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The reconstruction of physical properties of a medium from boundary measurements, known as
inverse scattering problems, presents signicant challenges. The present study aims to validate a
newly developed convexication method for a 3D coecient inverse problem in the case of buried
unknown objects in a sandbox, using experimental data collected by a microwave scattering facility at
The University of North Carolina at Charlotte. Our study considers the formulation of a coupled
quasilinear elliptic system based on multiple frequencies. The system can be solved by minimizing a
weighted Tikhonov-like functional, which forms our convexication method. Theoretical results
related to the convexication are also revisited in this work.

Keywords: Coecient inverse problem; gradient descent method; convexication; global convergence; exper-
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1. INTRODUCTION

In this paper, we build upon our prior research and expand on the performance evaluation of our recently
developed globally convergent convexication numerical method for solving a Coecient Inverse Problem (CIP)
for the 3D Helmholtz equation using multiple frequencies. Our research aims to reconstruct the physical
characteristics of explosive-like objects that are buried underground, including antipersonnel land mines and
improvised explosive devices (IEDs). Thus, our focus is on three key properties: dielectric constants,
locations, and the shapes of front surfaces.

One common approach for numerically solving a CIP is to minimize a conventional least squares cost
functional, as described in previous literature such as [8, 11, 12]. However, this method has a major drawback -
the cost functional is non-convex and often suers from the issue of multiple local minima and ravines. As
a result, gradient-like methods are limited by getting stuck in any local minimum, and any convergence
achieved is only guaranteed if the starting point is in close proximity to the correct solution. Therefore,
conventional numerical methods for CIPs are generally limited to local convergence.

Denition. A numerical method for a CIP is referred to as globally convergent if there exists a theorem that
guarantees the method will converge to at least one point within a suciently small neighborhood of the correct
solution without requiring any prior knowledge of the neighborhood.

The convexication method is globally convergent, meaning that it is guaranteed to produce at least one
solution within a suciently small neighborhood of the correct solution, without any prior knowledge of that
neighborhood. This method is particularly well-suited for the most challenging cases of solving CIPs, whose
data are both backscattering and non-overdetermined. In this context, data are considered non-
overdetermined if the number m of free variables in the data is equal to the number n of free variables in the
unknown coecient. In this paper, we consider the case where m = n = 3. It is worth noting that we are not
aware of any other numerical methods for solving CIPs with non-overdetermined dataat m= n 2 that
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are both based on the minimization of a conventional least squares cost functional and globally convergent
according to the denition given above.

The convexication method has proven eective in solving a 3D CIP with a xed frequency and a point source
moving along an interval of a straight line, as demonstrated by both computationally simulated [15] and
experimental data [13, 14, 20]. In this scenario, we were able to accurately determine the rst two key
criteria: the dielectric constants and locations of the experimental targets. However, imaging the shapes of
the targets’ front surfaces requires further improvements. For instance, when dealing with more complicated
objects, as shown in Figures 6, 7, and 8, the previous conguration manifests several defects in the
reconstructed images. Henceforth, the present paper is focused on further enhancing this aspect.

To address the limitations in imaging the targets’ front surfaces with the existing method, we propose to
use multiple frequencies while maintaining a xed point source for the CIP under consideration. This
conguration has been previously studied in [24] in conjunction with the convexication technique to solve the
same CIP using simulated data. However, its eectiveness with experimental data has only been demon-strated
in producing good shapes of objects, while the reconstruction of the dielectric constant is not good. Therefore,
we have no choice but to combine this conguration with the previous conguration, which uses a xed frequency
and moving point sources, to amend the third property. In other words, we have gured out that the best
would be to use a two-step procedure. Steps 1 and 2 are performed using two dierent versions of the
convexication method. The version for Step 1 is described in this paper and the version for Step 3 was
described in [1315].

Step 1. Use the backscattering data for a single location of the source and multiple frequencies. This
gives us accurate geometrical characteristics of unknown targets: their locations and shapes of front surfaces.
Especially complicated non-convex shapes with voids are imaged well, see images of letters U, A, O in Figures 68
below. However, values of dielectric constants of targets are not computed accurately on this step.

Step 2. Use the backscattering data for multiple locations of the source at a single frequency, as it was
done in our previous papers [13, 14]. This provides us with accurate locations and accurate values of
dielectric targets of targets, although the shapes of their front surfaces are not computed as accurately as
they are in Step 1.

Step 3. Assign values of dielectric constants obtained on Step 2 to images obtained on Step 1. This
completes our imaging procedure.

It is worth noting that the conguration of using multiple frequencies and a xed point source has been
studied before in [26], but our approach in that study focused on a dierent approximation procedure using the
tail function, rather than the convexication method explored in [24].

It should be noted that the proposed convexication approach for both the above-mentioned congura-tions
builds upon the ideas of the BukhgeimKlibanov method. This method, which is based on Carleman
estimates, was initially introduced in 1981 to establish proofs of uniqueness theorems for multidimensional
CIPs, as detailed in the seminal work by Bukhgeim and Klibanov [7]. Since then, the method has been
widely used and extended for solving various inverse problems, see e.g. [16] for a survey of this method.

The numerical approach considered in this paper deviates from other inversion techniques, such as those
employed by Novikov’s research group, as described in their publications [2, 3, 27]. These methods address
single-frequency data and use distinct treatment methodologies. Additionally, we make reference to [4] for a
diverse numerical approach to a similar CIP.

The structure of this paper is as follows. In section 2, we introduce the Coecient Inverse Problem (CIP)
and the corresponding forward problem. Section 3 is devoted to the derivation of our functional J and the
presentation of our theoretical results, which are based on our recent publication [24]. Then, our
experimental ndings are provided in section 4. Finally, we close the paper by some concluding remarks in
section 5.

2. STATEMENTS OF THE FORWARD AND INVERSE PROBLEM

While the Maxwell’s equations are the primary governing equations for the propagation of electromagnetic
waves, our paper employs the Helmholtz equation. This approach is supported by numerical demonstrations
presented in the appendix of the paper [28], which establish that the Helmholtz equation eectively charac-
terizes the propagation of a specic component of the electric eld. Additionally, our successful experimental
ndings, as reported in our recent publications [2,3], provide further validation for the use of the Helmholtz
equation in this context.



Let be the Dirac function. Consider the following time-harmonic Helmholtz wave equation with x =
(x;y;z) 2 R3.

u+ 12%(x)u= (x x) inR3; i= P —, (1)

Physically, u = u(x) can be interpreted as a component of the electriceld E = (Ex; Ey; E;) that corresponds to
the non-zero component of the incident eld. Specically, in our case, the incident eld is characterized by the
voltage E . In_our experiments, we measure the backscattering signal of this same component.
Additionally, | represents the angular frequency in rad/m, while and "°(x) denote the permeability
(H/m) and permittivity (F/m) of the medium, respectively. The point source x is xed in this study.

We restrict our settings to non-magnetic targets, which means that the materials under consideration have no
magnetic properties, and therefore their relative permeability is equal to one. To be more precise, this
implies that the ratio of the permeability of the material to the permeability of free space (i.e., vacuum) is
unity. Let "o represent the vacuum permittivity and let ¢ denote the vacuum permeability. Consider k =
I "8 equation (1) can be rewritten as

) ||O(X) ) 3
u+ k© —‘u=(x x) in R”: (2)
o "o
We can now express the spatially distributed dielectric constant as c(x) = "°(x)="o. Using this, the

conventional Helmholtz equation follows from (2) and applying the Sommerfeld radiation condition, we get
the following system.

u+ k¥c(x)u=  (x x) inR3; (3) lim
r(@u iku)=0 forr=jx xj;i= P 1 (4)
rti1
Let us now focus on a rectangular prism

, dened as ( R;R) ( R;R) ( b;b)in R3 for R;b > 0. This prism serves as our computation domain of
interest. Besides, we dene the lower side of the prism as the near-eld measurement site,

= fx :jxj;jyi< R;z = bg:

In what follows, we make the assumption that the dielectric constant is smooth and meets the following
conditions:
(

c(x) 1 in

(5)

’

c(x)=1 inR3n

The second equation in (5) indicates our assumption that the region outside of the domain
is a vacuum. Next, we consider the line of sources that is parallel to the x-axis and exists outside of the
closure

. Mathematically, the following line of sources, denoted as Ls(c, is examined:

Lsre := f(;0; d):a1 axg; (6)

where d > b and a; < az. Note in this setting that the distance between the line of sources Lsrc and the xy-
plane is d. With this conguration in place, we can now select and describe the xed point source. The value
of R; d; b; a1;az; will be specied in our experimental results.

Remark 1. To this end, we dene the total wave u, incident wave uj, and scattered wave us. It is worth noting
that u = u; +us. Besides, the Sommerfeld radiation condition (4) is applied to guarantee the existence and
uniqueness results for the Helmholtz equation (3); cf. [9, Chapter 8].

Remark 2. In our conguration of interest, we arrange to measure the data with multiple frequencies. In
this regard, the involved waves u;uj; us are dependent of k. Henceforth, in the sequel, we write u =
u(x; k); ui = ui(x; k); us = us(x; k) for k 2 [k; k], where k; k> 0.



2.1. Forward problem

Prior to introducing the forward problem, we model the incident wave by using the point source,

exp (ikjx xj
ui (x; k) = u (7)
4jx X j
We observe that the incident wave u; satises the Helmholtz equation in the form of (4) with c(x) = 1. By
subtracting (4) from the Helmholtz equation for u;, we can obtain the PDE for the scattered wave us as

follows.
us + k2us = k?(c(x) 1)u:

Cf. [9], the scattered wave is solved via the following integral equation:

z - 0:

K2 exp (ik jx  x°j)

e 4jx  x ¢

exp (ik jx xoj)(

us (x; k) (%) 1)ux%k)dx® (8)

= k2 c(x®)  1)u(x%k)dx’ x 2 R3;

4jx x j¢
where we have used the fact that ¢ 1 is compactly supported in
; see (5). Combining (7) and (8), we arrive at the so-called Lippmann-Schwinger equation:
Z (.k - 0.)
exp (ikjx x
u(x; k) = ui(x; k) + k2 %(c(xo) 1) u(x%k)dx% x 2 R3:
4jx  x G
Hence, our forward problem is to determine the boundary information of the total wave eld u(x; k)j
for k 2 [k; k], based on the known dielectric constant c. It is important to remark that the total wave eld can
be non-zero for all points X in the domain
and for large values of k, as demonstrated in [15, 24] when c belongs to C1>(R3) and the Riemannian geodesic
line connecting x and x is unique.

2.2. Coecient inverse problem (CIP)

Our CIP is to seek the dielectric constant c (x) satisfying (5) from knowledge of the boundary measurement
Fo (x; k) of the near-eld data,

Fo(x;k) = u(x;k) forx 2 ;k2 [k;k]; (9)

where u (x; k) is the total wave associated with the incident wave ui(x; k) in (7).

While a more detailed description of our experimental setup will be provided in the numerical section, we
would like to provide a brief overview. In order to simulate the detection of land mines buried underground, we
have buried a single inclusion in a sandbox, with the sand understood as our background medium. The
dielectric constant of the sand, cpckgr, is known a priori to be about 4. Although we do not utilize this
information in our numerical method, the inclusions in our resulting images are characterized by a
dielectric constant c(x) greater than this number 4. It is important to note that the function c(x) used in our
mathematical statements incorporates information from both the sand and the inclusion. In order toaddress
this, we measure the raw data twice in our conguration: once when the sandbox is empty, and again when
the target is buried within it. By subtracting the former from the latter, we can Iter out the information
related to the sand. The resulting actual data (i.e., after subtraction) can then be used in the mathematical
setting under consideration.

Our choice to use near-eld data stems from our experimental observations, which have shown that far-eld
data alone do not provide an accurate indication of the buried object’s location. In contrast, near-eld data
have been found to be more reliable, as reported in [13, 14, 26] and numerically observed in Figure 3.
Furthermore, using near-eld data allows us to reduce the size of the computational domain, thereby
increasing accuracy, since the number of mesh grids is xed in our experiments.

Experimentally, we cannot get the near-eld data, but the far-eld. The near-eld we mean is the
approximate dataset that is calculated from the experimental far-eld data. To obtain the near-eld data, we
employ a technique known as data propagation; cf. [13, 26], the technique is revisited in section 4.



This procedure involves eliminating high spatial frequencies to obtain a good approximation of the near-eld
function Fo in (9). While we only obtain the measured data Fo, our mathematical model requires the z
derivative of the function u (x; k) on ,

Fi(x;k) = @.u(x;k) forx 2 ;k2 [k;k]: (10)

Remark 3. Given the CIP above, our data are non-overdetermined since the number m of free variables in the
data equals to the number n of free variables in the sought coecient. In particular, m = n= 3 in this scenario.

Remark 4. In the context of multiple sources and a xed frequency, as presented in e.g. [15], our CIP can be
expressed in a similar way. Specically, we can consider as the source variable based on the denition of the line
of sources in (6). To handle the conguration of multiple sources and a xed frequency, we require the boundary
measurement Fo(x; ), which Corresponds to Fo in (9), and the Neumann-type measurement

F1(x;), which corresponds to F1 in (10). Thereby, to derive a coupled quasi-linear elliptic system and
establish the convexication, as discussed in section 3, we can replace the frequency variable k with the
source argument in our formulations. The reader can be referred to Figure 1 for a visual representation
showing the dierence in the setup between the two distinct congurations.
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FIG. 1. (a) Conguration that involves the utilization of multiple sources arranged along a straight line. Each source emits
an incident wave at a xed frequency. (b) Conguration that uses a xed source while varying the frequency of the generated
signal. For both distinct congurations, there are detectors on the measurement plane to collect the backscattering data.

3. CONVEXIFICATION

3.1. Derivation of a coupled quasi-linear elliptic system

For x 2 B 1 ulxik).
and k 2 [k; k], we dene v (x; k) = . log wik) - It
rv (x; k) = follows from simple calculations that1 ru (x; k) rui(11)
(x; k)
k2 u(x; k) ui (x; k)
" 2 2#
1 u(xk) ru(x; k) ui(x k), rui(xk)° kZ
u (x; k) u (x; k) ui (x; k) ui (x; k) '

v(x; k) = (12)

When X 2
, we know that the total wave eld u(x; k) satises the homogeneous Helmholtz equation, u+ k?c(x)u = 0.

The incident wave u;(x; k) also satises this Helmholtz equation with c(x) = 1. In other words, it holds true
that

- = k:
W 2c () s k) 2



Combining this with (11), (12), we obtain the following nonlinear PDE for the function v = v(x; k):

2rv ru; _

v+ kZ(rv)? + c(x)+ 1 (13)

ui
forall x 2 N

and k 2 [k; k]. By dierentiating (13) with respect to the argument k, we arrive at the following nonlinear
PDE:

@v+ 2k%rv r@gv + 2k(rv)2 + 2r@gv rui + 2rv@krl'|i = 0: (14)
— —
u u

At this stage, it is worth noting that the PDE (14) does not contain the unknown function c(x), which is the
quantity of interest in our CIP. By solving PDE (14), we can obtain the dielectric constant c(x) via the back-
substitution in PDE (13).

We, on the other hand, obverse that Equation (14) is a non-trivial third-order PDE. Therefore, we rely on
the use of a special orthonormal basis of L?(k; k). Denoted by f mg,;, this basis is rst established in [17],

and it has been applied to solve distinctive inverse problems for PDEs with direct applications to, e.g.,
electrical impedance tomography and imaging of land mines our target application in this work. The reader
can be referred to [13, 19, 21] and references cited therein for an overview of such inverse problems.

To construct this basis, for each m 1 we consider’ , (k) = k™ ek (ktkI=2 The set ', (k)g,,, is lin-early

independent and complete in L2 k; k . We then apply the standard Gram-Schmidt orthonormalization
procedure to obtain the basis f m (k)gn;-

The basis f m (k)g,,, has the following properties:
" m2C?!k;kand 0 is not identically zero for any m 1;
“Let Smn = h 9; mi Where h;i denotes the scalar product in L? k;k. Then the square matrix
SN = (Smn) .1 2 RMN s invertible for any N since

(

1 ifn=m;
0 ifn< m:

Smn -

Notice that the second property does not hold for either classical orthogonal polynomials or the classical
basis of trigonometric functions. The rst column of Sy obtained from either of the two conventional bases
would be zero.

To solve the third-order nonlinear PDE (14), we consider the truncated Fourier series using the above-
mentioned basis. In particular, for x 2 N
and k 2 k; k , we seek

Z
X k
vick)  Ma(x) ni(k) = )l vix;k) o (k)dk n(k): (15)

n=1 n=1 K

By plugging (15) into the third-order PDE (14), we nd that

X X
vn(x)  2(k)+ 2 rvn (X) rvm (x) k%2 (k) ©4k)+ k o (k) m (k)
n=1 m;n=1
N . .
+2X rva(x) %(krul+ (k@ ru' o= o (16)
ne1 g a
Henceforth, for 1 | N we multiply both sides of (16) by (k) and obtain the following PDE system:
xW X N X N
SinVn(x) + Piamrva(x) rvm(x) + Qin(x) rva(x) = 0: (17)

n=1 n;m=1 n=1



In (17), we have for m; n;1 = 1; N that
Z
Sin = (k) 1(k)dk;
k

Zi
Pinm = 2 k2 n(k) ﬂq(k)+ k n(k) m(k) 1(k)dk;
-
_ (x; k rui(x;k )
Qin(x) = 2 k % (k) = (X A (k) @k uW'(k)dk'

Now recall from (9) that we measure the wave u on the lower side of the prism
Therefore, the Dirichlet boundary information of the sought Fourier coecients vn(x) for 1 n N is given
by

Zx
gon (X) = k 2log[Fo (x; k) =ui(x; k)] n(k)dk forx 2 : (18)

k
For X 2 @
n , we apply the heuristic data completion method (cf. e.g. [26]), choosing that u(x;k)j
) = ui (x; k)j

n - This choice is reasonable because outside of the sandbox is vacuum, i.e. ¢ = 1. Henceforth, we have

gon(x)=0 forx2 @
n: (19)

As mentioned in the previous section, the Dirichlet measured data (9) can lead to the Neumann-type data
(10). Moreover, we can compute that for x 2,

1 @u(xk)  @ui(x; k) 1Fi(x;k)  @ui(x;k)*
@v(x;k)= kK —ubck)  _uibgk) - k2 Folxpk)  _uibgk)

Henceforth, the Neumann-type boundary information of the source Fourier coecients vy(x) for 1 n N is

given by -

g (x)=2z k

1in

2

F1(x; k) @,u;i (x; k)
‘ Fo (x; k) ui (x; k) n(k)dk forx 2 (20)

Associating (17) with (18), (19), (20) forms our system of coupled elliptic equations, whose solution is the
vector function V (x) that contains all all of the Fourier coecients v, for 1 n N.

3.2. Convexied costs functional and theorems revisited

It is evident that (17) is a system of coupled quasi-linear elliptic equations. The nonlinear terms are
generated by products of gradients rv, (x) rvm (x). Therefore, conventional least-squares methods, which
minimize the dierential functional, may not yield desirable results. Nonlinear problems often exhibit non-
convex cost functionals, resulting in multiple local minima and ravines. Hence, a good initial guess must be
chosen to reach the global minimizer.

To tackle nonlinear inverse problems, convexication is one of some numerical methods available. This
method and its variants construct a suitable weighted cost functional that is strongly convex over a bounded set
of a Hilbert space. With this approach, the existence and uniqueness of a minimizer can be proven without
any restriction on the size of the set. Additionally, convergence towards the correct solution is guaranteed.

Introduce = (z) = e (R*r)7elz 1° 35 the Carleman Weight Function (CWF). Then, we consider the
following weighted cost functional J : [H ( P N
)] I R4, forp> 3,

X Z oo X XY 2
J(V) = 2 SinVn + Pinmrvi rvm + Qinrvp dx+ "ka[ﬁp(
v (21)1=1 n=1 n;m=1 n=1



Here, the CWF plays several important roles in the convexication of interest. First, the function helps to
control the highly nonlinear terms in the target quasi-linear system. Second, the CWF appears to maximize
the inuence of the measured boundary data at . Lastly, by the presence of such a function, one can prove that
the cost functional is globally strongly convex.
From now onward, we state the minimization problem.
Minimization problem. Minimize the cost functional J(V ) on the set B(M),
n o

B(M)= V2[HP( M

)] tkV Ko

)N M

Now, we formulate theorems of our convergence results. The theorems were proven in, e.g., [15, 24].
Therefore, their proofs are omitted.We begin with the Carleman estimate for the continuous Laplacian.

Theorem 1. There exists constants o = o (
;r) 1and C = CO(
;r) > 0 such as for every V 2 H? (

0

) and for all the following Carleman estimate holds true:
VA c VA
(2)iViPdx  (2Fj@uV ]’ + @V i° + j@uV 7+ j@nV I+ @V * + j@eVi® dx
+C 7

(z)jrv j*+ 2jVvj’dx:

The next theorem is devoted to the global strong convexity of the cost functional J(V ).

Theorem 2. The functional J (V ) dened in (21) has its Frdchet derivative DJ for allV 2 B(M ). Moreover, we
can nd a suciently large = (M;
) > 0 such that J(V ) is strongly convex on B(M). In particular, for all V2;V1 2 B(M), we have

J(V2) J (Vi) DJ (Vi)(Va Vi) CkVa Vikgyp 2

)]N + " kV2 Vlk[Hp(
I

where C = C(M;
) > 0.

As a by-product of Theorem 2, the existence and uniqueness of a minimizer Vmin in B(M) are guaranteed.
Moreover, we obtain the Lipschitz continuity of the Fr@dchet derivative DJ on B(M); see e.g. [15, Theorem
5.2] and some other references cited therein.

The convergence result follows from [29, Theorem 6]. Following the Tikhonov regularization concept [6], we
assume the existence of the exact solution Vv 2 [HP(
)N of §ystem (17) and that it safises the noiseless data g and g . Here, g and g are, respectively,
corresponding to the noisy boundary data go and gi, whose elements are dened in (18), (19), (20).

Let > 0 be the noise level. We assume that there exists an error function E 2 [HP(

)IN satisfying 8

<

>KE Ko

SN g 8f
;81= 81+ Ej

Next, we assume the existence of a function V such that @V = go on @
and V = g1 on . Consider Vmin;"; (X) = Vmin (x) + V(x) for x 2
. The convergence theorem is stated in the following.

Theorem 3. Assume that
n o
max  kVKye

)]N ; ka[Hp(

E

Dk 3
Then we can nd a constant C = C (
; r; M) such that the following estimate holds true kVmin;";
Vkpyz
pII
v €KY Vs
)N +



Since smallness conditions are not imposed on M, then the above convergence estimate conrms the global
convergence of the minimizer of the cost functional J(V ) to the exact solution.

It now remains to discuss how to nd Vmin;"; by the so-called gradient descent method. Let 2 (0;1).
The gradient descent method is given as follows:

V(n)= V(n 1) DJ(V(n 1)); n=1;2;:::; (22)



where V (") denotes the nth iteration for the approximation of the minimizer Vmin:.. In (22), we use the
starting point V (°) 2 B(M) being an arbitrary point in that particular set. Recall that by Theorem 2, we
obtain that Vmin;"; in B(M). Cf. [25, Theorem 2], if we assume further that the ball centered at Vmin;"; with
the radius v () Vimin;":
)N is contained in B(M ), then the distance between the nth iteration

[H2(

V(") and the minimizer Vmin;", is controlled well by that radius V() Vi (H2(
nE In particular, we formulate the following theorem, while its proof is omitted.

Theorem 4. Let V(®) 2 B (M) and Vmin;; 2 B (M) be such that the ball centered at Vmin;"; with the radius V

(0) Vmin;"; [H2(

I is contained in B(M). Then there exists a suciently small number o 2 (0;1) such that V(") B (M)
for all n = 1;2;::: and for all 2 (0;0). Moreover, there exists a number
&= &() 2 (0;1) such that
V(n) Vmin;”;
[H2(
ne &V Vi,
e

By Theorems 3 and 4, we obtain the strong convergence of the sequence fV " gnlzo toward the exact solution
V. Particularly, by the triangle inequality, it holds true that

vin oy cPrv vk + + &V vy :
[H2( N [He( N N
) ) [H2(
)]

4. NUMERICAL EXPERIMENTS

The numerical results performed in this section are all obtained with experimental data. Those are data
collected at the microwave facility of the University of North Carolina at Charlotte (UNCC), USA. For the
sake of simplicity, we refer the reader to [13, 14] for details of the experimental setup we establish at the
University of North Carolina at Charlotte. Thereby, we only mention below key elements of our experimental
conguration. Even though those publications [13, 14] focus wholly on the CIP with multiple point sources and
a xed frequency, the set of data collected at that time is variable in both source locations and frequencies for trial-
and-error. For each source position, our raw data set consists of back-scattering data corresponding to 201
frequency values uniformly distributed between 1 GHz to 10 GHz. Therefore, we are capable of using those
data to verify the numerical performance of the convexication method for the CIP in the context of multiple
frequencies and a xed point source.

4.1. Experimental conguration and computational settings

The experiment conducted at UNCC involves practical data of ve (5) experimental objects buried in a
sandbox. Those tested objects were prepared to mimic explosive-like devices often seen in the battleeld.
Typically, we classify them as metallic and non-metallic objects:

1. An aluminum tube that mimics the NO-MZ 2B, a Vietnamese anti-personnel fragmentation mine; cf.
[5].

2. A glass bottle lled with clear water that is a good t of the Glassmine 43 in terms of the material; cf.
[28]. Reconstructing the shape of the bottle is challenging as this object comes with a cap.

3. An U-shaped piece of a dry wood that can be an example of the Schu-mine 42, a wood-based anti-
personnel blast mine. Compared to the glass bottle above, this piece of dry wood has a very complicated
non-convex shape.

4. A metallic letter ‘A’ that is to augment the complication in shape of metallic experimental object;
compared to the aluminum cylinder.

5. A metallic letter ‘O’ that serves the same purpose as the letter ‘A’. It helps to test the numerical
performance of the convexication method with varying levels of complexity in the shape of the object.
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In [13], the last two tests (i.e. those with the metallic letters) were blinded. In this sense, we only knew
their backscattering data and that the experimental objects were buried close to the sand surface. The
experimental results obtained in that publication, however, turn the blinded tests to be unblinded.
Therefore, in the present paper, our numerical experiments are demonstrated with all unblinded tests.

For every test, the experimental object is placed inside of a rectangular box lled with moisture-free sand,
which is then referred to as a sandbox. This man-made sandbox is framed by some wood materials, and its
back and front sides are covered by a 5-cm layer of Styrofoam. The front side we mean here is closer to the
standard antenna, compared to the back one. In our conguration, the antenna plays a role in sending incident
waves toward the sandbox. Then, there is a rectangular measurement surface of dimensions 100100 (cm?)
behind the antenna to collect the backscattering data. Experimentally, this surface is discretized in an
equidistant mesh of 2-cm mesh-width. Moreover, the horizontal and vertical sides of this surface dene,
respectively, the x- and y-axes of our coordinate system and thus, the z-axis is the orthogonal one to our
measurement plane. As to the burial depth of the experimental object, it is a few centimeters away from the
front Styrofoam. This is relevant to real-world applications that landmines are at most 10 (cm) away from the
ground surface in the battleeld; cf. [10].

In the sequel, we consider dimensionless variables as x° = x=(10 cm) and for simplicity, we use the same
notations as in the theoretical part. In this regard, the dimensions in our computations are 10 times less than
the real ones in centimeters. For instance, our 100100 (cm?) measurement plane is understood as a 1010 surface
in the dimensionless regime. Now, we introduce our computational setup in this dimensionless setting.
According to our experiment, the distance between the measurement surface and the sandbox with the front
Styrofoam is 11.05. We also nd that the length in the z direction of our sandbox without the Styrofoam is
about 4.4. As the Styrofoam layer is bent by the intensity of dry sand, we deliberately reduce 10% of this
length. All of these result in the choice of our computational domain
= x 2 R3:jxj;jyi< 5;jzj< 2 . Inother words, we take R = 5, b= 2, and the center of the sandbox is taken
as the origin of our coordinate system. As to the source position, in our numerical results below we choose
the one adjacent right to the origin of the line of sources in [13, 14]. The location of this source is (0:1;0; 9).

Our raw data are measured far away from the sandbox. Cf. [13, 14, 26], we observed numerically that these
data lack quality due to many physical diculties met in measurement process (antenna location, unwanted
furniture with dierent materials, distracting signals). It will be then not good if we apply them directly
to the minimization procedure. Thus, we employ the so-called data propagation technique to move these
far-eld data closer to the sandbox, which results in an approximation of the near-eld data. It is also worth
mentioning that the application of this data propagation procedure is helpful in reducing the size of the
computational domain in the z-direction. Thus, it gives a better estimation of images of the experimental
objects in x; y coordinates. In this work, the near-eld plane is chosenas = x 2 R3 :jxj;jyi< 5;jzj= 2
the front side of the sandbox.

°
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FIG. 2. |lllustration of the frequencies Itering for preprocessed data in Example 1. (a) The frequency dependent dynamics of
the maximal absolute values of the experimental data after preprocessing procedure. All of these values are depicted for all
wavenumbers k 2 [2:09; 20:95] corresponding to the frequencies f"2 [1 GHz; 10 GHz]. The red dots are imposed to indicate the

wavenumber interval should be chosen. (b) The maximal absolute values of the processed data after frequencies ltering.

We revisit the data propagation procedure that enables us to obtain the propagated data, termed as near-eld
data, from the raw data referred to as far-eld data. We know that c(x) = 1 outside of the rectangular
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FI1G. 3. Graphical illustration of the absolute value of the raw far-eld data (a) and the propagated near-eld data (b) in
Example 4 in which the experimental object is A-shaped. This set of data is collected at k = 10:77 corresponding to f™= 5:14
(GHz), see (26) for the relation between the wavenumber k and the frequency f> From these gures, we can see the A shape
very clear when using the propagated near-eld data. Meanwhile, the shape is not captured well for the raw far-eld data.

Example 1 2 3 4 5
Object Metallic cylinder [Bottle of water| Wood U  Metallic A Metallic O
Wavenumber k 6.72 - 9.45 5.87 - 8.60 18.22 - 20.96|10.68 - 13.41|8.70 - 11.43
Frequency (GHz) 3.21 -4.51 2.80 - 4.11 8.70 - 10 5.10 - 6.40 | 4.15 - 5.46

TABLE 1. The case of a single location of the source and multiple frequencies. Distinctive choices of the wavenumber
interval for examples 1-5 and the corresponding frequencies.

prism
= ( R;R) ( R;R) ( b;b)in R3. Therefore, the scattered wave us in the half space fz < bg satises the
following system:

us+ k%us= 0 in fz < bg; (23)

lim r (@rus ikus)= 0 forr=jx xj;i= P I (24)
rt1

As mentioned in section 2, our experiments make use of the far-eld data. Consequently, we have a dataset
denoted as us(x;y; D), where D > b, while our objective of the data propagation procedure is to obtain
Us(x;y; b). Specically, in our experiments, we have D = 14. The data propagation is obtained in the
following way. Consider the Fourier transform of the scattered wave:

z

1 .
— Us (x) e '(x1+YZ)dXdy'.

F (us)(1;2;2) = 5
RZ

assuming that the corresponding integral is convergent. For z < b, by applying the same Fourier transform
to equation (23), we nd that
@,,F(us)+ k2 2 ,F(us)= 0
1
Solving the above dierential equation gives the following relation between F (us)(z) at z < b and

Example 1 2 3 4 5

Object Metallic cylinder [Bottle of water [Wood U Metallic A Metallic O
Wavenumber k 8.51 6.62 11.43 9.55 8.79
Frequency (GHz) 4.06 3.16 5.45 4.55 4.19

TABLE 2. The case of a single frequency and multiple sources. Distinctive choices of the wavenumber for examples 1-5 and
the corresponding frequencies.
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Flus)(z=h)
(

z

P—— (25)
k27 2(#b) 4 C,el K 1 2(*+b) otherwise :

T4+2 K2(z+b) 2., 2 L2
F(us)( ble 1 2 for 2+ ;
F(us)(2) = Si)Pi o

C1e

Cf. [26, Theorem 4.1], we can set C; = 0in (25). For D relatively large, the value of the term in the rstline of
(25) is very small. Therefore, we can neglect the term with high frequencies and then use the inverse Fourier
transform to obtain the near-eld data:
1 z ihpk2 2 2( D+b)+xi+ya_
us(x;y; b)= ( F (us)(1;2; D)e Y

I
5 2dydy: 2+42<k2
1 2

As an slight improvement of the data propagation technique commenced in [26], we postulated a modied
truncation procedure in [13] to remove possible random oscillations in the propagated data. The truncation
procedure consists of two steps. First, we only preserve the propagated data whose values are at least 40
percents of the maximum absolute value. Then, we smooth those truncated data by the Gaussian lter.
Observe that the smoothing process will average out the maximum value of the data, which may impact
on the accuracy of the minimization result. In the second step, we add back some percents of the
smoothed data to preserve the important peak that represents the maximum absolute value of the data.
When doing so, we only need to multiply the smoothed data by a retrieval number computed by
max (jtruncated dataj) = max (jsmoothed dataj). This whole notion is mathematically specied in [13], and the
reader should be referred to that publication for any other details.

We now discuss the choice of an appropriate frequency interval since it does aect the quality of the
frequency-dependent data applied to the minimization process. We remark that the raw data are frequency
dependent in which the frequency unit is Hz (or s ). Cf. [13, 26], we formulate the relation (in the
dimensionless regime) between the wavenumber k (with unit cm 1) and the frequency, denoted by f, as
follows:

~

2f

(26)
k= 2997924580.

The choice of a frequency interval essentially relies on the performance of the data after preprocessing.
Experimentally, it is dierent from one example to the others; see Table 1. Following two criteria proposed in
[26], we choose the wavenumber interval such that (1) the maximal absolute value of the processed data in this
interval should not soar and plunge dramatically, and (2) for distinctive frequencies within this interval, these
maxima at attained at the same coordinates (small deviation is acceptable) of the near-eld plane. Once the
interval is determined, we truncate all data that are outside of the chosen interval. Presenting the maximal
absolute values of the experimental data in Example 1 after preprocessing for all wavenumbers k, Figure 2
exemplies well the above-mentioned strategy. We nd numerically that in Example 1, the interval of
wavenumbers should be the vicinity of the rst bump with a length of about 2.7 (see red dots in Figures 2(a)
and 2(b)). Note that since our frequencies f are betweeri"l GHz and 10 GHz, the corresponding wavenumber
k should range approximately from 2.09 to 20.95 using (26). We apply the same process to all other
examples to choose appropriate wavenumber intervals for them. Tentatively, we call this process frequencies
Itering.

4.2. Minimization process

Theoretically, our convexication method is globally convergent for any initial solution V. 2 B. However, to

reduce the elapsed time of computations, we deliberately nd the initial solution Vg = vio); e ';v,:o)
that is close to V. Recall that V = (vi;v2;:::;vn)T is the solution of the following nonlinear elliptic system:
X
N Sinvn(x) + Pinmrvn(Xx) rvm(x) + Qin(x) rvn(x) =0 foralll=1;N;x2

; (27)

n=1 n;m=1 n=1
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associated with the boundary conditions @Vj = go;V je
= g1. Note that go and g1 are obtained from our experimental data after the frequencies Itering process. In
(27), we indicate that for i;j;1 = 1; N,

Z
Sin = fk) 1(k)dk;
&Zr
Pinm = 2 k2 n(k) 2(k)+ k n(k) m(k) i(k)dk;
Kk
Zyi
_ C
Qi (x) = 2 . ”(k)iui(x;k) +

rui(x; k) (@, " k)
n k ui(x; k) (k)dk;
where the upper and lower bounds of k are determined in the frequencies Itering mentioned above.

It is thus natural to take Vo solutions to the corresponding linear system to (27). In this sense, we drop in
(27) the nonlinear term containing rv, (x) rvm (x) and therefore, arrive at the following linear elliptic
system:

X N
Sinvn(x) + Qn(x) rv,(x) =0 foralll= 1;N (28)
n=1 n=1

associated with the same boundary conditions go and gi1. By the natural linearity, system (28) can be solved
directly by the quasi-reversibility (QR) method involving the same Carleman weight function = (z) = e

(R+r)*e(z 1” |n this regard, we minimize the following functional:

Z N X ?
W)= 2 SinVn (x) + Qin (x) rvn (x) dx+ "kV k[Hzp(

v (29)1=1 n=1 n=1

The solution Vo obtained from solving (28) will be used as the starting point of the minimization process.
Implementation of this QR method in a nite dierence setting is detailed in [24, 25] and is analogous to
the implementation of our cost functional J(V ) below.
As introduced in section 3, the cost functional of our minimization process for system (27) is formulated
as follows:

Z % X X ?
I(v) = 2 SinVa + Plamrvi rvm + Qinrva dx+ "kVkZs

vt (30)1=1 n=1 n;m=1 n=1

Here, recall that = (z) = e (R*r)”elz 1" jnyolves the Carleman weight function e 7° . In our numerical
verication, we choose = 1:1 and r = 5:5in (31). We remark that even though our theory is valid for suciently
large values of , we have experienced numerically that we can choose a moderate value of in [1,3]; see our
previous works with both simulated and experimental data [1315, 18]. Below, we use the same value of " = 10
9 for all examples. Also, instead of using a high regularity in the regularization term "kV k N, We
use only "kM an . It reduces the computational complexity, while still providing a satisfactory numerical
performangg. As in [13], the cut-o number for our Fourier series is chosen as N = 6in all examples. Besides, the
same paramheters are used in our minmization of the quadratic functional (29) of the QR method in all tests.

We now briey mention the standard fully discrete version of the cost functional J above. Let Ny = Ny =
51 and N, = 21 be the number of discrete points in x;y and z directions, respectively. Therefore, the same

grid step size h = 0:2 in these directions is used. For each i = 1;N, we denote by vi(xi;yj; zi) the
corresponding discrete function of vi(x; y; z) dened at mesh-points x; = R+ih;y; = R+jh;z = b+lh.
Hereby, the corresponding Laplace operator in this nite dierence setting is given by = @ h +@h +@n ,
where, for interior grid points ** VY  Z%f

, we consider
@ vilxi;yi;z1) = h 2 (vilxis1;yi; 1) 2vilxi; yi; 21) + vilxi 1555 21)) 5

and the same is applied to the dierence operators @yj‘; @, For the gradient operator, we consider r P =

(@; @;;@);) with

@"vi(xi;yi;21) = (2h) M(vilxis1;y521)  Vilxi 1555 21):
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Henceforth, the discrete version of J corresponding to (30) is given by

) XN XNX N N
J(V")=h (zr1) Sii Vi(Xi;yj;Z|)i=1
j=1 1=1 I=1 i=1
xN xN 2
+ Prsrvi(xi; yi; zi) rvi(xi;yj; z1) + Qui(xi; yi; 2)rvilxi; vi; 21)
i;j=1 i=1
3)@’X XoXN: N 2 h 2, :h 2
+"h jvi(xisyys zi)i® + jrtvilxi; i zi)i” + i'vilxis yi; z1)j®: (31)i=1
j=1 1=1 I=1

To speed up the computation process, we compute the gradient DJ of the discrete functional J in (31)
using the technique of Kronecker deltas; see in [23]. For brevity, we do not provide such a long formulation for
the gradient DJ here. Overall, the procedure to compute the approximate minimizer, denoted by V €©°™P, is
described in Algorithm 1. For the step size in Algorithm 1, we briey report that we start from = 10 !, and for
each iterative step, if the value of the functional exceeds its value on the previous step, we replace the current
step size by =2. Otherwise, we keep it the same. We stop the minimization process via the gradient descent
method when = 10 °.

Al HN 4 A + ] e ol 1l (D
AT UTTUTITT T AT TTUTTIET ICar 1retimiou—tu SuTveE (2
>

Choose a threshold error 0.

Set m = 0 and nd an initial solution Vo by solving (28).

Compute Vm+1 using the gradient descent method for some step size 0 < 1.

IfkVime1  Vimkpzp v <", move forward to Step 5. Otherwise, set m= m+ 1 and return Step 3.
Set VO™ = Vi

uhwNR

After obtaining the computed N-dimensional vector function V €©°™P, we plug its components in the Fourier
series that approximates v. Then, we compute the unknown dielectric constant by the following discrete
formulation:

c(xi; vj; 1)
2rhv(xi; v; zi; k) rPuo(xi;y; zi; k)
]

+ 1:0

= meanc Re "v(xi;yj;zi; k) + k2(r"v(xi; yi; 215 k)2 +
u (X552 k)

To visually represent the reconstructed inclusion in each example, we use the isovalue functionin MATLAB to
generate 3D images. In cases where the inclusion possesses a high dielectric constant ( 10), we choose an
isovalue of 20%. Conversely, for inclusions with low dielectric constants (< 10), we select an isovalue of 10%.

4.3. Numerical results

Our numerical results are depicted in Figures 48 corresponding to ve (5) examples that we have men-tioned
earlier in subsection 4.4.1. In those gures, we present real photos of the experimental objects, and the
reconstructed inclusions in three dimensions from two dierent computational approaches for comparison.
Herewith, the rst one is our current approach when using multi-frequency data and a xed point source. The
second approach is the one investigated in a series of publications [1315] dealing with the context of multiple
point sources and a xed frequency.

In all gures, we nd that the rst method reconstructs our inclusions with better shapes. Specically, at this
time the whole complicated shape of letters ‘U’, ‘A’ and ‘O’ is visible when applying the rst approach; see
Figures 6, 7 and 8. Also, in Figure 5(b), the bottle of water with its cap can be well interpreted,
compared to Figure 5(c) in which the second approach is used. We, however, observe numerically that
there is a main drawback of the current numerical approach. Our approach in this context (i.e. multiple
frequencies and one source) does not give a decent value of dielectric constant. For instance, in the rst test with
the metallic cylinder, we report that the maximum value of the computed dielectric constant is only 1.0006,
while by the second approach (i.e. multiple sources and one frequency), the obtained value is 18.72.
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Example 1 2 3 4 5
Object |Metallic cylinder|Bottle of water [Wood U WNletallic A Metallic O
ch 18.72 23.29 6.56 15.01 16.25
Ctrue 10 - 29 23.8 2-6 10 - 29 10 - 29
Reference [22] [30] [1] [22] [22]

TABLE 3. Values of computed and true dielectric constants of examples 15. The values are taken from [13].

Note that we, herewith, focus on the so-called appearing dielectric constant of metallic objects we have
experimented numerically with in the previous publication [22]. In particular, the range of the appearing
dielectric constant of metals is [10, 30].

As one of important physical properties that one targets in landmine detection, shape of reconstructed
inclusion is essential and can be helpful in classifying explosive devices in the battleeld. Our reconstruction
results show that the perspective of multiple frequencies and one source being considered in this work does a
good job to fulll this property. It, indeed, produces a quite good shape of buried objects. With the same
experimentally collected data used but dierent perspective (multiple sources and one frequency), the
convexication method therein provides a high accuracy of computing the dielectric constant; see Table 2 in
[13]. Note that having an accurate dielectric constant of the buried object is another essential physical
property in landmine detection. Henceforth, when data set is allowed, it is our idea that one should combine
these two perspectives to obtain decent reconstruction results in terms of both shape of the buried object and
the dielectric constant. In the future work, we will nd an appropriate approximate model for this interesting
idea. In other words, a convexication method should be studied to come up with the perspective of multiple
sources and frequencies.

5. SUMMARY

In this paper, we have examined the numerical performance of our convexication method applied to a 3D
coecient inverse problem using experimental data. Our study focuses on imaging buried objects within a
sandbox, simulating the detection of landmines on a battleeld.

Previously, we employed the convexication method with a setup involving multiple sources and a xed
frequency. This approach yielded highly accurate computations of the dielectric constants. Meanwhile, we
observed that using multiple frequencies and a xed source conguration improved the shape of the front
surface of the experimental inclusions, a crucial physical property for detecting explosive devices.

Based on our current investigation, it is evident that combining these two congurations produces good
reconstruction results in terms of both the shape of the buried object and the dielectric constant, provided the
data set allows for such combination.
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(a) Bottle of water
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(b) The reconstructed bottle of water with
one source and multiple frequencies

(c) The reconstructed bottle of water with
multiple sources and a xed frequency

FIG. 5. Example 2. The bottle of water. (a) The real image of the glass bottle of water. (b) The reconstructed dielectric

constant function by the rst method with a xed source and multiple frequencies. (c) The reconstructed dielectric constant
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(a) Wooden letter ‘U’
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(b) The reconstructed letter ‘U’ with one
source and multiple frequencies

(c) The reconstructed letter ‘U’ with
multiple sources and a xed frequency

FIG. 6. Example 3. The wooden letter ‘U’. (a) The real image of the U-shaped piece of dry wood. (b) The reconstructed
dielectric constant function by the rst method with a xed source and multiple frequencies. (c) The reconstructed dielectric
constant function by the second method with multiple sources and a xed frequency. Note that the U shape can be seen
clearly by the rst method. It is well known that detecting non-convex objects with voids inside them is challenging but the
rst method can produce clearly letter U and the void inside it.
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Example 4. The metallic letter ‘A’. (a) The real image of the A-shaped piece of metal. (b) The reconstructed
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dielectric constant function by the rst method with a xed source and multiple frequencies. (c) The reconstructed dielectric
constant function by the second method with multiple sources and a xed frequency. Note that letter A is produced perfectly
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with the void inside by the rst method. It is much clearer than the result obtain by the second method.
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FIG. 8. Example 5. The metallic letter ‘O’. (a) The real image of the O-shaped piece of metal. (b) The reconstructed
dielectric constant function by the rst method with a xed source and multiple frequencies. (c) The reconstructed dielectric
constant function by the second method with multiple sources and a xed frequency. It is clear that the O shape with a void

inside is produced better by the rst method in comparison with the result of the second one.



