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Topological effects manifest in a wide range of physical systems, such as solid crystals, acoustic
waves, photonic materials and cold atoms. These effects are characterized by ‘topological invariants’
which are typically integer-valued, and lead to robust quantized channels of transport in space, time,
and other degrees of freedom. The temporal channel, in particular, allows one to achieve higher-
dimensional topological effects, by driving the system with multiple incommensurate frequencies.
However, dissipation is generally detrimental to such topological effects, particularly when the sys-
tems consist of quantum spins or qubits. Here we introduce a photonic molecule subjected to
multiple RF /optical drives and dissipation as a promising candidate system to observe quantized
transport along Floquet synthetic dimensions, and provide preliminary experiments contrasting the
topological and trivial phases. Topological energy pumping in the incommensurately modulated
photonic molecule is enhanced by the driven-dissipative nature of our platform. Furthermore, we
provide a path to realizing Weyl points and measuring the Berry curvature emanating from these
reciprocal-space (k-space) magnetic monopoles, illustrating the capabilities for higher-dimensional
topological Hamiltonian simulation in this platform. Owur approach enables direct k-space engi-
neering of a wide variety of Hamiltonians using modulation bandwidths that are well below the

free-spectral range (FSR) of integrated photonic cavities.

10 Quantized transport is a hallmark of topological insu-
u lators (TIs). Initially explored for electronic transport in
12 condensed matter systems (i.e. quantized Hall conduc-
tance [1, 2], Hamiltonians supporting nontrivial topology
have now been experimentally simulated in a wide variety
15 of systems such as ultracold atoms [3, 4], photonics [5],
acoustics [6, 7] and topolectrical circuits [8]. In such sim-
ulators, the Hamiltonians are typically created by con-
trolling the coupling between a lattice of real-space sites
encoded, for example, in large arrays of atoms, photonic
resonators or photonic waveguides [9-11]. Experiments
have reported robust unidirectional edge states [9, 12, 13]
in these real-space emulators, but the theoretical and ex-
perimental evidence for quantized topological transport
2 in photonic TIs remains scant — especially when com-
pared to the near-perfect quantized conductivity [2] in
electronic quantum Hall systems to one part in 10, which
was later used to define the resistance standard [14]. A
prime reason for this is the difficulty in defining transport
properties and the analog of conductivity for neutral par-
ticles such as atoms or photons as they do not naturally
respond to electromagnetic fields. Other impediments to
ideal transport quantization in real-space simulators in-
clude the inescapable effects of dissipation and external
s driving [15].

s In recent years, the concept of synthetic dimensions
has emerged by repurposing internal degrees of freedom
s of atoms and photons as extra dimensions, thus real-
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izing high-dimensional topological phenomena on com-
pact, low-dimensional physical structures [16, 17]. Syn-
thetic dimensions have enabled lattice Hamiltonians with
straightforward reconfigurability and tunability, long-
range coupling, and artificial magnetic gauge fields for
neutral particles, through precise control of coupling be-
tween modes labeled by degrees of freedom such as fre-
quency, temporal modes, orbital angular momentum,
spin and transverse spatial modes [18-30]. Photonic syn-
thetic frequency dimensions, in particular, have success-
fully demonstrated both Hermitian and non-Hermitian
topology, electromagnetic gauge fields, unidirectional
edge states, Bloch oscillations, and bulk as well as bound-
ary phenomena [16, 18, 22, 31-37]. However, the afore-
mentioned limitations of quantized topological transport
in real-space photonic emulators — that of neutral par-
ticle transport in electromagnetic fields, the presence of
dissipation and drive — also apply to synthetic-space sys-
tems.

Here we show how the effects of multiple drives and
dissipation can support quantized topological transport
of photons, by using the concept of Floquet synthetic di-
mensions in a pair of modulated cavities, and construct
a preliminary experiment to probe for qualitative differ-
ences between the topological and trivial regimes. Our
system consists of two identical coupled photonic cavi-
ties, often called a “photonic molecule” [38, 39], that are
modulated to induce transitions between their symmetric
and antisymmetric supermodes. This modulation is itself
driven by two or more drives at incommensurate frequen-
cies, each of which realizes an orthogonal synthetic di-
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FIG. 1. Schematic of the proposed system. a. The non-degenerate eigenmodes separated by the coupling rate p of the photonic
molecule are the symmetric (S) and anti-symmetric (AS) supermodes, i.e., single-ring azimuthal modes that are in-phase (S)
or m-phase separated (AS). Coherent evolution in the subspace of a single pair of these resonance modes can be equated to the
motion on a Bloch sphere, which is controlled by driving the electro-optic modulator (EOM) with an RF signal nearly resonant
with 4 (wm = p+ 9, see inset in ¢). b. Proposed setup to create the 2D Floquet lattice of a using an RF signal with amplitude
I-Q modulation (€21, Q2 and frequency modulation A(t) (Eq. (5)). AWG: arbitrary waveform generator. As an example, we can
implement the half-BHZ Hamiltonian on a Floquet lattice [Eq. (1)]. Our driven-dissipative protocol also includes an optical
laser drive at detuning wg and a loss rate . c¢. Transmitted power for the setup in b without any RF drive on the EOMs.

mension. We refer to the lattice sites created by each in-
commensurate drive as being along a “Floquet” synthetic
dimension. We explicitly construct a 2D Chern insula-
tor that exhibits quantized topological energy pumping,
by realizing a driven-dissipative analog of the conserva-
tive protocol by Martin, Refael and Halperin [40]. The
rate of energy pumping not only survives the effects of
external laser drive but is abetted by the presence of fi-
nite dissipation. Moreover, the driven-dissipative nature
of our protocol obviates the limitations imposed by finite
qubit coherence times and the need for complicated state
initialization in qubit platforms [41, 42], with the qualita-
tive differences observed in a lossy fiber-optic experiment
attesting to the remarkable topological robustness of the
2D Chern TT.

Note that our usage of the term Floquet dimensions
distinguishes it from synthetic frequency dimensions al-
though both require modulated photonic cavities, as the
modulation frequencies in the former case are signifi-
cantly below the modulation at the free-spectral-range
(FSR) required in the latter case. This eases on-chip real-
ization of our approach in integrated photonics by reduc-
ing the demanding bandwidths of low-loss electro-optic
modulation. The reduction is particularly beneficial for

10

10

10

o3 the photonic construction of high-dimensional models as
o that would require modulation with frequencies 10-100 x
s the FSR in the synthetic frequency dimension case.

o As an illustration of high-dimensional topology, we
o use our effectively 0D system to construct a three-
dimensional (3D) topological Hamiltonian supporting
9 Weyl points, which act as magnetic monopoles in the re-
ciprocal (k) space of the Floquet lattice [43]. To observe

9

®

S

101 this monopole behaviour, we require a reconstruction of
102 the Berry curvature’s ‘field’ lines, measured around these
103 Weyl points. We conclude by showing how the Berry cur-
104 vature can be experimentally measured throughout the
10s bands for any general two-band Hamiltonian.

1ws  More generally, harnessing Floquet synthetic dimen-
17 sions offers a powerful tool for direct k-space Hamilto-

I3

nian engineering in high dimensions using simple, com-
pact geometries with experimentally realizable excitation

©

1o and measurement protocols.
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Half-BHZ model in a photonic molecule and
topological energy pumping

To illustrate the analogous topological behavior of
temporally modulated systems in Floquet synthetic
dimensions, we consider the Bloch form of the Qi-
Wu-Zhang model [44] (equivalently, the half-Bernevig-
Hughes-Zhang (half-BHZ) model). When implemented
on a Floquet lattice by driving a spin (or a two-level
system) with two incommensurate (irrationally related)
frequencies [40], the Hamiltonian is

H = QR[SiH(Qlt + ¢1)0$ + SiH(QQt + ¢2)0—y

+{m — cos(1t + ¢1) — cos(Qat + ¢2)}o.] (1)
where (1t 4+ ¢1 — k; and Qot + ¢2 — Ky give us the
E—space representation of the half-BHZ model on a real
lattice [45]. This duality between the drive phases and
Bloch quasimomentum k also implies that the linear evo-
lution of the phase with time emulates the effect of a
charge moving under an electric field in a 2D lattice.
The half-BHZ Hamiltonian breaks both time-reversal and
chiral symmetries but possesses particle-hole symmetry
with C' = 0,K and inversion symmetry with P = o,
CH(k)C™t = —H(—k) and PH(k)P~! = H(—k). Thus
H(k) belongs to class D in Altland-Zirnbauer’s tenfold
way of classification of TIs, and supports chiral trans-
port [46, 47] . It models the behavior of a 2D Chern
insulator with a Chern number (C) determined by the
value of m; for |m| > 2 (trivial phase), C' = 0, and for
|m| < 2 (topological phase), C' = 1. These Chern insu-
lators exhibit an anomalous current that is proportional
to C, and the current flows perpendicular to the applied
field (3.

Quantized chiral transport is advantageous to probe
in Floquet synthetic dimensions as the effective electric
field naturally arises here [40], while other real-space and
synthetic-space systems with neutral particles require ef-
fective electric fields to be explicitly introduced. On the
Floquet lattice, this leads to topological energy pump-
ing that is quantized by C, and we therefore expect to
see quantized energy transfer from one incommensurate
drive to the other. While implementing this Hamiltonian
with qubits [41, 42] can produce exotic phenomena such
as engineering cat states [48] and quantum state boosting
[49], they encounter constraints in demonstrating topo-
logical pumping on long timescales due to decoherence.
However, barring quantum measurements, this Hamilto-
nian can be simulated by classical systems, such as mag-
netic nanoparticles in a time-dependent magnetic field,
which allows for a demonstration of topological energy
pumping that is unimpeded by the coherence times of
qubits. We now look at how a photonic molecule driven
by two incommensurate frequencies can implement the
same physics encapsulated by Eq. (1).

A photonic molecule comprises two identical opti-
cal ring resonators evanescently coupled at a rate pu.
[38, 39]. The eigenmodes of the molecule are the symmet-
ric (S) and anti-symmetric (AS) supermodes of various
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azimuthal orders as shown in Fig. 1. Each ring has an
electro-optic phase modulator (EOM) that couples the
eigenmodes when driven near the splitting, i.e., wy, >~ u,
with opposite polarities of the RF drive signal V(). We
isolate a single pair of eigenmodes as our two-level sys-
tem, and work in the single-photon subspace. Taking the
bosonic annihilation operators for the uncoupled modes
of the two rings to be a; and ay respectively, we de-
fine the S and AS eigenmode annihilation operators as
c] = %(al + az) and ¢ = %(al — ag), giving us the
Hamiltonian,

H=w,cler +w ches + gV () (clea + cher)

(2)

where ¢ is the electro-optic coupling strength. Measuring
all frequencies relative to the uncoupled ring resonance
frequency wp, we set wi = =% In this single-photon su-
permode subspace (which is equivalent to coherent state
dynamics between the two supermodes), the Pauli op-
CICQ + cgcl, 10y
CICQ — cgcl, 0, = cicl — 0502 , giving us the Hamiltonian

3)

We now consider a specific form of V(¢) as an RF carrier
at wy, with I-Q amplitude modulations (AM) V. (¢) and
Vy (t) respectively, as well as frequency modulation (FM)
A(t) = d/dt[A(t)], leading to,

erators are defined as usual: o, = =

H=—0,pu/2+ 0,9V (t)

H=0.1/2+ o,9Re [{V, — iV, } x exp{iwmt + iA(t)}]

where A(t) = [ "A(#')dt’. Taking the interaction picture
with |gV (t)| < pVt (weak driving), the effective Hamil-
tonian under the rotating-wave approximation is (Supp.

I)a

RER0)

H= 5 7 2 9

where § = w,, — p. Comparing with Eq. (1) gives us the
necessary amplitude and frequency modulation signals to
be applied

A(t) = gVo{cos(t + ¢1) + cos(Qat + ¢2)}
Vaj(t) = % Sin(Qlt + ¢1)

Vy(t) = Vo sin(Qat + ¢2) (5)

where Qr = gV/2. The tunable topological parameter
m = —3/(gVp) is now the normalized detuning of the RF
drive w,, from the resonance of the two-level system and
maps to a static o, coefficient in Eq. (1). Thus, w,, can
be readily controlled from 0 < m < 2 to m > 2 to engen-
der a topological phase transition. The I-Q amplitude
modulation maps to o, and o, components, whereas the
frequency modulation maps to the o, component.

Note that this system can be made to evolve adia-
batically, i.e., 21,Qs < gVj, by choosing the frequency
scales of our modulation accordingly. We also empha-
size that all frequency scales in our proposed imple-
mentation are much below the ring’s free-spectral range
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(1,92 < 1 < wrpsgr), thus easing bandwidth require-
ments for integrated photonic modulators. Thus, we have
showed how the 2D half-BHZ Hamiltonian can be real-
ized in a photonic molecule, an effectively 0D system,
with appropriately engineered drives and detunings, but
in an as-of-yet conservative system. We remark that
higher-order topology has been proposed to be realiz-
able in 1D and 2D arrays of modulated ring resonators
[50], but they are subject to the same constraint of FSR
modulation, limiting their scaling. Before introducing
dissipation and external drive, we briefly summarize the
phenomenon of quantized topological energy pumping as
introduced in [40]. Splitting the Hamiltonian into the
respective 2; and 25 drive contributions:

H = hi(t) + ha(t) +0.6/2, (6)

the work done by each drive ¢ = 1,2 over time T is given

[ (%)

For Q;/Q irrational, the system samples the full Bril-
louin zone, leading to quantized energy pumping:
Q10T
27

dh;
dt

Wi(T) = (7)

Wy = Wy =C (8)

where C is the Chern number.

Driven-dissipative quantized pumping in a photonic
molecule

We next explore how the addition of an external laser
drive and cavity dissipation enable quantized topological
energy pumping in a quasi-steady state regime without
stringent requirements on initialization of the molecule’s
state. Dissipation is natural as all optical ring resonators
have finite Q-factors, which define the photon decay rate
v for the system. Nevertheless, this decay affects both
modes symmetrically, and they can be renormalized to
look at the dynamics within the two-level subspace. This
is a unique advantage that photonic systems provide,
and motivates us to verify persistent topological pump-
ing when adding an external optical drive. The driven-
dissipative equations of motion for ¢; and ¢y are

10 = i[H, c10) —ye1 2+ Fesin (t)eF HIFAD)/2(g)

where 7, is the coupling rate into the bus waveguide, and
$in(t) is the external laser drive (note that from this point
onward in the text, we distinguish between the Hamil-
tonian drives 2 and 25 and the external optical/laser
drive s;,(t)). We physically motivate the chosen laser
frequency when discussing the 2D density of states in
the latter part of the paper, where we look at the adi-
abatically varying eigenspectrum of the Hamiltonian in
Eq. (4), as a function of m.
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Topological signatures in temporal and spectral
dynamics

This system shows a variety of topological signatures
even with drive and dissipation added into the mix
[Fig. 2], reinforcing the remarkable robust topology of
the conservative half-BHZ model. In Fig. 2(a), a clear
qualitative difference is seen in the spectral amplitudes
of one of the super-modes (denoted by ¢;): The topo-
logical regime is characterized by a dense spectrum with
a continuous floor, indicative of the aperiodic evolution
of the system, while the trivial regime shows several dis-
crete peaks that represents the periodic localization in
the dynamics. Our numerical simulations reproduce re-
sults calculated in a conservative system averaged over
initial states [51]. Note that no such averaging over ini-
tial states is required in our model, as the signatures pre-
sented are long-time quasi-steady-state simulations; they
are fairly independent of the initial state transients which
have decayed at long times.

As noted previously, the hallmark of this Hamiltonian
is the presence of quantized topological pumping, which
is absent in the trivial regime. In Fig. 2(b), we see that
the work done by the 7 drive (W) increases at the
quantized rate stated in Eq. (8), while the Qo drive (W5)
decreases correspondingly, reflecting that there is energy
being pumped from one drive to the other. The linear
slopes reinforce the quantization by the Chern number
C, with the pumping rate being 1.022 and -1.010 for W1
and Wy respectively in the topological phase (top fig-
ure) and correspondingly -0.053 and 0.070 in the trivial
phase (bottom). The Bloch sphere plots (Fig. 2(b) in-
sets, SI video 1 and SI video 2) reflect the ergodic be-
havior of the system in the topological regime, while the
trivial regime dynamics remains localised near the |0)
state. Remarkably, we are not limited by the photon life-
time (7, = 1/, with v ~ 0.01Q /7), and see sustained
pumping for ~ 5 photon lifetimes for m = 1. Almost no
pumping is observed for m = 3 in the trivial regime. An
important detail here is that the pumping is being ob-
served under a quasi-steady state condition, due to the
drive and dissipation, thus obviating the need for compli-
cated Floquet eigenstate initialization in previous proto-
cols [41, 42] and allowing us to start with vacuum states
in both resonators.

One way to verify the need for incommensurateness
in the Hamiltonian’s drive frequencies is to observe the
dynamics for rational values of Q1/Q2 = p/q, p,q € Z.
We see the absence of a transition in this case, as the
half-BHZ model effectively becomes a 1D tight-binding
Hamiltonian with long-range couplings [18, 52, 53]. The
pumping rate no longer depends on the Chern number
C, but on the integrated Berry curvature over specific
periodic trajectories in the Brillouin Zone. We therefore
also see periodic orbits on the Bloch sphere (SI video 3
and ST video 4).
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FIG. 2. Spectral and temporal signatures of topological dynamics, in the presence of optical drive and dissipation.

(a)

Normalized spectral amplitude of the symmetric super-mode ¢1. In the topological regime (m = 1) we see the dense spectrum
showing a continuous floor, indicative of aperiodic and highly delocalized dynamics that are characterized by harmonics of
the incommensurate drives, Q1 and Q2. In the trivial regime (m = 3), the spectrum is discrete with sharp peaks, indicating
periodic orbits and localization in the Bloch sphere. (b) Normalized work done by the drives 21 and 2 in the topological
(m = 1) and trivial (m = 3) regimes. W7 and W> respectively show slopes of 1.022 and -1.010 in the topological regime over
~ 5 photon lifetimes, and almost no pumping (slopes of -0.053 and 0.070 respectively for W7 and W) in the trivial regime,
clearly exhibiting the linear dependence on the Chern number C. Insets show Bloch sphere trajectories. (c¢) Dynamics for
commensurate drives (22/21 = 1.5) shows no quantization and the possibility of higher pumping rates in the trivial regime

(see text).

306 Impact of dissipation on topological pumping

7 A unique feature of our system is the interplay be-
s tween the dynamics and the dissipation. We show in
a0 Fig. 3 that the topological pumping loses quantization for
a0 higher values of ~, but the striking qualitative contrast
s between the topological and trivial regimes still persists
sz up to v > Qp,Qs. Although the normalized pumping
u13 rate seems to increase, the total power |c1|? + |ca|? re-
ais duces on average in the new quasi-steady state, leading
a5 t0 a net reduction in pump power. Physical intuition
a6 for the loss of pumping beyond a certain v > 10Q; /7
s1i7 comes from the coupled oscillator system becoming over-
sis damped, washing out the topological dynamics and the
310 pumping effects.

Experimental feasibility and preliminary
experimental data

320
321

The concept of a photonic molecule offers a sufficiently
mature platform to implement driven-dissipative topo-
logical energy pumping, as evidenced by its potential util-
ity in various other fields, such as spectral engineering in
photonic biosensors [54], dissipative soliton Kerr combs
[55], squeezed light generation [56, 57], optomechanics
[58], microlasers [59], and dynamically-controlled pho-
tonic memories [39]. Using electro-optically modulated
ring resonators in thin-film lithium niobate (TFLN),
or piezo-electric aluminium nitride actuators [60], one
can envision an artificial spin that can implement time-
dependent spin Hamiltonians with sub-FSR modulation.

State-of-the-art TFLN resonators have demonstrated
loaded Q-factors of ~ 107 [61], and photonic molecule
mode splittings of around p = 7 GHz [39], but can po-
33 tentially be even higher by reducing the spacing between
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FIG. 3. Work done by the drives, simulated for v = (a) 0.1Q; /7, (b) Qi /7, (c) 10Q: /7, and (d)10082; /7. We see close to
quantized pumping in (a) with slopes of 1.261 and -1.342 for W7 and W5 respectively, which increases and starts to disappear

in (b) and (c).

Almost no observable phase transition behavior occurs in (d), due to overdamped oscillator dynamics. The

increase in slope is not an anomaly, however, as the actual work done, without normalization depends on |cl|2 + |02\27 which
reduces by orders of magnitude and kills the effect of the increased slope (Supp. Fig. S3) .

the rings or increasing the coupling lengths. Such a 3-
4 orders-of-magnitude frequency separation between pu
and v demonstrates the feasibility of adiabaticity and
observing longer time evolution in these near-term de-
vices, under practical frequency and loss constraints. As
a concrete example system, we envision the following im-
plementation: A photonic molecule consisting of coupled
lithium niobate ring resonators, with bus waveguides cou-
pling light in and out of both rings. An FSR of ~ 250GHz
can be achieved with a loaded @ ~ 107 at the telecom C-
band (1550nm) [62]. A splitting u ~ 50GHz is attainable
by suitably designing the coupling length and gap be-
tween the rings. The frequency Q in Eq. (1) corresponds
to the Rabi oscillation frequency of the qubit/spin. In
the photonic molecule, this is directly proportional to the
peak RF voltage driving the EOMs, and the electro-optic
efficiency g. For g ~ 0.5 — 1 GHz/V, in line with [63],
one can achieve QQp ~ 2.5 GHz with peak voltage V; ~
5—10V. This sets the RF drive frequency w,, = p—mgVy
to lie in the range 35 — 45 GHz for probing the system
at 1 < m < 3. To match the adiabaticity condition from
our simulations, one can set 4,y ~ 125 MHz, which
is sufficiently larger than the photon loss rate from the
photonic molecule of ~ 20MHz. All of the experimen-
tal parameters stated can be achieved realistically in an
on-chip platform [62, 64]

This sets the photonic molecule system apart from
prior implementations with quantum spins such as NV-
centers [41] and superconducting qubits [42]. Quantum
noise and decoherence in quantum spins limit the op-
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eration times, necessitating quantum error-correction to
recreate the expected dynamics [42]. Moreover, lim-
its on engineering level-splittings make adiabatic oper-
ation quite difficult, necessitating counterdiabatic drives
[65] which further complicate the RF signal-engineering
requirements. While classical spins such as magnetic
nanoparticles, as suggested by [40], offer some mitiga-
tion, the spatially complex experimental setups with
3D control of the magnetic fields experienced by these
nanoparticles could be challenging. Moreover, a driven-
dissipative implementation such as the one proposed here
would be non-trivial to realize. These issues are circum-
vented by the modulated photonic molecule, which en-
codes all three spin terms of the Hamiltonian in the three
different signal-modulation degrees of freedom (in-phase,
quadrature, and frequency), along with the ability to op-
erate the system in a driven-dissipative quasi-steady state
by simply adding an external bus waveguide coupled to
a continuous-wave laser source.

To investigate the predictions of our Floquet syn-
thetic dimension-based protocol qualitatively, we employ
a fiber-based photonic molecule setup along the lines
of Refs. [36, 66], the schematic of which can be found
in Supp. Fig. S7. Through independent calibrations,
we measure the FSR of the rings, the supermode split-
ting, and the linewidth to be wrpsr/2r = 36.5 MHz,
/27 = 6.08 MHz, and /27 = 0.83 kHz respectively.
Fig. 4(a) shows the transmission spectrum of the con-
structed photonic molecule, as illustrated in Fig. 1. One
may notice that u/y ~ 7 is significantly smaller than



-

Norm. Transmission
o
©

0.8 —<s=======oC :
-100 -50 0 50 100
Laser detuning (MHz)
Topological phase (m = 1.2) Trivial phase (m = 2.5)

(b)

1

-5.0 —é.5 OiO 2i5 5.0 -50 -25 00 2.5 5.0

1 1 1

Laser detuning (MHz) Laser detuning (MHz)
(c) 20 x1073
8 1.5F -
o
3
N 1.0F -
©
£
§ 0.5+ 2
00— 0 2 4-4 -2 0 2 4
(l)/.Ql w/Q‘l

FIG. 4. Experimental data from a fiber-based photonic molecule. (a) Normalized Transmission spectrum of the photonic
molecule, with wrpsr ~ 36.5MHz, u ~ 6.08MHz, and v ~ 0.83kHz. Due to u/7v being much smaller than the proposed regime,
modulation is done between conjugate supermodes five FSRs away, i.e., tinew = dwrpsr — p = 176.42MHz. (b) Normalized
transmission (N. T.) after adding modulation from the AWG. The laser sweep shows dense modulation of the supermode
spectra, but no discernible difference between the two regimes. (¢) Normalized power spectral density, calculated using a
sample of data around the laser detuning limited by the AWG period. The topological regime shows a denser spectrum, with
clustered peaks and a raised, continuous noise floor, while the trivial regime shows a sparser spectrum and no raised noise floor,
in agreement with the simulations in Fig. S8 and [51].
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the requirements cited for the on-chip implementation s frequency to achieve a larger effective pinew /vy ~ 210
(/v ~ 2500), with the losses drowning out the signa- s« and better observe the qualitative signatures of topol-
tures of the topological pumping. To alleviate this mis- s ogy. After further calibrating the modulators to obtain
match of regimes, we choose two opposite-parity super- w9 the modulation strength gVp, the AWG is programmed
modes belonging to different azimuthal order resonances 10 to generate the required signal. With the goal of observ-
of the rings to form the two-level system. These two .1 ing a qualitative difference across the topological tran-
w0s modes are separated by fipew = dwpsr — p = 27 - 176.42 412 sition by leveraging a direct transmission measurement,
ws MHz. The RF modulation has a carrier w,, near this a3 we attempt to measure the spectral signatures posited
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FIG. 5. Adiabatically varying eigenenergy of H and the Density of States (DoS). The top figure shows the normalized eigenen-

ergy varying with time for m = 1, 2 and 3, plotted for initial phases ¢1

0 and ¢2 = 7/10. A smaller time interval of the full

simulation is shown to lucidly show the quasi-periodic evolution. The bottom figures show histograms generated over the full
time evolution, for more values of m, showing the closing of the gap at m = 2. The chosen detuning of the laser at ws = Qg is
marked in all the histograms, and we see a non-zero DoS here for 1 <m < 3.

in Fig. 2(a). Fig. 4(b) shows the modulated photonic
molecule’s transmission spectrum. Despite the transmis-
sion not showing any apparent differences between the
two regimes, taking a Fourier transform of the samples
near the requisite laser detunings results in qualitatively
different spectra in the topological and trivial regimes, as
evidenced by Fig. 4(c). While the topological spectrum
is dense and shows a continuous noise floor, the trivial
regime shows a sparser spectrum and more spaced out
peaks at the characteristic driving frequencies, providing
evidence of the existence of driven-dissipative topolog-
ical dynamics (see Fig. 2(a) and [51]). Although these
measurements do not accurately reflect the simulations in
Fig. 2(a) due to the difference in the proposed parameters
and what is implemented in the fiber experiment, they
agree well with simulations performed with the same pa-
rameters and same number of samples (see Fig. S8 in the
supplement). It is therefore worth noting that although
this is noticeably far from the frequency regimes proposed
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for the on-chip implementation, we still see signatures of
topological behaviour that survive and are reasonably ro-
bust in a lossy fiber-optic implementation.

While an on-chip implementation can, in principle,
achieve the parameters at the beginning of this section
and in Fig. 2 and Fig. 3, simultaneous realization of effi-
cient modulation, large bandwidth, and low loss in a ring
resonator with FSR~ 1 THz lie at the threshold of what
is possible with state-of-the-art TFLN nanophotonics. In
the interim, one could implement the workaround used
in the fiber experiment - coupling opposite-parity super-
modes that are not separated by u, but further apart at
wrsr — p for instance. This alleviates the THz-range
FSR requirement and allows for the use of racetrack res-
onators, leading to larger coupling and better efficiency
in modulation, while also reducing bending losses. Al-
though this brings back the initial challenge of large-
bandwidth modulation, also an issue in synthetic fre-
quency dimension proposals, we show in further sections



ss2 how the straightforward addition of a third incommensu-
3 rate frequency can lead to higher-dimensional topology.
s« This is non-trivial to achieve in synthetic frequency lat-
tices, as one possible way to realize it uses longer-range
couplings beyond the FSR modulation [34, 53, 67], plac-
ing a larger burden on the bandwidth.

While the discussion so far has shown that drive and
dissipation in the photonic molecule retain, and possibly
even prolong, topological effects, current experimental
work has shown that photon lifetimes can be improved
enough to see adiabatic dynamics over multiple cycles of
the ©; and Qg drives, by fabricating sufficiently high-
Q resonators (Q > 10%). We next discuss phenomena
that can be explored in the regime where dissipation is
minimized, the external laser drive is absent, and state
initialization is incorporated, which is yet another capa-
bility of the photonic molecule. With this, one can envi-
sion directly probing the band structure, density of states
(DoS), and even the Berry curvature of two-band Hamil-
tonians in 2D and higher dimensions, which we discuss
over the remainder of this paper.
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Measuring 2D band structure and Density of States

473

¢ The Hamiltonian in Eq. (1) is easily diagonalizable due
to its representation as a 2 X 2 matrix, giving us positive

and negative eigenvalues:

475

476

E+ = QR [sin2(Qlt + ¢1) + sin2(f22t + ¢2)
+(m — cos(Qut + ¢1) — cos(Qat + ¢2))?]
=B
EF_=-F

1/2

(10)

When taking the adiabatic limit, the system’s eigenener-
gies vary slowly relative to 2 as seen in Fig. 5. Mapping
the time evolved to the phases of the drives, which act
as the synthetic lattice momenta of our 2D system, we
can map these energies to their respective drive phases
and construct the Floquet band structure. Furthermore,
sampling the eigenenergies over a long enough time evo-
lution (to ensure ergodicity) and building a histogram of
s the values it takes, we end up with the density of states
485 (DoS) of this two-band Floquet system.

Examining this system without the external laser
s drive, if we now include the step of initializing the sys-
40 tem to one of the two Floquet eigenstates |n), we can
a0 measure (0g)n, (0y)n and (o), expectation values at all
w01 times, as the system remains in this eigenstate due to
w2 adiabatic evolution. This allows us to measure E(t) with
a3 the following expression:
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E= M)
= Qr[sin(Qit + ¢1)(04)n + sin(Qat + ¢2)(oy)n
+{m — cos(Qt + ¢1) — cos(Qat + ¢2)}{0.)n]
(11)

wa Mapping ¢ to the phases of both drives allows us to di-
rectly measure the band-structure, and taking the his-
togram also gives us the density of states. Fig. 5 shows
these histograms for varying values of m across the topo-
logical and trivial regimes, showing a non-zero DoS near
FE = 0 and illustrating the gap closure at the transition
point when m = 2. We see that for 1 < m < 3, the
DoS at E = Qg is non-zero, and shows how this point
ranges from being a van Hove singularity at m = 1, to
being at the minimum eigenenergy for m = 3. We also
see that the DoS reduces in magnitude monotonically in
this range of m values.

Although this analysis does not include any external
laser driving the system, the DoS allows us to physically
motivate the chosen frequency of our external laser drive
by assessing how often the laser is driving the system’s
eigenstates at resonance, thus allowing us to define the
ideal detuning for a range of m we would like to probe.
When the laser is detuned to wq = wp — 11/2 — Qg, where
wo is the single-ring resonance and p is the supermode
splitting (we rotate these frequencies out in the Hamil-
tonian), it resonantly drives the photonic molecule’s su-
permode only at the instants of time when E(t) = Qpg,
and the DoS tells us how frequently this occurs. The
non-zero DoS at £ = Qp across the range m = 1 to 3
thus motivates us to detune the laser to this frequency to
measure driven-dissipative topological energy pumping.
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Scaling to higher dimensions: Weyl points

521

The key advantage of Floquet synthetic dimensions is
the ability to engineer higher-dimensional Hamiltonians,
with relatively simple additions to the current setup with
a photonic molecule. By simply adding a third incom-
mensurate frequency to the modulation, we can create
bulk 3-D non-trivial topology, leading to phenomena such
as Weyl points [43]. These points have garnered great
interest in the community for the fundamentally unique
phenomena they lead to, such as Fermi arc surface states
[68], which also hold potential for applications in next-
generation electronics [69, 70].

Furthermore, Weyl points behave as monopoles of the
Berry curvature (akin to a magnetic field in momen-
tum space), and the Berry curvature surrounding a Weyl
point has not been measured experimentally before. In
photonics, higher-order (quadratic) Weyl points have
been demonstrated in specially-fabricated 3D photonic
crystals [71], where the band structure was probed with
Fourier-transform infrared spectroscopy. In synthetic lat-
tices, however, we can envision a more direct probe for
Weyl points. For completeness, we mention that there
are two routes to increasing the dimensionality of the
system and obtaining Weyl points - introducing a third
incommensurate frequency, or simultaneously harnessing
the frequency synthetic dimension of the rings by mod-
ulating at the free spectral range [22, 31]. While modu-
sas lation at wpgp offers the capability to create boundaries
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FIG. 6. The band structure for a Weyl point Hamiltonian
along the (a) kyky-plane, and the (b) kyk.-plane. The band-
touching Weyl points show isotropic linear dispersion in their
vicinity, with their topological robustness quantified by the
Berry curvature flux normal to a surface near the Weyl point
being quantized. Neighbouring Weyl points show opposite
signs in the quantized flux, indicated by the insets, which
show the Berry curvature field lines in 3-D. This behaviour is
indicative of synthetic magnetic field lines originating from a
Weyl point and converging at the neighbouring Weyl point,
leading to the physical picture of Weyl points as monopoles
of the synthetic magnetic field. The experimental schematic
to achieve this is shown in (c), where the addition of a third
incommensurate frequency in the frequency modulation can
lead to three-dimensional topology.
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on the frequency lattice [36, 37, 72, 73], adding a third
incommensurate frequency gives us the k-space Hamilto-
nian directly, and so this is the method we focus on in this

text. As an example, we can look at Weyl Hamiltonians
such as [74]:

H(k) = Qr{sin(ky)o, + cos(ky)oy, + cos(k.)o.} (12)
The band structure of this Hamiltonian is shown in
Fig. 6, where we see linear dispersion in all three direc-
tions near the band-touching points at (0,+7/2, +m/2)
and (m,+m/2,+7/2). As mentioned previously, the o,
and o, terms can be achieved respectively by in-phase
and quadrature amplitude modulation, while the o,
term comes from frequency modulation of the RF signal.
By mapping k;, k, and k. to incommensurate phases
Dyt + @1, Qat + P2 and Q3t + @3 (all three of them are
irrationally related), we can achieve quasi-periodic time
evolution that emulates the k-space evolution of the Weyl
Hamiltonian. As with the 2D case, the experimental con-
straints lie in how ”irrational” the three frequencies are,
limited by how precisely the numerical values of the three
frequencies can be defined by the instruments. In princi-
ple, therefore, there exists a finite time up to which the
dynamics is quasi-periodic, but this can be engineered to
far exceed the time we probe the system for, which is
usually limited by the photon lifetimes of the ring res-
onators.

What makes our method especially powerful is that
we can now experimentally map out the Berry curvature
throughout the bands, for any given two-band Hamil-
tonian H(k), by tracking the dynamics of the artificial
spin encoded in the photonic molecule. This allows us to
generate Berry curvature data similar to what the insets
in Fig. 6 display in the vicinity of each Weyl point, thus
verifying their synthetic monopole character. To buttress
this claim, we calculate B(k) in a gauge-invariant fashion
as [75]:

B = Im Pn(k)l{VkH(k)}lm(k)) x (m(k)| {ViH (k) } [n(k))

m#n

(Em - En)2

(

se« where |m(k)) and |n(k)) are the eigenvectors of H(k), s E,, and E, being the corresponding eigenvalues. Solving
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for the general eigenvalues and eigenvectors of the 2 x 2
Hamiltonian (Supp II), this simplifies to

2
QR

B(k) = o

Qg sin(km))

m

[1%1 sin(k,) sin(k.) (<n| s ) —

— ky cos(k,) sin(k.) (<n| oy |ny — 521?2375(’%))

;)

(14)

_ Qgcos(k:)

— ks cos(ks) sin(ky) ((n] o |n) — 25

With Floquet synthetic dimensions in a photonic
molecule, we can envision the following protocol: Ini-
tialize to the eigenstate |n) for a given initial phase and
drive adiabatically with three incommensurate frequen-
cies, while measuring the spin expectation values for all k
except at the Weyl points. Here, the eigenstate flips due
to the band-touching, and the Berry curvature diverges,
so we can threshold this measurement and accumulate
experimental runs over multiple initial phases to recon-
struct the insets in Fig. 6. Thus, the photonic molecule
can provide a novel experimental probe for the Berry
curvature of a topological Floquet system.

Discussion and Outlook

In summary, we have proposed a new candidate system
to engineer topological Hamiltonians in a 2-D Floquet
synthetic lattice, and have shown that it exhibits topo-
logical energy pumping that persists in the presence of
dissipation and an external drive, over multiple parame-
ter regimes. The pumping persists over multiple photon
lifetimes and stays quantized in the normalized spin sub-
space. Furthermore, this system can be extended to sim-
ulate higher-dimensional Hamiltonians with the straight-
forward addition of an extra incommensurate frequency.
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As an example, we look at Weyl points and provide a path
forward to observing them in a photonic molecule. While
synthetic dimensions offer many advantages by circum-
venting the complexity of constructing analogous mate-
rial systems, such as in cold-atom experiments [74], the
complexity inherently shifts to the control signal RF en-
gineering requirements. Moreover, measuring the topo-
logical pumping requires information about the complex
amplitudes of ¢; and ce, which necessitate dynamically
frequency-tuned phase-sensitive detection schemes. Nev-
ertheless, these capabilities can be envisioned, with the
added benefit of scalability through photonic integration.
With a preliminary demonstration, we have showed that
topological behaviour can be qualitatively inferred even
from a fiber-optic experiment using spectral measure-
ments. This further consolidates the case for integrated
photonics, as on-chip electro-optically modulated ring
resonators with quality factors upwards of 106, driven
by state-of-the-art electronics, have been demonstrated
[39, 61]. Amajor step forward lies in the frequencies we
modulate at, since w,, < wpgr for Floquet synthetic
dimensions, which eases up the specifications on elec-
tronics for driving on-chip devices. Extensions of our
approach should also support novel processes such as
enantioselective topological frequency conversion by in-
corporating more than two levels in the driven spin [76].
One can thus envision a fully integrated device that can
achieve high-dimensional Hamiltonian analog simulation
and quantized topological transport in this framework for
considerable periods of time.
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Supplemental Materials: Quantized topological energy pumping and Weyl points in
Floquet synthetic dimensions with a driven-dissipative photonic molecule

I. HALF-BHZ HAMILTONIAN FOR A PHOTONIC MOLECULE
Consider the two-resonator system with a Hamiltonian
H= t t Pt i Vit —aal 1
Wo (@101 + g0z | + 5 (@102 + aza1 ) + g (t)(afar — azal) (S1)

where a; and as are the respective bosonic annihilation operators for the individual ring resonator modes at the
resonance wg, with a coupling rate pu, and an electro-optic coupling coefficient g. Upon diagonalizing the time-
independent terms, the Hamiltonian becomes

H= LUJrCICl + w,CECQ + g[/ (t)(CiCQ + C;Cl) (82)
with W4 wWo + and c¢ ay +az),co a as). With a variable Change, we can rotate out the
! \/i ! \/5 !

wo (c{cl + c;cz) term (within the single-photon subspace) and consider wy = ig. We specify V(¢) to have a
carrier tone w,, with independent amplitude I-Q modulations and frequency modulation, giving us
H=uwycler +w_chey + g[Vi(t) cos (wnt + A(t)) + Vy (t) sin (wmt + A(t))] (clea + chey) (S3)

where V,(t), V,(t) and A(t) respectively denote the in-phase (I) amplitude, quadrature (Q) amplitude, and frequency
modulations. We can define our spin-matrices to be

Oy = (cJ{CQ + cgcl)

oy = —1 (cicz — cgcl)

O, — (CJ{Cl — C;CQ)
in the single-photon subspace. These operators now form a Pauli group and obey the same commutation relations.
In terms of these new spin operators, the Hamiltonian is

H="L6 1 9v()

: 0o = Lo+ g[Va(t) cos {wmt + A(t)} + V, (£) sin {wmt + A1)} 00 (S4)

2

In the interaction picture, we can consider U = exp [io.{wmt + A(t)}/2], and the dynamic Hamiltonian becomes

Vi(t) = explio{wmt + A1)} /2] (9V ()04) exp [—io-{wmt + A)}/2] = gV (1) “’mt;k% D (s, ol (S5)
k=0
where
[A,Bl, =B
[A7 B]l = [Av B]
[Av B]Q = [Av [Av BH
[A7 B]?, = [Av [A’ [A’ Bm
and so on. Since [0,,0,] = 2i0y, [0.,0,] = —2i0,,
—1)*(w,, (2k+1) wm
Vit =avie |- 52 CHEEE S, + 57 SR 8,

k
= gV (¢t) [ sin{wmt + A(t) }o, + cos{wmt + A(t )}ax}
= g [Vo(t) cos {wmt + A(t)} + V() sin {wnt + A(t)}] [— sin{wpmt + A(t) }oy, + cos{wmt + A(t) }ou] (S6)
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FIG. S1. Topological energy pumping for Q2/Q; = (1 + v/5)/2. We see a qualitative change in behavior around m = 2,
indicative of the topological transition. We simulate this with gVp = 409, and v = 0.01Q4 /7.

o1 For |gV5(t)], |9V, (t)] < wm, we can expand and apply the rotating wave approximation to V7, keeping only the slowly

952

953

954

955

956

rotating terms.

Vi(t) = g (e“meA(t)) (Vi (t) — iV, (1)) + c.c.) (e“wmt%(fﬁ (00 +i0y)/2 + h.c.)

Va(t Vi (t
~ 9 ()%+9y()ay (S7)
2 2
In this rotated frame, taking A(t) = dA/dt and 6 = w,, — p, the Hamiltonian becomes,
H=UHU" + i%—[tjUT
d+ At Va(t Vy(t
_ +2()UZ g 2()Uﬁg ;()Jy ($8)

II. WEYL POINTS IN FLOQUET SYNTHETIC DIMENSIONS

Floquet synthetic dimensions allow for the direct simulation of k-space Hamiltonians by emulating their evolution
with incommensurate drive phases. Thus, we can achieve Hamiltonians such as

H(k) = Qr{sin(k;)o, + cos(ky)oy, + cos(k.)o.} (S9)
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FIG. S2. Topological energy pumping for Q2/Q1 = /7. The transition persists for a different choice of irrational ratio. We
simulate this with gVp = 409, and v = 0.01Q: /7.

o7 by simply performing the substitutions, 1t + ¢1 — kg, Qaot + ¢o — ky and Q3¢ + ¢3 — k,. The linear evolution of
oss these phases also emulates the effect of a synthetic electric field, which naturally allows us to study charge transport
oo effects in these systems. We now study this Hamiltonian and its topological effects in detail. The gauge-invariant
o0 Berry curvature of this system can be written as

(n(K)[{ViH(k)} [m(k)) x (m(k)[{ViH(k)} n(k)) ($10)
(Em - En)2

B(k) =Im

w1 We evaluate ViH (k) to be
VicH (k) = Qg[ky cos(ky)o, — ky sin(k,)o, — k. sin(k,)o.]
o2 where k; (i = x,y, 2) is the unit vector in the Floquet momentum space. Another important quantity to calculate are

a3 the eigenvalues and eigenvectors of the Hamiltonian as functions of k. Using the properties of spin-1/2 Hamiltonians,
964 W€ get

E,, = QR\/sin2 ky +cos? ky +cos?k, = —E, =F

pm = ) (m| = <11+ @)

= lntnl = 3 (1- 282 (s11)



o5 Substituting these into Eq. S10 and using properties of Pauli matrices,
02 - -
B(k) = ﬁhn [ky sin(ky) sin(k.) (n| 0ypmo. — 0.pmoy |n) — ky cos(ky) sin(k.) (n| 02pm0s — Tupmos |n)
—k. cos(ky) sin(ky) (n| 0upmoy — 0ypmos |n) |

QZ
=_—L1m

o . . Qrl
- k, sin(k,) sin(k.) (n| ([awaz] -2 sm(%)ﬁ) n)

—ky cos(k,) sin(k.) (n| <[‘7270$] — 2% COS(ky)QRH) In)

—k. cos(k,) sin(k,) (n] <[0m, o] —2i Cos(kz)QERH> n)]

i sin(k, - ) cos(ky
= 49?’32 ko sin(ky ) sin(k) <<n| oy |n) — QRE(k)> — ky cos(ky) sin(k.) <<n oy |n) — QRE(k))
—k, cos(ky) sin(k,) (<n| o, |n) — QRCz’S(kz)) ] (512)

oss This is Eq. 13 in the main text, and the Berry curvature in this form can be measured experimentally, when adiabaticity
o7 1S maintained. Simplifying further, we get

_ 9%

B(k) = 115

ki sin(k, ) sin(k) (Tr{pnox} - QRE““”> _ iy cos(ky) sin(k.) <Tr{pn%} _ QREU”>

—k, cos(ky) sin(k,) (Tr{pnaz} - QRcz’s(kz)) ]

B —k, sin(k,) sin(k, ) sin(k. o, + k, cos(ky ) cos(k, ) sin(k.)o, + k. cos(ky) sin(k, ) cos(k. ). ($13)

2 (Sin2 kg + cos? ky + cos? kz)g/z

os where the final closed form expression for the Berry curvature comes from substituting Eq. S11, containing the
o0 expression for p,. We then plot this in the main text to see the monopole behavior of Weyl points. The curvature at
o0 the Weyl point diverges, and integrating around this singularity leads to the quantized Chern number that characterizes
onn the topological effects of this system.
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FIG. S3. Total power in the photonic molecule for different photon loss rates. The driven-dissipative system reaches a quasi-

steady state, with the intra-cavity power displaying oscillations, but not fully decaying or diverging.
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FIG. S5. Spectral amplitudes and Bloch sphere trajectories for the commensurate frequency case, in the topological and trivial
phases (Q2/1 = 1.5). The trajectories on the Bloch sphere correspond to periodic orbits, which show a corresponding spectrum
of equally-spaced harmonics in the frequency domain and do not cover the full Bloch sphere. The time-evolution in this case
is visualized in SI videos 3 & 4. Importantly, note the absence of a continuous noise floor in both cases compared to main
text Fig. 3a in the topological regime for incommensurate drive frequencies. The absence of a continuous noise floor and the
presence of equally spaced harmonics in both regimes signifies the lack of a topological phase transition for the commensurate
frequency case.
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synthetic Floquet lattice. Due to the quasi-steady state nature of our protocol, we see no major difference in the simulated
slopes, except for small kinks at points where the trajectory could be passing through the Berry curvature singularity at the
origin due to the external drive.
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FIG. S7. Experimental Schematic of the fiber-optic photonic molecule setup. The 2x2 fiber couplers split a portion of the light
from the laser and couple the two rings together, producing symmetric and anti-symmetric supermodes at all the resonances
when the lengths are exactly matched, which is ensured by the movable free-space section. The rings contain electro-optic
modulators (EOMs) to couple the supermodes, semiconductor optical amplifiers (SOAs) to account for the losses, and filters
to remove any ASE (amplified spontaneous emission) noise after the SOAs. The EOMs are driven by AWGs programmed with
the amplitude I-Q and phase modulation required, and are calibrated to opposite polarities in each EOM to ensure coupling
between the supermodes. The laser frequency is slowly swept by the ramp generator. Data is collected at the through port
with a photodetector connected to the oscilloscope.
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FIG. S8. Simulation of Power Spectral Densities in the (a) topological and (b) trivial regimes, in accordance with the experi-
mental parameters for the data in Fig. 4(c). The simulations show very good agreement with the experimental data, showing
robust signatures of topology even in a high-loss regime. The difference in magnitudes of the PSD between simulation and
experiment arises from the large DC component in the measurement, which also measures the laser output at the through port
of the rings.
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