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A B S T R A C T   

This paper formulates a mixed integer linear programming (MILP) model to optimize a system of electric vehicle 
(EV) charging stations. Our methodology introduces a two-stage framework that integrates the first-stage system 
design problem with a second-stage control problem of the EV charging stations and develops a design and 
analysis of computer experiments (DACE) based system design optimization solution method. Our DACE 
approach generates a metamodel to predict revenue from the control problem using multivariate adaptive 
regression splines (MARS), fit over a binned Latin hypercube (LH) experimental design. Comparing the DACE 
based approach to using a commercial solver on the MILP, it yields near optimal solutions, provides interpretable 
profit functions, and significantly reduces computational time for practical application.   

1. Introduction 

The energy shortages of the 1970 s spurred the exploration of 
alternative energy sources for vehicles, leading to the initiation of 
electric vehicle (EV) research. In the present times, the increasing de
mand for sustainability has greatly elevated the significance of electric 
vehicles EVs. A recent environmental evaluation conducted by the 
Electric Power Research Institute and the Natural Resource Defense 
Council has indicated that opting for electricity in place of gasoline/ 
petroleum has the potential to substantially decrease emissions of 
greenhouse gases and other airborne pollutants (He et al., 2015). To 
bolster the usage of EVs, some governments have taken a variety of 
initiatives. Norway is one of the countries working towards the goal of 
having all new car sales be electric vehicles by 2025, to meet their 
emission reduction targets (Lambert, 2016). By endorsing both current 
and forthcoming technologies in electric power-based vehicular prod
ucts, the transportation industry anticipates transitioning from its oil- 
dependent design to a cleaner and more environmentally sustainable 
electric-based design. One of the critical factors that requires attention 
when it comes to EV charging infrastructure is the driving range and 

accessibility of charging stations. This limitation has led to a constrained 
adoption of electric vehicles. One of the solutions to this problem is 
installation of EV charging stations, which minimizes operational cost 
for EV charging stations and maximizes the profit in running the sta
tions. Through the generation of electricity using renewable sources, 
charging stations could actively engage in the electricity market. This 
additional dynamic provides even more motivation for the U.S. trans
portation sector to seek out cleaner alternatives. 

1.1. Literature review 

Several papers in the literature have studied optimal planning for EV 
charging stations, Plug-in Hybrid vehicles (PHEVs), charging pads, and 
battery swapping. 

1.1.1. EV charging station literature review 
Some papers proposed using heuristics for optimal planning of 

charging station locations. Tang et al. (2013) proposed a Particle Swarm 
Optimization for the planning of EV charging stations. This model 
considered an initial fixed investment cost, charging cost, operating 
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costs, service radius and capacity of charging station, etc., to determine 
the layout of EV charging stations. Lin & Hua (2015) proposed a flow 
capturing location model that uses Particle Swarm Optimization for 
selecting locations for EV charging stations. This study considered 25 
nodes with 42 arcs for setting up EV charging stations while accounting 
for initial construction costs of facilities, the maximum charging dis
tance, and the cost of power network loss. Awasthi et al. (2017) pro
posed a hybrid algorithm based on a Genetic Algorithm and an improved 
version of a conventional Particle Swarm Optimization to find an 
optimal placement of charging stations while accounting for initial in
vestment cost and distribution grid power quality. Vazifeh et al. (2019) 
developed a data-driven approach for EV charging stations employing a 
Genetic Algorithm applied to a geographical grid to minimize total 
excess driving distance to charging stations, energy overhead, and the 
number of charging stations. Yang et al. (2021) presented a hybrid 
approach of differential evolutionary algorithm and Particle Swarm 
Optimization, which was applied to solve a charging station location 
model while considering charging station capacity and total charging 
costs. In this research, a Voronoi diagram was used to partition the 
service coverage area of the charging stations. Li et al. (2023) proposed 
multimodal multi-objective problems, where solutions with similar 
objective values are often distant in the decision space. It reviews two 
decades of related work and compares the performance of 15 state-of- 
the-art multimodal multi-objective evolutionary algorithms that 
employ a variety of diversity-maintaining techniques on existing test 
suites. 

Biesinger et al. (2017) presented an urban station-based car-sharing 
approach where the users can rent and return publicly available EV cars 
from charging stations. In this research, a heuristic algorithm for finding 
and designing charging stations was formulated as a bi-level model in 
which the first level is to decide the station location, the number of 
charging slots per station, and the total number of cars using a variable 
neighborhood search algorithm. A path-based heuristic was used in the 
second level to determine which trips are accepted by the system. To 
solve the dynamic control of a system of plug-in hybrid vehicle charging 
stations problem, Kulvanitchaiyanunt et al. (2015) proposed and 
formulated a finite horizon stochastic program. The objective of the 
study was to maximize profit, which is the revenue from selling power 
back to the power grid and the charging of vehicles minus the cost of 
buying electricity from the power grid. This research considered wind 
energy, solar power generation, total demand at each station and market 
price at each node. Paganini et al. (2022) proposed applying a spatial 
supply infrastructure to serve a distributed demand for EV charging 
facilities. To address the issue of sparsity, a mixed integer linear pro
gramming (MILP) formulation for a facility location problem is used. 
Sadeghi et al. (2022) proposed a bi-objective MILP model to determine 
optimal locations for charging stations while taking into consideration 
the number of chargers to be set up at each station and their types. This 
model aimed to minimize the total cost as well as users’ dissatisfaction. 
This study used Lagrangian Relaxation to handle the complexity of the 
model. Arslan & Karasan (2016) presented a charging station location 
problem with plug-in hybrid vehicles as a generalization to the flow 
recapture location problem to maximize the vehicle miles traveled using 
electricity and thereby minimize the total cost of transportation under 
the existing structure between electricity and gasoline. The authors 
proposed an arc-cover formulation and Benders decomposition algo
rithms as exact solution methods. Mirheli & Hajibabai (2022) proposed 
a bi-level optimization framework for the design and operational man
agement of EV charging infrastructure, incorporating user-equilibrium 
decisions. The upper-level component is focused on reducing the over
all deployment costs of charging facilities and maximizing revenue from 
EV charging fees. In contrast, the lower-level component aims to mini
mize travel time and charging expenses for EV users. The suggested bi- 
level model is capable of efficiently identifying the ideal charging fa
cility locations, their physical capacities, and implementing demand- 
responsive pricing strategies. 

Brandstatter et al. (2017) proposed a robust integer linear optimi
zation method to determine optimal locations for charging stations of 
electric car-sharing systems. Sánchez et al. (2022) proposed a mixed- 
integer linear programming model to solve the electric location rout
ing problem with time windows considering the state of charge, freight, 
battery capacities and customer time windows in the decision model. A 
clustering strategy based on k-means is used to divide the set of vertices 
into small areas and define the potential sites for recharging stations. 
Battistelli et al. (2012) developed a stochastic programming framework 
that considered uncertainty associated with vehicle-to-grid and wind 
power scenarios. Khosrojerdi et al. (2012) presented a linear mathe
matical model to optimize the cost of power trading, which used auto 
regressive methods to forecast wind power output and market clearing 
price for energy. Ma & Zhang (2018) proposed a queuing theory model 
to optimize the sizing and the location of charging stations and solved it 
using an exhaustion search method. This research used a Bass model 
developed by Frank Bass to predict the total number of EVs and to 
calculate the size of the charging stations. Gorbunova & Anisimov 
(2020) developed a model for optimal selection of the limited number of 
charging stations to meet maximum demand while minimizing the total 
cost of operating the charging infrastructure. This model considered 
characteristics of the road network, traffic flow at nodes and places of 
attractions for the population. Tan & Lin (2014) proposed a stochastic 
model for back-up flow capturing demand to ensure stability in service 
coverage. Soltani et al. (2014) developed a similar stochastic model to 
maximize profit based on price responsiveness of customers. 

Gerding et al. (2013) presented a two-sided market for advanced 
reservation to reduce the queue faced by customers and uncertainty over 
the availability of a charging facility. In this method, the EV owners 
reported their preference of time and charging location, while charging 
stations reported their availability and cost. Park et al. (2014) proposed 
a reservation recommendation algorithm to select the charging stations 
based on distance and route. It provided recommendations of three 
charging stations based on: (i) desired amount of charge without waiting 
time, (ii) desired amount of charge with waiting time, and (iii) the 
limited amount of charge with waiting time. It also helped in time slot 
management if there was a need to reserve a charging station slot. 
Yudovina & Michaildis (2015) proposed a decentralized policy of 
assigning electric vehicles to a network of charging stations with the 
goal to achieve little to no queue for optimal location deployment of the 
charging infrastructure. Lamontagne et al. (2022) proposed a model for 
determining optimal locations of EV charging stations to maximize the 
number of EVs while considering user-specific characteristics, which 
represented the decision of the user to purchase EVs. This study focused 
on supporting a plan for maximizing EV adoption. Chang et al. (2014) 
proposed an extension to the Flow Refueling Location Model, which 
considered the allocation of both charging stations and charging pads to 
optimize the flow of recharged EVs. This study proposed deploying 
charging pads on the road network to capture more traffic than captured 
by charging stations alone. Li et al. (2022) presented a series of opti
mization problems, which included the global transport cost from de
mand points to supply stations with bounded capacity and model 
demand elasticity, with the goal of minimizing the detour mileage. The 
paper describes an optimal charging station location problem for 
intercity highway networks and developed two approaches for modeling 
and solving. The first one is node-link network topology and the second 
is station-sub path meta network topology. 

You et al. (2015) proposed a novel cooperative charging strategy for 
an intelligent charging station. This strategy was designed to operate 
effectively in a dynamically shifting electricity pricing context. In this 
system, EVs shared energy stored in their batteries amongst each other 
under the supervision of an aggregator. This collaborative approach 
granted the aggregator enhanced flexibility in managing schedules. This 
problem was formulated as a scheduling MILP model to capture discrete 
states of the battery (charging, idle, and discharging). Zhang et al. 
(2023) presented a day-ahead optimized dispatching technique for a 
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distribution network that incorporates a fast-charging station (FCS). 
This FCS is integrated with photovoltaic systems and energy storage 
mechanisms, aiming to alleviate the adverse effects of the FCS on the 
distribution network. Initially, historical vehicle travel data served as 
the foundation for employing a Monte Carlo simulation method to 
replicate the fast-charging load. Finally, the uncertainties associated 
with photovoltaic power were managed through the implementation of 
a robust optimization model that pertained to the economic operation of 
the distribution network. Li et al. (2018) proposed a two-stage robust 
optimization model for micro-grid energy management including EV 
charging stations. In this study, the authors proposed an optimization 
scheduling strategy based on a combination of day-ahead scheduling 
(first stage) and model predictive control (second stage). Some re
searchers proposed battery swapping, either as an alternative to 
charging pads or in addition to charging stations, for greater reach. Mak 
et al. (2013) proposed a robust optimization model for deploying 
battery-swapping infrastructure where a depleted battery can be 
exchanged for a recharged one in the middle of long trips. Kang et al. 
(2016) proposed a centralized charging approach for EVs incorporating 
battery swapping. This strategy factored in optimal charging precedence 
and charging site selection based on real-time electricity prices at spe
cific locations. In this study, a population based heuristic approach was 
used to minimize the total charging cost, as well as to reduce the power 
loss and voltage deviation of the power network. To minimize the cost 
and land use, Chen & Hua (2014) proposed a new location model based 
on set covering. This model hinged on the use of existing gas stations as 
potential locations to determine the potential set of charging and battery 
swapping stations. Jatschka et al. (2022) proposed a multi-objective 
battery swapping station location problem focused on optimizing the 
setup of stations for exchanging depleted electric scooter batteries. The 
goal is to minimize a three-part objective while meeting expected de
mand. An MILP is solved using Large Neighborhood Search. Wu et al. 
(2015) proposed using a Genetic Algorithm to solve an optimization 
model to maximize the number of batteries in stock and minimize the 
cost due to different charging schemes He et al. (2023) proposed a bi- 
level planning framework where a collaborative location optimization 
approach is developed at the upper level to optimize the location of 
charging stations. Furthermore, a collaborative capacity optimization 
approach is formulated at the lower level to optimize the capacity of 
truck mobile chargers and fixed chargers at candidate stations. In this 
study, the big-M method is applied to linearize and convert the 
nonlinear problem into a MILP model. 

1.1.2. Design and analysis of computer experiments literature review 
In this paper, we develop a two-stage framework, which addresses 

the design of a system of EV charging stations using a design and analysis 
of computer experiments (DACE) based system design optimization 
approach. DACE based optimization was first conducted for continuous- 
state stochastic dynamic programming (SDP) by Chen et al. (1999) and 
Chen (1999) and has since been applied for numerous high-dimensional 
dynamic optimization applications, including airline optimization 
(Chen et al., 2003, Siddappa et al., 2007), water resources (Tsai et al., 
2004, Cervellera et al., 2006), environmental quality control strategies 
(Yang et al., 2009, Sule et al., 2011, Fan et al., 2018, Ariyajunya et al., 
2021), and pain management (Lin et al., 2014). The concept of DACE 
based optimization for two-stage stochastic programming was first 
proposed by Chen (2001) and first demonstrated by Pilla et al. (2008) 
and Shih et al. (2014) using an airline fleet assignment case study. 

1.2. Research gap and contribution 

Although the aforementioned papers proposed different approaches 
and implemented several algorithms for the optimization of locations for 
EV charging stations, an approach to find a globally optimal set of sta
tions to be opened, with the corresponding number of slots, has never 
been found while considering factors such as the customer demand 

obtained from the city population (hotspots) of EVs, the distances from 
hotspots to the stations, and available solar energy and wind energy 
generation. This represents a significant gap, and to address these issues, 
we propose a deterministic MILP model to obtain a globally optimal set 
of stations to be opened that maximizes profits. In this research, we 
consider 11 possible locations for charging stations for 140 demand 
hotspots in multiple time periods. Throughout our experiments, 
leveraging the advanced Integer Programming MILP tool, GUROBI, we 
identified opportunities to enhance computational efficiency in finding 
solutions. Consequently, we developed a DACE based system optimiza
tion approach, marking a significant methodological contribution 
within this study. 

DACE based optimization for system design is a two-stage framework 
that integrates the first-stage system design problem with a second-stage 
control problem of the EV charging stations. Specifically, the first stage 
specifies the design of the system that maximizes expected profit, and 
the second stage solves the system control problem. The first-stage 
design optimization incorporates both the operational costs of stations 
and the revenue from a system control problem in the second stage. The 
“design” part of the DACE approach uses design of experiments to 
organize a set of feasible system designs of EV charging stations. In this 
paper, we develop a new design of experiments approach, referred to as 
a binned Latin Hypercube (LH), to sample points in the system design 
space. Although the binned LH experimental design is developed spe
cifically for the EV charging station problem, it has the potential to be 
used in other capacity planning applications where both the decisions to 
open and determine capacity are considered simultaneously. For each of 
these system designs, we execute a second-stage control problem to 
obtain the corresponding expected revenue. The “analysis” part of the 
DACE approach uses the expected revenue data to build a metamodel 
that approximates expected revenue as a function of the first-stage 
system design using multivariate adaptive regression splines (MARS). 
The obtained MARS model is then optimized by subtracting the cost 
component to predict the profit to obtain a best system design. In other 
words, we employ this expected revenue approximation in the profit 
objective of the first stage to enable a more computationally efficient 
and interpretable method to optimize the system design. The results that 
we obtain from the DACE based system design optimization approach, 
when compared to solutions of the MILP model from a commercial 
solver, provide a near optimal solution with a loss of less than 1 % of 
profit. Furthermore, the DACE approach reduces the computational time 
from several hours to roughly 18 min, making it a much more suitable 
option for practical use. In addition, the DACE approach yields highly 
interpretable profit functions allowing us to analyze the marginal profits 
as a function of the number of slots opened at each station with the help 
of the MARS model. 

We organize the rest of this paper as follows: In Section 2, we present 
the system design problem formulation, including system design 
modeling assumptions, formulation of the problem using MILP and the 
DACE approach in detail. In Section 3, we describe system design ex
periments where we discuss the results. Finally, we present conclusions 
in Section 4. 

2. System design problem formulation 

2.1. System design layout 

The EV charging station depicted in Fig. 1 is devised to harness en
ergy from both wind and solar sources, as well as the conventional 
power grid. The stored energy within the charging station is subse
quently utilized for recharging electric vehicles (EVs). The system has 
the capability to store excess energy for future requirements through a 
battery storage unit. The surplus stored energy can serve as a reserve for 
meeting demand in case the generated energy falls short. Should the 
energy produced by wind/solar sources and the battery storage prove 
inadequate to meet the demand, the system will procure the necessary 
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energy from the power grid. Additionally, any surplus energy stored in 
the unit can be sold back to the power grid, contributing to increased 
profits. 

Fig. 2 displays the positioning of 11 possible station sites across the 
Dallas/Fort Worth area in Texas. Surrounding these stations are 140 
hotspots (cities) distributed at predetermined distances from each 
station. 

2.2. System design modeling assumptions 

The model assumes that decisions are optimized over a fixed reoc
curring time horizon, such as a day. In addition, there is a fixed cost, 
which we refer to as an operational cost, to open a charging station and 
charging slots at an opened station for the entire time horizon. More
over, we discretize the time horizon into a fixed set of discrete time 
periods. 

The demand model assumes that the demand at charging stations is 
based on their proximity to the hotspots. The closest station to a hotspot 
captures a fraction of the total hotspot demand, which is a linear func
tion of the distance between them. All other stations do not capture any 
demand from the hotspot. We also assume that stations that are suffi
ciently far away from a hotspot are unable to fulfill any demand of that 

hotspot. The capacity of a charging station is determined by the number 
of open slots. We assume each station can open at most a fixed maximum 
number of slots. In instances where the demand at a charging station 
surpasses its capacity, a portion of customers display a willingness to 
wait for service in a subsequent time interval. This willingness is 
expressed as a recapture rate, while the remaining demand will be lost. 
We use piecewise linear functions for the nonlinearity in the constraints 
associated with the recaptured demand. Moreover, we assume that the 
amount of electricity purchased from the grid at a station in a time 
period is no larger than the nominal demand. 

The subsequent MILP formulation is designed to optimize the se
lection of charging stations and the allocation of slots while simulta
neously maximizing total profits. While providing an optimal solution, it 
is important to note that the proposed MILP formulation’s drawback lies 
in its demand for extensive computational time when utilizing a com
mercial solver. Hence, we develop the DACE based optimization 
approach to determine the system of EV charging stations. 

In this paper, the following notations are introduced for the MILP 
formulation and the DACE based system design optimization problem 
formulation. 

Fig. 1. EV Charging station Layout.  

Fig. 2. The distribution of the station locations.  
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Sets.  
J set of potential station locations indexed by j 
I set of demand hot spots indexed by i 
I(j) set of demand hot spots within the max-mile radius of station j 
T set of time periods in the time horizon indexed by t 
K set of basis functions in a multivariate adaptive regression splines 

(MARS) function indexed by k 
N set of LH experimental design points 
Parameters 
mij Distance from hotspot i to station j (in miles) 
φ Maximum mile radius between the hotspots and the station 
pi Population of EVs at hotspot i 
dt Demand percentage in time period t 
e Charging efficiency of the battery 
dc Discharge rate of the battery 
ϕ Recapture rate 
θ First time period in the time horizon 
ρ Last time period in the time horizon 
rt Electricity retail price in time period t 
cr Battery charge capacity 
cj Operational cost of station j 
Ncj Operational cost of a slot at station j 
v Minimum battery level 
u Maximum battery level 
ℶ Maximum number of slots opened per charging station 
sc Slot capacity 
Wt Wind generation (Mwh) in time period t 
St Solar production (Mwh) in time period t 
Mt Market price in time period t 
β0 Y-intercept of the MARS function 
βk Least squares estimators for basis function k of the MARS function 
LHj Traditional LH design value between 0 and 1 of station j 
Variables 
xj ∈ {0,1} Binary variable, if station j is operational 
yij ∈ {0,1} Binary variable, if hotspot i is assigned to station j 
αtj ∈ {0,1} Binary variable, if the solar production in time period t is allocated to 

station j 
ωtj Fraction of the total wind generation in time period t allocated to 

station j 
g+

tj Electricity bought from the power grid by station j in time period t 
g−

tj Electricity sold to the power grid from direct charge from station j in 
time period t 

B−
tj Electricity sold to the power grid from the battery at station j in time 

period t 
Dtj Total demand in time period t at charging station j 
D1

tj Demand satisfied by direct charge of station j in time period t 

D2
tj Demand satisfied by the battery at station j in time period t 

Ltj Battery level of station j in time period t 
Bctj Battery charge of station j in time period t 
Nsj Number of operational slots at station j 
Tcj Total capacity of slots at station j 
Ndtj Nominal demand in time period t at station j 
Rtj Recaptured demand from time period t – 1 at charging station j 
atj, btj Binary decision variables used for the piecewise linear formulation in 

time period t at station j 
ZMILP Objective function of the MILP formulation 
(x, Ns ) System station design 
ZMILP(x, Ns ) Objective function of a system station design 
Rev(Ns ) Revenue of a system station design 
BFk The value of basis function k in the MARS model  

2.3. MILP formulation 

The objective function in the MILP is given as Eq. (1). 

max
∑

t∈T

∑

j∈J

[(
Mt

(
g−

tj + B−
tj − g+

tj

)
+ rtNdtj

) ]
−

∑

j∈J

(
cjxj + NcjNsj

)

(1) 

The first three terms in objective (1), with the market price (Mt) 
coefficient, are revenue from selling energy to the power grid both from 
the direct charge and the battery across all the stations minus the cost of 
buying energy from the power grid. The fourth term is the revenue from 
meeting the demand at the electricity retail price (rt). The last two terms 
subtract the operational cost of an EV station at a potential location and 
the cost of opening slots. Consequently, objective (1) is the profit from 

these six components of the EV charging system. 
The constraints of the MILP are as given below in Eqs. (2)–(34). 

∑

i∊I(j)

pi*dt

[(
φ − mij

)

φ
yij

]

= Dtj; ∀j∊ J, ∀t∊T (2) 

The constraints in Eq. (2) guarantees that the total demand in time 
period t at charging station j is the product of the distance function, 
which is the percentage of the demand of hotspot i assigned to station j 
with the population of hotspot i and the general demand percentage in 
time period t. 

yij ≤ xj; ∀i ∈ I(j), ∀j ∈ J (3)  

∑

j∈J
yij ≤ 1; ∀i ∈ I (4) 

The constraints in Eq. (3) ensure that demand hotspot i can be 
assigned to station j only if station j is opened. The constraints in Eq. (4) 
ensure that each hotspot i is served by at most one station. 

xj + yîj ≤ 1; ∀i ∈ I, ∀j, ĵ ∈ J, mij < mîj (5) 

The constraints in Eq. (5) ensure that if station j is closer than ĵ, then 
the hotspot will be assigned to the closer one. 

For the piecewise linear function for the recaptured demand, ∀j∊J, ∀

t∊T, let ε be an upper bound (very large number, + ∞) and atj be such 
that 

atj =

{
1 if Dtj + Rtj⩾Tcj

0 o.w.

ε
(
1 − atj

)
+ Dtj + Rtj ⩾ Tcj (6)  

Dtj + Rtj⩽Tcj + ε atj (7)  

−ε
(
1 − atj

)
+ Tcj ⩽Ndtj⩽Tcj + ε

(
1 − atj

)
; ∀j ∈ J, ∀t ∈ T (8)  

−ε atj + Dtj + Rtj⩽Ndtj⩽Dtj + Rtj + ε atj; ∀j ∈ J, ∀t ∈ T (9) 

The constraints in Eqs. (6)–(9) represent a piecewise linear formu
lation ensuring that if the sum of the total demand and the recaptured 
demand in time period t at station j is greater than or equal to the total 
capacity of the station j, then total nominal demand in time period t at 
station j is equal to the total capacity of the charging station j; otherwise, 
it is equal to the sum of the total demand and recaptured demand in time 
period t at station j. 

When the demand for a time period exceeds the total capacity, it is 
assumed that a proportion ϕ of customers are amenable to waiting for 
service in a subsequent time period. Specifically, ∀j∊J,∀t∊T\{θ}, let btj be 
such that 

btj =

{
1 if ϕ

[
D(t−1)j + R(t−1)j − Tcj

]
≥ 0

0 o.w.

∀j∊J let bθj be such that 

bθj =

{
1 if ϕ

[
Dρj + Rρj − Tcj

]
≥ 0

0 o.w.

ε
(
1 − btj

)
+ ϕ

[
D(t−1)j + R(t−1)j − Tcj

]
⩾0; ∀j ∈ J, ∀t ∈ T\{θ}

(10)  

ε
(
1 − bθj

)
+ ϕ

[
Dρj + Rρj − Tcj

]
⩾0; ∀j ∈ J (11)  

ϕ
[
D(t−1)j + R(t−1)j − Tcj

]
⩽ε btj; ∀j ∈ J, ∀t ∈ T\{θ} (12)  

ϕ
[
Dρj + Rρj − Tcj

]
⩽ε bθj; ∀j ∈ J (13)    
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ε btj ⩽Rtj⩽ε btj; ∀j ∈ J, ∀t ∈ T (16) 

The piecewise constraints in Eqs. (10)–(16) ensure that if the total 
demand and recaptured demand from time period t-1 at station j is 
greater than or equal to the total capacity of the station j, then the 
recaptured in time period t at station j is ϕ of the demand and recaptured 
demand in time period t-1 minus the total capacity of the charging 
station j. Otherwise, there will be no recaptured demand. We assume 
that the recaptured demand at the last time period is taken into 
consideration to calculate the recaptured demand of the demand at the 
first time period. Observe that ∀j∊J,∀t∊T\{θ}, atj = bt−1j, and aθj = bρj by 
definition, so we can reduce the number of binary variables in the 
model. 

Nsj =
Tcj

sc
; ∀j ∈ J (17) 

The constraints in Eq. (17) guarantee that the count of opened slots at 
charging station j is determined by dividing the total capacity of 
charging station j by the capacity of each individual slot. 

Ndtj = (D1
tj + D2

tj); ∀j∊ J, ∀t ∊T (18) 

The constraints in Eq. (18) ensure that the total nominal demand in 
time period t at charging station j is equal to the demand satisfied by the 
direct charge of station j in time period t and the demand satisfied by the 
battery at station j in time period t.∀j∊J, ∀t∊T, let αtj be such that 

αtj =

{
1 if solar production t is allocated to station j

0 o.w  

Ltj = L(t−1)j + Bctj − eD2
tj + eB−

tj ; ∀j ∈ J, ∀t ∈ T (19)  

Lθj = Lρj + Bcθj − eD2
θj + eB−

θj; ∀j ∈ J (20)  

Bctj = Wtωtj + Stαtj + g+
tj − g−

tj − D1
tj; ∀j ∈ J, ∀t ∈ T (21) 

The set of energy balance constraints include the battery level 
transition as Eq. (19), the energy balance for the battery charge as Eq. 
(21). Moreover, the constraints in Eq. (20) ensure the battery level at the 
first time period is calculated using battery level transition equation and 
the battery level at the last last time period. 

g−
tj ≤ Wtωtj + Stαtj + g+

tj ; ∀j ∈ J, ∀t ∈ T (22)  

g+
tj ≤ Ndtj; ∀j∊ J, ∀t ∊T (23) 

The constraints in Eq. (22) ensure that the electricity sold to the 
power grid from the direct charge of station j in time period t should be 
less than or equal to the sum of the total wind purchased by station j in 
time period t, the solar production of station j in time period t, and the 
electricity bought from the power grid by station j in time period t. 
However, because there is no reason to purchase and sell back to the 
power grid from the same station in the same time period, the purchase 
term g+

tj in (22) can be omitted. Similarly, the constraints in Eq. (23) 
ensure that the electricity bought from the power grid by station j in time 
period t should be no more than the total nominal demand in time period 
t at charging station j. 

B−
tj + D2

tj ≤ dc*e*xj; ∀j ∈ J, ∀t ∈ T (24)  

Bctj ≤ cr*xj; ∀j ∈ J, ∀t ∈ T (25)  

v*xj ≤ Ltj ≤ u*xj; ∀j ∈ J, ∀t ∈ T (26) 

The constraints in Eq. (24) ensure that the sum of the electricity sold 
back to the power grid from the battery at station j in time period t and 
the demand satisfied by the battery at station j in time period t cannot be 
higher than the product of discharge rate and storage efficiency of sta
tion j. Similarly, the constraints in Eq. (25) ensure that the battery 
charge of station j in time period t should be within the battery charging 
capacity. The constraints in Eq. (26) ensure that the battery inventory is 
between minimum and maximum battery level for each station. More
over, (24) - (26) are only considered when station j is operational. 
∑

j∊J
ωtj ≤ 1; ∀t ∈ T (27) 

The constraint in Eq. (27) ensures that the fraction of the allocated 
wind generation to all the stations is no more than 1. 

ωtj ≤ xj; ∀j ∈ J, ∀t ∈ T (28)  

αtj ≤ xj; ∀j ∈ J, ∀t ∈ T (29) 

Constraints in Eqs. (28) and (29) ensure that the total wind pur
chased by station j in time period t, and the solar production of station j 
in time period t are only considered if the station is operational. 

0 ≤ Nsj ≤ ℶ xj; ∀j ∈ J (30) 

The constraints in Eq. (30) ensure that the number of slots opened is 
between zero and the maximum possible number of slots opened per 
charging station j. Moreover, no slots are open if the station is not 
operational. 

Ndtj, Dtj, D1
tj, D2

tj, ωtj, Tcj, Ltj, g+
tj , g−

tj , B−
tj , Bctj, Rtj ≥ 0; ∀j∊ J, ∀t ∊ T

(31)  

x ∈ B|J| (32)  

y ∈ B|I|*|J| (33)  

α, a, b ∈ B|T|*|J| (34) 

The constraints in Eqs. (31)–(34) ensure that the given variables are 
nonnegative, and x, y, α, a and b are binaries of appropriate dimension. 
Furthermore, the constraints in Eqs. (4), (5), and (27) create a dependent 
relationship between the stations and prevent the problem from being 
separable by station. 

2.4. DACE based system design optimization approach 

DACE is a statistical technique designed to efficiently carry out 
computer experiments, particularly suited for exploring applications 
governed by intricate computer models (Sacks et al., 1989). These types 
of computer models find widespread use in engineering domains, often 
seen in applications like finite element simulations (Furushima & 
Manabe, 2011). Chen et al. (2006) provided a review of DACE methods, 
including the adaptation to DACE based optimization. In the conven
tional approach of DACE, an experimental design is employed to 
structure a series of computer experimental runs. This arrangement 

−ε
(
1 − btj

)
+ ϕ

[
D(t−1)j + R(t−1)j − Tcj

]
⩽Rtj⩽ϕ

[
D(t−1)j + R(t−1)j − Tcj

]
+ ε

(
1 − btj

)
; ∀j ∈ J, ∀t ∈ T) (14)  

−ε
(
1 − bεj

)
+ ϕ

[
Dρj + Rρj − Tcj

]
⩽Rεj⩽ϕ

[
Dρj + Rρj − Tcj

]
+ ε

(
1 − bεj

)
; ∀j ∈ J (15)   
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facilitates the creation of a statistical “metamodel” that serves as an 
approximation for the performance output simulated by an intricate 
computer model. The metamodel is a mathematical surrogate that can 
be employed to study the simulated system more efficiently. In DACE 
based optimization, the computer model is an optimization algorithm 
instead of the traditional computer simulation model. Specifically, in 
this paper, we develop the following DACE based optimization approach 
using the steps below. 

1. Using an experimental design (binned LH), a set of sample points, 
each representing a system design in the design parameter space, is 
generated. 

2. The performance (revenue) of each system design point is then 
determined by fixing the system design variables and solving the MILP 
to obtain the solution to a control subproblem. 

3. A multivariate adaptive regression splines (MARS) model is fit to 
the experimental design obtained by the binned LH experimental design 
in step 1 and the corresponding revenues generated by step 2. 

4. The obtained MARS model in step 3 is then optimized by sub
tracting the cost component to predict the profit to obtain a best system 
design. 

5. True profit is calculated using the system design point from step 4, 
with the help of the MILP. The obtained result is the solution to our first- 
stage system design problem. Using this step, we optimize the design of 
the EV charging stations. A more detailed explanation is provided in 
Sections 2.4.1–2.4.4. 

2.4.1. Binned LH design 
As described in the MILP formulation, the system design variables 

are given by the vectors (x, Ns ), where vector x includes binary vari
ables, indicating which stations are operational, and vector Ns gives the 
number of open slots. A traditional LH experimental design yields in
dependent values between given limits. However, due to constraint set 
(30), the vectors x and Ns are dependent in that slots can only be opened 
at operational stations. Consequently, we develop a binned LH, which 
consists of a traditional LH experimental design along with a mapping 
that determines a feasible system design (x, Ns ) from a traditional LH 
experimental design point. Moreover, traditional LH experimental de
signs fill the space, but optimal solutions tend to reside in very small 
portions of the feasible decision space, so the mapping needs to be 
intelligent to include “good” system design points so that the MARS 
model can accurately model this part of the space. For example, opening 
8 or more stations usually yields more capacity than needed to meet 
demand, whereas opening fewer than 3 stations will be insufficient to 
fulfill demand. Consequently, we need an experimental design where 

many of the system design points have between 4 and 7 operational 
stations. Specifically, we used a traditional LH experimental design to 
generate 325 11-dimentional experimental design points between 0 and 
1 using the MATLAB R 2016a function “lhsdesign”. The fractional values 
obtained from the first 20 points of the traditional LH experimental 
design are as indicated in Table 1 below. The mapping is shown as the 
step function given in Fig. 3, which can be defined as follows for a sta
tion j: 

(
xj, Nsj

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, 0) if LHj <
9
19

(

1,

⌈

19
(

LHj −
9
19

)⌉ )

o.w.

Here LHj refers to the traditional LH design value between 0 and 1. 
The mapping translates the traditional LH experimental design in 
Table 1 into the binned LH experimental design in Table 2, which in
dicates the locations of the charging stations and the number of slots at 
each charging station (x, Ns ). Fig. 4 also shows the distribution of the 
number of operational stations in the binned LH experimental design. 
Observe that 80 % of the system design points have between 4 and 7 
operational stations, which will appropriately capture demand without 
too much excess capacity. The 325 binned LH experimental design 
points were split into 250 training data points and 75 testing data points. 

2.4.2. Second-Stage control problem 
For each system of charging stations (x, Ns ) in the experimental 

design, the corresponding second-stage control problem revenue 
Rev(Ns) is determined using MILP as shown in Eq. (35). 

Rev(Ns) = max
∑

t∈T

∑

j∈J

[(
Mt

(
g−

tj + B−
tj − g+

tj

)
+ rtNdtj

) ]
(35)  

s.t. Eqs. (2)–(34) and Ns = Ns. 
As depicted in Fig. 5, each row serves as input for the control sub

problem formulation. This problem is addressed using the MILP pre
sented in Eq. (35), resulting in the derivation of the respective revenues 
denoted as Rev(Ns). 

2.4.3. MARS model 
To forecast the revenue for the EV charging station system, the 

second-stage model calibrates a MARS statistical model (Friedman, 
1991, Chen, 1999). This specific model demonstrates notable profi
ciency in predicting revenue by considering the count of available 
charging slots across diverse locations. MARS is trained using the 

Table 1 
20 points LH Design using MATLAB (Partial).  

LH1 LH2 LH3 LH4 LH5 LH6 LH7 LH8 LH9 LH10 LH11  

0.74  0.28  0.45  0.17  0.45  0.31  0.78  0.64  0.23  0.51  0.50  
0.84  0.02  0.66  0.70  0.32  0.62  0.53  0.79  0.76  0.52  0.61  
0.24  0.09  0.19  0.46  0.10  0.29  0.42  0.05  0.89  0.68  0.00  
0.51  0.76  0.53  0.63  0.11  0.82  0.07  0.85  0.85  0.91  0.58  
0.46  0.67  0.63  0.96  0.86  0.82  0.24  0.42  0.63  0.94  0.76  
0.33  0.74  0.03  0.32  0.54  0.99  0.59  0.43  0.72  0.88  0.67  
0.83  0.58  0.47  0.07  0.96  0.47  0.44  0.34  0.93  0.58  0.52  
0.99  0.78  0.89  0.79  0.99  0.49  0.90  0.57  0.46  0.90  0.83  
0.59  0.04  0.14  0.38  0.41  0.61  0.06  0.31  0.30  0.12  0.97  
0.18  0.37  0.44  0.56  0.36  0.86  0.48  0.40  0.69  0.34  0.30  
0.12  0.22  0.67  0.19  0.22  0.04  0.57  0.36  0.30  0.03  0.79  
0.57  0.44  0.32  0.08  0.46  0.20  0.15  0.68  0.68  0.50  0.26  
0.31  0.84  0.96  0.14  0.27  0.97  0.58  0.71  0.06  0.72  0.03  
0.25  0.26  0.70  0.84  0.48  0.98  0.87  0.99  0.99  0.19  0.10  
0.54  0.56  0.23  0.31  0.44  0.48  0.22  0.95  0.20  0.42  0.32  
0.18  0.02  0.56  0.40  0.26  0.84  0.17  0.37  0.66  0.09  0.29  
0.66  0.15  0.88  0.62  0.10  0.96  0.07  0.16  0.37  0.30  0.03  
0.06  0.80  0.57  0.82  0.42  0.70  0.71  0.94  0.74  0.80  0.17  
0.03  0.18  0.77  0.74  0.52  0.40  0.02  0.30  0.02  0.49  0.44  
0.27  0.79  0.90  0.38  0.33  0.44  0.30  0.57  0.10  0.78  0.75  
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Fig. 3. Step Function.  

Table 2 
20 points Binned LH Design (Partial)Ns1.   

Ns2 Ns3 Ns4 Ns5 Ns6 Ns7 Ns8 Ns9 Ns10 Ns11 

5 0 0 0 0 0 6 3 0 1 0 
7 0 4 5 0 3 1 6 6 1 3 
0 0 0 0 0 0 0 0 8 4 0 
1 6 1 3 0 7 0 8 8 9 2 
0 4 3 10 8 7 0 0 3 9 6 
0 5 0 0 1 10 2 0 5 8 4 
7 2 0 0 10 0 0 0 9 2 1 
10 6 8 6 10 0 9 2 0 8 7 
2 0 0 0 0 3 0 0 0 0 10 
0 0 0 2 0 8 0 0 4 0 0 
0 0 4 0 0 0 2 0 0 0 6 
2 0 0 0 0 0 0 4 4 1 0 
0 7 10 0 0 10 2 5 0 5 0 
0 0 4 7 0 10 8 10 10 0 0 
1 2 0 0 0 0 0 10 0 0 0 
0 0 2 0 0 7 0 0 4 0 0 
4 0 8 3 0 10 0 0 0 0 0 
0 7 2 7 0 5 5 9 5 7 0 
0 0 6 5 1 0 0 0 0 0 0 
0 6 8 0 0 0 0 2 0 6 5  

Fig. 4. Percentage of Stations opened.  
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experimental design data points extracted through binned LH, along 
with the associated revenues resulting from solving the second-stage 
control problem (35) as a response variable. The resultant fitted 
model, as shown in Eq. (36), serves as a predictor for revenue. 

R̂ev(Ns) = β0 +
∑K

k=1
βkBFk(Ns) (36) 

In our paper, we fit two different MARS models, one with basis 
interaction terms and the other with no interaction. 

2.4.4. First-Stage EV system master problem 
The system of charging stations (x*, Ns*) is obtained by maximizing 

profit using the optimization problem given by (37), 

ẐMILP(x*, Ns*) = maxR̂ev(Ns) − cjxj − NcjNsj (37) 

s.t. Eqs. (30) and (32). 
To evaluate the quality of (x*, Ns*), ZMILP(x*, Ns*) is then calculated 

using Eq. (38). 

ZMILP(x*, Ns*) = max
∑

t∈T

∑

j∈J

[(
Mt

(
g−

tj + B−
tj − g+

tj

)

+ rtNdtj

) ]
−

∑

j∈J

(
cjxj + NcjNsj

)
(38) 

s.t. Eqs. (2)–(34), and xj = x*,.Nsj = Ns* 

The obtained ZMILP(x*, Ns*) and (x*, Ns*) are the profit and solution 
of the DACE approach, respectively. 

3. System design experiments 

3.1. MILP experiments 

For experimental purposes, all experiments were conducted on a 
workstation equipped with an Intel Core i7 CPU @2.60 GHz, featuring 2 
physical cores, 4 logical processors, and 8 GB RAM. The optimization 
procedures were executed using CPLEX 12.6.3 (CPLEX, 2015), and 
GUROBI 9.5 (GUROBI Optimization, 2022). The data utilized for this 
investigation encompasses wind generation (Wt) (National Renewable 
Energy Laboratory, 2012), solar generation (St) (Miller & Lumby, 2012), 
market price (Mt) (Electric Reliability Council of Texas, 2002), and 

demand profiles (dt) (Khosrojerdi et al., 2012). The fixed retail price (rt) 
of electricity is 10.24 cents per kilowatt-hour per time periods (U.S. 
Department of Energy, 2012). The maximum (v) and minimum (u) 
battery levels are 3.6 MWh and 720 kWh per slot. The charging rate (cr) 
and discharging rates (dc) are 600 kW and 75 kW per slot. The capacity 
of every slot (sc) is 18.75 kWh. In our study, the storage efficiency (e) is 
assumed to be 79.8 % (Wetz, 2010). For convenience, we assumed that a 
station (j) more than a 20-mile (φ) radius from a hotspot (i) is unable to 
fulfill the demand of that hotspot. The cost to open a slot (Ncj) at a 
station (j) is assumed to be 10 % of the operational cost of the station (cj). 
The maximum allowable number of slots (ℶ) that can be opened is 10. 
Given market price fluctuations every 15 min (t), our formulation en
compasses a daily control problem spanning 96 15-minute periods. In 
instances where the demand for a given time period surpasses capacity, 
it is assumed that 50 % (recapture rate (ϕ)) of the customers are willing 
to wait for service in a subsequent time slot, while the remaining cus
tomers are lost. 

Table 3 below illustrates the ideal operational station setup, the 
available open slots, and the individual profits generated by each station 
across different operating cost scenarios. It also outlines the computa
tional time if the experiment is conducted within a 6-hour time limit. 

We employed CPLEX to solve the MILP for a range of operating cost 
values. It has been noted that the best integer solution typically mate
rializes within a span of 20 min to 1 h and 55 min, although verifying its 
optimality necessitates approximately 5 additional days of computa
tional effort. Consequently, a maximum runtime of 6 h is applied to all 
scenarios except the one involving an operational cost (c) of $100 per 
day. This specific cost value is selected as the baseline, as it mirrors a 
probable operating expense for a charging station compared to the other 
scenarios. The foundational station cost of $0 per day is observed to 
render all stations operational, yielding a higher count of opened slots 
and overall profit relative to the other scenarios. As operational costs 
escalate, more stations remain closed, and the quantity of slots per 
station diminishes correspondingly. However, during the transition 
from a cost of $70 to $100, the number of slots (Ns) in Garland increases 
from 2 to 3. This alteration occurs because Garland absorbs the demand 
previously served by Rockwall (which remains closed at an operational 
cost of $100 per day). 

Fig. 5. Computing revenues solving control problem.  
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Based upon our demand assumptions, there is no need to activate 8 
or more stations to meet demand. Conversely, opening fewer than 3 
stations would be inadequate to fulfill demand. As depicted in Table 3, 
operational costs of $60, $70, and $100 yield 5, 5, and 4 opened stations, 
respectively. For the $100 per day cost scenario, it took CPLEX 
approximately 4 days and 23 h of processing time to attain an optimal 
solution. The optimal solution’s objective value stands at $2689.38 
(ZMILP), with operational stations encompassing Fort Worth, Dallas, 
Garland, and Denton. Their respective daily profits are $2072.21, 
$293.96, $201.76, and $121.45. Furthermore, the count of opened slots 
at each of these locations is 5, 4, 3, and 1, respectively. 

In addition to solving the baseline scenario (operational cost of $100) 
with CPLEX, we also solve it with GUROBI with the lp file generated 
from CPLEX OPL. Given that the generation of the lp file is negligible, 
GUROBI required 2 h to provide the same optimal solution as CPLEX, 
which is used as the baseline method and is utilized for comparison 
against the DACE approach for this specific research purpose. 

Fig. 6 portrays the temporal distribution of demand (Dtj) across 
stations from time periods 1 to 96. Notably, the total demand distribu
tion for Fort Worth takes the lead, Dallas follows as the second highest, 
trailed by Garland and Denton. In terms of daily consumption per sta
tion, the values are 4.61 MWh, 3.89 MWh, 1.97 MWh, and 1.12 MWh, 
respectively. Furthermore, the demand is lowest between time periods 
12 and 20, encompassing the early morning hours from 3 am to 5 am. 
Subsequently, a gradual upswing unfolds, culminating in peak demand 
between time periods 52 to 68, spanning the afternoon from 1 pm to 5 
pm. This heightened demand is succeeded by a gradual decline. 

In Fig. 7, the distribution of opened slots across various cost scenarios 
is presented. The illustration highlights that at an operational cost (c) of 
$0, Fort Worth and Dallas exhibit a substantial slot count of 6 and 5, 
respectively, while Denton and Garland closely follow with slot counts 
of 4 and 3, respectively. Interestingly, Fort Worth and Dallas maintain 
their high slot counts despite cost escalation, whereas Garland and 
Denton experience a reduction in slots as costs rise. This visual 

Table 3 
Optimal charging station slot capacities across cost scenarios  

Fig. 6. Demand distribution at an operational cost of $100.  
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representation mirrors real-world dynamics, where, beyond a certain 
threshold, the feasibility of opening higher-cost slots diminishes due to 
insufficient demand. In essence, when the cost reaches $200 per day, the 
generated profits from Garland and Denton no longer cover their costs, 
resulting in their closure. 

3.2. DACE based system design optimization experiments 

In all our experiments utilizing the DACE based system design opti
mization, a baseline operational cost (c) of $100 per station per day is 
upheld. We generate four MARS revenue models utilizing two software 
tools: MATLAB 8.6 with the ARESLAB toolbox (Jekabsons, 2016) and 
Salford Predictive Modeler (SPM) 8.0 (Minitab, 2016). Each software 
package calibrates one MARS model with basis interaction terms and 
another with no interactions. For the SPM non-interaction MARS model, 
we set the maximum basis functions to 100 and consider the minimum 
observation between knots as 1. Subsequently, the optimized MARS 
models are produced using three distinct software programs: CPLEX CP 
Optimizer (CPLEX, 2015), AMPL 11.2 (Fourer et al., 1990) with the 
Couenne solver (Belotti et al., 2009), and MINOS solver (Murtagh et al., 
2006). The charging station systems derived from CPLEX CP and Cou
enne are identical, thereby generating 8 distinct systems through the 
DACE approach, as depicted in Table 4. The coefficient of determination 
(R-squared) for each MARS model is computed, as displayed in the table. 
Additionally, the percentage difference (% Diff) between the objective 
solutions ZMILP(x*, Ns*) and ZMILP is enclosed in parentheses in the table. 
Initial analysis indicates that the DACE approach utilizing the non- 
interaction MARS metamodel from the SPM software exhibits superior 
performance, with a percentage difference of ZMILP(x*, Ns*) of 0.4 % and 

has the highest testing R-squared. In this study, charging station systems 
generated through the DACE approach with non-interaction meta
models exhibit slightly higher accuracy than those with interaction 
terms. This implies that minimal demand shifts occur due to the stations 
being widely dispersed. Consequently, the distribution of demand (e.g., 
Eqs. (4) and (5)) and the allocation of wind power across stations (e.g., 
Eq. (27)) exert limited influence on the solution in this specific case. 

The system design build (x*, Ns*) derived from our optimal model 
(CPLEX CP/Couenne, MINOS) is further dissected and juxtaposed 
against the MILP, as demonstrated in Table 5 below. 

It is noticeable that each system design builds features identical 
operational stations, positioned in Fort Worth, Dallas, Garland, and 
Denton. Furthermore, the cumulative count of open slots is 13 for the 
MILP, CPLEX CP, and AMPL – Couenne approaches, while the AMPL – 
MINOS solution involves 12 open slots. 

3.3. Interpretable profit functions 

One of the major benefits of the DACE based system design optimi
zation approach is that the MARS models with no interaction yield 
highly interpretable profit functions. These functions allow decision 
makers to analyze the marginal profits as a function of the number of 
slots opened at each station. Graphs portraying the relationship between 
marginal profits and open slots are presented in Fig. 8. Prominent basis 
functions are linked with Fort Worth, Dallas, Garland, and Denton. All 
other basis functions connected to different stations possess coefficients 
of zero in the projected revenue function, indicating that, as per MARS 
analysis, these stations hold negligible marginal profits. Consequently, 
the DACE optimization phase maintains them in a closed state. Notably, 
the interpretable profit function for the Fort Worth station reveals an 
increase in profit from 1 to 4 slots, followed by a decrease beyond this 
point. This indicates that the optimal number of slots for Fort Worth is 4, 
whereas for Dallas, the optimal count is 5, as indicated by a similar 
trend. Similarly, for Garland and Denton, the optimal count is 2 slots per 
station. These findings mirror the outcomes (x*, Ns*) derived from 

Fig. 7. Major stations: different cost vs. number of slots.  

Table 4 
Comparisons of the DACE MILP objective solutions.  

Software for 
MARS Design 

Interaction 
allowed or not 

Testing 
R2 

ZMILP(x* , Ns*)

CPLEX CP 
/Couenne (% 
Diff) 

MINOS (% 
Diff) 

ARESLAB Yes  97.0 2406.8 (3.1) 2566.8 
(4.6) 

ARESLAB No  97.7 2670.0 (0.7) 2674.6 
(4.3) 

SPM Yes  97.2 2414.0 (2.8) 2555.8 
(5.0) 

SPM No  98.7 2678.5 (0.4) 2629.5 
(2.2)  

Table 5 
Number of Slots (MILP vs. DACE).   

Number of slots per opened Stations (cost $100)  

Fort Worth Dallas Garland Denton Total 

MILP 5 4 3 1 13 
CPLEX CP/Couenne 4 5 2 2 13 
MINOS 3 5 2 2 12  
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CPLEX CP and AMPL – Couenne. Furthermore, the optimal profits ach
ieved by Fort Worth, Dallas, Garland, and Denton are $904.55, 
$1543.95, $35.67, and $194.71 respectively, summing up to $2678.88, 
mirroring the ZMILP(x*, Ns*) results obtained from the non-interaction 
MARS model using SPM software, as presented in Table 4. Observe 
that by using these profit functions, we can construct an optimal solution 
without the use of a commercial optimization solver. 

3.4. CPU time Comparisons 

To further substantiate the utilization of the DACE based system 
design optimization approach, the process run times of the interaction 
and non-interaction models are computed and tabulated in Table 6. 
After generating the binned LH experimental design via MATLAB, the 
revenue data is collected employing GUROBI, culminating in a total 
runtime of 18 min. Once the revenue data is assembled, it is employed to 
construct the MARS model through SPM software. Ultimately, optimi
zation of the MARS model is carried out utilizing CPLEX CP, with the 
resultant outcomes provided. The swiftest comprehensive process time 
is recorded as 18 min and 40 s, attributed to the non-interaction model. 

Due to the efficiency with which this MARS model discerns station 
revenues, the DACE approach can swiftly reoptimize across diverse cost 
scenarios, obviating the need for reacquiring responses from the binned 
LH design. Specifically, variations in operational cost (c) lead only to 
shifts in the profit functions depicted in Fig. 8, while alterations in the 
slot-opening cost (Nc) solely induce tilting, thus permitting optimization 
across distinct cost scenarios without resorting to a commercial opti
mization solver. In comparison to the original 2-hour computational 
requirement for the MILP from the baseline method, the DACE approach 
exhibits enhanced computational feasibility. 

4. Conclusion 

An optimized model using mixed-integer linear programming (MILP) 
is developed to determine optimal EV charging station locations, the 
quantity of slots to activate at each station, and the resulting overall 
profit. Given that this particular issue remains unaddressed in existing 
literature, no established method serves as a baseline. However, utiliz
ing the provided MILP formulation, the most direct approach involves 
employing the GUROBI branch-and-bound solver, which is considered 
as the baseline method. The result indicates that Fort Worth should have 
the highest number of slots, trailed by Dallas, Garland, and Denton. 
However, this method’s drawback lies in its extended computational 
time, taking several hours to complete, despite giving an optimal solu
tion. To address this limitation of our baseline method, a two-stage 
framework and a system design optimization approach rooted in 
DACE (Design and Analysis of Computer Experiments) are introduced 
for solving the EV charging station network problem. In this investiga
tion, the DACE approach reveals that systems without interaction terms 
yield superior results compared to those with interaction terms, 
implying minimal demand shifts due to the considerable station sepa
ration. Furthermore, the DACE strategy generates highly interpretable 
profit functions, facilitating the analysis of marginal profits in relation to 
the number of slots open at each station. These profit functions allow 
decision makers to optimize profit under different cost scenarios without 

Fig. 8. Profit Functions at Four charging Stations.  

Table 6 
CPU Time Comparisons (MILP vs. DACE).  

Task Time 

Binned LHS Design 1 sec 
Revenue Function (250 Training and 75 Testing – 3.3 sec average) 

– GUROBI 
18 min   

Interaction No interaction  

Process Times Process Times  

SPM 12 sec SPM 6 sec  
CPLEX CP 1 min 20 sec CPLEX CP 34 sec  
DACE - Total 19 min 32 sec DACE - Total 18 min 40 sec 

Original MILP (Gurobi) ¡ 2 h  
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the use of a commercial solver. Prominent basis functions are linked to 
Fort Worth, Dallas, Garland, and Denton. Remarkably, the DACE 
approach streamlines the solution process, requiring only about 18 min 
to achieve a solution within 1 % of optimality, in contrast to the several 
hours taken by the MILP approach. 

In terms of future prospects, there is a plan to explore solving the 
problem with stochastic input variables related to wind and solar power 
generation, as well as market pricing fluctuations. 
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