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Abstract. This paper proposes an explicit Fourier-Klibanov method as a new approxi-
mation technique for an age-dependent population PDE of Gompertz type in modeling the
evolution of tumor density in a brain tissue. Through suitable nonlinear and linear trans-
formations, the Gompertz model of interest is transformed into an auxiliary third-order
nonlinear PDE. Then, a coupled transport-like PDE system is obtained via an application
of the Fourier-Klibanov method, and, thereby, is approximated by the explicit finite differ-
ence operators of characteristics. The stability of the resulting difference scheme is analyzed
under the standard 2-norm topology. Finally, we present some computational results to
demonstrate the effectiveness of the proposed method.

1. Introduction and problem statement

Mathematical modeling is a widely used approach to gain insight into the growth and
invasion of cancer cell populations. By leveraging mathematical and computational meth-
ods in scientific oncology, researchers can explain various cancer concepts and develop more
effective treatment strategies. To investigate the evolutionary dynamics of cancer, several
deterministic mathematical models have been developed for specific cancer types and stages;
see e.g. the monograph [27]. In principle, models of population dynamics are often formu-
lated using a continuum approach based on partial differential equations (PDEs). However,
finding analytical solutions to these PDEs is challenging due to the nonlinear structures that
account for the complex mechanisms of cancer. Consequently, researchers resort to various
approximation methods to obtain numerical solutions to these equations.
In this work, we propose an explicit Fourier-Klibanov method for obtaining numerical

solutions to a brain tumor growth model. Tumor growth in population dynamics can be
described by various laws (cf. e.g. [22]), including the Von Bertalanffy law that involves

f (u) = ρu (exponential law),

f (u) = ρu

(

1− u

Cmax

)

(Pearl-Verhulst logistic law),

and the Gompertz law,

f (u) = −ρu ln
( u

eK/d

)

.

We have introduced above various parameters. As to the Von Bertalanffy law, ρ > 0
denotes the net proliferation rate (month−1), while Cmax > 0 represents the maximum number
of tumor cells that can occupy a cubic centimeter of brain tissue. For the Gompertz law,
the parameter K > 0 describes an exponential increase when u is small, while the damping
constant d > 0 is to constrain the growth rate when u is large.

Key words and phrases. Tumor growth, Gompertz law, age-structured models, Fourier-Klibanov series,
finite difference method, stability estimate.
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Although several studies have focused on approximating tumor growth models using the
Von Bertalanffy law (cf. e.g. [23, 6, 7]), there has been limited research specifically dedicated
to exploring the Gompertz dynamic. The Gompertzian model is based on the notion that as
the tumor size increases, the tumor microenvironment becomes more hostile, and the avail-
ability of nutrients and oxygen decreases. Consequently, the tumor’s growth rate decreases,
leading to a deceleration in tumor growth. Despite the Gompertzian model’s potential for
improving our understanding of tumor dynamics, there is still much to be explored in this
area. Further research is needed to fully appreciate the implications of the Gompertzian
model in tumor growth dynamics and its potential applications in cancer treatment.
Tumor growth models usually account for variations of tumor in space and time, but their

evolution can be further characterized using other parametric variables; see e.g. [25] and
references cited therein for the derivation of population models with distinctive parametric
arguments. In this study, we focus on the age-dependent process of cell division, where a
dividing mother cell gives rise to two daughter cells; cf. e.g. [20] for an overview of age-
structured models. By incorporating an aging variable into the above-mentioned Gompertz
model, our computational approach is introduced to approximate the following PDE:

(1.1) ∂tu+ ∂au−D (t, a) ∂xxu+ µ (a) u = −ρu ln
( u

eK/d

)

for t, a > 0, x ∈ (−ℓ, ℓ) ,

where u = u (t, a, x) ≥ 0 (cells (in thousands)/cm) denotes the distribution of the number of
tumor cells at time t, age a and spatial location x. The diffusion of the tumor throughout the
brain over time and age is described by the function D = D (t, a) (cm2/month) in equation
(1.1). Meanwhile, the mortality rate of the population is presented by the age-dependent
function µ (a) > 0 (month−1). As we develop our proposed method, we simplify the spatial
complexity by considering a one-dimensional model with a length scale of ℓ > 0 (cm). This
simplification allows us to focus on the essential features of the tumor growth dynamics and
develop a more tractable model for numerical simulations.

To complete the age-dependent Gompertz model, we equip (1.1) with the no-flux boundary
conditions:

(1.2) ∂xu (t, a,−ℓ) = ∂xu (t, a, ℓ) = 0 for t, a > 0,

and the initial data

u (0, a, x) = u0 (a, x) for a > 0, x ∈ (−ℓ, ℓ) ,(1.3)

u (t, 0, x) = u0 (t, x) for t > 0, x ∈ (−ℓ, ℓ) .(1.4)

Here, we assume that u0 and u0 satisfy the standard compatibility condition u0 (0, ·) =
u0 (0, ·). The zero Neumann boundary condition is commonly imposed to model situations
where the tumor is confined to a specific region, such as a tumor in a specific tissue or organ.
Furthermore, it is assumed that the functions involved in our PDE system possess sufficient
regularity to enable numerical simulation needed for our present purposes. Investigation of
the regularity of these functions will be undertaken in forthcoming research.
In many cases, the initial condition for a newborn, denoted by u0, is accompanied by a

nonlocal operator that takes into account the reproductive process, which is weighted by
the bounded intrinsic maternity; cf. e.g. [12, 3]. However, this is not the primary focus
of our work. Instead, we only examine the regular condition in our Gompertz model. It is
worth noting that the nonlocal operator has been successfully linearized through numerical
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methods in [5]. For every recursive step, the linearization process seeks numerical solutions
with the regular newborn boundary condition.

Also, we would like to stress that previous publications have referred to (1.1) as a type
of ultra-parabolic equations, with a range of applications beyond the oncological context of
this work. For instance, ultra-parabolic PDEs have been found to be crucial in describing
heat transfer through a continuous medium in which the presence of the parametric variable
a is due to the propagating direction of a shock wave; cf. e.g. [19, 17]. Furthermore, these
PDEs have been employed in mathematical finance, specifically for the computation of call
option prices. The derivation of the ultra-parabolic PDEs has been detailed in [21], utilizing
the ultradiffusion process, wherein the parametric parameter a is determined by the asset
price’s path history. It is then worth mentioning that in terms of the ultra-parabolic PDEs,
several numerical schemes have been developed for their approximate solution. To name a
few, some attempts have been made to design numerical methods for linear equations [1, 2],
as well as for nonlinear equations with a globally Lipschitzian source term [9].
Our paper is four-fold. In section 2, we focus on developing an explicit Fourier-Klibanov

method for approximating the Gompertz model of interest. The method relies on the deriva-
tion of a new coupled nonlinear transport-like PDE system. This can be done by an applica-
tion of some nonlinear and linear transformations and the special truncated Fourier-Klibanov
series. Subsequently, the proposed method is established by applying the explicit finite dif-
ference method along with the characteristics of time and age directions. Section 3 is devoted
to the 2-norm stability analysis of the numerical scheme that we have introduced in section
2. Then, to demonstrate the effectiveness of the proposed method, numerical examples are
presented in section 4. Finally, some concluding remarks are discussed in section 5.

2. Explicit Fourier-Klibanov method

The Fourier-Klibanov method is a technique that utilizes a Fourier series driven by a special
orthonormal basis of L2. This basis was first constructed in [13], and the Fourier-Klibanov
method has since been applied to various physical models of inverse problems. Examples
of these models include imaging of land mines, crosswell imaging, and electrical impedance
tomography, as demonstrated in recent studies such as [14, 10, 15, 18, 16] and other works
cited therein. Thus, our paper is the first to attempt the application of this special basis to
approximate a specific class of nonlinear age-dependent population models.

Prior to defining the special basis, several transformations to the PDE (1.1) are employed
in the following subsection.

2.1. Derivation of an auxiliary third-order PDE. Let a† ∈ (0,∞) be the maximum age of
the cell population in the model. We define the survival probability,

Π (a) = e−
∫ a
0
µ(σ)dσ.

Now, take into account the nonlinear transformation v =
ln(u/eK/d)

Π(a)
or u

eK/d = eΠ(a)v for

a ∈ (0, a†). We compute that
(2.1)
∂tu = eK/dΠ(a) eΠ(a)v∂tv, ∂au = eK/dΠ(a) eΠ(a)v (∂av − µ (a) v) , ∂xu = eK/dΠ(a) eΠ(a)v∂xv,

(2.2) ∂xxu = eK/dΠ(a) ∂x
(

eΠ(a)v∂xv
)

= eK/dΠ(a) eΠ(a)v
(

∂xxv +Π(a) (∂xv)
2) ,
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(2.3) ρu ln
( u

eK/d

)

= ρeK/deΠ(a)v ln
(

eΠ(a)v
)

= ρeK/deΠ(a)vΠ(a) v.

Combining (2.1)–(2.3), we arrive at the following PDE for v:

0 = ∂tu+ ∂au−D (t, a) ∂xxu+ µ (a) u+ ρu ln
( u

eK/d

)

= eK/dΠ(a) eΠ(a)v [∂tv + ∂av − µ (a) v −D (t, a) ∂xxv

−D (t, a) Π (a) (∂xv)
2 + µ (a) Π−1 (a) + ρv

]

= eK/dΠ(a) eΠ(a)v
[

∂tv + ∂av −D (t, a)
(

∂xxv +Π(a) (∂xv)
2)

− (µ (a)− ρ) v + µ (a) Π−1 (a)
]

.

Vanishing eK/dΠ(a) eΠ(a)v on the right-hand side of the above equation and then, applying
∂x to the resulting equation, we obtain the following auxiliary PDE:

(2.4) ∂txv + ∂axv −D (t, a) ∂xxxv − 2D (t, a) Π (a) ∂xv∂xxv − (µ (a)− ρ) ∂xv = 0.

2.2. A coupled transport-like system via the Fourier-Klibanov basis. Equation (2.4) is
a non-trivial third-order PDE, and we thus propose to apply the Fourier-Klibanov basis
{Ψn (x)}∞n=1 in L2 (−ℓ, ℓ) to solve it.

To construct this basis, we start by considering φn (x) = xn−1ex for x ∈ [−ℓ, ℓ] and n ∈ N.
The set {φn (x)}n∈N∗ is linearly independent and complete in L2 (−ℓ, ℓ). We then apply
the standard Gram-Schmidt orthonormalization procedure to obtain the basis {Ψn (x)}∞n=1,
which takes the form Pn (x) e

x, where Pn (x) is the polynomial of the degree n.
The Fourier-Klibanov basis possesses the following properties:

• Ψn ∈ C∞ [−ℓ, ℓ] and Ψ′
n (x) = Ψn (x)+P

′
n (x) e

x is not identically zero for any n ∈ N
∗;

• Let smn = ⟨Ψ′
n,Ψm⟩ where ⟨·, ·⟩ denotes the scalar product in L2 (−ℓ, ℓ). Then the

square matrix SN = (smn)
N
m,n=1 ∈ R

N×N is invertible for any N since

smn =

{

1 if n = m,

0 if n < m.

Essentially, SN is an upper triangular matrix with det (SN) = 1.

Remark. We have the following remarks:

• To the best of our knowledge, no numerical schemes have been investigated for the
age-dependent population diffusion model of Gompertz type up to this point. Al-
though some may consider solving the non-trivial PDE (2.4) using a suitable fully
discrete scheme, our focus lies in extending the applicability of the Fourier-Klibanov
method to solve forward problems. It is important to note that this computational
approach was initially developed for solving inverse problems. Therefore, this paper
serves as a starting point for future investigations into utilizing the Fourier-Klibanov
method as a forward solver.

• We utilize the Fourier-Klibanov basis in the spatial direction to facilitate the nonlinear
gradient term ∂xv∂xxv in the PDE (2.4). As manifested below, the resulting PDE
system after the application of this basis, albeit another nonlinearity appears, is
adequately recognized in the field of PDEs: nonlinear transport-like PDE. Besides,
similar to the conventional Fourier method, the present approach helps to reduce the
spatial dimensionality.
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• The Fourier-Klibanov basis is similar to the orthogonal polynomials formed by the
so-called Laguerre functions. However, the Laguerre polynomials are used for the L2

basis in the semi-infinite interval with a decaying weighted inner product. We also
notice that the second property of the Fourier-Klibanov basis does not hold for either
classical orthogonal polynomials or the classical basis of trigonometric functions. The
first column of SN obtained from either of the two conventional bases would be zero,
indicating the impracticality of using the conventional Fourier approach to get the
transport-like system from equation (2.4).

• We remark that we seek the solution v (as well as u) in the open interval (−ℓ, ℓ).
Thus, regardless of the fact that the Fourier-Klibanov basis function does not satisfy
the zero Neumann boundary condition, we can assume that v is spatially expandable
in the L2 topology. Considering the no-flux boundary condition, it is natural to
expect that we can numerically obtain the spatial boundary information once the
adjacent values are determined.

Let N ≥ 1 now be the cut-off constant. We will discuss how to choose N later in the
numerical section. Consider the truncated Fourier series for v in the following sense:

(2.5) v (t, a, x) =
N
∑

n=1

⟨v (t, a, ·) ,Ψn (·)⟩Ψn (x) =
N
∑

n=1

vn (t, a)Ψn (x) .

Plugging this truncated series into the auxiliary PDE (2.4), we have

N
∑

n=1

[(∂t + ∂a)− (µ (a)− ρ)] vn (t, a)Ψ
′
n (x)(2.6)

= D (t, a)
N
∑

n=1

vn (t, a)Ψ
′′′
n (x) + 2D (t, a) Π (a)

N
∑

n=1

N
∑

k=1

vn (t, a) vk (t, a)Ψ
′
n (x)Ψ

′′
k (x) .

For each 1 ≤ m ≤ N , we multiply both sides of (2.6) by Ψm and then integrate both sides

of the resulting equation from x = −ℓ to x = ℓ. Let V = (v1, v2, ..., vN)
T ∈ R

N be the
N -dimensional vector-valued function that contains all of the Fourier coefficients vn. We
obtain the following nonlinear PDE system:

N
∑

n=1

smn [(∂t + ∂a)− (µ (a)− ρ)] vn (t, a)(2.7)

= D (t, a)
N
∑

n=1

κmnvn (t, a) + 2D (t, a) Π (a)
N
∑

n=1

N
∑

k=1

ςmnkvn (t, a) vk (t, a) ,

where κmn = ⟨Ψ′′′
n ,Ψm⟩ and ςmnk = ⟨Ψ′

nΨ
′′
k,Ψm⟩. It is straightforward to see that system

(2.7) is of the transport-like form. By the boundary data (1.3) and (1.4), we associate (2.7)
with the following boundary conditions:

vn (0, a) = ⟨v (0, a, ·) ,Ψn (·)⟩ = Π−1 (a)
〈

ln
(

u0 (a, ·) /eK/d
)

,Ψn (·)
〉

,(2.8)

vn (t, 0) = ⟨v (t, 0, ·) ,Ψn (·)⟩ =
〈

ln
(

u0 (t, ·) /eK/d
)

,Ψn (·)
〉

.(2.9)
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2.3. Finite difference operators. To approximate the transport-like system (2.7)–(2.9), we
propose to apply the so-called finite difference method of characteristics in the time-age
direction. To do so, we take into account the time increment ∆t = T/M for M ≥ 2 being
a fixed integer. Then, we set the mesh-point in time by ti = i∆t for 0 ≤ i ≤ M . Using the
number M , we define K = [a†/∆t+ 1] and set the mesh-point in age by

aj = j∆t for 0 ≤ j < K.

Thus, we discretize the differential operator ∂t + ∂a along the characteristic t = a, as
follows:

(∂t + ∂a) vn (ti, aj) =
vin,j − vi−1

n,j

∆t
+
vi−1
n,j − vi−1

n,j−1

∆t
=
vin,j − vi−1

n,j−1

∆t
.

Here and to this end, the subscript j indicates the age level aj and the superscript i implies
the time level ti. By the forward Euler procedure, we then seek the discrete solution vin,j =
vn (ti, aj) of the following systematic scheme:

N−1
∑

n=0

smnv
i
n,j =

N−1
∑

n=0

smnv
i−1
n,j−1 +∆t

N−1
∑

n=0

[

smn (µj−1 − ρ) +Di−1
j−1κmn

]

vi−1
n,j−1

+ 2∆tDi−1
j−1Πj−1

N−1
∑

n=0

N−1
∑

k=0

ςmnkv
i−1
n,j−1v

i−1
k,j−1

for i, j ≥ 1. Similar to vin,j, here we denote µj−1 = µ (aj−1),D
i−1
j−1 = D (ti−1, aj−1), and Πj−1 =

Π(aj−1). Now, for every step (i, j), letKi
j =

(

K
i
mn,j

)N

m,n=1
with K

i
mn,j = smn (µj − ρ)+Di

jκmn

and let Gi
m,j =

(

G
i
mnk,j

)N

n,k=1
with G

i
mnk,j = 2Di

jΠjςmnk. Henceforth, our discretized coupled

system has the following form:

(2.10) SNV
i
j = SNV

i−1
j−1 +∆tKi−1

j−1V
i−1
j−1 +∆t

















(

V i−1
j−1

)T
G
i−1
1,j−1V

i−1
j−1

(

V i−1
j−1

)T
G
i−1
2,j−1V

i−1
j−1

(

V i−1
j−1

)T
G
i−1
3,j−1V

i−1
j−1

...
(

V i−1
j−1

)T
G
i−1
N,j−1V

i−1
j−1

















.

By (2.8) and (2.9), this system is associated with the starting points V 0
j = (vn (0, aj))

N
n=1

and V i
0 = (vn (ti, 0))

N
n=1.

3. Stability analysis

In this section, we want to analyze the stability of the proposed explicit approach. Before
doing so, we want to ensure that the discrete solution V i

j is uniformly bounded for any

bounded data V 0
j and V i

0 . To this end, we make use of the following 2-norm of any vector

X = (Xn)
N
n=1 ∈ R

N ,

(3.1) ∥X∥2 =
(

∑

1≤n≤N

|Xn|2
)1/2

.
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Also, for any square matrix X = (Xmn)
N
m,n=1 ∈ R

N×N , we use the Frobenius norm,

(3.2) ∥X∥F =

(

N
∑

m=1

N
∑

n=1

|Xmn|2
)1/2

.

It follows from (2.10) that for i, j ≥ 1,

(3.3) SNV
i
j =

{

SNV
i−j
0 +∆t

∑j−1
l=0 F

(

V l+i−j
l

)

, if i ≥ j,

SNV
0
j−i +∆t

∑i−1
l=0 F

(

V l
l+j−i

)

, if i < j,

where the nonlinear term F : RN → R
N is defined as

F
(

V i
j

)

= K
i
jV

i
j +

















(

V i
j

)T
G
i
1,jV

i
j

(

V i
j

)T
G
i
2,jV

i
j

(

V i
j

)T
G
i
3,jV

i
j

...
(

V i
j

)T
G
i
N,jV

i
j

















.

Let S−1
N = (s̃mn)

N
m,n=1 ∈ R

N×N be the inverse of SN . We can rewrite (3.3) as

(3.4) V i
j =

{

V i−j
0 +∆tS−1

N

∑j−1
l=0 F

(

V l+i−j
l

)

, if i ≥ j,

V 0
j−i +∆tS−1

N

∑i−1
l=0 F

(

V l
l+j−i

)

, if i < j.

Theorem 1. Assume that there exists a constant C > 0 such that

(3.5) max
j≥0

∥

∥V 0
j

∥

∥

2
≤ C, and max

i≥0

∥

∥V 0
i

∥

∥

2
≤ C.

Moreover, suppose that for each i, j ≥ 0, we can find a constant P i
j ≥ 0 such that

(3.6)
∥

∥K
i
j

∥

∥

F
+

N
∑

m=1

∥

∥G
i
m,j

∥

∥

F
≤ P i

j .

Then for any time step ∆t sufficiently small with

(3.7) ∆t
∥

∥S−1
N

∥

∥

F

∑

i,j≥0

P i
j ≤ ln

(

C + 1

C + 1
2

)

,

the discrete solution V i
j in (3.3) is bounded by

(3.8) max
i,j≥0

∥

∥V i
j

∥

∥

2
≤ 2C.

Proof. It is straightforward to see that
∥

∥F
(

V i
j

)∥

∥

2
≤
∥

∥K
i
jV

i
j

∥

∥

2
+
∥

∥

∥

(

V i
j

)T
G
i
jV

i
j

∥

∥

∥

2

≤
∥

∥K
i
j

∥

∥

F

∥

∥V i
j

∥

∥

2
+

N
∑

m=1

∥

∥G
i
m,j

∥

∥

F

∥

∥V i
j

∥

∥

2

2
.
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Therefore, by (3.6) and (3.4), we estimate that for i ≥ j,

∥

∥V i
j

∥

∥

2
≤
∥

∥V i−j
0

∥

∥

2
+∆t

∥

∥S−1
N

∥

∥

F

j−1
∑

l=0

∥

∥

∥
F

(

V l+i−j
l

)
∥

∥

∥

2

≤ C +∆t
∥

∥S−1
N

∥

∥

F

j−1
∑

l=0

P l+i−j
l

(

∥

∥

∥
V l+i−j
l

∥

∥

∥

2
+
∥

∥

∥
V l+i−j
l

∥

∥

∥

2

2

)

.(3.9)

Now, with the aid of the discrete Gronwall-Bellman-Ou-Iang inequality (cf. [4, Theorem
2.1]) applied to (3.9), we deduce that

(3.10)
∥

∥V i
j

∥

∥

2
≤ Φ−1

[

Φ (C) + ∆t
∥

∥S−1
N

∥

∥

F

i−1
∑

l1=0

j−1
∑

l2=0

P l1
l2

]

,

where Φ−1 is the inverse of Φ, and Φ is given by

Φ (f) =

∫ f

1

dr

r + r2
= ln

(

2f

f + 1

)

for f > 0.

Herewith, the denominator is obtained from the structure of the second component on the
right-hand side of the bound (3.9). With this structure in mind, we can find Φ−1 as follows:

Φ−1 (f) =
ef

2− ef
=

1

2e−f − 1
for f ∈ (0, ln 2) .

Next, by our choice in (3.7), we mean that

(C + 1) exp

(

−∆t
∥

∥S−1
N

∥

∥

F

i−1
∑

l1=0

j−1
∑

l2=0

P l1
l2

)

≥ C +
1

2
> C,

Henceforth, for i ≥ j, it follows from (3.10) that

∥

∥V i
j

∥

∥

2
≤
[

2 exp

(

−Φ (C)−∆t
∥

∥S−1
N

∥

∥

F

i−1
∑

l1=0

j−1
∑

l2=0

P l1
l2

)

− 1

]−1

=

[

2 exp

(

− ln

(

2C

C + 1

)

−∆t
∥

∥S−1
N

∥

∥

F

i−1
∑

l1=0

j−1
∑

l2=0

P l1
l2

)

− 1

]−1

=

[

C + 1

C
exp

(

−∆t
∥

∥S−1
N

∥

∥

F

i−1
∑

l1=0

j−1
∑

l2=0

P l1
l2

)

− 1

]−1

.

which allows us to obtain the target estimate (3.8) for i ≥ j. Using the same argument, we
also have (3.8) for i < j by means of the following estimate:

∥

∥V i
j

∥

∥

2
≤ C +∆t

∥

∥S−1
N

∥

∥

F

i−1
∑

l=0

P l
l+j−i

(

∥

∥V l
l+j−i

∥

∥

2
+
∥

∥V l
l+j−i

∥

∥

2

2

)

for i < j.

Hence, we complete the proof of the theorem. □
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Theorem 1 implies that for any i, j ≥ 1, the discrete solution V i
j of the numerical scheme

and its initial data stay in the same ball B (0, 2C) under the topology of the 2-norm. This
essence allows us to analyze the stability of the proposed scheme (3.3). Let W i

j = V i
j − Ṽ i

j ,

where V i
j and Ṽ i

j satisfy (3.4) corresponding to the initial data
(

V 0
j , V

i
0

)

and
(

Ṽ 0
j , Ṽ

i
0

)

,

respectively. Our stability analysis is formulated in the following theorem.

Theorem 2. Under the assumptions of Theorem 1, we can show that for all i, j ≥ 0, the
following estimate holds true:

∥

∥W i
j

∥

∥

2
≤
(

∥

∥W i−j
0

∥

∥

2
+
∥

∥W 0
j−i

∥

∥

2

)

[

1 + (1 + 4C) ln

(

C + 1

C + 1
2

)]

.

Proof. From 3.4,we can compute that for i ≥ j,

(3.11) W i
j = W i−j

0 +∆tS−1
N

j−1
∑

l=0

[

F

(

V l+i−j
l

)

− F

(

Ṽ l+i−j
l

)]

.

In view of the fact that

V TGmV − Ṽ TGmṼ = V T
(

GmV −GmṼ
)

+
(

V T − Ṽ T
)

GmṼ

= V TGm

(

V − Ṽ
)

+
(

V T − Ṽ T
)

GmṼ ,

we, in conjunction with (3.6) and (3.8), have

∥

∥

∥
F
(

V i
j

)

− F

(

Ṽ i
j

)∥

∥

∥

2
≤
∥

∥K
i
j

∥

∥

F

∥

∥W i
j

∥

∥

2
+

N
∑

m=1

∥

∥G
i
m,j

∥

∥

F

(

∥

∥V i
j

∥

∥

2
+
∥

∥

∥
Ṽ i
j

∥

∥

∥

2

)

∥

∥W i
j

∥

∥

2

≤ P i
j (1 + 4C)

∥

∥W i
j

∥

∥

2
.

Therefore, applying the 2-norm to (3.11), we estimate that

∥

∥W i
j

∥

∥

2
≤
∥

∥W i−j
0

∥

∥

2
+∆t

∥

∥S−1
N

∥

∥

F

j−1
∑

l=0

∥

∥

∥
F

(

V l+i−j
l

)

− F

(

Ṽ l+i−j
l

)
∥

∥

∥

2

≤
∥

∥W i−j
0

∥

∥

2
+∆t

∥

∥S−1
N

∥

∥

F

j−1
∑

l=0

P l+i−j
l (1 + 4C)

∥

∥

∥
W l+i−j
l

∥

∥

∥

2
.

Using the Salem-Raslan inequality (cf. [24, Theorem 6.1.3]), we thus obtain that for i ≥ j,

∥

∥W i
j

∥

∥

2
≤
∥

∥W i−j
0

∥

∥

2

[

1 + ∆t
∥

∥S−1
N

∥

∥

F
(1 + 4C)

j−1
∑

l=0

P l+i−j
l

]

≤
∥

∥W i−j
0

∥

∥

2

[

1 + (1 + 4C) ln

(

C + 1

C + 1
2

)]

.

For i < j, we can follow the same procedure to get

∥

∥W i
j

∥

∥

2
≤
∥

∥W 0
j−i

∥

∥

2

[

1 + (1 + 4C) ln

(

C + 1

C + 1
2

)]

.

Hence, we complete the proof of the theorem. □
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4. Numerical results

In this section, we want to verify the numerical performance of the proposed explicit
Fourier-Klibanov method. By the inception of the method, comparing it with the other
numerical methods is not within the scope of this paper. In fact, from our best knowledge,
there appears to be no numerical schemes studied for the age-dependent population diffusion
model of Gompertz type. However, at the end of this section, we will have a short discussion
about two standard methods: the conventional Fourier series combined with linearization
and the conventional explicit Euler method.

In our population model of interest, the mortality function is often chosen as µ (a) =
(a† − a)−1, which will be used in all numerical experiments. Furthermore, for this particular
choice, the survival probability can be computed explicitly,

Π (a) = e−
∫ a
0
µ(σ)dσ =

a† − a

a†
, and Π (a†) = 0.

In our numerical experiments, we fix ℓ = 1 and ∆x = 0.05 , indicating that we are looking
into the dynamics of tumor cells within a length scale of 2 (cm) and a step-size of 0.5 (mm).
We also fix T = 10 (months) and examine the model with the maximum age of a† = 12
(months). Besides, K = d = 1 are dimensionless and fixed.

Remark. It is worth noting that even though the chosen µ (a) is unbounded at a = a†,
bringing another challenge to our numerical simulation, we note that our explicit scheme
works well. Indeed, cf. the matrix K

i−1
j−1 in (2.10), to approximate the aging boundary

information of v, we use the penultimate values. By this means, our stability analysis above
cover well this unbounded perspective of µ (a). This shows an effectiveness of the numerical
approach we are proposing.

Remark 3. The population dynamics of cancer typically involve determining the total pop-
ulation of tumor cells within specific age and spatial ranges. This information is crucial in
understanding the local/global burden of cancer in the body, including the size and extent
of the tumor. In our numerical experiments, we consider

p (t) =

∫ ℓ

−ℓ

∫ a†

0

u (t, a, x) dadx

as the (global) total population in time. In addition to ensuring numerical stability of the
density u (t, a, x), we also place importance on the stability of the total population, as it
allows us to obtain a macroscopic perspective of the entire simulation. To approximate the
time-dependent two-dimensional function p (t) based on discrete approximations of u (t, a, x)
(via the proposed explicit Fourier-Klibanov scheme), we use the standard trapezoidal rule.
It is worth noting that, as mentioned above, we have fixed the following parameters: ℓ =
1, a† = 12 and ∆x = 0.05, while ∆a varies depending on the chosen value of M .

4.1. Choice of the cut-off constant. We discuss how to determine the cut-off constant N
for the truncated Fourier-Klibanov series. For each example, we explicitly select the initial
data u0 (a, x), which we use to calculate v0 (a, x) through the nonlinear transformation v =
ln(u/eK/d)

Π(a)
. Denote the resulting transformed initial data as vtrue0 (a, x) and its corresponding

approximation as vtrue0,N (a, x). With the explicit form of vtrue0 (a, x) and the basis {Ψn (x)}∞n=1,
we can plug them into the truncated series (2.5) to compute vtrue0,N (a, x). This allows us to
compute the following relative max error:
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Emax

(

vtrue0 , vtrue0,N

)

=
maxj,l≥0

∣

∣vtrue0 (aj, xl)− vtrue0,N (aj, xl)
∣

∣

maxj,l≥0 |vtrue0 (aj, xl)|
× 100%.

For convenience, we set the age step to 40, ensuring consistency with the number of nodes
in the space variable. It should be noted that ∆x = 0.05, ℓ = 1 and a† = 12 remain fixed in
seeking N .

Remark. It is also worth mentioning that we only use the fixed ∆x = 0.05 when applying
the trapezoidal rule to compute the total population p(t), and when evaluating vtrue0 and
vtrue0,N to compute Emax. By evaluating Emax for different values of N , we rely on the true
initial data vtrue0 to assess the accuracy of its discrete Fourier-Klibanov approximation vtrue0,N ,
helping to determine the cut-off constant N . This is different from the the typical relative
error calculated between the numerical solution at the present (variable) step and that at
the previous step.

Cf. Table 1, we can see that the relative max error, Emax

(

vtrue0 , vtrue0,N

)

, decreases rapidly
as N increases. In Example 1, increasing N from 2 to 4 results in a reduction of Emax by a
factor of approximately 30, while it is 10 in Examples 2 and 3. To better address how well
the truncated Fourier-Klibanov works, we present in Figure 4.1 graphical representations of
vtrue0 and vtrue0,N for N = 2 and N = 6 for all examples.

Observe the first row of Figure 4.1, which represents the approximation by the truncated
series for Example 1. When N = 2, the approximation is not good in terms of two criteria:
the maximum absolute value and the shape of the graph. However, when N = 6, the
approximation fulfills both criteria very well.

The second row of Figure 4.1 shows the same performance for Example 2. Since the
Fourier-Klibanov series vtrue0,N approximates vtrue0 so well in this example, we deliberately
present the log scale for the value of such vtrue0 and vtrue0,N to show the convergence. Without
the log scale, it is difficult to see the significant improvement of the series in terms of the
two criteria when increasing N from 2 to 6.
The last row of Figure 4.1 also demonstrates the same performance. When N = 2, vtrue0

and vtrue0,N have the same shape, yielding a relatively good accuracy of the series. When N is
increased to 6, the value of vtrue0,N is very close to vtrue0 .

It is noteworthy that the maximum absolute value of vtrue0 in all examples is very large.
However, despite this, the truncated Fourier-Klibanov series demonstrates high accuracy in
the relative maximum error. Overall, the graphical representation shows that the approxi-
mation for N = 6 is in complete agreement with the true value, confirming the accuracy we
have analyzed. Based on these numerical observations, we choose N = 6 for all subsequent
experiments.

Remark. In practice, choosing an ideal cut-off constant N is essential. This number does
not need to be exceedingly large from a numerical standpoint; see e.g. [26] for simulated
data and [14, 8] involving experimentally collected data. Additionally, cf. [11], large cut-off
constants chosen in the conventional Fourier series can ruin numerical accuracy due to the
presence of highly oscillatory integrals. Our scenario is no exception, even though we employ
a special series. The basis {Ψn}∞n=1 consists of polynomials of the degree n, which have very
high oscillations, particularly when n is large.

In principle, an ideal cut-off constant should be suitably small such that it balances compu-
tational efficiency and high accuracy. Henceforth, as determined above, N = 6 is a reasonable
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Example N Emax Example N Emax Example N Emax

1
2 29.35%

2
2 61.68%

3
2 61.33%

4 0.972% 4 6.746% 4 5.951%
6 0.012% 6 0.160% 6 0.134%

Table 1. The relative max error Emax

(

vtrue0 , vtrue0,N

)

decreases when N becomes
large. This is observed while keeping the mesh grid of space and age fixed
with ∆x = ∆t = 0.05. By these numerical observations, taking N = 6 is
acceptable for all numerical experiments in the sense that the relative max
error is sufficiently small.

choice. Ultimately, it is important to note that in our numerical experiments, we only need
to calculate six ψn for 1 ≤ n ≤ 6 once, which can then be used for all examples. This is
computationally cheaper than the methods that use discretization in the spatial variable.

4.2. Example 1: Semiellipse initial profiles with youngster’s immobility. We begin by a
numerical example with the semiellipse-shaped initial profiles near the boundary a = 0. In
particular, for ε = 0.75, we choose

u0 (a, x) =
1√
2πε

exp

(

− 1

2ε2
(

x2 + (a− 0.15)2
)

)

,(4.1)

u0 (t, x) =
1√
2πε

exp

(

− 1

2ε2
(

x2 + (t− 0.15)2
)

)

,(4.2)

which satisfy the compatibility condition u0 (0, ·) = u0 (0, ·); see Figure 4.2 for the graphical
illustrations of the initial profile u0. Besides, we choose ρ = 0.5 for the net proliferation rate,
and the diffusion term is chosen as

D (t, a) = 0.03− 0.03 exp

(

−
(a†

8
− a
)2

a

)

,

indicating that “youngster” individuals are less mobile than newborn and old. Note that in
this choice, the diffusion term is independent of t.
In our numerical experiments, we do not know the exact solutions, but we can generate

data to evaluate the accuracy of the approximation. In this sense, numerical convergence can
be assessed by examining numerical stability and thus, by the behavior of computed solutions
at different time points and for various values ofM . Figure 4.3 shows the computed solutions
for M = 200, 400, 800 and at different time points t = 2.5, 5.0, 7.5, 10.0. We can see that
the values of the approximate solutions become more stable as M increases. Moreover, the
approximate solutions behave similarly at every time observation, as shown in the first row
of Figure 4.3.

To assess better the numerical stability, we plot the total population as a function of
time for different values of M = 100, 200, 400, 800 in Figure 4.2c. The total population is
formulated in Remark 3, as noted above. Figure 4.2c reveals the entire time evolution of
tumor cells, with the total density significantly increasing within the first two months of the
time frame. Starting from a small amount at t = 0 (see values of u0 in Figure 4.2a), the
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(a) vtrue
0

(b) vtrue
0,N (N = 2) (c) vtrue

0,N (N = 6)

(d) vtrue
0

(e) vtrue
0,N (N = 2) (f) vtrue

0,N (N = 6)

(g) vtrue
0

(h) vtrue
0,N (N = 2) (i) vtrue

0,N (N = 6)

Figure 4.1. Graphical illustrations of vtrue0 and vtrue0,N for N = 2, 6 for Example
1 (row 1), Example 2 (row 2), and Example 3 (row 3). The mesh grids of space
and age are fixed with ∆x = ∆t = 0.05. By these graphical observations,
N = 6 would be the best choice for all numerical experiments because of its
very high accuracy and fast-computing.

total density peaks at about t = 1.8, reaching nearly 585 thousand cells/cm. Afterward, the
total density gradually tends towards extinction within the next eight months.

4.3. Example 2: Gaussian initial profiles with elder’s immobility. In the second example,
we take into account the Gaussian initial profiles of the following form, for ε = 0.075,

u0 (a, x) =
e−6x2

ε+ cosh (a− 7)
, u0 (t, x) =

e−6x2

ε+ cosh (3t− 7)
.
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(a) u0 (3D) (b) u0 (2D) (c) p (t)

Figure 4.2. Left: 3D representation of the initial data u0 in Example 1.
Middle: 2D representation of the initial data u0 in Example 1. Right: Total
population of tumor cells p (t) for varying values of M .

This choice of u0 and u0 satisfies the compatibility condition u0 (0, ·) = u0 (0, ·); however,
compared to the choice in Example 1 (cf. (4.1) and (4.2)), the a and t arguments here are
not interchangeable. Besides, we choose ρ = 7 for a large net proliferation rate, and the
diffusion term is chosen as

D (t, a) = exp

(

−(t− 8T )2

T

)

(a† − a) ,

indicating that “old” individuals are very less mobile.
Our numerical results for Example 2 are presented in Figures 4.4c and 4.5. Figure 4.4c

illustrates that the total population of tumor cells exhibits minimal variation when M runs
from 100 to 800. Similarly, Figure 4.5 demonstrates numerical stability in the distribution
of tumor cells for different values of M . In contrast to Example 1, these graphs are highly
similar when M runs from 200 to 800, indicating that a too large M is unnecessary for
simulating this example.

Our simulation shows that tumor cells reach a stable state quickly, plateauing at around
2.7 thousand cells/cm across all time points (as seen in Figure 4.5). The total population,
shown in Figure 4.4c, reaches its peak of 62 thousand cells/cm within a month from an initial
total population of about 3 thousand cells. Subsequently, the total population appears to
stabilize but very slightly declines over time.

4.4. Example 3: Hump-shaped initial profiles. In this last example, we examine the explicit
Fourier-Klibanov scheme for our Gompertz system with the following initial conditions:

u0 (a, x) =
1√
2πε

[

2− sin
(π

4
(a− 3)

)]

exp
(

− (x− 0.25)2
)

,

u0 (t, x) =
1√
2πε

[

2− sin
(π

4
(t− 3)

)]

exp
(

− (x− 0.25)2
)

,

where ε = 0.5. Cf. Figure 4.6b, these functions model well the hump-shaped profiles in
the plane of x and a. It is also understood that there are two adjacent tumor distributions
presented in the sampled brain tissue as age evolves. Using the proposed scheme, we look
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(a) M = 200 (b) M = 400 (c) M = 800

(d) M = 200 (e) M = 400 (f) M = 800

(g) M = 200 (h) M = 400 (i) M = 800

(j) M = 200 (k) M = 400 (l) M = 800

Figure 4.3. Tumor cell density in Example 1 at t = 2.5, 5.0, 7.5, 10.0 for
various values of M . Column 1: M = 200,∆t = 0.05 (36 hours). Column 2:
M = 400,∆t = 0.025 (18 hours). Column 3: M = 800,∆t = 0.0125 (9 hours).
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(a) u0 (3D) (b) u0 (2D) (c) p (t)

Figure 4.4. Left: 3D representation of the initial data u0 in Example 2.
Middle: 2D representation of the initial data u0 in Example 2. Right: Total
population of tumor cells p (t) for varying values of M .

for the dynamics of these tumor cell distributions with ρ = 0.36 being the net proliferation
rate and

D (t, a) = exp
(

− (t− 2T )2 − (a− 2a†)
2) .

By the choice of D (t, a) above, only the “elders” diffuse, but very slowly, at the final time
observation.

We present our numerical findings for this example through: Figure 4.7 illustrates the
tumor cell density, while Figure 4.6c depicts the total population. Based on our numerical
observations, we find that the approximation is very stable as M increases. The curves
representing the total population in Figure 4.6c almost coincide, indicating a very good
accuracy in the macroscopic sense. However, it is important to note that the accuracy of
the approximation decreases as we move further away from the initial point, particularly
towards the final time of observation; see again Figure 4.6c.

The simulation provides some insights into the behavior of tumor cells, as depicted in
Figures 4.6c and 4.7. Starting with 3 thousand cells/cm, the total population gradually
increases and reaches its peak of approximately 56 thousand cells/cm in a span of 10 months.
The population somehow reaches a steady state between the fourth and sixth months. Similar
to Example 2, the distribution of tumor cells has a modest peak, indicating that a too large
M is not required for numerical stability at all time points.

Furthermore, Figure 4.7 shows the development and spread of tumor cells from the original
two distributions as both age and time evolve. At certain time points, new tumor cells emerge
and gradually propagate to merge with the existing “older” distribution.

Remark 4. Since the exact solution is not known, we employ a heuristic method to determine
the order of numerical accuracy. For ease of presentation, we represent the discrete-in-time
total population at each time point pM (tj), when varying the value of M . Our heuristic
approach is to compare the numerical total populations by successively doubling the value
of M , starting from 25. Thereby, we compute the following ratio:

ratio = log2

(

∑

j≥0 p4M (tj)−
∑

j≥0 p2M (tj)
∑

j≥0 p2M (tj)−
∑

j≥0 pM (tj)

)

.
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(a) M = 200 (b) M = 400 (c) M = 800

(d) M = 200 (e) M = 400 (f) M = 800

(g) M = 200 (h) M = 400 (i) M = 800

(j) M = 200 (k) M = 400 (l) M = 800

Figure 4.5. Tumor cell density in Example 2 at t = 2.5, 5.0, 7.5, 10.0 for
various values of M . Column 1: M = 200,∆t = 0.05 (36 hours). Column 2:
M = 400,∆t = 0.025 (18 hours). Column 3: M = 800,∆t = 0.0125 (9 hours).
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(a) u0 (3D) (b) u0 (2D) (c) p (t)

Figure 4.6. Left: 3D representation of the initial data u0 in Example 3.
Middle: 2D representation of the initial data u0 in Example 3. Right: Total
population of tumor cells p (t) for varying values of M .

M Example 1 Example 2 Example 3

ratio

25 1.0980 undefined 0.9980
50 1.0978 -3.6189 0.9989
100 1.0535 1.0034 0.9994
200 1.0201 1.0005 0.9997

Table 2. Approximation of the order of numerical accuracy for Examples
1–3. The ratio is formulated in Remark 4.

As reported in Table 2, the numerical accuracy is of the order one, as readily expected by
the explicit numerical scheme being used.

A short discussion about two standard numerical approaches. The last part of this section
is devoted to giving a glimpse of how two standard numerical approaches–the conventional
Fourier series combined with linearization and the conventional explicit Euler method–work
when being employed to solve the Gompertz diffusive model. To facilitate the presentation as
well as the implementation, we do not take into account the mortality function, i.e. µ (a) = 0.
In this case, our PDE reads as

(4.3) ∂tu+ ∂au−D (t, a) ∂xxu = −ρu ln
( u

eK/d

)

for t, a > 0, x ∈ (−ℓ, ℓ) ,

associated with the same boundary and initial conditions prescribed in (1.2)-(1.4). Herewith,
the initial data u0, u0, the diffusion term D (t, a) and the dimensionless parameters K, d are
chosen as in Example 3.

In [9], the conventional Fourier series combined with linearization was proposed to solve
a generic model of (4.3) with a globally Lipschitz source term. Based upon the operator
−∂xx and the boundary data, this method relies on the conventional orthonormal eigenbasis
{ψn}n∈N in L2 (−ℓ, ℓ),

(4.4) ψn (x) =

√

1

ℓ
cos
(πn

ℓ
x
)

, λn =
π2n2

ℓ2
.
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(a) M = 200 (b) M = 400 (c) M = 800

(d) M = 200 (e) M = 400 (f) M = 800

(g) M = 200 (h) M = 400 (i) M = 800

(j) M = 200 (k) M = 400 (l) M = 800

Figure 4.7. Tumor cell density in Example 3 at t = 2.5, 5.0, 7.5, 10.0 for
various values of M . Column 1: M = 200,∆t = 0.05 (36 hours). Column 2:
M = 400,∆t = 0.025 (18 hours). Column 3: M = 800,∆t = 0.0125 (9 hours).
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Let Gn (t, a) = exp
(

λn
2

(

∫ t

0
D (t′, a) dt′ +

∫ a

0
D (t, a′) da′

))

in which

∫ t

0

D (t′, a) dt′ = e−(a−2a†)
2
∫ t

0

e−(t′−2T )2dt′ =

√
π

2
e−(a−2a†)

2

[erf (2T )− erf (2T − t)] ,

∫ a

0

D (t, a′) da′ =

√
π

2
e−(t−2T )2 [erf (2a†)− erf (2a† − a)] .

Then, the approximate scheme {uq}q∈N satisfies uq (ti, aj, x) =
∑N

n=1 ⟨uq (ti, aj) , ψn⟩ψn (x),
where the Fourier coefficients are computed via the linearization process:

⟨uq (ti, aj) , ψn⟩

=



















∆t
∑j

l=1

〈

−ρuq−1(ti−j+l,al) ln
(

uq−1(ti−j+l,al)
eK/d

)

,ψn

〉

Gn(ti−j+l,al)+⟨u0(ti−j),ψn⟩Gn(ti−j ,a0)

Gn(ti,aj)
if i ≥ j,

∆t
∑i

l=1

〈

−ρuq−1(tl,aj−i+l) ln
(

uq−1(tl,aj−i+l)
eK/d

)

,ψn

〉

Gn(tl,aj−i+l)+⟨u0(aj−i),ψn⟩Gn(t0,aj−i)

Gn(ti,aj)
if i < j.

(4.5)

We run a comparison between the accuracy obtained using two different bases: the conven-
tional basis {ψn}∞n=1 and the Fourier-Klibanov basis denoted as {Ψn}∞n=1. This comparison
is carried out by approximating the Fourier coefficients of u0 (aj−i), similar to our heuristic
approach in section 4.1. We report that for N = 6, using the Fourier-Klibanov basis results
in the relative max error of 0.12%, while employing the conventional basis leads to a signifi-
cantly higher error of 20.57%. For u0 chosen in Example 2, the Fourier-Klibanov basis yields
Emax = 0.13%, whereas the conventional basis gives a substantially higher error of 3.31%.
By doing the same token, for u0 chosen in Example 1, we compute that Emax = 0.01% for
the Fourier-Klibanov basis, whilst it is 0.05% using the conventional basis.

Due to the substantial error (20.57%) in the approximation of the Fourier coefficients of u0
and u0, the scheme (4.5) is not effective compared to the explicit Fourier-Klibanov scheme,
even with the same cut-off numberN = 6. Moreover, the scheme (4.5) is extremely expensive.
It necessitates not only the linearization step q but also requires careful approximations for in-

ner products involving the nonlinear term (i.e.,

〈

−ρuq−1 (ti−j+l, al) ln

(

uq−1(ti−j+l,al)
eK/d

)

, ψn

〉

and

〈

−ρuq−1 (tl, aj−i+l) ln

(

uq−1(tl,aj−i+l)
eK/d

)

, ψn

〉

). Due to its complexity, implementing the

scheme (4.5) with N = 6, q = 2 was limited to M = 25, resulting in completely poor perfor-
mance (see Figure 4.8). Doubling M to M = 50 would exceed the memory capacity of our
current computer used for simulation. Meanwhile, forM = 25, the explicit Fourier-Klibanov
method demonstrates a good approximation, evident in the numerical accuracy provided in
Table 2. Regarding the computation time, the proposed explicit Fourier-Klibanov method
only requires 0.27 seconds, whereas the scheme (4.5) takes a massive 9781 seconds to com-
plete.

In the next part of this discussion, we take into account the conventional Euler method.
Using the same finite difference operator, we discretize the differential operator ∂t+∂a along
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(a) Scheme (4.5) (b) Explicit Fourier-Klibanov

Figure 4.8. Numerical comparison between the linearized Fourier scheme
(4.5) and the explicit Fourier-Klibanov method in a coarse mesh in time (T =
10, M = 25). Left: The scheme (4.5) with q = 2 shows poor numerical
performance, requiring 9781 seconds for computation (in a parallel pool of
MATLAB). Right: As evidenced by the numerical accuracy presented in Table
2, the explicit Fourier-Klibanov method proves to be more reliable. This result
is obtained in a mere 0.27 seconds.

the characteristic t = a and apply the forward Euler procedure. In this scenario, we seek
u (ti, aj, xl) that satisfies the following difference equation:

u (ti, aj, xl) = u (ti−1, aj−1, xl)−∆tρu (ti−1, aj, xl) ln

(

u (ti−1, aj, xl)

eK/d

)

+
∆t

∆x2
D (ti−1, aj−1) [u (ti−1, aj, xl+1)− 2u (ti−1, aj, xl) + u (ti−1, aj, xl−1)] .

Numerically, the conventional scheme performs effectively when ∆t is sufficiently small,
similar to the explicit Fourier-Klibanov method. However, due to its explicit nature, it can
encounter numerical instability if ∆t is not adequately small. Specifically, considering a larger
time domain with T = 90 and M = 100 (thus, ∆t = 0.9), numerical observations reveal that
the conventional scheme fails to approximate the solution in the entire time domain, as
depicted in the first row of Figure 4.9. In contrast, employing the explicit Fourier-Klibanov
method with the same T = 90 and M = 100 settings demonstrates robustness, successfully
approximating the solution up to the terminal time T = 90, as shown in the second row of
Figure 4.9.

5. Conclusions

In this work, we have presented a new numerical approach to solve the age-structured
population diffusion problem of Gompertz type. While there have been numerous numerical
investigations focusing on tumor growth problems that consider only the time dynamics,
solving more complex models involving additional parametric variables remains challenging.
Our approach combines the recently developed Fourier-Klibanov method with the explicit
finite difference method of characteristics. The idea is to utilize appropriate transformations
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(a) Conventional (t = 9) (b) Conventional (t = 18)

(c) Fourier-Klibanov (t = 9) (d) Fourier-Klibanov (t = 90)

Figure 4.9. Numerical comparison between the conventional Euler method
and the explicit Fourier-Klibanov method in a coarse mesh in time (T = 90,
M = 100). Row 1: The conventional Euler method shows numerical instability
after some time steps, ending up with producing a negative numerical solution
at t = 18. In this circumstance, the entire simulation must stop because of
the undefined term u ln (u). Row 2: The explicit Fourier-Klibanov method can
compute well the numerical solution across the entire time domain.

to convert the Gompertz model into a third-order nonlinear PDE. Then, the Fourier-Klibanov
method is applied to derive a coupled transport-like PDE system. This system is explicitly
approximated by the finite difference operators of time and age.

In the upcoming work, we would like to show the rate of convergence of the explicit
scheme under particular smoothness conditions of the involved parameters and the true
solution. Besides, it is still open in this age-dependent Gompertz mode that if the explicit
Fourier-Klibanov scheme is non-negativity-preserving. Moreover, since the proposed explicit
approach is conditionally stable, it is worth investigating whether the implicit approach will
be unconditionally stable. Along with the possible unconditional stability of the implicit
scheme, we are aware of another challenge from the unbounded scenario of the mortality
function µ, compared with the explicit scheme proposed in this work.



APPROXIMATION OF A GOMPERTZ TUMOR GROWTH MODEL 23

Acknowledgments

This research is funded by University of Science, VNU-HCM under grant number T2022-
47. The work of V. A. K. was supported by the National Science Foundation grant #DMS-
2316603. N. T. Y. N. would love to thank Prof. Dr. Nam Mai-Duy and Prof. Dr. Thanh
Tran-Cong from University of Southern Queensland (Australia) for their support of her PhD
period. V. A. K. would like to thank Drs. Lorena Bociu, Ryan Murray, Tien-Khai Nguyen
from North Carolina State University (USA) for their support of his early research career.

References

[1] G. Akrivis, M. Crouzeix, and V. Thomée. Numerical methods for ultraparabolic equations. Calcolo,
31(3-4):179–190, 1994.

[2] A. Ashyralyev and S. Yilmaz. Modified Crank-Nicholson difference schemes for ultra-parabolic equations.
Computers & Mathematics with Applications, 64(8):2756–2764, 2012.

[3] B. P. Ayati, G. F. Webb, and A. R. A. Anderson. Computational methods and results for structured
multiscale models of tumor invasion. Multiscale Modeling & Simulation, 5(1):1–20, 2006.

[4] W.-S. Cheung and J. Ren. Discrete non-linear inequalities and applications to boundary value problems.
Journal of Mathematical Analysis and Applications, 319(2):708–724, 2006.

[5] M. Iannelli and G. Marinoschi. Approximation of a population dynamics model by parabolic regular-
ization. Mathematical Methods in the Applied Sciences, 36(10):1229–1239, 2012.
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