the zero
proportion can range from 50% to more than 90% [8]. Two types of
zeros exist in scRNA-seq data: biological zeros and non-biological zeros
[9]. Biological zeros indicate the actual absence of gene expression in
cells, while non-biological zeros are originated from technical biases and
noise in scRNA-seq experiments [10]. Without spike-ins or prior bio-
logical knowledge, it is difficult to distinguish between these two types
of zeros in scRNA-seq data [8].

The high sparsity of scRNA-seq data hinders data analysis. Many

computational methods have been developed to reduce data sparsity,
and they can be divided into three broad categories [8]. First,
model-based imputation methods use probabilistic models to describe
gene expression distributions in scRNA-seq data (e.g., scImpute [11] and
BISCUIT [12]). These methods aim to first distinguish between biolog-
ical zeros and non-biological zeros based on gene expression distribu-
tions and then only impute the identified non-biological zeros. Second,
data-smoothing methods modify each cells’ gene expression levels based
on its similar cells’ gene expression levels (e.g., MAGIC [13] and
DrImpute [14]). Two cells may be defined as similar if they share
common neighboring cells in a low-dimensional space. Unlike
model-based imputation methods, data-smoothing methods do not
distinguish non-biological zeros and alter all gene expression levels,
including the nonzeros. Third, data-reconstruction methods first learn a
latent low-dimensional space of cells and then reconstruct cells in the
original high-dimensional space (e.g., ZIFA [15] and DCA [16]). Most
data-reconstruction methods use the reconstructed data to replace all
zeros in the original data but keep the original nonzeros unchanged.

* Corresponding author at: Department of Statistics and Data Science, University of California, Los Angeles, CA 90095-1554, USA.

E-mail addresses: mxil@luc.edu (N.M. Xi), jli@stat.ucla.edu (J.J. Li).

https://doi.org/10.1016/j.csbj.2023.07.041

Received 10 February 2023; Received in revised form 22 July 2023; Accepted 31 July 2023

Available online 4 August 2023

2001-0370/© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:mxi1@luc.edu
mailto:jli@stat.ucla.edu
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.07.041
https://doi.org/10.1016/j.csbj.2023.07.041
https://doi.org/10.1016/j.csbj.2023.07.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.07.041&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

N.M. Xi and J.J. Li

Among the data-reconstruction methods, autoencoder-based
methods are popular for their imputation accuracy and scalability [17,
18]. Specifically, an autoencoder is a neural network that contains an
encoder for dimension reduction and a decoder for data reconstruction.
Then the reconstructed data are regarded as the imputed scRNA-seq
data. Despite the popularity of autoencoders in the scRNA-seq field,
there lacks a formal discussion on how to optimize the autoencoder
design, including the neural network architecture, the activation func-
tion, and the parameter regularization [8]. Existing autoencoder-based
methods either adopt the wisdom in other fields (e.g., computer
vision) or design autoencoders with limited justification.

Here, we conduct an empirical study to explore how to optimize the
autoencoder design for imputing scRNA-seq data. Our study consists of
three investigations. The first investigation is the optimization of
autoencoder design for imputation accuracy. In detail, we generate 36
semi-synthetic scRNA-seq datasets with artificial zeros (whose original,
non-missing values are known) by applying three masking schemes to 12
real scRNA-seq datasets. Then, we train autoencoders with varying
depths (depth means the number of layers) and widths (width means the
number of nodes per layer), seven activation functions, and two regu-
larization strategies on each semi-synthetic dataset. Next, we evaluate
the trained autoencoders’ imputation accuracies in terms of the
normalized root mean squared error (NRMSE) and the Pearson corre-
lation coefficient, which are calculated between the imputed values and
the original values of the artificial zeros. Based on the evaluation results,
we find the autoencoder designs that lead to the best imputation
accuracies.

The second investigation is the optimization of autoencoder design
for cell clustering. In detail, we train autoencoders with the aforemen-
tioned designs on 20 real scRNA-seq datasets containing curated cell
type information. Next, to examine the impact of autoencoder design on
downstream cell clustering, we apply the trained autoencoders for
imputation and evaluate the clustering accuracies on the imputed
datasets in terms of the adjusted Rand index (ARI) and the adjusted
mutual information (AMI).

The third investigation is the optimization of autoencoder design for
differentially expressed (DE) gene identification. In detail, we simulate
20 synthetic datasets with ground-truth DE genes by applying the
scDesign simulator [19], which is trained on 20 real scRNA-seq datasets
(see Methods). Then we train autoencoders with the aforementioned
designs on these synthetic datasets. Next, to examine the impact of
autoencoder design on downstream DE gene analysis, we apply the
trained autoencoders for imputation and evaluate the DE gene identi-
fication accuracies on the imputed datasets in terms of the precision,
recall, and true negative rate (TNR).

In the above three investigations, we consider many choices of neural
network depths, widths, activation functions, and regularization stra-
tegies. Since a full combination of those design aspects is computa-
tionally infeasible, we adopt a sequential, greedy search strategy to
explore the best design. In each investigation, we first examine a full
combination of neural network depths and widths, the two most
important aspects, with the other design aspects fixed as in common
practices (see Results). Based on the optimized combination of width
and depth, we next optimize the activation function. Finally, given the
optimized width, depth, and activation function, we optimize the reg-
ularization strategy.

Our results yield the following guidelines about autoencoder design
for scRNA-seq data imputation (Table 1). First, deeper and narrower
autoencoders lead to more accurate imputation, cell clustering, and DE
gene identification, yet the benefit of depth saturates at 10 hidden
layers. Second, the sigmoid and tanh activation functions consistently
have the best performance in all evaluations. Third, parameter regula-
rization is critical to the performance of autoencoder-based imputation
methods. In particular, weight decay regularization is more capable of
improving cell clustering and DE gene analysis, while dropout regula-
rization shows superiority in improving the overall imputation accuracy

4080

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

Table 1

Guidelines of autoencoder design for scRNA-seq data imputation. Each row
represents one of four design characteristics. Each column represents one of
three evaluation metrics. Each entry corresponds to the marginally optimized
design characteristic under each evaluation metric.

Autoencoder design Evaluation metrics

characteristics

Imputation Cell DE gene
accuracy clustering identification

Number of hidden layers >10 > 10 >5

Number of units per 32 Robust Robust

hidden layer

Activation function Sigmoid or Sigmoid or Sigmoid or Tanh
Tanh Tanh

Regularization strategy Dropout Weight Weight decay

decay

for the artificial zeros. Moreover, the optimal degree of regularization is
dataset-specific.

Our findings suggest that many autoencoder-based imputation
methods have used suboptimal autoencoder designs, including shal-
lower and wider autoencoders and the rectified linear unit (ReLU)
activation function. Moreover, our findings highlight the importance of
using empirical benchmarking to optimize autoencoder designs, and
more generally, neural network designs, in bioinformatics research.

2. Results

2.1. Impacts of autoencoder architecture (depth and width) on imputation
accuracy

We collect 12 real scRNA-seq datasets to evaluate the overall
imputation accuracy of a variety of autoencoder architectures. These
datasets cover a wide range of cell types, sequencing depths, zero pro-
portions, and experimental platforms (Supplementary Table S1). We
apply three masking schemes (i.e., random masking, double exponential
masking, and medium masking, which reflect different degrees of
dependence of missingness on the actual values; see Methods) to these
12 real datasets, obtaining 36 masked datasets. To evaluate the impu-
tation accuracy on each masked dataset, we calculate the NRMSE and
the Pearson correlation coefficient between the masked values and the
imputed values (Methods), referred to as the “imputation NRMSE” and
the “imputation correlation,” respectively, in the following text.

We build autoencoders of various architectures by increasing the
depth (i.e., the number of hidden layers) from 1 to 15. For each depth,
we set the width (i.e., the number of hidden units per layer) to 32, 64,
128, or 256. All hidden layers are fully connected with the same width.
In total, we have 60 autoencoder architectures, corresponding to 15 x 4
depth-width combinations. We choose the ReLU function [20] as the
activation function and train the autoencoders by the Adam optimiza-
tion algorithm [21] (Methods). For each autoencoder architecture and
each masked dataset, we set 10 random seeds in the autoencoder
training to obtain 10 autoencoders, whose imputation NRMSEs and
imputation correlations are averaged to represent the overall imputation
accuracy of the autoencoder architecture on the masked dataset.

Under the random masking scheme, Fig. 2a-b show the impacts of
autoencoder depth-width combinations on the imputation NRMSE and
the imputation correlation. First, deeper autoencoders achieve lower
imputation NRMSEs and higher imputation correlations. The benefit of
depth is more prominent when the autoencoder has no more than 10
layers. Second, narrower autoencoders (with 32 hidden units per layer)
typically have higher imputation accuracy than wider autoencoders
(with 64 or more hidden units per layer) of the same depth. This finding
is consistent with the observation that deeper and narrower neural
networks perform better in computer vision tasks (e.g., image classifi-
cation and object detection) [22,23]. Under the double exponential
masking scheme, we observe a similar relationship between the

N.M. Xi and J.J. Li

a

Encoder

Raw

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

data Masked data

Gene 1

Gene 2

Gene 3 Gene m Gene 1 | Gene 2 | Gene 3 Gene m Non-zero

Cell 1

0 vatue

Cell 1

Cell 2

Cell 2

Cell 3

E Zero value

Cell 3

Celln

IE Masked

Cell N value

®

Masked data (X)

Reconstructed data (Y)

Gene 1 | Ge

ne 2

Gene 3 Gene m Gene 1 | Gene 2 | Gene 3 Gene m

Cell 1

Cell 1

Cell 2

Cell 2

Cell 3

Cell 3

Autoencoder ,:>

Celln

Cell n

%

?

Reconstructed Data

Encoded Data

Input Data

L

o1 Zje1 (Y — Xi)?1(X;; # 0)
e 2Tk, (X5 # 0)

oss = MSE(X,Y) =

Masked data Imputed data Raw data
Gene 1 | Gene 2 | Gene 3 Gene m Gene 1 | Gene 2 | Gene 3 Genem Gene 1| Gene 2 | Gene 3 Gene m
Cell 1 Cell 1 Fe
Cell 2 cell2 | - de 4
Imputed value
. Autoencoder S —— - []me
cein cein | 4 } I

Fig. 1.

Autoencoder and the measurement of imputation accuracy. a, The basic structure of an autoencoder [24]. b, The introduction of artificial zeros by masking. c,

The training of an autoencoder for imputation. The reconstructed data are the autoencoder’s output during the training process. d, The calculation of an autoen-
coder’s imputation accuracy on masked values. The imputed data are the final autoencoder’s output after the training process.

autoencoder depth-width combinations and the imputation accuracy,
except for the dataset bmmc (Supplementary Fig. S1). However, the
relationship no longer holds under the median masking scheme: while
deeper autoencoders still have better imputation accuracy on certain
datasets, the width does not have a significant impact on the imputation
accuracy (Supplementary Fig. S2). Among the three masking schemes,
random masking has the highest imputation accuracy, followed by
double exponential masking and then median masking. Note that under
median masking, the imputation accuracy is low on most datasets,
indicated by many larger-than-one imputation NRMSEs and
close-to-zero imputation correlations (Supplementary Fig. S2).

A possible explanation of the results is that, among the three masking
schemes, random masking best preserves gene-gene correlations. Since
random masking is performed independent of gene expression levels, the
gene-gene correlations in the masked data are unbiased estimates of the
gene-gene correlations in the original, unmasked data. Unlike random
masking, double exponential masking assumes an inverse relationship
between a gene’s masking probability and average expression (i.e., the
probability of masking increases as a gene’s average expression level
decreases); hence, the gene-gene correlations in the masked data are no
longer unbiased estimates of the gene-gene correlations in the original
data. While random masking and double exponential masking are both
stochastic schemes, median masking is a deterministic scheme where the
50% lowest expression levels of all genes are masked as zeros. Hence,
median masking distorts gene-gene correlations to the greatest extent
among the three masking schemes. Under the hypothesis that gene-gene
correlations play a crucial role in determining the imputation accuracy
of an autoencoder, it is unsurprising that the best imputation accuracy is
achieved under the random masking scheme, followed by the double
exponential masking scheme. Hence, the following analysis on impu-
tation accuracy will focus on random masking and double exponential
masking.

408

2.2. Impacts of activation function on imputation accuracy

An activation function is a nonlinear transformation applied to
generate the hidden units in an autoencoder [25]. It provides an
autoencoder with the capacity to learn complex nonlinear relationships
among features, e.g., nonlinear interactions among genes in scRNA-seq
data. ReLU is a widely used activation function in autoencoder-based
imputation methods, motivated by its success in computer vision [25].
However, justification is lacking for using ReLU to impute scRNA-seq
data, and no empirical comparison has been done between ReLU and
other activation functions.

Here, we train autoencoders with seven activation functions,
including sigmoid, tanh, ReLU, LeakyReLU (with two hyperparameter
settings) [26], ELU [27], and SELU [28], to evaluate the impacts of
activation functions on the imputation accuracy (Methods). For each
activation function, we impute 24 masked datasets (the aforementioned
12 scRNA-seq datasets after random masking or double exponential
masking) by training 20 autoencoders using 20 random seeds on each
masked dataset. Fig. 3 and Supplementary Fig. S3 compare the seven
activation functions’ resulting imputation NRMSEs and imputation
correlations under the random masking and double exponential masking
schemes. Surprisingly, the most popular ReLU function is not the top
performer. Instead, the sigmoid and tanh functions outperform the other
activation functions on all datasets under both masking schemes.
Additionally, the sigmoid and tanh functions result in significantly
smaller variances of the imputation NRMSEs and the imputation cor-
relations than the other functions do, indicating that the sigmoid and
tanh functions lead to more stable imputation accuracy. Between sig-
moid and tanh, although they have similar performance, sigmoid has
higher imputation accuracy on the datasets pbmc and human_mix and
more stable imputation accuracy on the datasets mbrain, pbmc,
human_mix, and mouse_cortex.

The comparison of the seven activation functions reveals three in-
sights. First, unlike ReLU that introduces sparsity into hidden layers (i.e.,

1

N.M. Xi and J.J. Li

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

\ jurkat monocyte mbrain pbmc
0.65
J 0.321 0.45 1
0.34 030 0.604
0.324 0284 0.55+ 0407
0.35
0.304 0254 0.504
0.30+
lymphoma 293t bmmc human_mix
0.804
w 0.324 0501 1.40
2 0704
= 0.484
o 0.30 1.30 1
Z 060 0.454
0.28 1 120
mouse_spleen mouse_cortex [mouse_skin { cbme
0824 0694 0444
0.901 0.80 0674 0.40
0.854
- 0.78 0651 0.361
801 0.75 1
63 0.32
0.754 0.734 —
1 3 5 7 9 1113 15 1.3 5 7 9 11 13 15 1 3 56 7 9 11 13 15 1.3 5 7 9 11 13 15
jurkat monocyte mbrain pbmc
0.45
0.914 J 0.60 1
0604 0.40
0.904 0.354 0504
0.89+ 0.50 1 0.301 oo
0.254 40+
0.88- 0.404 0.204 0304
0.87 4 0.15 = '
lymphoma 293t [bmmc human_mix
0.704 0.50
[— 0.924 0.604
S 060+ 0.45- 0551
S 0.91+] ‘
® 0501 040 0.504
= 0.90 1 4
8 0.40- 0.35 045
0.89 1 0.30~ 0.40
mouse_spleen mouse_cortex mouse_skin cbme
045+
0.25 1 4 0.30
0.404 0.66
4 0.20 1
0.354 023 0644
68 0.101
¢ 0.20 0.624 0.00
B e e e e
1 3 5 7 9 1113 15 1 3 5 7 9 11 13 15 1 3 6 7 9 11 13 15 1 3 5 7 9 11 13 15
Layer

Width == 32 == 64 —— 128 - 256

Fig. 2. Impacts of the autoencoder depth and width on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Each
point is the average of the results obtained from 10 random seeds used for autoencoder training.

many hidden units are zeros) [26], sigmoid and tanh generate dense
hidden layers (i.e., many hidden units are nonzeros). Our empirical re-
sults suggest that dense hidden layers lead to higher imputation accu-
racy for scRNA-seq data. Second, Leaky ReLU, ELU, and SELU are
modified forms of ReLU that output a close-to-zero negative value when
the input is negative (Methods). They generate pseudo-sparsity in the
hidden layers to avoid the “dead ReLU” problem (i.e., most hidden units
are zeros, causing the autoencoder to stop learning) [29]. However, our
empirical results show no consistent improvement of these modified

4082

ReLU functions over ReLU in terms of imputation accuracy, though these
modified ReLU functions lead to dense hidden layers as sigmoid and
tanh do. A possible interpretation is that sigmoid and tanh have
continuous derivatives, while the modified ReLU functions have
discontinuous derivatives. Third, we do not observe vanishing gradients
or exploding gradients [30], two common problems in training deep
neural networks using sigmoid or tanh. We hypothesize that appropriate
preprocessing and normalization of scRNA-seq data might help stabilize
gradients in the training process.

N.M. Xi and J.J. Li Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

a

jurkat monocyte mbrain pbmc
e == | 0.260 0475 [0.520 T
e 0.2501 0.4504 \
3051 - 0.240+ _ 0.480-
1 Ce—— 04254 |
< | - |
0.295 ' | . 0.230 . a 0.4404
0.285 L——= == 02207 — — —_—— —_
lymphoma 293t bmmc human_mix
0.295
J . — ' . | 0.4804 . 1.4004 . .
0.320 e 5 =T 02001 == = = RS T
t 0.3001 ‘ ' 0.4501 . 1.300
0.2851 J
E 0.2804 . 0420 1.200
. 0.2804 ——— : —_—
0.2604 . k| 03907
—_—— 0.275{— —— — — 1.1004 __
mouse_spleen mouse_cortex mouse_skin cbmce
0.825+ == | 0.7504 L ey i i | 0.650 == 0.3104 P —p——
. — . 4 L 1 | — - -
0.800+ T = . —] 0.290
0.7751 0.600
) 0.6504 0.2704
0.7504 4
. 06001 — S 0.250-
0728 __ __— ——= — L S —
T N T N - 0.550 T T N T - - -+ - - T T - -
Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL
jurkat monocyte mbrain pbmc
LU S —_ 0.6004 | 0.8004 =
0.9101 ‘ 0.6804
0.5501 |
0.905 e J L —_— T 0.7501
: 1 0.500 1 |
0.900+1 T ‘ ‘
| | 0.6004) 0.450 1 0.7004]
0.895 - il P —_—— s i kel el
0.890+ ~ 1 0.560- LI Rt I E
lymphoma 293t bmmc human_mix
0.750 =— =—— 0.9257 — —— 0850 T—"— —
c o | 0.600- 06504
O 0.7001 " 0.9221 T —_—— }]
E 0.920- 0.5504 0.6004
Q 0.650 1 0.500 1 .
5 0.9184 0.4504 0.5504
0.600 1 : — P) L L L .
O — S i | 0.9157 _— e - | 0.4004 ;: £ e | 0.5004 - 3 S
mouse_spleen mouse_cortex mouse_skin cbmce
I - 07604 — I
—— 0.5004
0.4404 . E 0.5004
0.7204
4 0.4004
0.400 0.4004
0.680
J 0.3001 X — - !
0360 ! eo e BT = 0:3001 i b .
0.320 ———1 0.200- == —] osd0r = e
Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL

Activation Function

Fig. 3. Impacts of the activation function on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Sg: sigmoid; Th:
tanh; RL: ReLU; LRL: LeakyReLU (a = 0.01); LRL.2: LeakyReLU (a = 0.2); EL: ELU; SEL: SELU. Each boxplot shows the results obtained from 20 random seeds used
for autoencoder training.

2.3. Impacts of regularization on imputation accuracy autoencoders with weight decay or dropout as the regularization strat-
egy (Methods) to impute the aforementioned 24 masked datasets (the 12

Some autoencoder-based imputation methods use weight decay or real scRNA-seq datasets after random masking or double exponential
dropout as the regularization strategy [31,32]. However, the selection of masking). We vary 1 €[1le-7, 5e-4] and p €[0.01, 0.4] and compare the
the regularization strategy and the corresponding hyperparameters (i.e., resulting imputation NRMSEs and imputation correlations (Methods;
4 in weight decay and p in dropout, Methods) is mostly ad hoc [8]. To Figs. 4 and 5; Supplementary Figs. S4 and S5). All autoencoders have the
examine the impact of regularization on imputation accuracy, we train same architecture and activation function: 10 fully connected hidden

4083

N.M. Xi and J.J. Li

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

l jurkat monocyte mbrain l pbmc
0.3501
0.292 0.2004 0.4201 0.325
0.2904 0.2704 0.4101 0.3004
0.288+4 0.4004 0.2754
0.2401
0.286 1 0.3901 0.2504
lymphoma 293t bmmc human_mix
4404 1.1104
0.450 1 0.2821 i ’
w 0.4204]
g 0440 0.280 1.100
0.27814 0.4004
% 0.4304 1.090
0.2761 0.3804
4 1.0804
0.420 0.2744
mouse_spleen mouse_cortex mouse_skin cbme
0.727 0.522
0.7251 0.5801 05104 0.3251
0.7224 0.3004
4 05164
0.720- 0.570 02754
0.7174 05131 o
0.5601 0.250
0 Se-7 Se6 Se-5 Se4 0 S5e-7 S5e6 Se5 Sed 0 Se-7 5S5e6 Se-5 Se4 0 S5e-7 Se6 Se5 Se4d
jurkat monocyte mbrain pbmc
1504 -
0.9150 0.7100- 0.6100 0.75004
0.74001
0.91454 0.70004 0.6000 1
0.73004
0.9140 0.69001 0.5900 0.72004
4 0.68001 0.71004
0.9135 0.5800
lymphoma 293t [bmmc human_mix
0.80701
S 0.8040- 0.92501 0.6400 0.6880+
5 0.63501
= 0.8010- 45+ 0.6860
gosoo 0.9245 0.63004
8 0.7980 0.92404 0.6250 1 0.6840+
0.7950 0.6200
mouse_spleen mouse_cortex mouse_skin cbmce
0.58001
0.47101 0.76504
0.5400 1
0.4705+4 0.56001
04700 0.76404
4 1
0.53001 0.54004
0.46951 0.76301
0.52001
0.46901 0.52004
0.7620 -
0 S5e-7 5e6 5e-5 Se4 0 S5e-7 5e6 S5e5 5e-4 0o S5e-7 5Se6 Se-5 Se-4 0 Se-7 5e6 S5e-5 Se4
Lambda

Fig. 4. Impacts of the weight decay regularization on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Each point
is the average of the results obtained from 10 random seeds used for autoencoder training.

layers, 32 hidden units per hidden layer, and the sigmoid activation
function. For each dataset and regularization strategy (with a given
value for the corresponding hyperparameter), we use 10 random seeds
to train 10 autoencoders and average the resulting imputation NRMSEs
and imputation correlations.

Under random masking, the weight decay strategy barely improves
the imputation accuracy except on datasets mouse_spleen and

human_mix. Larger values of 1 even lead to worse imputation accuracy,
suggesting over-regularization (Fig. 4). In contrast, the dropout strategy
with a proper dropout rate p improves the imputation NRMSEs on six
datasets and the imputation correlations on 11 datasets. The optimal
range of p depends on the evaluation metric: 0.02-0.2 for imputation
NRMSE and 0.2-0.4 for imputation correlation (Fig. 5). Hence, p = 0.2 is
a reasonable choice.

4084

N.M. Xi and J.J.

a

Li

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

’ jurkat monocyte mbrain pbmc
0.28714 0.21944 0.2479
0.24784
0.39024
0.2868 0.21921 0.24774
J 0.39014]
s 0.21904 0.2476
0.28621 0.39004 0.24754
0.21884 0.24744
0.2859 ‘ 0.3899
lymphoma 293t bmmc human_mix
0.41924 0.27601 0.36824
W 0.41914 0.2755+ 1.08204
s 0.41904 0.36804
X 0.41894 0.2750 1.08104
4 0.36784
0.4188 0.2745 1
0.4187 4 1.0800
mouse_spleen mouse_cortex mouse_skin cbme
0.7175 0.2360
0.5583 1 0.51244
0.71704 0.23604
0.55824
‘ 0.5120 0.23594
0.7185 0.5581
‘ 051161 0.23584
71604 0.55804
ko ‘ 0.23584
- 0.5579+ v v
0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04
jurkat { monocyte mbrain pbmc
0.91504 0.71254 0.61094 0.75284
0.91501 0.71204 0.61081 0.7527 4
1 -
0.9150 1 0.71154 e 0,7527-‘
0.6108
lymphoma 293t [bmmc human_mix
0.6440+
C 0.80674 4
Q 0.92534 0.6438+4 0.6867
=
%08"67‘ 0.64364 0.6864
= 0.92534
O 0.8067 1 0.6434+ 4
O 0.6861
4 0.92534 6432+
0.8067 0 0.6858
mouse_spleen mouse_cortex mouse_skin cbmce
0.4698 1 et
0.54514
0.46954 0.7652 0.5785+
0.4692 4 0.54514 d
0.7651 057844
0.46901 0.54514 0.76514
0.46881 0.57834
0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04
Dropout Rate

Fig. 5. Impacts of the dropout regularization on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Each point is
the average of the results obtained from 10 random seeds used for autoencoder training. Some y-axis tick values appear to be identical due to the four-digit resolution,
reflecting the negligible variation of y-axis values across dropout rates.

Under double exponential masking, both the weight decay and
dropout strategies improve the imputation accuracy (Supplementary
Figs. S4 and S5). Specifically, the weight decay strategy reduces the
imputation NRMSEs on six datasets and increases the imputation cor-
relations on 11 datasets (Supplementary Fig. S4). The optimal range of 1

4085

depends on the evaluation metric: 1e-7-5e-5 for imputation NRMSE and
5e-6-5e-4 for imputation correlation. Hence, 5e-6-5e-5 is a reasonable
range for A. The dropout strategy exhibits a stronger positive impact on
the imputation accuracy, with the imputation NRMSEs reduced on 10
datasets and the imputation correlations increased on all 12 datasets

N.M. Xi and J.J. Li

(Supplementary Fig. S5). The optimal range of the dropout rate p is
similar to that under random masking.

We summarize the impacts of regularization on the imputation ac-
curacy from three perspectives. First, compared with the weight decay
strategy, the dropout strategy is more capable of improving both the
imputation NRMSE and the imputation correlation under both random

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

masking and double exponential masking. Second, both the weight
decay and dropout strategies are more effective under double expo-
nential masking than random masking. As discussed in “Impacts of
autoencoder architecture (depth and width) on imputation accuracy,”
double exponential masking masks small nonzero values in the scRNA-
seq data matrix, thus distorting gene-gene correlations. In contrast,

[camp chen human1_umifm_counts human2_umifm_counts human3_umifm_counts
40— = = e e = = = = —_—— e e e e =] 060 = = = = - = s -
0 0401 060 0504
0.30- 030__ - — - - - - 0.404 0.404 0.404
0.204 0204 0.304
0104 0.104 0.201 0.204 g?g-
0.00 0,00 0.00
human4_umifm_counts klein lake li liver
050+= = &= = —) = 060
0401 0.704 0401, _ - - - - 0757
060
4] 404
0307 0.50 050 0501 040
020 0.401 020+ 0201
0.104 030 0.251
_ 000 0.104
% manno_human mouse1_umifm_counts mouse2_umifm_counts - romanov Silver
P - e e e e 08h & — —
0301 0.404 0.404 0404 0204
0.20 0.154
0.104 0.204 0.201 0204 0.104
0.00+ 0.00+ 0.00 0.051
tasic [usoskin ’ Zeisel Zhengmixdeq Zhengmix4uneq
| =—gr— 0801 = = = = = = = = 080 == = = = 0801 = = = = = = = = 10801 = = = - =
0601 0604 060 0601 0601
0.404 0.404 0404 0.404 0.404
0.201 - 0.204 0.204
. 0.00+ 0.00+ 0,00+
13 5 7 9 11 13 15 1.3 5 7 9 11 13 15 13 5 7 9 11 13 15 1 3 6 7 9 111315 1 3 5 7 9 11 13 15
Layer
Width == 32 == 64 — 128 - 256
{ camp chen human1_umifm_counts human2_umifm_counts human3_umifm_counts
—_— —— peregre o e — 0501 — ——
0.304 0.40+ —_
. 0.404 1 0.40
0.20 0301 040 0.301
0201 020+ 0204 Him 0204
e=sUd T 104 .
0.00 —1 0.00+ o — = — —] 0,00 —— === —] 0,001 i e
human4_umifm_counts klein lake li liver
0507 = o 0701 — — ——1 1 osol— — 080]— — — == — = [
0.40 060 0.40 (| I
0307 : ., 0504 030 = 0607 _——— .| %4 L
0207 ’ 0.40 020 oL |04 020
0.104 =
0.304 0.104 - L] 0204
0.004 —_—— L — . s Y ' =000+
9(: manno_human mouse1_umifm_counts mouse2_umifm_counts romanov Silver
— — 0.40+— — | ——
—— 0307 o40] L 0251 ==
0204 0.40 0.304 0201
0.204 0.154
oo — 0.20
4 0.204 b g @ "
0107 . . b 0.104 0.104 0.101 I=1""Rau
- e — = | 500 * = —1 000 O —— —1 0,00+ —— e T 7| 0.054 [— .
tasic usoskin Zeisel Zhengmixdeq Zhengmix4uneq
o 040 F——— 0.80 = — Je—
060_++ . 0.60+ -
LIS 0.301 0607 e
e —_ 0404
0.404 0.204 — 0401 0.40
4 0.104 0.20]
020 . L 0204 X 020
— 0.00+ — s — i s 0.004 — e —a— | 0,00 1 — —— — —
Sg T™h RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL

Activation Function

Fig. 6. Impacts of the autoencoder design on cell clustering accuracy measured by ARI. a, Depth and width. b, Activation function. The dash lines in (a) show the cell
clustering performance without imputation. Each point in (a) is the average of the results obtained from five random seeds used for autoencoder training. Each
boxplot in (b) shows the results obtained from 10 random seeds used for autoencoder training.

4086

N.M. Xi and J.J. Li

random masking does not have this issue. Hence, we hypothesize that
regularization has a bigger benefit under double exponential masking
because regularization’s improvement of robustness is more needed
after double exponential masking’s distortion on gene-gene correlations.
Third, the optimal hyperparameter for each regularization strategy
largely depends on the dataset and the masking scheme, making it
impossible to find a universally optimized hyperparameter value Inter-
estingly, compared with the imputation NRMSE, the imputed correla-
tion requires a higher degree of regularization to be optimized, under
both the weight decay and dropout strategies. Future research is
required to find the reason underlying this phenomenon.

2.4. Impacts of autoencoder design (architecture, activation function, and
regularization) on cell clustering

The ultimate goal of imputation is to improve downstream analysis
through the enhancement of signals in the sparse scRNA-seq data [33].
We collect 20 real scRNA-seq datasets containing annotated cell types to
examine the impact of autoencoder design on cell clustering (Supple-
mentary Table S2). Here, the datasets are different from those used in
the evaluation of the imputation accuracy because evaluating clustering
accuracy does not require the knowledge of non-missing values. Spe-
cifically, we first conduct K-means clustering on each original dataset
and calculate the adjusted Rand index (ARI) and the adjusted mutual
information (AMI) to measure the clustering performance (Methods).
Note that we choose K-means clustering instead of the more popular
graph-based Louvain or Leiden clustering in the Seurat package [34]
because we want to set K, the number of clusters, to the number of cell
types for fair evaluation. While setting K to a specific number is natural
for K-means clustering, it requires manual tuning for Louvain and Leiden
clustering and is too labor-intensive for our evaluation. Second, we train
autoencoders with various architectures, activation functions, and reg-
ularization strategies to impute the 20 datasets. Finally, we conduct
K-means clustering on each imputed dataset and calculate the corre-
sponding ARI and AMI.

Fig. 6a and Supplementary Fig. S6a show the impact of autoencoder
architecture on cell clustering. Similar to the previous analysis, we in-
crease the depth of autoencoders from 1 to 15 and set the width to 32,
64, 128, or 256 for each depth. All hidden layers in each autoencoder are
fully connected with the same width. In total, we have 60 (15 x 4)
depth-width combinations. We use the sigmoid activation function
because of its superior performance in the previous imputation accuracy
evaluation. On each dataset, we use five random seeds for autoencoder
training to obtain five imputed datasets, on which we calculate the
imputation ARIs and the imputation AMIs; then we report the average
imputation ARI and the average imputation AMI. Our results, which are
consistent between ARIs and AMIs, show that deeper autoencoders lead
to a larger improvement in cell clustering accuracy than their shallower
counterparts do. The benefit of depth saturates after 10 hidden layers.
Unlike the autoencoder depth, the autoencoder width has no obvious
impact on cell clustering accuracy (Fig. 6a; Supplementary Fig. S6a).
Surprisingly, imputation does not always improve cell clustering accu-
racy: imputation only improves ARIs on eight datasets and AMIs on four
datasets, regardless of autoencoder architectures.

Fig. 6b and Supplementary Fig. S6b show the impact of activation
functions on cell clustering. Similar to the previous analysis, we train
autoencoders with seven activation functions, including sigmoid, tanh,
ReLU, LeakyReLU (with two different hyperparameters), ELU, and
SELU. For each activation function, we impute the 20 scRNA-seq data-
sets using 10 autoencoders trained under 10 random seeds. All
autoencoders have 10 fully connected hidden layers with 32 hidden
units per layer, an optimized architecture based on our previous anal-
ysis. We observe that sigmoid and tanh outperform other activation
functions on all datasets in terms of both imputation AMI and imputa-
tion ARI They also lead to more stable cell clustering accuracy than
other activation functions do. The performance of sigmoid and tanh is

4087

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

similar except for datasets mouse_cortex and Klein, where tanh has
a slight advantage over sigmoid.

Fig. 7 and Supplementary Fig. S7 show the impact of regularization
on cell clustering. Similar to the previous analysis, we use the weight
decay and dropout strategies and vary A €[1e-7, 5] and p €[0.01, 0.4]
(Methods). Based on our previous analysis, all autoencoders have 10
fully connected hidden layers, with 32 hidden units per layer, and the
sigmoid activation function. Interestingly, the weight decay strategy
significantly improves cell clustering accuracy—with the optimized
weight decay hyperparameter 1’s (mostly between 0.01 and 0.1), all 20
datasets have improved ARIs, and 18 datasets have improved AMIs.
However, the dropout strategy does not lead to same improvement—-
with the optimized dropout hyperparameter p’s (in a broad range), only
eight datasets have improved ARIs, and only four datasets have
improved AMIs. Hence, unlike the previous imputation accuracy eval-
uation, which prefers the dropout strategy, here the weight decay
strategy is preferred. However, we do not want to over-interpret the
results because the autoencoders we use do not consistently lead to
better ARIs and AMIs, suggesting that imputation might not be needed
for cell clustering, consistent with our previous report [9].

2.5. Impacts of autoencoder design (architecture, activation function, and
regularization) on DE gene analysis

The signal enhancement in scRNA-seq data by imputation is ex-
pected to benefit another important downstream analysis—the identi-
fication of differentially expressed (DE) genes. To examine the impact of
autoencoder design on DE gene analysis, we utilize the simulator
scDesign [19] to generate 20 synthetic datasets with ground-truth DE
genes (Methods). Each synthetic dataset is generated by learning the
distributions of genes’ expression levels in one real scRNA-seq dataset
(20 real datasets in total; Supplementary Table S3). These real datasets
(and their synthetic counterparts) cover a wide range of biological and
technical conditions. We use synthetic data in this analysis since the
ground-truth DE genes are unknown in real scRNA-seq datasets.

After simulation, we apply the MAST method [35] to the
pre-imputed synthetic datasets to identify DE genes and calculate the
corresponding precision, recall, and true negative rate (TNR), which are
considered as the baseline accuracies. Next, to impute each synthetic
dataset, we train autoencoders with various architectures, activation
functions, and regularization strategies. Finally, we apply MAST to each
imputed dataset and calculate the corresponding precision, recall, and
TNR (Methods).

Fig. 8a, Supplementary Fig. S8a, and Supplementary Fig. S10a show
the impacts of autoencoder architecture on the recall, precision, and
TNR. The settings of depth, width and activation function for autoen-
coders are the same as in the evaluation of cell clustering (1-15 fully-
connected hidden layers; 32, 64, 128, or 256 hidden units per layer;
sigmoid activation function). On each synthetic dataset, we set five
random seeds in the autoencoder training to obtain five imputed data-
sets, whose precisions, recalls, and TNRs are averaged to represent the
autoencoder’s performance. First, deeper autoencoders lead to better
recalls on 10 datasets, while the benefit of depth saturates after five
layers (Fig. 8a). In contrast, width has no significant improvement on the
recall. Unexpectedly, 11 synthetic datasets show no improvement in
recall after imputation, regardless of the autoencoder architecture.
Second, depth and width have no significant impact on the precision,
except for the datasets Interneurons, Epithelial_cells, and
astrocytes, where deeper autoencoders lead to slightly higher pre-
cisions (Supplementary Fig. S8a). Overall, 19 synthetic datasets have
improved precisions after imputation. Third, the impact of depth and
width on the TNR is limited, because all TNRs are already close to one
before imputation, and most TNRs are increased by less than 0.05 after
imputation (Supplementary Fig. S10a). Altogether, our results suggest
that autoencoder-based imputation benefits the precision instead of the
recall or the TNR for the identification of DE genes.

N.M. Xi and J.J. Li

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

- - - - 0764 = = = =

0.724

camp chen human1_umifm_counts human2_umifm_counts ' human3_umifm_counts
0.70

045+
e 0454 0704 0.704

1 0651

_—— - 0.40 0651
040 0601
0.38 0351 0603 o = = mfem - - 055 = = = =
0.35 0.551 0.50
|human4_umifm_counts klein lake li | liver

0524 0.804 0621
0504 -\/-=d -

o o o
> b b
s 0 @
P —

06] == = - - -
0601
0.594

.

068+

ARI

manno_human mouse1_umifm_counts

romanov Silver

+

0.55 T
0604 - 0254
050
4 024 % = = ==
055 0454
0504 0404 0234
0221
045 == = e 0.35+

tasic usoskin

Zhengmixdeq | Zhengmix4uneq

0.90

| R
0.75 4 252‘ 0.801_
0704 = 2 0604 0.704
065 0.501 el
0407 050

N\ oso]
. 0804 0.80
0.794
0.751 0.784
0.70 0.774

076.— ——————

065 . ;

-

0 1e6 S5e-5 1e-3 005 15 0 1e-6 S5e-5 1e-3 005 15 0 1e-6 5e-5 1e-3 005 15 0 1e-6 5e-5 1e-3 005 15 0 1e-6 5e-5 1e-3 005 15
Lambda
| camp chen human1_umifm_counts human2_umifm_counts | human3_umifm_counts

e E e e e =] 045 o o o
40+ 0.594 4
040 060 e
< 4 0.584
0.39 0.40 o551 0531
0384 0.574
035-— — — - - - 052-
0374 0.501 0.561
0.364 0.301 -~ g 055'M—.—-——-¢"’ 0511

045

' human4_umifm_counts | klein [

lake I l ‘ liver

049+

- e = e e e = e e OAG-W 0.87 06] == = = - - - - -
0.48 0701 0.444 0,864
0604 | o0
0471 0501 e 0851, - - -
0.46 0407 0.404 0844 0594
0454 0.304 0381 _ _ o oo o = —|os3d T ———— A te?

% manno_human mouse1_umifm_counts mouse2_umifm_counts romanov Silver

IS s e === === g0 [Nm D S ... e0289

0524 0504 0.501 W
oso-M\/ 0454 0401 0251
0.304 0244

0.48 0407 0201
e e e e e e e = 035 AT b i p—
usoskin { Zeisel I Zhengmixdeq | Zhengmix4uneq

0gof ~ T TTTTT*" ===\ 080 — T T T T T T|os0q
0.704 0.704 0.794
0.60- 0.701 " | o7s-
050+ 0601 0.604 v 0.774

0.40- 0504 L | P g

0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04

Dropout Rate

Fig. 7. Impact of the autoencoder regularization strategy on cell clustering accuracy measured by ARI. a, Weight decay regularization. b, Dropout regularization. The
dash lines show the cell clustering performance without imputation. Each point is the average of the results obtained from five random seeds used for autoen-

coder training.

Fig. 8b, Supplementary Fig. S8b, and Supplementary Fig. S10b show
the impacts of the activation function on the recall, precision, and TNR.
Again, we train autoencoders with seven activation functions; for each
function, we impute the aforementioned 20 synthetic datasets using 10
autoencoders trained by setting 10 random seeds. All autoencoders have
10 fully connected hidden layers with 32 hidden units per layer. In terms

4088

of the recall, sigmoid and tanh outperform the other activation functions
on 15 datasets (Fig. 8b). The advantage of sigmoid and tanh is similar for
the precision—they outperform the other activation functions on 12
datasets (Supplementary Fig. S8b). All activation functions have similar
performance based on the TNR, which is consistently close to one
(Supplementary Fig. S10b). Overall, sigmoid and tanh have similar

N.M. Xi and J.J. Li Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

I 293t Acinar_cells Astrocytes [cd8 | Endothelial_cells
X | N
0.75 o080 0.40+ OW'M
0.70 03sd 048 060+
065 040+ 0.45 0.404
060- o 030 043 0204
0.55 - oment=tnp* |t 025 Q40 = e e o e Ottt oo

I Epithelial_cells [Fibroblasts l Foveolar_cells Hematopoietic_stem_cells l Interneurons
(s = (1 | |

0504 045-# 060 080
060 40 050
0554 045 0404 060+
0504 0.40 0.35 0.304 .
045.”P’"""“' 035‘w 0304 0204 47 '
. o D B o i o e pp— OGPttt bt
= 0.30 0.10
o P
& I Keratinocytes [Macrophages [Myoepithelial_cells Neurons | Neutrophils
R = —————— L 040 = = = = = = = = =
045-*‘ gssg' 0.504 0.444 v
ol 0.40- 0351 0404 0.40
0.35+ 0304 0364
0.30 020 0309 0304 032+
025t = o o o o o o IRl encnenencnenanenand P g g
o5 NK [Oligodendrocytes] Pulmonary T [Tanycytes
C 0.50 |
0.50 0.70 0,50 ISP IE= ="
0481 0604 0.45 040
0.404 J 0.40- 0.40
0.50
0.354 0354 0304
0404
0304 0.304 0304
P —— 0.30 e L R pe——— 0204
1 3 5§ 7 9 11 13 15 1 3 § 7 9 11 13 15 1 3 5§ 7 9 11 13 15 1 3 5 7 9 11 13 1§ 1 3 5§ 7 9 11 13 15
Layer
Width == 32 == 64 - 128 - 256
293t Acinar_cells Astrocytes cd8 Endothelial_cells
05654 =—— — n 0.2004 . — g 0310
0.5601 — 0.1904 04001 05001 — — s) —
- T . = — 0.1001 -_—
0.5551 ™ 0.1804 — 0.3501 04754 | 0.0%0 :
0.5501 -t . T . 1
0.1704 p— . 4 d . |
05454 - . 0.300 e e | 9450 00801 — =
01607 — . C g = b
0540 . — 0.2504 - 0425+ . 0,070+ —
Epithelial_cells Fibroblasts Foveolar_cells Hematopoietic_stem_cellsl Interneurons
04004 0.3601 0.460 1 0.1501 . [0.4004
0.3601 aied - 04404 B L 2|00 —EFLAL 03504
03204 MTE =t
1 L L e . == 0.4201 e) d
0320 = 03004 1 0.1304 LI L[0300 — .
- . — 10400+ . EnT e —
S Keratinocytes Macrophages Myoepithelial_cells Neurons Neutrophils
@« —_—— — 04001 o 1 . 05401 g —_— .
0.1301 _—— . 0.4504 =
04804 03501 e — 05301 | 04254 A
= 0.1204 i | s g | | =
0.4601 Ll 0.3001 L 0.520 — T — | 04001
T T L | 01101 o e e 0250 =} 05104 . 0.3754
0440+ N —— 0.350
NK Oligodendrocytes Pulmonary T Tanycytes
W— — 0480 T 05404 =— — — — g —
05301 — 04904 0300+
Lo L | 04404 05301 . .
05201 —— ~ 05201 —_—— 04807 02701
05104 — 0.4001 05104 . | o470q s oze0d
0.500 1 ’ 0.3601 L © L e | 05001 oo [04807 L O™ | 02104 g T S
bl 0490 <] 0450+
Sg T RL LRLLRL2 EL SEL Sg T RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg Th RL LRLLRL2 EL SEL Sg T™ RL LRLLRL2 EL SEL

Activation Function

Fig. 8. Impacts of the autoencoder design on DE gene identification accuracy measured by recall. a, Depth and width. b, Activation function. The dash lines in (a)
show the recall without imputation. Each point in (a) is the average of the results obtained from five random seeds used for autoencoder training. Each boxplot in (b)
shows the results obtained from 10 random seeds used for autoencoder training.

performance, and they both provide a more stable improvement in the to dropout, weight decay exhibits a stronger improvement in recall,
identification of DE genes than the other activation functions do. precision, and TNR: weight decay outperforms the no-regularization

Fig. 9, Supplementary Fig. S9, and Supplementary Fig. S11 show the autoencoders on 20, 12, and 20 datasets, respectively, with the
impacts of regularization on the recall, precision, and TNR. Again, we optimal hyperparameter 1’s (in the range of [5e-6, 0.05]) (Fig. 9a,
add either weight decay or dropout to autoencoders and adjust the Supplementary Fig. S9a, and Supplementary Fig. S11a); in contrast,
corresponding hyperparameter, as in the previous analysis. All autoen- dropout outperforms the no-regularization autoencoders on 17, 6, and
coders have 10 fully connected hidden layers, with 32 hidden units per 17 datasets, respectively, with the optimal p’s (in the range of [0.05,
layer, and the sigmoid activation function. We observe that, compared 0.25]) (Fig. 9b, Supplementary Fig. S9b, and Supplementary Fig. S11b).

4089

N.M. Xi and J.J. Li Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

a

\ 293t Acinar_cells cd8 Endothelial_cells
060 0654
080 = = = = - - 0.404
754 055
0.75 060 0304
0.704 | — ———— -
0504 | I A
065+ 0554 0.204
060 0454
050 0.101
{ Epithelial_cells Fibroblasts Foveolar_cells Hematopoietic_stem_cells { Interneurons
0.704 0.80
o704 0.704 0.404 0.704
000t o = = = 0651 -- - - (R
060 = = = - - = g = ——— R VY IR A L
050+ 050+ 0551 =
020 0.404
0.404 0.504
= 0.30
o . o . "
Q Keratinocytes Myoepithelial_cells { Neutrophils
@ 70 040+
0.704
065 4
e ey 0.30 06
060+ 060+
0554 oo = === 0554
0.50
050
Oligodendrocytes T \ Tanycytes
0.70 0.75 0654
0.704 0.60
065, e o e o e e o | 065 = o o - - - - - 060+
0.50
0604 060 I, An——
0554 0555 = m m = e e
0.55 050 0504
0 1e6 5e-5 1e-3 005 15 0 1e6 Se-5 1e-3 005 15 0 1e6 5e5 1e3 005 15 0 1e6 5e5 1e3 005 15 0 1e6 5e-5 1e3 005 15
Lambda
293t Acinar_cells Astrocytes cd8 | Endothelial_cells
087-\0—/\—0—/_—. w N 0724 — e e
0.704 0704 080+
R0 060 0651 0681 oo
05831 0501 060 064
14 0.404] 0.40
08 055 0.604
s 1 1., 1 e —— | e p—— e p—
\ Epithelial_cells Fibroblasts Foveolar_cells Hematopoietic_stem_cells Interneurons
080 06l == == =====o
—— —— e — —
0.754 - «
0.754 070 0.90
0.704 0.704 060 060+ —
050
065 065 059-.—/\-’\/\,\ 0404 0.709
=°6°'__________050.._________ 030 v oo on s o» o on o onf 060 = > > - > - - - -
©
3] \ Keratinocytes Macrophages Myoepithelial_cells \ Neurons \ Neutrophils
Ko e === 10 — NP e e e s e e = =08
0,66 Sttt ——————————
0584 0.804 0634 0651 080
0,604 0.754
0544 060+ 0604 0.70
0.50 0.404 0574 055 065
— 0.50 J
020) 0601 = = = = = = = o
NK Oligodendrocytes Pulmonary [T Tanycytes
O e e e e e e =090 | [y P
W—.—\ 0654
060 085+ 0.804
4 4 050
0254 0.80 060 0704
0.50 9791 055 0.60
0.704 045
0454 065w = = = = -v---_ow..-‘-.-\?—.—?—.—hho M 050-—-----'---_
0 002 0.1 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04 0 002 01 02 03 04
Dropout Rate

Fig. 9. Impacts of the autoencoder regularization strategy on DE gene identification accuracy measured by recall. a, Weight decay regularization. b, Dropout
regularization. The dash lines show the recall without imputation. Each point is the average of the results obtained from five random seeds used for autoen-
coder training.

Moreover, weight decay with the optimal A’s improves the recall, pre- exponential) in the evaluation of imputation accuracy but not in the
cision, and TNR from the baseline values (before imputation) on every evaluation of cell clustering or DE gene identification. Our results reveal
dataset, while dropout with the optimal p’s fails to improve the recall the importance of evaluation metrics in autoencoder design. However,
and TNR from the baseline values on 6 and 20 datasets, respectively. The despite the discrepancy in preferring weight decay or dropout, our
preference of weight decay over dropout is similar to our evaluation of evaluation results consistently suggest that regularization is crucial to
cell clustering but different from our evaluation of imputation accuracy. the imputation performance of autoencoders.

A possible reason is that we use manual masking (random or double

4090

N.M. Xi and J.J. Li

3. Discussion

Sparsity is one of the major hurdles in scRNA-seq data analysis [36].
To address the sparsity issue, more than 70 computational imputation
methods have been developed, many of which are autoencoder-based
[37], motivated by the success of neural networks in computer vision
and natural language processing [38]. Compared with traditional sta-
tistical and machine learning methods, autoencoder-based imputation
methods have unique characteristics. First, autoencoder-based imputa-
tion methods require no assumptions on the underlying distribution of
scRNA-seq data. This data-driven characteristic avoids the model spec-
ification bias in traditional methods. Second, autoencoder-based impu-
tation methods can effectively handle large-scale scRNA-seq data by
using innovative hardware, especially the GPU. Third,
autoencoder-based imputation methods have high flexibility granted by
their neural network design. With a carefully-designed loss function,
they have incorporated multiple functionalities such as imputation,
dimension reduction, and batch effect normalization [39].

However, how to optimize the design of autoencoders for scRNA-seq
data remains a challenge. Successful applications of autoencoders in
other fields, especially computer vision, rely on empirical studies that
optimize the autoencoder design on massive datasets. Existing
autoencoder-based imputation methods for scRNA-seq data follow
certain guidelines (e.g., using the ReLU activation function) but ignore
other guidelines (e.g., using a deep and narrow neural network) without
comprehensive investigations. Our study partially fills this gap, and our
results confirm the deep learning field’s common wisdom that deeper
and narrower autoencoders have better imputation performance.
Meanwhile, we have an unexpected finding that sigmoid and tanh
outperform ReLU and ReLU-modified forms as activation functions. This
finding is consistent with another study, in which a neural network with
the tanh activation function outperforms the ReLU counterpart in the
cell-type classification task based on scRNA-seq data [40], reflecting the
fact that scRNA-seq data are distinct from image data and thus need
specific investigations.

Although our results favor deep and narrow neural networks, a
previous study found that deep neural networks do not improve cell-
type classification on scRNA-seq data [41]. We hypothesize that this
discrepancy is due to the two tasks’ different natures: our imputation
task is a regression problem whose predictive targets are continuous
gene expression values (after preprocessing), while the previous study’s
task is a classification problem whose predictive targets are discrete
cell-type labels. We hypothesize that, compared to classification,
imputation requires deeper neural networks with a higher predictive
capacity. Moreover, even though deeper autoencoders exhibit advan-
tages in our study, the benefit of depth saturates when the number of
layers surpasses 10, which is a much shallower architecture compared to
the state-of-the-art deep neural networks with hundreds of layers used in
computer vision. However, this discrepancy is consistent with the rela-
tionship between data complexity and model capacity. One image is
typically a three-dimensional tensor (RGB channels x width x length)
[42] and much more complex than one cell encoded in a
one-dimensional vector in scRNA-seq data. Hence, it is unsurprising that
scRNA-seq data need a shallower neural work than image data do.

Regarding the regularization strategy, we find that dropout excels in
improving the overall imputation accuracy, and weight decay (using the
L, penalty) excels in improving the downstream cell clustering and DE
gene analysis. Although dropout does not penalize all weight parame-
ters, it randomly sets a certain proportion of weight parameters to zeros
and thus can be interpreted as a stochastic L; penalization. From this
point of view, the L; and L, penalizations have complementary advan-
tages in improving the overall imputation accuracy and the downstream
cell clustering and DE gene analysis, respectively. We should also note
that the three masking schemes are simplified approximations of, but are
not themselves, the true missing mechanism, and the ultimate goal of
imputation is to enhance downstream analyses. Therefore, weight decay

4091

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

may provide stronger benefits in real-world applications.

We observe that a similar autoencoder design exhibits distinctive
imputation performance on scRNA-seq datasets with different charac-
teristics. Datasets generated by 10X Genomics, e.g., jurkat, monocyte,
and 293 t, show higher overall imputation accuracies (Fig. 2). Those
datasets share some common characteristics, including high throughput
(i.e., large numbers of cells) and large zero proportions (Supplementary
Table S1). On the other hand, datasets generated by Smart-seq-total,
Smart-seq2, and Fluidigm C1 show lower overall imputation accu-
racies (Fig. 2). Those datasets have lower throughput with smaller zero
proportions (Supplementary Table S1). When it comes to enhancing
downstream cell clustering, datasets that contain more ground-truth cell
types, such as manno_human, chen, and lake, pose a greater challenge
for autoencoders to enhance the separation of cell types. This is evident
from Fig. 6 and Supplementary Table S2. Even when the correct number
of clusters is set in K-means clustering, it is more difficult for autoen-
coders to improve the cell clustering in those datasets. We also observe
that autoencoders are less effective at improving DE gene identification
on smaller datasets, such as Astrocytes, Macrophages, and Tanycytes,
which only have hundreds of cells (Supplementary Table S3). Since the
number of ground-truth DE genes is the same for all datasets, we suspect
that the number of cells plays a critical role in the effectiveness of
autoencoder-based imputation methods.

Our findings indicate that the performance of autoencoder-based
imputation methods is contingent upon the data characteristics and
the downstream tasks involved. While deep autoencoders have the
ability to capture non-linear and complex relationships in scRNA-seq
data, their effectiveness may be limited in datasets with low
complexity. As a result, we observe performance saturation as the
number of layers increases to a point (Figs. 2, 6, and 8). Considering the
higher computational resources required for deeper autoencoders, it
becomes crucial to balance the tradeoff between imputation perfor-
mance and computational time for autoencoder design. Researchers
must weigh the potential gains in imputation performance against the
increased computational demands associated with deeper autoencoders.

Our study is conducted based on the original autoencoder. Some
imputation methods use variants extended from the original autoen-
coder. For example, scVI is based on a variational autoencoder to learn a
probabilistic latent space of the input data [39]; scScope adopts an
iterative autoencoder to impute data using many iterations [43]; DCA
uses the negative log-likelihood of a zero-inflated negative binomial
model as the loss function to estimate the parameters of an autoencoder
[16]. Despite their differences, these autoencoder variants all have the
encoder-decoder neural network structure and a non-linear activation
function, with some including a regularization strategy. Therefore, our
study can be easily generalizable to these autoencoder variants.

A major limitation of our study is that we adopt a greedy search
strategy, instead of a global search strategy, to optimize the autoencoder
design, due to the high computation complexity of autoencoder training.
Hence, the autoencoder designs we find as optimal in this study are not
guaranteed to be globally optimal. One potential solution is to use
advanced experimental design strategies, such as the space-filling design
[44,45] and the fractional factorial design [46,47], to expand the search
space so that the optimized design is closer to the global optimum.
Another limitation is that we set all hidden layers to the same width (32,
64, 128, or 256) in each autoencoder, aiming to reduce the complexity
of varying widths. Although there is no consensus on how the width
heterogeneity across layers would affect an autoencoder’s learning ca-
pacity [48], it is possible that an autoencoder with hidden layers of
different widths might have better imputation performance. We will
leave these two improvements for future research.

In summary, the performance of autoencoder-based imputation
methods relies on key aspects of the autoencoder design, including the
neural network architecture, activation function, and regularization
strategy. Borrowing guidelines from practices in other fields cannot
guarantee good performance on scRNA-seq data. Future methodological

N.M. Xi and J.J. Li

development should pay more attention to optimizing the autoencoder
design and allow users to adjust the design for application needs.

4. Methods
4.1. Autoencoder for imputing scRNA-seq data

An autoencoder is a multi-layer neural network that aims to recon-
struct the input data [49]; it includes an encoder that embeds
high-dimensional data into a low-dimensional latent space and a
decoder that reconstructs the high-dimensional data from the
low-dimensional embeddings (Fig. 1a). Let X be a sparse scRNA-seq
input matrix after appropriate preprocessing and normalization (see
Methods section “Data preprocessing and normalization”). Let Y be the
dense matrix output by an autoencoder. Both X and Y have n rows (cells)
and m columns (genes). Denote Hy, an n-by-I;, matrix, as the output of the
kth hidden layer (with width) of the autoencoder, wherek =1,2,...,
with h as the total number of hidden layers. Then the output of the first
hidden layer is

H, = f(XW, + B)),

where W; is an m-by-l; weight matrix, and B; is an n-by-l; bias matrix
with n identical rows. Here, f is an element-wise nonlinear activation
function. Similarly, the output of the (k+1)th hidden layer is

Hyp = f (HiWip1 + Biyt),

where Wy, is an [y-by-l,; weight matrix, and By is an n-by-l;; bias
matrix with n identical rows. Finally, the output of the autoencoder is

Y = H,Wii1 + Buyi,

where Wy, is an [-by-m weight matrix and By, is an n-by-m bias matrix
with n identical rows. Training the autoencoder means estimating
(learning) the parameters in the weight matrices Wy, W, ..., Wy; and
the bias matrices By, By, ..., Bp1 by minimizing the mean squared error
(MSE) between the input X and the output Y on the nonzero values of X.
Let 77" be the set of weight matrices Wy, Wa, ..., W1 and .% be the set of
bias matrices By,Ba, ...,Bp.1. Then the loss function is.

_ Z?Z;(YU’XV)%(X#O)
2 1(x70)

tion. The sets of weight and bias matrices {‘/7/7, 2’} are estimated by

MSE(7", B) ,where I(-) is an indicator func-

(7', %} = argmin ., MSE(7", 7).
Since the minimization of MSE is a non-convex optimization problem
[48], the backpropagation algorithm [50] is utilized to train the
autoencoder (see Methods section “Autoencoder training and imputa-
tion”). In the imputation step, the zero entries in the input matrix X are
replaced by their nonzero counterparts in the output matrix Y. That is,

the imputed scRNA-seq data matrix X is calculated as
X =X+7YeI(X =0),

where ° is the element-wise product.

Several modifications to the original autoencoder have been made
since the debut of autoencoder-based imputation methods. For example,
DCA [16] models the scRNA-seq data by a negative binomial (NB) dis-
tribution with or without zero-inflation (ZI) (that is, ZINB or NB distri-
bution) and learns the autoencoder by maximizing the likelihood of
ZINB or NB calculated on the output Y; scVI [39] learns a variational
autoencoder [51] by forcing each hidden unit in the hidden layer to
follow a ZINB distribution; DeepImpute [31] learns an autoencoder by
minimizing the weighted MSE, in which a gene’s weight is its expression
level; LATE [52] considers cells or genes as observations, learns an
autoencoder for each consideration, and selects the autoencoder with a
smaller MSE; scScope [43] learns an autoencoder by using the imputed
data as input iteratively. Despite these modifications, all

4092

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

autoencoder-based imputation methods require the specification of the
autoencoder design aspects we examine in this work.

4.2. Regularization in autoencoder

Regularization is a technique for constraining the complexity of a
machine learning model so that the model would have better general-
izability [53]. There are two regularization strategies, among others,
commonly used to improve the imputation accuracy of autoenco-
ders—weight decay [48] and dropout [54]. Weight decay incorporates
the L, norm of weight parameters into the loss function to penalize large
weights in an autoencoder. The weight and bias parameters under the
weight decay {/7/\, fﬁ?}weight decay are given by

(7, %} = argmin -, MSE(7’, %) + |W||}, where
[|W]|, is the L, norm of weight parameters, and 4 is a tuning parameter
that controls the degree of penalization.

Rather than penalizing the magnitudes of weight parameters,
dropout regularization randomly sets a proportion of hidden units to
zero in the training of an autoencoder. Dropout forces the autoencoder
not to rely on particular hidden units and thus reduces overfitting [54].
Specifically, suppose that 2, is a random vector with [, elements, where
Iy is the number of hidden units in the hidden layer Hy. Each random
variable in z; independently follows a Bernoulli distribution with a
parameter px € (0,1). A matrix Z; is constructed to have the same di-
mensions as those of the hidden layer matrix Hy, and every row in Zj is
set to zx. Then in the training, the calculation of hidden layer Hy ; under
dropout regularization is

weight decay

Hiy =f [(HioZi) Wit + Bigt),

where ° is the element-wise product. Note that with a trained autoen-
coder, the calculation of hidden layers in the imputation step does not
involve the dropout operation. In our analysis, we set p; = pa
Pn = D, where h is the total number of hidden layers. We call p the
dropout rate in the following text.

4.3. Three masking schemes for introducing artificial zeros

In scRNA-seq data, distinguishing biological zeros and non-
biological zeros (i.e., missing values) is challenging without external
information [17,18]. Hence, to evaluate the overall imputation accu-
racy, we design three masking schemes to introduce artificial zeros into
scRNA-seq data and measure the differences between the artificial zeros’
imputed values and original values (Fig. 1b-d). The three masking
schemes represent three typical assumptions of missing mechanisms in
scRNA-seq data [9].

Random masking: we randomly mask (by setting values to zeros)
50% of nonzero entries in the scRNA-seq data matrix. Random masking
means that the missing mechanism is independent of the gene expres-
sion levels, and it has been widely used in previous work to evaluate the
imputation accuracy [18].

Median masking: we mask the nonzero entries less than or equal to
the overall median in the scRNA-seq data matrix. Median masking as-
sumes a complete dependence of the missing mechanism on the gene
expression levels.

Double exponential masking: we assume that a gene’s probability of
having missing values depends on the gene’s mean expression level
across all cells. Hence, lowly expressed genes are more likely to have
missing values than highly expressed genes. Specifically, for gene j, let
X j be the mean expression level (natural-log-plus-one-transformed read
count) of nonzero values across all cells and p; be the probability of
missing values. Then gene j’s probability of having missing values is
modeled by a double exponential function [9].

Dj = exp (7&?)

Let Z; be a random variable that indicates whether to mask the

N.M. Xi and J.J. Li

nonzero expression of gene j in cell i. Then Z; ~ Bernoulli (pj). IfZ; =1,

then the nonzero expression of gene j in cell i will be masked. The value
of 4 is determined such that 50% nonzero entries in the scRNA-seq data
matrix are masked.

A previous study showed that artificial zeros introduced by the three
masking schemes exhibited different impacts on scRNA-seq data anal-
ysis [9]. Although random masking has been widely used to evaluate
imputation accuracy, its assumption is unrealistic. In contrast, median
masking is an extreme way of modeling the observation that lowly
expressed genes have more zeros than highly expressed genes have [15,
55]. Between the two masking schemes, double exponential masking
uses a probabilistic model to reflect this observation at the individual
gene level. Together, the three masking schemes provide a compre-
hensive evaluation of imputation accuracy from different perspectives.

4.4. Data preprocessing and normalization

All real and synthetic scRNA-seq datasets used in this study are cell-
by-gene count matrices. They are preprocessed and normalized in three
steps. First, we remove the genes expressed in fewer than three cells and
the cells having fewer than 200 genes expressed. Second, we divide each
count by its cell library size (i.e., the cell’s total count) and then multiply
it by 10000 (library size normalization). Then we add one to the
normalized count and apply the natural-log transformation. Third, we
select 2000 highly variable genes using the vst method implemented in
the FindvariableFeatures function of the Seurat package [34]
(v4.0). After preprocessing and normalization, the dimensions of all
scRNA-seq data matrices are cell number x 2000. Note that the pre-
processing and normalization steps apply to the pre-imputed datasets
only. The imputed datasets, when used as the input of cell clustering and
DE gene analysis, will not go through the preprocessing and normali-
zation steps.

4.5. Training of autoencoders and imputation

The training of autoencoders is implemented using the Pytorch
deep learning library [56] (v 1.8.1) on a server with two Intel Xeon
E5-2687 W v4 CPUs, 256 GB memory, an Nvidia GeForce RTX 2080 Ti
GPU, and Ubuntu 18.04 system. After preprocessing, normalization, and
masking (masking is only necessary for the evaluation of overall impu-
tation accuracy), we split each dataset’s cells into a training set (80% of
cells) and a validation set (20% of cells). We utilize the Adam optimi-
zation algorithm [21] to train the autoencoder with a 0.001 learning
rate and a 64 batch size. After every epoch of training on the training set,
we impute the validation set using the current autoencoder and calcu-
late the MSE between the original nonzero values in the validation set
and their corresponding imputed values. We continue the training until
either the MSE does not decrease over 20 epochs or the total number of
epochs surpasses 10000. In the imputation step, the trained autoencoder
accepts the preprocessed and normalized scRNA-seq data matrix as
input (with the dimensions as cell number x 2000) and outputs a data
matrix of the same dimensions. The final imputed data matrix is con-
structed by replacing the zero values in the input matrix with their
counterparts in the output matrix. The nonzero values in the input
matrix remain in the final imputed data matrix.

4.6. Calculation of imputation normalized root mean squared error
(NRMSE)

Denote by X the sparse scRNA-seq input matrix after preprocessing
and normalization; X is the imputed scRNA-seq data matrix; M is the set
of masked entries in the scRNA-seq data matrix. The MSE between the
imputed values and the original values of the masked entries, MSE sk, is
calculated as

4093

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

"SRy Xy 2Ky M)
MSE sk = M

Z.-" Z}"I(XU-EM)
Denote the mean masked values Xpask as
T i Kil(XyeM)
S O ST =T

Then the imputation NRMSE is calculated as
NRMSEimputation = V/MSEmag

mask
4.7. Activation functions

We evaluate seven activation functions in this study, including lo-
gistic function (sigmoid), hyperbolic tangent function (tanh), rectified
linear unit (ReLU), leaky ReLU (with two hyperparameters), exponential
linear units (ELU), and scaled exponential linear units (SELU). An acti-
vation function accepts a linear combination of the outputs from the last
layer as input and applies a nonlinear transformation to the linear
combination. All activation functions take a real-valued scalar as input
and output a real-valued scalar.

The sigmoid activation function is a bounded differentiable function
with positive and continuous derivatives. Its value ranges from 0 to 1.
The function form of sigmoid is

1
4

f)

The tanh activation function is also a bounded differentiable function
with positive and continuous derivatives. Its value ranges from -1 to 1.
The functional form of tanh is

e =
e te

()

The ReLU activation function conducts a threshold operation that
outputs zero for a negative input and acts as an identity function for a
positive input. Its value ranges from 0 to + oo, and it has discrete de-
rivatives. The functional form of ReLU is

0 ={

The leaky ReLU activation function modifies ReLU by introducing a
small negative slope when the input is negative. Its value ranges from
—ooto + oo, and it has discrete derivatives. The functional form of leaky
ReLU is

0 = {

where a > 0 is a hyperparameter. In our analysis, we set a to 0.01 and
0.2 — the default values in two popular deep learning libraries Pytorch
[56] and TensorFlow [57].

The ELU activation function replaces the linear negative part of leaky
ReLU with an exponential function. Its value ranges from —oo to + oo,
and it has discrete derivatives. The functional form of ELU is

) = {

where @ > 0 is a hyperparameter. In our analysis, we set a to 1 — the
default value in Pytorch.
The SELU activation function further adds a scale factor to ELU and
changes the constant in the negative part. Its value ranges from —oo to
+ oo, and it has discrete derivatives. The functional form of ELU is

X
0

ifx>0
ifx<0’

X
ax

ifx>0
if x <0’

X
ae” — 1

ifx>0
ifx<0’

x
ae* —a

ifx>0
o fx<0

where 7 > 0 and @ > 0 are predefined parameters withz = 1.05and o =
1.67.

N.M. Xi and J.J. Li
4.8. Weight decay and dropout parameter settings

When evaluating the impact of weight decay regularization on the
imputation accuracy, we set the hyperparameter A to nine values,
including 0, 1e-7, 5e-7, le-6, 5e-6, 1e-5, 5e-5, 1e-4, and 5e-4. Larger A
values indicate stronger regularization imposed on the autoencoder, and
A = 0 means no regularization. When evaluating the impact of weight
decay regularization on the cell clustering and DE gene analysis, we set
the hyperparameter A to 17 values, including 0, le-7, 5e-7, le-6, 5e-6,
le-5, 5e-5, 1e-4, 5e-4, 5e-3, 0.01, 0.05, 0.1, 0.5, 1, and 5. When evalu-
ating the impact of dropout regularization on the imputation accuracy,
cell clustering, and DE gene analysis, we set the dropout rate p to 11
values, including 0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and
0.4. Larger p values indicate stronger regularization imposed on the
autoencoder, and p = 0 means no regularization.

4.9. Cell clustering analysis

We use the function kmeans in R programming language to conduct
K-means clustering on the pre-imputed and imputed scRNA-seq datasets
(Supplementary Table S2). We set the parameter centers (the number
of clusters k in the K-means clustering) to the correct number of cell
types in each dataset. We set the parameter nstart to 25, which repeats
the clustering 25 times by randomly selecting 25 sets of initial cluster
centers and returns the result with the minimum sum of pairwise dis-
tances within clusters [58]. The dimensions of input data matrices for
K-means clustering is cell number x 2000 without further dimension
reduction (that is, each cell is a 2000-dimensional vector). Note that
before clustering, pre-imputed datasets are preprocessed by following
the procedure described in the section “Data preprocessing and
normalization.” The imputed datasets are directly clustered by K-means
clustering.

We use adjusted Rand index (ARI) and adjusted mutual information
(AMI) to measure the performance of cell clustering. Let U = {uy, uy, ...
,Uc} be the true partition of ¢ classes and V = {v1,vs,...,v.} be the
partition obtained by K-means clustering. Let n; and m; be the numbers
of observations in class u; and cluster v;, respectively. Let ry be the
number of observations in both class u; and cluster v;. The ARI is
calculated as

S (3) — (L (S ()] 6)
() + X ()] 2- L G SL)] /@)

where n is the total number of observations and n = >3_jn; = Y75 ;m;.
The AMI is calculated as

=

21(U, V)
HU)+H(V)

where I(U, V) is the mutual information of U and V, and H(U) and H(V)
are the entropies of U and V respectively [59]. We utilize the functions
ARI and AMI in R package aricode to calculate ARI and AMI,
respectively.

4.10. Simulation of synthetic scRNA-seq data

We utilize simulator scDesign [19] to generate 20 synthetic
scRNA-seq data with ground-truth DE genes. The 20 real datasets for
training scDesign (Supplementary Table S3) are preprocessed by
following the procedure described in the section “Data preprocessing
and normalization.” For each real dataset, we execute the function
design_data in R package scDesign to simulate one synthetic
dataset. Each synthetic dataset contains two cell types with 1000 cells
per type, and 10% of genes are differentially expressed between the two
cell types. The sequencing depth of each synthetic dataset is equal to the

4094

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

median cell library size of the corresponding real dataset multiplied by
the cell number (2000). Other parameters of the function design_data
are set to their default values. All synthetic datasets are count matrices
with dimensions as cell number x 2000.

4.11. DE gene analysis

We conduct DE gene analysis on the aforementioned 20 synthetic
datasets and their imputed counterparts. For pre-imputed synthetic
datasets, the gene expression counts of each cell are divided by the total
counts of that cell (library size) and then multiplied by 10000 (library
size normalization). The results are then added by one before being
natural-log transformed. We utilize the function FindMarkers in R
package Seurat to identify the DE genes between the two cell types. We
set the parameter test.use to “MAST” and identify genes with
Bonferroni-corrected p-values under 0.05 as DE genes. Based on the
ground-truth DE genes, we calculate the precision, recall, and TNR for
each pre-imputed synthetic dataset and the corresponding imputed
dataset.

4.12. Sensitivity analysis with varying numbers of highly variable genes

We perform a sensitivity analysis by varying the number of highly
variable genes to assess the robustness of our major findings. Specif-
ically, we examine the impacts of autoencoder architecture, activation
function, and regularization on imputation accuracy using random
masking. Two scenarios are considered, where the highly variable genes
are set to 1000 and 3000, respectively. The results of this analysis are
summarized in Supplementary Figs. S12-S19. Notably, our investigation
confirms that our major findings remain consistent across the three
different numbers of highly variable genes (1000, 2000, and 3000).

Declaration of Competing Interest
The authors declare no conflict of interests.
Data and code availability

The source code is available at the GitHub repository: https://github.
com/xnnbal984/Benchmarking-the-Autoencoder-Design-for-Imputing-
Single-Cell-RNA-Sequencing-Data. The datasets used in this study can be
found at the Zenodo repository: https://zenodo.org/record/7504311#.
Y7eiOnaZMuK.

Acknowledgements

This work was supported by the following grants: National Science
Foundation DBI-1846216 and DMS-2113754, NIH/NIGMS
R01GM120507 and R35GM140888, Johnson & Johnson WiSTEM2D
Award, Sloan Research Fellowship, UCLA David Geffen School of Med-
icine W.M. Keck Foundation Junior Faculty Award, and Chan-
Zuckerberg Initiative Single-Cell Biology Data Insights [Silicon Valley
Community Foundation Grant Number: 2022-249355] (to J.J.L.).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.csbj.2023.07.041.

References
[1] Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and

bioinformatics pipelines. Exp Mol Med 2018;50:96.

Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet 2019;20:257-72.

Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational

data analysis. Front Genet 2019;10:317.

[2]
[3]

https://zenodo.org/record/7504311#
https://doi.org/10.1016/j.csbj.2023.07.041
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref1
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref1
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref2
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref3
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref3

N.M.

[4]
[5]
[6]
[7]
[81
[91
[10]
[11]

[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]

Xi and J.J. Li

Franzén O, Gan L-M, Bjorkegren JLM. PanglaoDB: a web server for exploration of
mouse and human single-cell RNA sequencing data. Database 2019;2019.

Choi YH, Kim JK. Dissecting cellular heterogeneity using single-cell RNA
sequencing. Mol Cells 2019;42:189-99.

Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of
single-cell RNA-seq data. Nat Rev Genet 2019;20:273-82.

Van den Berge K, et al. Trajectory-based differential expression analysis for single-
cell sequencing data. Nat Commun 2020;11:1-13.

Léhnemann D, et al. Eleven grand challenges in single-cell data science. Genome
Biol 2020;21:31.

Jiang R, Sun T, Song D, Li JJ. Statistics or biology: the zero-inflation controversy
about scRNA-seq data. Genome Biol 2022;23:31.

Bai Y-L, Baddoo M, Flemington EK, Nakhoul HN, Liu Y-Z. Screen technical noise in
single cell RNA sequencing data. Genomics 2020;112:346-55.

Li WV, Li JJ. An accurate and robust imputation method scImpute for single-cell
RNA-seq data. Nat Commun 2018;9:997.

Azizi E, Prabhakaran S, Carr A, Pe’er D. Bayesian inference for single-cell
clustering and imputing (Preprint at) Genom Comput Biol 2017;vol. 3:46. https://
doi.org/10.18547/gcb.2017.vol3.iss1.e46.

van Dijk D, et al. Recovering gene interactions from single-cell data using data
diffusion. 716-729.e27 Preprint at Cell 2018;vol. 174. https://doi.org/10.1016/j.
cell.2018.05.061.

Gong W, Kwak I-Y, Pota P, Koyano-Nakagawa N, Garry DJ. DrImpute: imputing
dropout events in single cell RNA sequencing data. BMC Bioinforma 2018;19:220.
Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene
expression analysis. Genome Biol 2015;16:241.

Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq
denoising using a deep count autoencoder. Nat Commun 2019;10:390.

Zhang L, Zhang S. Comparison of computational methods for imputing single-cell
RNA-sequencing data. IEEE/ACM Trans Comput Biol Bioinform 2020;17:376-89.
Hou W, Ji Z, Ji H, Hicks SC. A systematic evaluation of single-cell RNA-sequencing
imputation methods. Genome Biol 2020;21:218.

Li WV, Li JJ. A statistical simulator scDesign for rational scRNA-seq experimental
design. i41-i50 Bioinformatics 2019;35. i41-i50.

Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines.
Icml 2010.

Kingma, D.P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG]
(2014).

Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep
Convolutional Neural Networks. In: Pereira F, Burges CJC, Bottou L,

Weinberger KQ, editors. Advances in Neural Information Processing Systems, vol.
25. (Curran Associates, Inc.; 2012.

Zhao, Z.-Q., Zheng, P., Xu, S.-T. & Wu, X. Object Detection with Deep Learning: A
Review. arXiv [cs.CV] (2018).

Flores S. Variational autoencoders are beautiful. https://www.compthree.com/blo
g/autoencoder/.

Nwankpa, C., [jomah, W., Gachagan, A. & Marshall, S. Activation Functions:
Comparison of trends in Practice and Research for Deep Learning. arXiv [cs.LG]
(2018).

Xu, B., Wang, N., Chen, T. & Li, M. Empirical Evaluation of Rectified Activations in
Convolutional Network. arXiv [cs.LG] (2015).

Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). arXiv [cs.LG] (2015).

Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing Neural
Networks. arXiv [cs.LG] (2017).

Ly, L., Shin, Y., Su, Y. & Karniadakis, G.E. Dying ReLU and Initialization: Theory
and Numerical Examples. arXiv [stat. ML] (2019).

Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training Recurrent Neural
Networks. arXiv [cs.LG] (2012).

Arisdakessian C, Poirion O, Yunits B, Zhu X, Garmire LX. DeepIlmpute: an accurate,
fast, and scalable deep neural network method to impute single-cell RNA-seq data.
Genome Biol 2019;20:211.

4095

[32]
[33]
[34]

[35]

[36]
[37]
[38]
[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]
[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

Computational and Structural Biotechnology Journal 21 (2023) 4079-4095

Talwar D, Mongia A, Sengupta D, Majumdar A. Autolmpute: autoencoder based
imputation of single-cell RNA-seq data. Sci Rep 2018;8:16329.

Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a
tutorial. Mol Syst Biol 2019;15.

Hao 'Y, et al. Integrated analysis of multimodal single-cell data. 2020.10.12.335331
bioRxiv 2020. https://doi.org/10.1101/2020.10.12.335331.

Finak G, et al. MAST: a flexible statistical framework for assessing transcriptional
changes and characterizing heterogeneity in single-cell RNA sequencing data.
Genome Biol 2015;16:278.

Tang F, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods
2009;6:377-82.

Zappia L, Phipson B, Oshlack A. Exploring the single-cell RNA-seq analysis
landscape with the scRNA-tools database. PLoS Comput Biol 2018;14:€1006245.
Fan L, Zhang F, Fan H, Zhang C. Brief review of image denoising techniques. Vis
Comput Ind, Biomed, Art 2019;2:1-12.

Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for
single-cell transcriptomics. Nat Methods 2018;15(1053-1058).

Lin C, Jain S, Kim H, Bar-Joseph Z. Using neural networks for reducing the
dimensions of single-cell RNA-Seq data. e156-e156 Nucleic Acids Res 2017;45.
el56-e156.

Kohler ND, Biittner M, Theis FJ. Deep learning does not outperform classical
machine learning for cell-type annotation. bioRxiv 2019:653907. https://doi.org/
10.1101/653907.

Tensors in Image Processing and Computer Vision. (Springer, London, 2009).

Deng Y, Bao F, Dai Q, Wu LF, Altschuler SJ. Scalable analysis of cell-type
composition from single-cell transcriptomics using deep recurrent learning. Nat
Methods 2019;16:311-4.

Wang L, Xiao Q, Xu H. Optimal maximin L1-distance Latin hypercube designs
based on good lattice point designs. aos 2018;46(3741-3766).

Wang L, Sun F, Lin DKJ, Liu MQ. Construction of orthogonal symmetric Latin
hypercube designs. Stat Sin 2018.

Wang L, Xu H. A class of multilevel nonregular designs for studying quantitative
factors. Stat Sin 2022. https://doi.org/10.5705/s5.202020.0223.

Wang L, Xu H, Liu M-Q. Fractional factorial designs for Fourier-cosine models.
Metrika 2022. https://doi.org/10.1007/500184-022-00881-2.

Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning, vol. 1. MIT press
Cambridge,; 2016.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44.

Werbos PJ. Backpropagation through time: what it does and how to do it. Proc
IEEE 1990;78:1550-60.

Kingma, D.P. & Welling, M. Auto-Encoding Variational Bayes. arXiv [stat. ML]
(2013).

Badsha MB, et al. Imputation of single-cell gene expression with an autoencoder
neural network. Quant Biol 2020;8:78-94.

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. Springer Science & Business
Media; 2009.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15
(1929-1958).

Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability
in single-cell RNA-sequencing experiments. Biostatistics 2018;19:562-78.

Paszke A, et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In: Wallach H, et al., editors. Advances in Neural Information Processing
Systems, vol. 32. Curran Associates, Inc.; 2019.

Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. arXiv [cs.DC] (2016).

Franti P, Sieranoja S. How much can k-means be improved by using better
initialization and repeats? Pattern Recognit 2019;93:95-112.

Reza FM. An Introduction to Information Theory. Courier Corporation; 1994.

http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref4
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref4
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref5
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref5
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref6
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref6
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref7
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref7
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref8
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref8
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref9
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref9
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref10
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref10
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref11
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref11
https://doi.org/10.18547/gcb.2017.vol3.iss1.e46
https://doi.org/10.18547/gcb.2017.vol3.iss1.e46
https://doi.org/10.1016/j.cell.2018.05.061
https://doi.org/10.1016/j.cell.2018.05.061
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref14
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref14
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref15
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref15
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref16
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref16
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref17
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref17
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref18
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref18
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref19
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref19
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref20
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref20
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref21
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref21
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref21
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref21
https://www.compthree.com/blog/autoencoder/
https://www.compthree.com/blog/autoencoder/
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref23
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref23
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref23
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref24
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref24
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref25
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref25
https://doi.org/10.1101/2020.10.12.335331
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref27
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref27
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref27
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref28
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref28
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref29
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref29
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref30
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref30
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref31
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref31
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref32
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref32
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref32
https://doi.org/10.1101/653907
https://doi.org/10.1101/653907
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref34
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref34
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref34
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref35
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref35
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref36
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref36
https://doi.org/10.5705/ss.202020.0223
https://doi.org/10.1007/s00184-022-00881-2
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref39
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref39
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref40
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref41
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref41
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref42
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref42
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref43
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref43
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref43
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref44
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref44
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref44
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref45
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref45
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref46
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref46
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref46
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref47
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref47
http://refhub.elsevier.com/S2001-0370(23)00275-1/sbref48

	Exploring the optimization of autoencoder design for imputing single-cell RNA sequencing data
	1 Introduction
	2 Results
	2.1 Impacts of autoencoder architecture (depth and width) on imputation accuracy
	2.2 Impacts of activation function on imputation accuracy
	2.3 Impacts of regularization on imputation accuracy
	2.4 Impacts of autoencoder design (architecture, activation function, and regularization) on cell clustering
	2.5 Impacts of autoencoder design (architecture, activation function, and regularization) on DE gene analysis

	3 Discussion
	4 Methods
	4.1 Autoencoder for imputing scRNA-seq data
	4.2 Regularization in autoencoder
	4.3 Three masking schemes for introducing artificial zeros
	4.4 Data preprocessing and normalization
	4.5 Training of autoencoders and imputation
	4.6 Calculation of imputation normalized root mean squared error (NRMSE)
	4.7 Activation functions
	4.8 Weight decay and dropout parameter settings
	4.9 Cell clustering analysis
	4.10 Simulation of synthetic scRNA-seq data
	4.11 DE gene analysis
	4.12 Sensitivity analysis with varying numbers of highly variable genes

	Declaration of Competing Interest
	Data and code availability
	Acknowledgements
	Appendix A Supporting information
	References

