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This paper formulates a mixed integer linear programming (MILP) model to optimize a system of electric vehicle
(EV) charging stations. Our methodology introduces a two-stage framework that integrates the first-stage system
design problem with a second-stage control problem of the EV charging stations and develops a design and
analysis of computer experiments (DACE) based system design optimization solution method. Our DACE
approach generates a metamodel to predict revenue from the control problem using multivariate adaptive

regression splines (MARS), fit over a binned Latin hypercube (LH) experimental design. Comparing the DACE
based approach to using a commercial solver on the MILP, it yields near optimal solutions, provides interpretable
profit functions, and significantly reduces computational time for practical application.

1. Introduction

The energy shortages of the 1970 s spurred the exploration of
alternative energy sources for vehicles, leading to the initiation of
electric vehicle (EV) research. In the present times, the increasing de-
mand for sustainability has greatly elevated the significance of electric
vehicles EVs. A recent environmental evaluation conducted by the
Electric Power Research Institute and the Natural Resource Defense
Council has indicated that opting for electricity in place of gasoline/
petroleum has the potential to substantially decrease emissions of
greenhouse gases and other airborne pollutants (He et al., 2015). To
bolster the usage of EVs, some governments have taken a variety of
initiatives. Norway is one of the countries working towards the goal of
having all new car sales be electric vehicles by 2025, to meet their
emission reduction targets (Lambert, 2016). By endorsing both current
and forthcoming technologies in electric power-based vehicular prod-
ucts, the transportation industry anticipates transitioning from its oil-
dependent design to a cleaner and more environmentally sustainable
electric-based design. One of the critical factors that requires attention
when it comes to EV charging infrastructure is the driving range and
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accessibility of charging stations. This limitation has led to a constrained
adoption of electric vehicles. One of the solutions to this problem is
installation of EV charging stations, which minimizes operational cost
for EV charging stations and maximizes the profit in running the sta-
tions. Through the generation of electricity using renewable sources,
charging stations could actively engage in the electricity market. This
additional dynamic provides even more motivation for the U.S. trans-
portation sector to seek out cleaner alternatives.

1.1. Literature review

Several papers in the literature have studied optimal planning for EV
charging stations, Plug-in Hybrid vehicles (PHEVs), charging pads, and
battery swapping.

1.1.1. EV charging station literature review

Some papers proposed using heuristics for optimal planning of
charging station locations. Tang et al. (2013) proposed a Particle Swarm
Optimization for the planning of EV charging stations. This model
considered an initial fixed investment cost, charging cost, operating
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costs, service radius and capacity of charging station, etc., to determine
the layout of EV charging stations. Lin & Hua (2015) proposed a flow
capturing location model that uses Particle Swarm Optimization for
selecting locations for EV charging stations. This study considered 25
nodes with 42 arcs for setting up EV charging stations while accounting
for initial construction costs of facilities, the maximum charging dis-
tance, and the cost of power network loss. Awasthi et al. (2017) pro-
posed a hybrid algorithm based on a Genetic Algorithm and an improved
version of a conventional Particle Swarm Optimization to find an
optimal placement of charging stations while accounting for initial in-
vestment cost and distribution grid power quality. Vazifeh et al. (2019)
developed a data-driven approach for EV charging stations employing a
Genetic Algorithm applied to a geographical grid to minimize total
excess driving distance to charging stations, energy overhead, and the
number of charging stations. Yang et al. (2021) presented a hybrid
approach of differential evolutionary algorithm and Particle Swarm
Optimization, which was applied to solve a charging station location
model while considering charging station capacity and total charging
costs. In this research, a Voronoi diagram was used to partition the
service coverage area of the charging stations. Li et al. (2023) proposed
multimodal multi-objective problems, where solutions with similar
objective values are often distant in the decision space. It reviews two
decades of related work and compares the performance of 15 state-of-
the-art multimodal multi-objective evolutionary algorithms that
employ a variety of diversity-maintaining techniques on existing test
suites.

Biesinger et al. (2017) presented an urban station-based car-sharing
approach where the users can rent and return publicly available EV cars
from charging stations. In this research, a heuristic algorithm for finding
and designing charging stations was formulated as a bi-level model in
which the first level is to decide the station location, the number of
charging slots per station, and the total number of cars using a variable
neighborhood search algorithm. A path-based heuristic was used in the
second level to determine which trips are accepted by the system. To
solve the dynamic control of a system of plug-in hybrid vehicle charging
stations problem, Kulvanitchaiyanunt et al. (2015) proposed and
formulated a finite horizon stochastic program. The objective of the
study was to maximize profit, which is the revenue from selling power
back to the power grid and the charging of vehicles minus the cost of
buying electricity from the power grid. This research considered wind
energy, solar power generation, total demand at each station and market
price at each node. Paganini et al. (2022) proposed applying a spatial
supply infrastructure to serve a distributed demand for EV charging
facilities. To address the issue of sparsity, a mixed integer linear pro-
gramming (MILP) formulation for a facility location problem is used.
Sadeghi et al. (2022) proposed a bi-objective MILP model to determine
optimal locations for charging stations while taking into consideration
the number of chargers to be set up at each station and their types. This
model aimed to minimize the total cost as well as users’ dissatisfaction.
This study used Lagrangian Relaxation to handle the complexity of the
model. Arslan & Karasan (2016) presented a charging station location
problem with plug-in hybrid vehicles as a generalization to the flow
recapture location problem to maximize the vehicle miles traveled using
electricity and thereby minimize the total cost of transportation under
the existing structure between electricity and gasoline. The authors
proposed an arc-cover formulation and Benders decomposition algo-
rithms as exact solution methods. Mirheli & Hajibabai (2022) proposed
a bi-level optimization framework for the design and operational man-
agement of EV charging infrastructure, incorporating user-equilibrium
decisions. The upper-level component is focused on reducing the over-
all deployment costs of charging facilities and maximizing revenue from
EV charging fees. In contrast, the lower-level component aims to mini-
mize travel time and charging expenses for EV users. The suggested bi-
level model is capable of efficiently identifying the ideal charging fa-
cility locations, their physical capacities, and implementing demand-
responsive pricing strategies.
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Brandstatter et al. (2017) proposed a robust integer linear optimi-
zation method to determine optimal locations for charging stations of
electric car-sharing systems. Sanchez et al. (2022) proposed a mixed-
integer linear programming model to solve the electric location rout-
ing problem with time windows considering the state of charge, freight,
battery capacities and customer time windows in the decision model. A
clustering strategy based on k-means is used to divide the set of vertices
into small areas and define the potential sites for recharging stations.
Battistelli et al. (2012) developed a stochastic programming framework
that considered uncertainty associated with vehicle-to-grid and wind
power scenarios. Khosrojerdi et al. (2012) presented a linear mathe-
matical model to optimize the cost of power trading, which used auto
regressive methods to forecast wind power output and market clearing
price for energy. Ma & Zhang (2018) proposed a queuing theory model
to optimize the sizing and the location of charging stations and solved it
using an exhaustion search method. This research used a Bass model
developed by Frank Bass to predict the total number of EVs and to
calculate the size of the charging stations. Gorbunova & Anisimov
(2020) developed a model for optimal selection of the limited number of
charging stations to meet maximum demand while minimizing the total
cost of operating the charging infrastructure. This model considered
characteristics of the road network, traffic flow at nodes and places of
attractions for the population. Tan & Lin (2014) proposed a stochastic
model for back-up flow capturing demand to ensure stability in service
coverage. Soltani et al. (2014) developed a similar stochastic model to
maximize profit based on price responsiveness of customers.

Gerding et al. (2013) presented a two-sided market for advanced
reservation to reduce the queue faced by customers and uncertainty over
the availability of a charging facility. In this method, the EV owners
reported their preference of time and charging location, while charging
stations reported their availability and cost. Park et al. (2014) proposed
a reservation recommendation algorithm to select the charging stations
based on distance and route. It provided recommendations of three
charging stations based on: (i) desired amount of charge without waiting
time, (ii) desired amount of charge with waiting time, and (iii) the
limited amount of charge with waiting time. It also helped in time slot
management if there was a need to reserve a charging station slot.
Yudovina & Michaildis (2015) proposed a decentralized policy of
assigning electric vehicles to a network of charging stations with the
goal to achieve little to no queue for optimal location deployment of the
charging infrastructure. Lamontagne et al. (2022) proposed a model for
determining optimal locations of EV charging stations to maximize the
number of EVs while considering user-specific characteristics, which
represented the decision of the user to purchase EVs. This study focused
on supporting a plan for maximizing EV adoption. Chang et al. (2014)
proposed an extension to the Flow Refueling Location Model, which
considered the allocation of both charging stations and charging pads to
optimize the flow of recharged EVs. This study proposed deploying
charging pads on the road network to capture more traffic than captured
by charging stations alone. Li et al. (2022) presented a series of opti-
mization problems, which included the global transport cost from de-
mand points to supply stations with bounded capacity and model
demand elasticity, with the goal of minimizing the detour mileage. The
paper describes an optimal charging station location problem for
intercity highway networks and developed two approaches for modeling
and solving. The first one is node-link network topology and the second
is station-sub path meta network topology.

You et al. (2015) proposed a novel cooperative charging strategy for
an intelligent charging station. This strategy was designed to operate
effectively in a dynamically shifting electricity pricing context. In this
system, EVs shared energy stored in their batteries amongst each other
under the supervision of an aggregator. This collaborative approach
granted the aggregator enhanced flexibility in managing schedules. This
problem was formulated as a scheduling MILP model to capture discrete
states of the battery (charging, idle, and discharging). Zhang et al.
(2023) presented a day-ahead optimized dispatching technique for a
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distribution network that incorporates a fast-charging station (FCS).
This FCS is integrated with photovoltaic systems and energy storage
mechanisms, aiming to alleviate the adverse effects of the FCS on the
distribution network. Initially, historical vehicle travel data served as
the foundation for employing a Monte Carlo simulation method to
replicate the fast-charging load. Finally, the uncertainties associated
with photovoltaic power were managed through the implementation of
arobust optimization model that pertained to the economic operation of
the distribution network. Li et al. (2018) proposed a two-stage robust
optimization model for micro-grid energy management including EV
charging stations. In this study, the authors proposed an optimization
scheduling strategy based on a combination of day-ahead scheduling
(first stage) and model predictive control (second stage). Some re-
searchers proposed battery swapping, either as an alternative to
charging pads or in addition to charging stations, for greater reach. Mak
et al. (2013) proposed a robust optimization model for deploying
battery-swapping infrastructure where a depleted battery can be
exchanged for a recharged one in the middle of long trips. Kang et al.
(2016) proposed a centralized charging approach for EVs incorporating
battery swapping. This strategy factored in optimal charging precedence
and charging site selection based on real-time electricity prices at spe-
cific locations. In this study, a population based heuristic approach was
used to minimize the total charging cost, as well as to reduce the power
loss and voltage deviation of the power network. To minimize the cost
and land use, Chen & Hua (2014) proposed a new location model based
on set covering. This model hinged on the use of existing gas stations as
potential locations to determine the potential set of charging and battery
swapping stations. Jatschka et al. (2022) proposed a multi-objective
battery swapping station location problem focused on optimizing the
setup of stations for exchanging depleted electric scooter batteries. The
goal is to minimize a three-part objective while meeting expected de-
mand. An MILP is solved using Large Neighborhood Search. Wu et al.
(2015) proposed using a Genetic Algorithm to solve an optimization
model to maximize the number of batteries in stock and minimize the
cost due to different charging schemes He et al. (2023) proposed a bi-
level planning framework where a collaborative location optimization
approach is developed at the upper level to optimize the location of
charging stations. Furthermore, a collaborative capacity optimization
approach is formulated at the lower level to optimize the capacity of
truck mobile chargers and fixed chargers at candidate stations. In this
study, the big-M method is applied to linearize and convert the
nonlinear problem into a MILP model.

1.1.2. Design and analysis of computer experiments literature review

In this paper, we develop a two-stage framework, which addresses
the design of a system of EV charging stations using a design and analysis
of computer experiments (DACE) based system design optimization
approach. DACE based optimization was first conducted for continuous-
state stochastic dynamic programming (SDP) by Chen et al. (1999) and
Chen (1999) and has since been applied for numerous high-dimensional
dynamic optimization applications, including airline optimization
(Chen et al., 2003, Siddappa et al., 2007), water resources (Tsai et al.,
2004, Cervellera et al., 2006), environmental quality control strategies
(Yang et al., 2009, Sule et al., 2011, Fan et al., 2018, Ariyajunya et al.,
2021), and pain management (Lin et al., 2014). The concept of DACE
based optimization for two-stage stochastic programming was first
proposed by Chen (2001) and first demonstrated by Pilla et al. (2008)
and Shih et al. (2014) using an airline fleet assignment case study.

1.2. Research gap and contribution

Although the aforementioned papers proposed different approaches
and implemented several algorithms for the optimization of locations for
EV charging stations, an approach to find a globally optimal set of sta-
tions to be opened, with the corresponding number of slots, has never
been found while considering factors such as the customer demand
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obtained from the city population (hotspots) of EVs, the distances from
hotspots to the stations, and available solar energy and wind energy
generation. This represents a significant gap, and to address these issues,
we propose a deterministic MILP model to obtain a globally optimal set
of stations to be opened that maximizes profits. In this research, we
consider 11 possible locations for charging stations for 140 demand
hotspots in multiple time periods. Throughout our experiments,
leveraging the advanced Integer Programming MILP tool, GUROBI, we
identified opportunities to enhance computational efficiency in finding
solutions. Consequently, we developed a DACE based system optimiza-
tion approach, marking a significant methodological contribution
within this study.

DACE based optimization for system design is a two-stage framework
that integrates the first-stage system design problem with a second-stage
control problem of the EV charging stations. Specifically, the first stage
specifies the design of the system that maximizes expected profit, and
the second stage solves the system control problem. The first-stage
design optimization incorporates both the operational costs of stations
and the revenue from a system control problem in the second stage. The
“design” part of the DACE approach uses design of experiments to
organize a set of feasible system designs of EV charging stations. In this
paper, we develop a new design of experiments approach, referred to as
a binned Latin Hypercube (LH), to sample points in the system design
space. Although the binned LH experimental design is developed spe-
cifically for the EV charging station problem, it has the potential to be
used in other capacity planning applications where both the decisions to
open and determine capacity are considered simultaneously. For each of
these system designs, we execute a second-stage control problem to
obtain the corresponding expected revenue. The “analysis” part of the
DACE approach uses the expected revenue data to build a metamodel
that approximates expected revenue as a function of the first-stage
system design using multivariate adaptive regression splines (MARS).
The obtained MARS model is then optimized by subtracting the cost
component to predict the profit to obtain a best system design. In other
words, we employ this expected revenue approximation in the profit
objective of the first stage to enable a more computationally efficient
and interpretable method to optimize the system design. The results that
we obtain from the DACE based system design optimization approach,
when compared to solutions of the MILP model from a commercial
solver, provide a near optimal solution with a loss of less than 1 % of
profit. Furthermore, the DACE approach reduces the computational time
from several hours to roughly 18 min, making it a much more suitable
option for practical use. In addition, the DACE approach yields highly
interpretable profit functions allowing us to analyze the marginal profits
as a function of the number of slots opened at each station with the help
of the MARS model.

We organize the rest of this paper as follows: In Section 2, we present
the system design problem formulation, including system design
modeling assumptions, formulation of the problem using MILP and the
DACE approach in detail. In Section 3, we describe system design ex-
periments where we discuss the results. Finally, we present conclusions
in Section 4.

2. System design problem formulation
2.1. System design layout

The EV charging station depicted in Fig. 1 is devised to harness en-
ergy from both wind and solar sources, as well as the conventional
power grid. The stored energy within the charging station is subse-
quently utilized for recharging electric vehicles (EVs). The system has
the capability to store excess energy for future requirements through a
battery storage unit. The surplus stored energy can serve as a reserve for
meeting demand in case the generated energy falls short. Should the
energy produced by wind/solar sources and the battery storage prove
inadequate to meet the demand, the system will procure the necessary



U. Chawal et al.

Main Control
Center

Expert Systems With Applications 245 (2024) 123064

Potential
Wind Farm

->

Battery
Storage
Unit

e |»

\

PV
»l Buy Low Sell High t
! ==

Charging Station
Station X ATl
Control Charging

= Center IEEEGY

4

Station 1

eoe Station n

Station 2

Fig. 1. EV Charging station Layout.

energy from the power grid. Additionally, any surplus energy stored in
the unit can be sold back to the power grid, contributing to increased
profits.

Fig. 2 displays the positioning of 11 possible station sites across the
Dallas/Fort Worth area in Texas. Surrounding these stations are 140
hotspots (cities) distributed at predetermined distances from each
station.

2.2. System design modeling assumptions

The model assumes that decisions are optimized over a fixed reoc-
curring time horizon, such as a day. In addition, there is a fixed cost,
which we refer to as an operational cost, to open a charging station and
charging slots at an opened station for the entire time horizon. More-
over, we discretize the time horizon into a fixed set of discrete time
periods.

The demand model assumes that the demand at charging stations is
based on their proximity to the hotspots. The closest station to a hotspot
captures a fraction of the total hotspot demand, which is a linear func-
tion of the distance between them. All other stations do not capture any
demand from the hotspot. We also assume that stations that are suffi-
ciently far away from a hotspot are unable to fulfill any demand of that

hotspot. The capacity of a charging station is determined by the number
of open slots. We assume each station can open at most a fixed maximum
number of slots. In instances where the demand at a charging station
surpasses its capacity, a portion of customers display a willingness to
wait for service in a subsequent time interval. This willingness is
expressed as a recapture rate, while the remaining demand will be lost.
We use piecewise linear functions for the nonlinearity in the constraints
associated with the recaptured demand. Moreover, we assume that the
amount of electricity purchased from the grid at a station in a time
period is no larger than the nominal demand.

The subsequent MILP formulation is designed to optimize the se-
lection of charging stations and the allocation of slots while simulta-
neously maximizing total profits. While providing an optimal solution, it
is important to note that the proposed MILP formulation’s drawback lies
in its demand for extensive computational time when utilizing a com-
mercial solver. Hence, we develop the DACE based optimization
approach to determine the system of EV charging stations.

In this paper, the following notations are introduced for the MILP
formulation and the DACE based system design optimization problem
formulation.
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Sets.

J set of potential station locations indexed by j

1 set of demand hot spots indexed by i

1(j) set of demand hot spots within the max-mile radius of station j

T set of time periods in the time horizon indexed by t

K set of basis functions in a multivariate adaptive regression splines
(MARS) function indexed by k

N set of LH experimental design points

Parameters

my Distance from hotspot i to station j (in miles)

@ Maximum mile radius between the hotspots and the station

Di Population of EVs at hotspot i

de Demand percentage in time period ¢

e Charging efficiency of the battery

dc Discharge rate of the battery

¢ Recapture rate

[ First time period in the time horizon

p Last time period in the time horizon

T Electricity retail price in time period t

cr Battery charge capacity

G Operational cost of station j

Nc; Operational cost of a slot at station j

v Minimum battery level

u Maximum battery level

2 Maximum number of slots opened per charging station

sc Slot capacity

W Wind generation (Mwh) in time period t

S; Solar production (Mwh) in time period t

M, Market price in time period t

Po Y-intercept of the MARS function

P Least squares estimators for basis function k of the MARS function

LH; Traditional LH design value between 0 and 1 of station j

Variables

X € {0,1} Binary variable, if station j is operational

i €{0,1} Binary variable, if hotspot i is assigned to station j

a; € {0,1} Binary variable, if the solar production in time period t is allocated to
station j

@y Fraction of the total wind generation in time period t allocated to
station j

g;? Electricity bought from the power grid by station j in time period t

& Electricity sold to the power grid from direct charge from station j in
time period t

B; Electricity sold to the power grid from the battery at station j in time
period t

Dy Total demand in time period t at charging station j

D}j Demand satisfied by direct charge of station j in time period t

ij Demand satisfied by the battery at station j in time period t

Ly Battery level of station j in time period t

Bc, Battery charge of station j in time period t

Ns; Number of operational slots at station j

Tc; Total capacity of slots at station j

Nd,; Nominal demand in time period t at station j

Ry Recaptured demand from time period t — 1 at charging station j

a;, by Binary decision variables used for the piecewise linear formulation in
time period t at station j

Zymp Objective function of the MILP formulation

(x, Ns) System station design

Zymp(X, Ns)  Objective function of a system station design

Rev(Ns) Revenue of a system station design

BFy The value of basis function k in the MARS model

2.3. MILP formulation

The objective function in the MILP is given as Eq. (1).

malegz/_y [(M, (g; +B; — g;) + r,Nd,j) } - Z/_y (¢jx; + NciNs;))
@

The first three terms in objective (1), with the market price (M,)
coefficient, are revenue from selling energy to the power grid both from
the direct charge and the battery across all the stations minus the cost of
buying energy from the power grid. The fourth term is the revenue from
meeting the demand at the electricity retail price (r;). The last two terms
subtract the operational cost of an EV station at a potential location and
the cost of opening slots. Consequently, objective (1) is the profit from
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these six components of the EV charging system.
The constraints of the MILP are as given below in Egs. (2)-(34).

S pitd, {My,j] = Dy; Vjel, VreT )
iel()) P

The constraints in Eq. (2) guarantees that the total demand in time
period t at charging station j is the product of the distance function,
which is the percentage of the demand of hotspot i assigned to station j
with the population of hotspot i and the general demand percentage in
time period ¢

yvi <x3Viel(),Vjield 3)
eV <L;Viel (€))

The constraints in Eq. (3) ensure that demand hotspot i can be
assigned to station j only if station j is opened. The constraints in Eq. (4)
ensure that each hotspot i is served by at most one station.

xi+y; <L Viel, Vj7j€],m,~j<mtj (5)

The constraints in Eq. (5) ensure that if station j is closer than j, then
the hotspot will be assigned to the closer one.

For the piecewise linear function for the recaptured demand, VjeJ,V
teT, let € be an upper bound (very large number, + ) and a; be such
that

“= {01 Jp Pt Rzt

e(l—ay) + Dy + Ry > Tg ©)
D+ R;<Tcj+ ¢ ay o
—& (1-ay) +Tc; <Ndy<Te; + & (1 —ay); Vj€ J, Vi€l ®)
—€a; + Dy + RySNdy<Dy +R; +eag Vje J, VieT ©)

The constraints in Egs. (6)-(9) represent a piecewise linear formu-
lation ensuring that if the sum of the total demand and the recaptured
demand in time period t at station j is greater than or equal to the total
capacity of the station j, then total nominal demand in time period t at
station j is equal to the total capacity of the charging station j; otherwise,
it is equal to the sum of the total demand and recaptured demand in time
period t at station j.

When the demand for a time period exceeds the total capacity, it is
assumed that a proportion ¢ of customers are amenable to waiting for
service in a subsequent time period. Specifically, VjeJ,VteT\{6}, let b; be
such that

b= {1 i P[Deny+ Ry — Te;] >0
Y100 ow.

VjeJ let by; be such that

by =1 WDy Ry~ Te] >0
710 ow.

e (1=by) + ¢[Dy-1y + Re—ry — Tc;] 20; Vje J, Vie T\{6}

(10)
e (1-by) + ¢[Dy + R, — Tg;] 20, € J an
G[Dy-1j + Rory — Tej]<e by Vi€ J, Vee T\{0} 12)
@Dy + Ry — Tcj<e by Vi€ J 13)
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—& (1= by) + ¢[Di-ry + Ru—1yy — Tc; | <SRy<Pp[Dicry + Ry — Te;| + e (1—by); Vje J, Ve T) 14
=& (1 =by) +¢[Dy+ Ry —Tc; |<Ry<p[Dyy + Ry — Te;| + & (1=by); Y€ J 1s)
b; <R;<e b;; Vje J, Vte T 16 . .
€ Dy SKGSE D3 ¥ a6 Bej <crix;NjeJ,NteT (25)
The piecewise constraints in Eqs. (10)-(16) ensure that if the total
demand and recaptured demand from time period t-1 at station j is viy < Ly <ux;VjeJ, vieT (26)

greater than or equal to the total capacity of the station j, then the
recaptured in time period t at station j is ¢ of the demand and recaptured
demand in time period t-1 minus the total capacity of the charging
station j. Otherwise, there will be no recaptured demand. We assume
that the recaptured demand at the last time period is taken into
consideration to calculate the recaptured demand of the demand at the
first time period. Observe that VjeJ,VteT\{6}, a; = b,_yj, and ag = b,; by
definition, so we can reduce the number of binary variables in the
model.

Tc:
Sivjed an

Ns; = ;
’ sc

The constraints in Eq. (17) guarantee that the count of opened slots at
charging station j is determined by dividing the total capacity of
charging station j by the capacity of each individual slot.

Nd; = (Dy+ D}); Vjel, VieT (18)

The constraints in Eq. (18) ensure that the total nominal demand in
time period t at charging station j is equal to the demand satisfied by the
direct charge of station j in time period t and the demand satisfied by the
battery at station j in time period t.VjeJ,VteT, let a; be such that

- 1 if solar production t is allocated to station j
%% =10 ow
Lj=Lg_1j+Bc;—eD};+eB,; Vj €J, Vi €T (19)
Ly = Ly + Bcy — Dy + eBy; Vj € J (20)

Bey = Wi+ S+ ¢f —g; —Dy; Vj€J,VieT (C2Y)

The set of energy balance constraints include the battery level
transition as Eq. (19), the energy balance for the battery charge as Eq.
(21). Moreover, the constraints in Eq. (20) ensure the battery level at the
first time period is calculated using battery level transition equation and
the battery level at the last last time period.

g SWw;+Sa;+gi;vjel, vieT (22)

g < Ndy; Vjel, VieT 23)

The constraints in Eq. (22) ensure that the electricity sold to the
power grid from the direct charge of station j in time period t should be
less than or equal to the sum of the total wind purchased by station j in
time period ¢, the solar production of station j in time period ¢, and the
electricity bought from the power grid by station j in time period t.
However, because there is no reason to purchase and sell back to the
power grid from the same station in the same time period, the purchase
term gg in (22) can be omitted. Similarly, the constraints in Eq. (23)
ensure that the electricity bought from the power grid by station j in time
period t should be no more than the total nominal demand in time period
t at charging station j.

B, + D,zj <dc*e*x;; VjeJ,VteT 24)

The constraints in Eq. (24) ensure that the sum of the electricity sold
back to the power grid from the battery at station j in time period t and
the demand satisfied by the battery at station j in time period t cannot be
higher than the product of discharge rate and storage efficiency of sta-
tion j. Similarly, the constraints in Eq. (25) ensure that the battery
charge of station j in time period t should be within the battery charging
capacity. The constraints in Eq. (26) ensure that the battery inventory is
between minimum and maximum battery level for each station. More-
over, (24) - (26) are only considered when station j is operational.

Y w; <1;vieT @7)
jeJ

The constraint in Eq. (27) ensures that the fraction of the allocated
wind generation to all the stations is no more than 1.

w; <x;VjelJ, vteT (28)

a; < x;VjeEJ, VIET (29)

Constraints in Egs. (28) and (29) ensure that the total wind pur-
chased by station j in time period t, and the solar production of station j
in time period t are only considered if the station is operational.

0< Nsj <2x;;vYjeld (30)

The constraints in Eq. (30) ensure that the number of slots opened is
between zero and the maximum possible number of slots opened per
charging station j. Moreover, no slots are open if the station is not
operational.

Ndy, Dy, Dy, D}, wy, Tcj, Ly, g}, &, By, Bej, Ry > 0;VjeJ, VieT

i U

(31)
x € BV (32)
y € BV (33)
a,a, b c BV 34

The constraints in Egs. (31)-(34) ensure that the given variables are
nonnegative, and x,y, @, a and b are binaries of appropriate dimension.
Furthermore, the constraints in Eqgs. (4), (5), and (27) create a dependent
relationship between the stations and prevent the problem from being
separable by station.

2.4. DACE based system design optimization approach

DACE is a statistical technique designed to efficiently carry out
computer experiments, particularly suited for exploring applications
governed by intricate computer models (Sacks et al., 1989). These types
of computer models find widespread use in engineering domains, often
seen in applications like finite element simulations (Furushima &
Manabe, 2011). Chen et al. (2006) provided a review of DACE methods,
including the adaptation to DACE based optimization. In the conven-
tional approach of DACE, an experimental design is employed to
structure a series of computer experimental runs. This arrangement
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facilitates the creation of a statistical “metamodel” that serves as an
approximation for the performance output simulated by an intricate
computer model. The metamodel is a mathematical surrogate that can
be employed to study the simulated system more efficiently. In DACE
based optimization, the computer model is an optimization algorithm
instead of the traditional computer simulation model. Specifically, in
this paper, we develop the following DACE based optimization approach
using the steps below.

1. Using an experimental design (binned LH), a set of sample points,
each representing a system design in the design parameter space, is
generated.

2. The performance (revenue) of each system design point is then
determined by fixing the system design variables and solving the MILP
to obtain the solution to a control subproblem.

3. A multivariate adaptive regression splines (MARS) model is fit to
the experimental design obtained by the binned LH experimental design
in step 1 and the corresponding revenues generated by step 2.

4. The obtained MARS model in step 3 is then optimized by sub-
tracting the cost component to predict the profit to obtain a best system
design.

5. True profit is calculated using the system design point from step 4,
with the help of the MILP. The obtained result is the solution to our first-
stage system design problem. Using this step, we optimize the design of
the EV charging stations. A more detailed explanation is provided in
Sections 2.4.1-2.4.4.

2.4.1. Binned LH design

As described in the MILP formulation, the system design variables
are given by the vectors (X, Ns), where vector X includes binary vari-
ables, indicating which stations are operational, and vector Ns gives the
number of open slots. A traditional LH experimental design yields in-
dependent values between given limits. However, due to constraint set
(30), the vectors X and Ns are dependent in that slots can only be opened
at operational stations. Consequently, we develop a binned LH, which
consists of a traditional LH experimental design along with a mapping
that determines a feasible system design (X, Ns) from a traditional LH
experimental design point. Moreover, traditional LH experimental de-
signs fill the space, but optimal solutions tend to reside in very small
portions of the feasible decision space, so the mapping needs to be
intelligent to include “good” system design points so that the MARS
model can accurately model this part of the space. For example, opening
8 or more stations usually yields more capacity than needed to meet
demand, whereas opening fewer than 3 stations will be insufficient to
fulfill demand. Consequently, we need an experimental design where
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many of the system design points have between 4 and 7 operational
stations. Specifically, we used a traditional LH experimental design to
generate 325 11-dimentional experimental design points between 0 and
1 using the MATLAB R 2016a function “lhsdesign”. The fractional values
obtained from the first 20 points of the traditional LH experimental
design are as indicated in Table 1 below. The mapping is shown as the
step function given in Fig. 3, which can be defined as follows for a sta-
tion j:

. 9
(0,0) if LH; < 15

(fofon2)]) e

Here LH; refers to the traditional LH design value between 0 and 1.
The mapping translates the traditional LH experimental design in
Table 1 into the binned LH experimental design in Table 2, which in-
dicates the locations of the charging stations and the number of slots at
each charging station (X, Ns). Fig. 4 also shows the distribution of the
number of operational stations in the binned LH experimental design.
Observe that 80 % of the system design points have between 4 and 7
operational stations, which will appropriately capture demand without
too much excess capacity. The 325 binned LH experimental design
points were split into 250 training data points and 75 testing data points.

(%, Nsj) =

2.4.2. Second-Stage control problem

For each system of charging stations (X, Ns) in the experimental
design, the corresponding second-stage control problem revenue
Rev(Ns) is determined using MILP as shown in Eq. (35).

Rev (W) = maxy 5[ (45, + B, — ) + vy |

s.t. Egs. (2)-(34) and Ns = Ns.

As depicted in Fig. 5, each row serves as input for the control sub-
problem formulation. This problem is addressed using the MILP pre-
sented in Eq. (35), resulting in the derivation of the respective revenues
denoted as Rev(Ns).

(35)

2.4.3. MARS model

To forecast the revenue for the EV charging station system, the
second-stage model calibrates a MARS statistical model (Friedman,
1991, Chen, 1999). This specific model demonstrates notable profi-
ciency in predicting revenue by considering the count of available
charging slots across diverse locations. MARS is trained using the

Table 1
20 points LH Design using MATLAB (Partial).

LH, LH, LH; LH, LHs LHg LH, LHg LH, LHq LHq;
0.74 0.28 0.45 0.17 0.45 0.31 0.78 0.64 0.23 0.51 0.50
0.84 0.02 0.66 0.70 0.32 0.62 0.53 0.79 0.76 0.52 0.61
0.24 0.09 0.19 0.46 0.10 0.29 0.42 0.05 0.89 0.68 0.00
0.51 0.76 0.53 0.63 0.11 0.82 0.07 0.85 0.85 0.91 0.58
0.46 0.67 0.63 0.96 0.86 0.82 0.24 0.42 0.63 0.94 0.76
0.33 0.74 0.03 0.32 0.54 0.99 0.59 0.43 0.72 0.88 0.67
0.83 0.58 0.47 0.07 0.96 0.47 0.44 0.34 0.93 0.58 0.52
0.99 0.78 0.89 0.79 0.99 0.49 0.90 0.57 0.46 0.90 0.83
0.59 0.04 0.14 0.38 0.41 0.61 0.06 0.31 0.30 0.12 0.97
0.18 0.37 0.44 0.56 0.36 0.86 0.48 0.40 0.69 0.34 0.30
0.12 0.22 0.67 0.19 0.22 0.04 0.57 0.36 0.30 0.03 0.79
0.57 0.44 0.32 0.08 0.46 0.20 0.15 0.68 0.68 0.50 0.26
0.31 0.84 0.96 0.14 0.27 0.97 0.58 0.71 0.06 0.72 0.03
0.25 0.26 0.70 0.84 0.48 0.98 0.87 0.99 0.99 0.19 0.10
0.54 0.56 0.23 0.31 0.44 0.48 0.22 0.95 0.20 0.42 0.32
0.18 0.02 0.56 0.40 0.26 0.84 0.17 0.37 0.66 0.09 0.29
0.66 0.15 0.88 0.62 0.10 0.96 0.07 0.16 0.37 0.30 0.03
0.06 0.80 0.57 0.82 0.42 0.70 0.71 0.94 0.74 0.80 0.17
0.03 0.18 0.77 0.74 0.52 0.40 0.02 0.30 0.02 0.49 0.44
0.27 0.79 0.90 0.38 0.33 0.44 0.30 0.57 0.10 0.78 0.75
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Step Function
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Fig. 3. Step Function.

Table 2
20 points Binned LH Design (Partial)Ns;,
Ns; Nss Nsy Nss Nsg Ns, Nsg Nsg Nsjo Nsi;
5 0 0 0 0 0 6 3 0 1 0
7 0 4 5 0 3 1 6 6 1 3
0 0 0 0 0 0 0 0 8 4 0
1 6 1 3 0 7 0 8 8 9 2
0 4 3 10 8 7 0 0 3 9 6
0 5 0 0 1 10 2 0 5 8 4
7 2 0 0 10 0 0 0 9 2 1
10 6 8 6 10 0 9 2 0 8 7
2 0 0 0 0 3 0 0 0 0 10
0 0 0 2 0 8 0 0 4 0 0
0 0 4 0 0 0 2 0 0 0 6
2 0 0 0 0 0 0 4 4 1 0
0 7 10 0 0 10 2 5 0 5 0
0 0 4 7 0 10 8 10 10 0 0
1 2 0 0 0 0 0 10 0 0 0
0 0 2 0 0 7 0 0 4 0 0
4 0 8 3 0 10 0 0 0 0 0
0 7 2 7 0 5 5 9 5 7 0
0 0 6 5 1 0 0 0 0 0 0
0 6 8 0 0 0 0 2 0 6 5
Percentage of Stations opened
30%
25%
25% 23%
o 20% 19%
3
g 15% 13%
& 10% 9%
5%
. I %
1% l . 1%
0% —— —
2 3 4 5 6 7 8 9 10

Number of Stations being opened

Fig. 4. Percentage of Stations opened.
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5 0 0 0 0 0 6 3
7 0 4 5 0 3 1 6
0 0 0 0 0 0 0 0
1 6 1 3 0 7 0 8
0 4 3 10 8 7 0 0
0 5 0 0 1 10 2 0
7 2 0 0 10 0 0 0
10 6 8 6 10 0 9 2
2 0 0 0 0 3 0 0
0 0 0 2 0 8 0 0
0 0 4 0 0 0 2 0
2 0 0 0 0 0 0 4
0 7 10 0 0 10 2 5
0 0 4 7 0 10 8 10
1 2 0 0 0 0 10
0 0 2 0 0 0 0
4 0 8 3 0 10 0 0
0 7 2 7 0 5 9
0 0 6 5 1 0 0
0 6 8 0 0 0 0 2

Expert Systems With Applications 245 (2024) 123064

(S Solve

é] Rev(Ns?)
Rev(Ns’)
Rev(Ns’)
Rev(Ns*)
Rev (Ns s )
Rev (Ns®)
Rev(Ns”)
Rev(Ns®)
Rev (Ns ? )
Rev (Ns = )
Rev (Ns'')
Rev (Ns ”)
Rev (Ns B )
Rev (Ns u )
Rev (Ns*)
Rev (Ns *°)
Rev (Ns 7)
Rev (Ns e )
Rev(Ns*)
Rev (Ns ),

5 © &0 H» OO OWVWO®O® O O
-
o NP & 0N O WO

OO N O O O O UV » O O O W N W W O & = =

v O O O OO 0O o o o o

o O nn ©O & O

-

Fig. 5. Computing revenues solving control problem.

experimental design data points extracted through binned LH, along
with the associated revenues resulting from solving the second-stage
control problem (35) as a response variable. The resultant fitted
model, as shown in Eq. (36), serves as a predictor for revenue.

Rev(Ns) = fy+ > fiBFi(Ns) (36)

In our paper, we fit two different MARS models, one with basis
interaction terms and the other with no interaction.

2.4.4. First-Stage EV system master problem
The system of charging stations (x", Ns) is obtained by maximizing
profit using the optimization problem given by (37),

Zynp(x", Ns*) = maxRev(Ns) — cix;— Ne;Ns; 37

s.t. Egs. (30) and (32).
To evaluate the quality of (x", Ns"), Zyyp(x", Ns*) is then calculated
using Eq. (38).

ZMILP(x: NS*) = maxzrgzjej [(Mg (g,; + B; — g;)
+ r,Nd,j) ] - Zjel (¢jx; + NeyNs)) (38)

s.t. Egs. (2)-(34), and x; = x",.Ns; = Ns~
The obtained Zyyp(x", Ns*) and (x*, Ns*) are the profit and solution
of the DACE approach, respectively.

3. System design experiments
3.1. MILP experiments

For experimental purposes, all experiments were conducted on a
workstation equipped with an Intel Core i7 CPU @2.60 GHz, featuring 2
physical cores, 4 logical processors, and 8 GB RAM. The optimization
procedures were executed using CPLEX 12.6.3 (CPLEX, 2015), and
GUROBI 9.5 (GUROBI Optimization, 2022). The data utilized for this
investigation encompasses wind generation (W;) (National Renewable
Energy Laboratory, 2012), solar generation (S;) (Miller & Lumby, 2012),
market price (M;) (Electric Reliability Council of Texas, 2002), and

demand profiles (d;) (Khosrojerdi et al., 2012). The fixed retail price (r;)
of electricity is 10.24 cents per kilowatt-hour per time periods (U.S.
Department of Energy, 2012). The maximum (v) and minimum (u)
battery levels are 3.6 MWh and 720 kWh per slot. The charging rate (cr)
and discharging rates (dc) are 600 kW and 75 kW per slot. The capacity
of every slot (sc) is 18.75 kWh. In our study, the storage efficiency (e) is
assumed to be 79.8 % (Wetz, 2010). For convenience, we assumed that a
station (j) more than a 20-mile (¢) radius from a hotspot (i) is unable to
fulfill the demand of that hotspot. The cost to open a slot (Nc)) at a
station (j) is assumed to be 10 % of the operational cost of the station (c;).
The maximum allowable number of slots (2) that can be opened is 10.
Given market price fluctuations every 15 min (t), our formulation en-
compasses a daily control problem spanning 96 15-minute periods. In
instances where the demand for a given time period surpasses capacity,
it is assumed that 50 % (recapture rate (¢)) of the customers are willing
to wait for service in a subsequent time slot, while the remaining cus-
tomers are lost.

Table 3 below illustrates the ideal operational station setup, the
available open slots, and the individual profits generated by each station
across different operating cost scenarios. It also outlines the computa-
tional time if the experiment is conducted within a 6-hour time limit.

We employed CPLEX to solve the MILP for a range of operating cost
values. It has been noted that the best integer solution typically mate-
rializes within a span of 20 min to 1 h and 55 min, although verifying its
optimality necessitates approximately 5 additional days of computa-
tional effort. Consequently, a maximum runtime of 6 h is applied to all
scenarios except the one involving an operational cost (c) of $100 per
day. This specific cost value is selected as the baseline, as it mirrors a
probable operating expense for a charging station compared to the other
scenarios. The foundational station cost of $0 per day is observed to
render all stations operational, yielding a higher count of opened slots
and overall profit relative to the other scenarios. As operational costs
escalate, more stations remain closed, and the quantity of slots per
station diminishes correspondingly. However, during the transition
from a cost of $70 to $100, the number of slots (Ns) in Garland increases
from 2 to 3. This alteration occurs because Garland absorbs the demand
previously served by Rockwall (which remains closed at an operational
cost of $100 per day).
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Table 3
Optimal charging station slot capacities across cost scenarios
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station | Slot | Palmer |Heartland|Fort Worth|Rockwall| _Dallas Garland | Plano | Denton |Greenville| Godly

¢ s $16064|§ 16880 | $137m42 [ S1946 | $ a1y |5 1674 | Se5314|S16296 | $ 9| 1e3ss |owmes | m Stopped
1 5 § 1 5 1 3 1 4 1 1

s sl aop|SUBS[S M0 B2 Su265 |6 men|§ wrss | ssa|Suss6 | mems|s msss|swem | wl( ol o Sipped
1 1 5 1 5 1 2 1 2 1 R

s soc|§ soo[SUB2IS - IS BRS|SISLGOISLITSLS - |SZ03L|SME S 4|5 - |SwB| Bl o Siopped
1 0 5 1 5 0 2 1 1 0 IR

¢ soml|s soolS o LS - |8 66|55 4%|5 $4475(8 - [$ 634769 $ - Nomsan| s | stopped
0 0 5 1 5 0 2 0 1 0 o

S no|s 700 [Pt $ 046092534 | § 4265 ¢ $415.07 | $ $1,00391 [ $ $ S cosas| s | stopped
0 0 5 1 4 0 2 0 1 0 o n

§ 10000| $ 1000 & = |8 $2072.21 | $ $ %S - |SL7[S - |S 1145(S § - 4 $2,689.38 4 Days 23| Complete
0 0 5 0 4 0 3 0 1 0 o n

$ 20000 | $ 20,00 Pl SMBBIS PGS OIIET | S > y - Aeroma| ehs Stopped
0 0 5 0 4 0 0 0 0 0 NE

$ 30000 | $ 30.00 e it IRl el eI ellb ol o b > 2 Y 6206705 | 3hes 23min Complete|
0 0 5 0 0 0 0 0 0 0 o

$ 40000 | $ 40.00 2> VABESRESI | SI EEE Y REB > > S Y ¢192583 [shes33min Complete
0 0 4 0 0 0 0 0 0 0 o 4

$2,00000 o L il o o I o b o b o ) J s Yo sis3| oms Stopped
0 0 1 0 0 0 0 0 0 0 o 1

Based upon our demand assumptions, there is no need to activate 8
or more stations to meet demand. Conversely, opening fewer than 3
stations would be inadequate to fulfill demand. As depicted in Table 3,
operational costs of $60, $70, and $100 yield 5, 5, and 4 opened stations,
respectively. For the $100 per day cost scenario, it took CPLEX
approximately 4 days and 23 h of processing time to attain an optimal
solution. The optimal solution’s objective value stands at $2689.38
(Zvmp), with operational stations encompassing Fort Worth, Dallas,
Garland, and Denton. Their respective daily profits are $2072.21,
$293.96, $201.76, and $121.45. Furthermore, the count of opened slots
at each of these locations is 5, 4, 3, and 1, respectively.

In addition to solving the baseline scenario (operational cost of $100)
with CPLEX, we also solve it with GUROBI with the Ip file generated
from CPLEX OPL. Given that the generation of the lp file is negligible,
GUROBI required 2 h to provide the same optimal solution as CPLEX,
which is used as the baseline method and is utilized for comparison
against the DACE approach for this specific research purpose.

Fig. 6 portrays the temporal distribution of demand (D) across
stations from time periods 1 to 96. Notably, the total demand distribu-
tion for Fort Worth takes the lead, Dallas follows as the second highest,
trailed by Garland and Denton. In terms of daily consumption per sta-
tion, the values are 4.61 MWh, 3.89 MWh, 1.97 MWh, and 1.12 MWh,
respectively. Furthermore, the demand is lowest between time periods
12 and 20, encompassing the early morning hours from 3 am to 5 am.
Subsequently, a gradual upswing unfolds, culminating in peak demand
between time periods 52 to 68, spanning the afternoon from 1 pm to 5
pm. This heightened demand is succeeded by a gradual decline.

In Fig. 7, the distribution of opened slots across various cost scenarios
is presented. The illustration highlights that at an operational cost (c) of
$0, Fort Worth and Dallas exhibit a substantial slot count of 6 and 5,
respectively, while Denton and Garland closely follow with slot counts
of 4 and 3, respectively. Interestingly, Fort Worth and Dallas maintain
their high slot counts despite cost escalation, whereas Garland and
Denton experience a reduction in slots as costs rise. This visual
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Fig. 6. Demand distribution at an operational cost of $100.
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Cost vs. Number of Slot
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Fig. 7. Major stations: different cost vs. number of slots.

representation mirrors real-world dynamics, where, beyond a certain
threshold, the feasibility of opening higher-cost slots diminishes due to
insufficient demand. In essence, when the cost reaches $200 per day, the
generated profits from Garland and Denton no longer cover their costs,
resulting in their closure.

3.2. DACE based system design optimization experiments

In all our experiments utilizing the DACE based system design opti-
mization, a baseline operational cost (c) of $100 per station per day is
upheld. We generate four MARS revenue models utilizing two software
tools: MATLAB 8.6 with the ARESLAB toolbox (Jekabsons, 2016) and
Salford Predictive Modeler (SPM) 8.0 (Minitab, 2016). Each software
package calibrates one MARS model with basis interaction terms and
another with no interactions. For the SPM non-interaction MARS model,
we set the maximum basis functions to 100 and consider the minimum
observation between knots as 1. Subsequently, the optimized MARS
models are produced using three distinct software programs: CPLEX CP
Optimizer (CPLEX, 2015), AMPL 11.2 (Fourer et al., 1990) with the
Couenne solver (Belotti et al., 2009), and MINOS solver (Murtagh et al.,
2006). The charging station systems derived from CPLEX CP and Cou-
enne are identical, thereby generating 8 distinct systems through the
DACE approach, as depicted in Table 4. The coefficient of determination
(R-squared) for each MARS model is computed, as displayed in the table.
Additionally, the percentage difference (% Diff) between the objective
solutions Zyyp(x*, Ns*) and Zyyp is enclosed in parentheses in the table.
Initial analysis indicates that the DACE approach utilizing the non-
interaction MARS metamodel from the SPM software exhibits superior
performance, with a percentage difference of Zyyp (x*, Ns*) of 0.4 % and

Table 4
Comparisons of the DACE MILP objective solutions.

Software for Interaction Testing Znp(x*, Ns™)
MARS Design allowed or not R?
CPLEX CP MINOS (%
/Couenne (% Diff)
Diff)
ARESLAB Yes 97.0 2406.8 (3.1) 2566.8
(4.6)
ARESLAB No 97.7 2670.0 (0.7) 2674.6
(4.3)
SPM Yes 97.2 2414.0 (2.8) 2555.8
(5.0)
SPM No 98.7 2678.5 (0.4) 2629.5
(2.2)

has the highest testing R-squared. In this study, charging station systems
generated through the DACE approach with non-interaction meta-
models exhibit slightly higher accuracy than those with interaction
terms. This implies that minimal demand shifts occur due to the stations
being widely dispersed. Consequently, the distribution of demand (e.g.,
Egs. (4) and (5)) and the allocation of wind power across stations (e.g.,
Eq. (27)) exert limited influence on the solution in this specific case.

The system design build (x*, Ns*) derived from our optimal model
(CPLEX CP/Couenne, MINOS) is further dissected and juxtaposed
against the MILP, as demonstrated in Table 5 below.

It is noticeable that each system design builds features identical
operational stations, positioned in Fort Worth, Dallas, Garland, and
Denton. Furthermore, the cumulative count of open slots is 13 for the
MILP, CPLEX CP, and AMPL — Couenne approaches, while the AMPL —
MINOS solution involves 12 open slots.

3.3. Interpretable profit functions

One of the major benefits of the DACE based system design optimi-
zation approach is that the MARS models with no interaction yield
highly interpretable profit functions. These functions allow decision
makers to analyze the marginal profits as a function of the number of
slots opened at each station. Graphs portraying the relationship between
marginal profits and open slots are presented in Fig. 8. Prominent basis
functions are linked with Fort Worth, Dallas, Garland, and Denton. All
other basis functions connected to different stations possess coefficients
of zero in the projected revenue function, indicating that, as per MARS
analysis, these stations hold negligible marginal profits. Consequently,
the DACE optimization phase maintains them in a closed state. Notably,
the interpretable profit function for the Fort Worth station reveals an
increase in profit from 1 to 4 slots, followed by a decrease beyond this
point. This indicates that the optimal number of slots for Fort Worth is 4,
whereas for Dallas, the optimal count is 5, as indicated by a similar
trend. Similarly, for Garland and Denton, the optimal count is 2 slots per
station. These findings mirror the outcomes (x", Ns*) derived from

Table 5
Number of Slots (MILP vs. DACE).

Number of slots per opened Stations (cost $100)

Fort Worth Dallas Garland Denton Total
MILP 5 4 3 1 13
CPLEX CP/Couenne 4 5 2 2 13
MINOS 3 5 2 2 12

11
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Fig. 8. Profit Functions at Four charging Stations.

CPLEX CP and AMPL - Couenne. Furthermore, the optimal profits ach-
ieved by Fort Worth, Dallas, Garland, and Denton are $904.55,
$1543.95, $35.67, and $194.71 respectively, summing up to $2678.88,
mirroring the Zyyp(x”, Ns*) results obtained from the non-interaction
MARS model using SPM software, as presented in Table 4. Observe
that by using these profit functions, we can construct an optimal solution
without the use of a commercial optimization solver.

3.4. CPU time Comparisons

To further substantiate the utilization of the DACE based system
design optimization approach, the process run times of the interaction
and non-interaction models are computed and tabulated in Table 6.
After generating the binned LH experimental design via MATLAB, the
revenue data is collected employing GUROBI, culminating in a total
runtime of 18 min. Once the revenue data is assembled, it is employed to
construct the MARS model through SPM software. Ultimately, optimi-
zation of the MARS model is carried out utilizing CPLEX CP, with the
resultant outcomes provided. The swiftest comprehensive process time
is recorded as 18 min and 40 s, attributed to the non-interaction model.

Table 6
CPU Time Comparisons (MILP vs. DACE).
Task Time
Binned LHS Design 1 sec
Revenue Function (250 Training and 75 Testing — 3.3 sec average) 18 min
— GUROBI
Interaction No interaction
Process Times Process Times
SPM 12 sec SPM 6 sec
CPLEX CP 1 min 20 sec CPLEX CP 34 sec
DACE - Total 19 min 32sec  DACE - Total 18 min 40 sec

Original MILP (Gurobi) — 2 h

12

Due to the efficiency with which this MARS model discerns station
revenues, the DACE approach can swiftly reoptimize across diverse cost
scenarios, obviating the need for reacquiring responses from the binned
LH design. Specifically, variations in operational cost (c) lead only to
shifts in the profit functions depicted in Fig. 8, while alterations in the
slot-opening cost (Nc) solely induce tilting, thus permitting optimization
across distinct cost scenarios without resorting to a commercial opti-
mization solver. In comparison to the original 2-hour computational
requirement for the MILP from the baseline method, the DACE approach
exhibits enhanced computational feasibility.

4. Conclusion

An optimized model using mixed-integer linear programming (MILP)
is developed to determine optimal EV charging station locations, the
quantity of slots to activate at each station, and the resulting overall
profit. Given that this particular issue remains unaddressed in existing
literature, no established method serves as a baseline. However, utiliz-
ing the provided MILP formulation, the most direct approach involves
employing the GUROBI branch-and-bound solver, which is considered
as the baseline method. The result indicates that Fort Worth should have
the highest number of slots, trailed by Dallas, Garland, and Denton.
However, this method’s drawback lies in its extended computational
time, taking several hours to complete, despite giving an optimal solu-
tion. To address this limitation of our baseline method, a two-stage
framework and a system design optimization approach rooted in
DACE (Design and Analysis of Computer Experiments) are introduced
for solving the EV charging station network problem. In this investiga-
tion, the DACE approach reveals that systems without interaction terms
yield superior results compared to those with interaction terms,
implying minimal demand shifts due to the considerable station sepa-
ration. Furthermore, the DACE strategy generates highly interpretable
profit functions, facilitating the analysis of marginal profits in relation to
the number of slots open at each station. These profit functions allow
decision makers to optimize profit under different cost scenarios without
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the use of a commercial solver. Prominent basis functions are linked to
Fort Worth, Dallas, Garland, and Denton. Remarkably, the DACE
approach streamlines the solution process, requiring only about 18 min
to achieve a solution within 1 % of optimality, in contrast to the several
hours taken by the MILP approach.

In terms of future prospects, there is a plan to explore solving the
problem with stochastic input variables related to wind and solar power
generation, as well as market pricing fluctuations.
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