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Broken symmetries and electronic topology are nicely manifested together in the second or-
der nonlinear optical responses from topologically nontrivial materials. While second order nonlin-
ear optical effects from the electric dipole (ED) contribution have been extensively explored in polar
Weyl semimetals (WSMs) with broken spatial inversion (SI) symmetry, they are rarely studied in
centrosymmetric magnetic WSMs with broken time reversal (TR) symmetry due to complete sup-
pression of the ED contribution. Here, we report experimental demonstration of optical second har-
monic generation (SHG) in a magnetic WSM Co3Sn.S; from the electric quadrupole (EQ) contribu-
tion. By tracking the temperature dependence of the rotation anisotropy (RA) of SHG, we capture
two magnetic phase transitions, with both the SHG intensity increasing and its RA pattern rotating
at Tc;=175K and 7c,=120K subsequently. The fitted critical exponents for the SHG intensity and
RA orientation near 7¢; and T, suggest that the magnetic phase at 7¢; is a 3D Ising-type out-of-
plane ferromagnetism while the other at 7¢; is a 3D XY-type all-in-all-out in-plane antiferromag-
netism. Our results show the success of detection and exploration of EQ SHG in a centrosymmetric
magnetic WSM, and hence open the pathway towards the future investigation of its tie to the band

topology.



Topological Weyl semimetals (WSMs)"* can only emerge when either spatial inversion (SI) or
time reversal (TR) symmetry is broken and host pairs of Weyl nodes with opposite divergent Berry curva-
ture, offering an exciting platform to explore the interplay between broken symmetries and electronic band
topology. Recently, in SI-broken polar WSMs, such an interplay has been extensively investigated through
the second order nonlinear optical and optoelectronic effects via the leading order electric dipole (ED)
contribution®'* which only survives with the broken SI symmetry. In contrast, TR-broken magnetic WSMs

often preserve the SI symmetry'®'®

and, therefore, fully suppress the ED contribution to the second order
nonlinear effects. As a result, little effort and success have been made in exploring the nonlinear optical

and optoelectronic responses in magnetic WSMs thus far, and neither has the interplay between broken

symmetries and topology in this family of materials.

Very recently, it has been shown that the second order nonlinear optical effects are present in SI-
preserved centrosymmetric crystals by the virtue of the next order electric quadrupole (EQ) or magnetic
dipole (MD) contribution'®?* albeit the leading order ED contribution is fully suppressed. This progress
motivates us to consider EQ or MD second order nonlinear optical effects in the magnetic WSMs that break
the TR symmetry while the SI symmetry is preserved. In this study, we focus on second harmonic genera-
tion (SHG) in Co3Sn,S; in which the frequency of the outcoming light doubles from the incoming one
through the nonlinear interactions between light and electronic states inside Co3Sn,S, (Fig. 1a). Co3Sn,S;
is a magnetic WSM candidate whose magnetic structure is, however, not comprehensively resolved despite
the general agreement of the broken TR symmetry. Its crystal structure follows the point group 3m with
the in-plane crystal axis a aligned along one edge of the Co kagome lattice, the other in-plane axis b 120°
rotated from the a-axis, and the out-of-plane axis ¢ coinciding with the 3-fold rotational (C3) symmetry axis
(Fig. 1a). Upon cooling across Tc,1 = 175 K, Co3Sn,S; transitions from the paramagnetic (PM) phase into
a puzzling magnetic phase where the out-of-plane component of magnetic moments forms the ferromag-
netic (FM) order but the in-plane component is subjected to a heated debate among i) a disordered state”®,

ii) a spin glass phase”’, iii) an in-plane antiferromagnetic (AFM) phase of 3m magnetic point group®, or



iv) an AFM phase of 3m’ magnetic point group?. Upon further cooling below Tc > = 120 K, Co3Sn,S; is
generally believed to develop into the fully polarized FM phase with a zero in-plane spin component™,
despite individual suggestions of ii), iii) or iv) with finite in-plane component. On top of the mystery about
magnetic phases and phase transitions in Co3Sn,S,, the domain structure and domain walls of its out-of-
plane FM order further experience temperature dependent evolutions, which adds another layer of com-
plexity in understanding the magnetism in Co3Sn,S,. The FM domains gradually grow in lateral size over
a range of temperatures between 175 K and 150 K***!, whereas the FM domain walls experience a phase
transition at 135 K from the Néel type to the Bloch type®’. These temperature dependent magnetic properties

are summarized in Fig. 1b.

To resolve magnetic phases for both the out-of-plane and in-plane spin components, we leverage
the symmetry sensitivity of SHG by performing the rotational anisotropy (RA) measurements in which the
SHG intensity I (2w) is recorded as the light-scattering-plane is rotated about the c-axis from the in-plane
a-axis by an angle ¢ (Fig. 1a). For the oblique incident geometry (6 = 11° in this study), there are in total
four distinct polarization channels, PP, PS, SP, and SS, where P/S stands for the light polarization paral-
lel/perpendicular to the scattering-plane and the first/second letter corresponds to the incident fundamen-
tal/reflected SHG polarization. For the normal incident configuration (6 = 0°), there are only two polariza-
tion channels, crossed and parallel, that represent the polarization relationship between incident and re-
flected light. The wavelength of incident fundamental light is chosen to be 800 nm, as its SHG of 400 nm
matches the maximum detector sensitivity in our setup (See Methods). This choice is critical for this study

because the EQ/MD SHG is typically several orders of magnitude weaker than the ED SHG if present®”.

We begin with performing RA measurements of SHG and linear responses for both normal and
oblique incidence configurations to confirm the crystallographic symmetry of CosSn,S, at 7= 293 K (Fig.
1¢). All RA SHG patterns show a Cs rotational symmetry about the c-axis and mirror symmetry about three
120° rotated planes (marked by dotted lines in the polar plots). In consideration of the SI symmetry in the

crystallographic point group 3m, we have simulated the functional forms of RA SHG from the EQ



contribution and confirmed their excellent agreement with the experimental data, confidently showing that
the EQ SHG plays the dominant role in our measurement (Supplementary Section 1). Potential SHG con-
tributions from the surface ED, the bulk MD, and electric-field-induced SHG (EFISH) contributions show
distinct RA functional forms from EQ SHG in the oblique incidence geometry channel, and hence can only
contribute an insignificant weight to our data even if present (Supplementary Section 2). In addition, the
RA patterns of the linear response exhibit an isotropic intensity in the parallel channels and zero signal in

the crossed channels, which is consistent with the ED linear reflectance of the trigonal crystal class.

We then proceed to study the temperature dependence of SHG and linear responses, to explore their
evolution across the magnetic phase transitions at 7¢,; and 7¢,». Figure 2 shows the normalized SHG inten-
sity at @ = 0° and 6 = 0° with 800 nm fundamental and 400 nm SHG wavelengths and the normalized
linear reflection intensity at 800 nm and 400 nm wavelengths for the parallel channel in both experiments
as a function of temperature measured in a cooling cycle from 200 K to 90 K. On the one hand, the two
linear response traces exhibit no detectable temperature dependencies. This observation is consistent with
the previous report that there is little change in the optical conductivity at energies higher than 0.8 eV
(wavelength shorter than 1550 nm) across the magnetic phase transitions®. On the other hand, the SHG
temperature dependence clearly shows an order-parameter-like increase at 7c, 1 = 175 K, and surprisingly,
another anomalous upturn around 7¢ > = 120 K, which is in stark contrast to the featureless behaviors of
the linear reflectivity at 400 nm and 800 nm. We further note that even in magneto-optical Kerr effect
(MOKE) measurements, only the transition at Tc, | was captured®’. Considering that the ED linear responses
at 800 nm and 400 nm are insensitive to magnetic phase transitions, we tentatively attribute the changes in
the SHG temperature dependence to new SHG processes that are turned on by the emergent magnetic or-

ders.

To reveal the nature of these new SHG processes, we compare RA SHG results at different tem-
peratures in all polarization channels for both normal and oblique incidence geometries. Figure 3a shows

representative RA SHG polar plots (top panel) and Cartesian graphs (bottom panel) at two selected



temperatures, 180 K (gray circles and lines) and 90 K (blue dots and lines) that are above 7¢, | and below
T¢,», respectively. The most notable difference between SHG data at these two temperatures is a significant
increase in the intensity, as clearly shown in the polar plots of all polarization channels under both incidence
geometries (Fig. 3a, top panel). We highlight that, clearly distinct from the magnetic domain-sensitive mag-
netic circular dichroism (MCD) signal below 7¢, (MCD mapping in Fig. 3b), the SHG intensity at 80 K is
spatially homogeneous when surveying different locations of the sample and always increases from the
higher temperature value (Fig. 3¢). One more subtle difference is the slight rotation of the RA SHG pattern
(Ap = 1°) between those at the two temperatures, which is better illustrated in the Cartesian graphs of
normalized SHG intensity (Fig. 3a, bottom panel) for all channels as the small lateral shift between curves
at the two temperatures (see examples of raw data Cartesian plots in Supplementary Section 3). This RA
SHG rotation is a direct evidence of broken mirror symmetries caused by the magnetic phases. We further
note that while the rotation direction is consistently the same across all the channels at one sample spot
within one thermal cycle (Fig. 3a), it could alter between clockwise and counterclockwise across different
sample locations and shows a positive correlation with the MCD signal sign (Fig. 3d). The contrast behavior
between these two parameters, the RA SHG intensity and orientation, indicates that there are two types of
new processes joining at lower temperatures, one attributed to the magnetism-induced TR invariant (i-type)
and the other to the magnetism-induced TR broken (c-type)** (Supplementary Section 4). These two types
of contributions are responsible for the intensity increase and the orientation rotation of RA SHG, respec-

tively.

To gain insight into the two types of magnetism-induced processes across the two magnetic phase
transitions, we perform systematic temperature-dependent RA SHG measurements over a temperature win-
dow ranging from 90 K to 200 K containing both 7¢,; and T¢,». Figure 4a shows a false color map of SHG
intensity as functions of polarization angle (¢) and temperature (7)), measured in the crossed channel at the
normal incidence. Throughout the whole temperature range, we note that the C; rotational symmetry is

always maintained and that the SHG intensity only increases by a factor of less than 1.6, indicating that the



emerging magnetic orders should preserve the C; rotational symmetry and most likely have the SI sym-
metry. As a result, both i-type and c-type processes belong to the EQ SHG. We can further fit RA SHG
data at every individual temperature to extract the SHG intensity (Igf‘(’)ssed (T)) and rotation (A@(T)), whose
temperature dependencies are shown in Figs. 4b and 4c, respectively. The IZ% . .q (T) trace clearly cap-
tures the anomalies at two critical temperatures, 7c, | and Tc, . The A@(T) trace onsets at 7¢,; and shows a
further enhancement at 7¢,. Both traces support the formation of two magnetic orders, each with both i-
type and c-type magnetism-induced EQ SHG contributions. Other magnetism-induced contributions (e.g.,
ED SHG, MD SHG, and EFISH) may be present but should be much smaller than that of EQ SHG (Sup-

plementary Section 5).

Therefore, we establish that the two magnetic orders (with order parameters of M; and My) turn on
. . . EQ (i) EQ (¢)
both i-type and c-type EQ SHG processes, introducing M and v, below Tc, and then further

)(I\E,[?I(i) and )(I\E,[?I(C) below 7c, on top of )(;E ? from the crystal structure that is present at all temperatures.

We can also derive the magnetic point groups for the two orders, both belonging to 3m’, via searching for
magnetic subgroups of the high-symmetry structural point group 3m that preserve both C; and SI symme-
tries and break the TR and mirror symmetries. We further comment that here M; and My have the same
magnetic point group 3m’ with no further symmetry reduction below 7c», under the analysis based on the
crystallographic point group 3m. If we were to analyze based on the kagome lattice of Co magnetic sites,
we will see the subsequent symmetry reductions below both 7¢; and 7c (Supplementary Section 6). We
note that subgroups of 3m’ with lower symmetries would, in principle, be consistent with our results. We
can then simulate the functional forms for RA SHG at the three temperature ranges: above 7c i, with only

structural contribution ( )(SE Q); between Tc, and Tcp, with the coherent interference between structural and

M;i-induced contributions ()(;: Q; )(15[? @ and )(15[? (c)); and below 7cp, with the coherent superposition of

EQ(c). LEQ () EQ ()

EO (i
MQ @ and Xy s Xy and Xmy, ) (Supplemen-

structural, M;-, and My-induced contributions ()(S]’3 Q; X,

tary Section 4). The experimental data in Fig. 3a and Fig. 4a are well fitted by the simulations. We note that



the IE% ceq increases to ~ 1.5 times whereas Ag only changes by ~1°, showing that )(E > )(f,[?lfi) >

EQ (¢)
XMI,II

To understand the Iéf‘(’)ssed (T) and A@(T) traces in Figs. 4b and 4¢, we take the leading order ap-

proximation based on the knowledge of )(g Qs )(I\E,[?Ifi) > )(I\EA?IEC) (Supplementary Section 4). For

IB® ceq (T), the SHG intensity above T¢, ; is from )(SE ? that is temperature independent. The increase in the

SHG intensity below 7¢; mainly results from )(11\34? @ that scales quadratically with M; while the additional

enhancement below 7¢ is primarily contributed by Xﬁ(ﬁ(i) that is proportional to My®. As M; and My, are

order parameters of second order phase transitions, their temperature dependencies are described"” by
M |T—TC,1|ﬁC'1 and My « |T-TC,2|/)’C"2 , leading to the functional form of I3%ceq (T) = A+ B|T-
Tc, 1|2ﬁc'1 + C|T-T¢ |2ﬁc’2, with B | and f. , being critical exponents for My and Mu, respectively, and A,
B, and C are weights of the crystallographic, Mi-, and My-induced contributions to EQ SHG. Fitting this
functional form of Iéf"ossed (T) to the data in Fig. 4b, we obtain 2fc,1 = 0.63+0.03 that agrees with a critical

exponent = 0.32 across Tc,| from MOKE experiments®® and 28, = 0.71£0.04 that is close to = 0.35 for

3D XY-type order parameter. A similar but independent fit to Ag(T) in Fig. 4c, primarily contributed by

)(5[? © and )(15[?[(6) scaling linearly with M; and My, respectively, results in fc; = 0.31+0.08 and fic, =

0.35+0.11 that are consistent with the extracted values from IZ2 .4 (T).

Gathering together what we have learnt about the magnetic point groups, the i- and c-type EQ SHG,
and the critical exponents, we can then comment on the nature of the two magnetic orders. The first mag-
netic order emergent at Tc; based on our RA SHG analysis is largely consistent with the literature'®!'#2%3¢,
which is an easy-axis (Ising-type) FM order formed by the out-of-plane spin component. The second mag-
netic order onset at T¢» captured by our RA SHG without an external magnetic field is unexpected, because

it is known to be rather subtle or hidden in resistivity*’*®, anomalous Hall'®, MOKE®’, and muon spin rota-

tion spectroscopy® measurements. This observation of a further upturn anomaly of the RA SHG rotation



at Tc, convinces us the broken mirror symmetry for this second magnetic phase and therefore resolves its
magnetic point group to be 3m’ (or lower), whereas the fitted critical exponent around 0.35 suggests its
XY -type nature. These results rule out the debated candidates including spin glass where the TR and mirror
symmetries are expected®’, domain walls for which the C; and SI symmetries should break *, in-plane AFM
of 3m that has a distinct magnetic point group®, and fully polarized out-of-plane FM that should be of 3D
Ising-type. Consequently, the most plausible possibility is the in-plane AFM of 3m’ as depicted in the op-
tion iv)? of Fig. 1b. Taking account of all results, the development of the magnetism summarized from our
RA SHG is shown in Fig. 4d. The paramagnetic phase above T¢; is transformed into the FM order with the
out-of-plane spin component across 7c¢,; while the in-plane spin component coexists but fluctuates
strongly®®. Upon further cooling across Tcp, the in-plane spin component become static and develop the
AFM order of 3m’. A 3D cartoon illustration of the magnetic phase in shown in Fig. 4e, where the spins
are primarily aligned ferromagnetically along the c-axis but are canted a bit to arrange antiferromagnetically

within the a-b plane.

To conclude, we have successfully detected the EQ SHG from a magnetic WSM Co3Sn,S,, further
leveraged its polarization and temperature dependencies to capture two magnetic phase transitions, and
eventually managed to pin down the nature of magnetism across both transitions. It successfully demon-
strates the advancement of using nonlinear optics to study nontrivial magnetic textures, even those with
centrosymmetry, representing a further step forward from detecting complex electric dipolar textures and
paving the way towards reliably investigating multipolar orders. Looking forward, we foresee multiple
additional opportunities. First, it would be insightful to explore the relationship between the out-of-plane
FM and in-plane AFM for providing a comprehensive picture of magnetic domains and domain walls in
this kagome magnetic system. Second, it could be fruitful to examine the evolution of electronic band to-
pology across Tc, and Tcp, to shed light on the interplay between magnetism and topology. Third, the
photon energy involved in the current study is beyond the Weyl cone of Co3;Sn,S,. Therefore, the EQ SHG

processes perhaps mostly concern about topologically trivial bands, and our focus here is about broken



symmetries rather than band topology. Yet, it remains as an open theoretical question whether the magni-
tude of ¥EQ can be expressed in relation to the Berry curvature at Weyl nodes, and also a challenging ex-
perimental adventure of how EQ SHG or EQ photocurrent would turn out with lower photon energies rang-

ing from near the Weyl points to within the Weyl cones.



Methods
RA SHG and linear experiments

The RA optical response measurements were conducted under a geometry shown in Fig. 1a with a femto-
second light source with a frequency of 200 kHz and a pulse duration of 40 fs. The wavelength was tuned
to 800 nm using a tunable optical parametric amplifier. A BBO crystal was used to generate 400 nm-fun-
damental light from 800 nm-light through a frequency doubling process. The incident light was focused on
a sample surface to a 30 um diameter with a fluence of 0.5 mJ cm™ and 0.1 mJ cm™ for SHG and linear
reflectance measurements, respectively. The RA measurements were conducted based on a rotating scat-
tering-plane technique®’. Reflected fundamental (800 nm and 400 nm) were collected by a photodiode. The
photodiode for the linear reflection experiments was connected to a lock-in amplifier, and the demodulated
signal with 200 kHz was measured. The intensity of the SHG light (400 nm) was measured by EMCCD
camera in front of which a set of edge-pass filters are used to selectively allow the 400 nm-light to the
camera while the transmission of the light with different wavelengths is suppressed. All experiments were

performed with a pressure < 5x107 mbar.
Sample Growth

Co3Sn,S; single crystals were grown from excess tin using the self-flux method*®. Cobalt slug (Alfa Aesar,
99.995%), sulfur pieces (Alfa Aesar, 99.9995%), and tin shot (Alfa Aesar, 99.99+%) with an atomic ratio
of Co:S:Sn = 9:8:83 were placed in a 2 ml ALLO; Canfield crucible set®® and then sealed under vacuum in a
silica tube. The tube was heated to 400°C at 100 °C/hour. After dwelling for 4 hours, the tube was heated
to 1100 °C at the same rate and kept at this temperature for 24 hours. After that, the tube was cooled to
700 °C at 3 °C/hour. Finally, the tube was inverted and centrifuged in order to separate the crystals from

the flux.
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Fig. 1 (a) Illustration of optical rotational anisotropy experiment on a magnetic WSM Co3Sn2Sa.
The polarization of incident and reflected beams at the normal and oblique incidence (6 = 0° and
11°) is selected to be parallel (P) or perpendicular (S) to the scattering plane (grey-shaded plane).
The reflected beam intensity at the fundamental and SHG frequencies (@ and 2w) is measured as
a function of the angle ¢ between the crystallographic a—c plane and the scattering plane. (b) Sum-
mary of magnetic phases and phase transitions in Co3Sn2S2 across two critical temperatures 7c, 1
=175 K and Tc,2 = 125 K with proposed point-group notations. (c) Rotation anisotropy of EQ
SHG response and ED linear response obtained at normal and oblique incidence and 7' = 293 K.
The data are fitted to the simulated EQ SHG response (red) under the 3m point group and ED
linear response (blue) of the trigonal crystal system. Crossed and parallel channels for the normal
incidence are measured with the polarization of incident beam perpendicular and parallel to that
of reflected beam. PP, PS, SP, and SS denote the selected polarizations of the incident (former)
and reflected (latter) light in oblique incident experiments.
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Figure 2
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Fig. 2 Zero-field temperature-dependent measurements of the SHG response with a fundamental
(SHG) wavelength of 800 nm (400 nm) and the linear response of 400 nm and 800 nm wavelengths.
All data were obtained at the normal incidence geometry (6 = 0°) in the parallel polarization chan-
nel with polarizations aligned along the a-axis (¢ = 0°). The measured intensities are normalized
to the values measured at 7= 293 K. The transition temperature 7c, 1 is marked with the red dashed
line. The blue dashed line indicates the secondary transition temperature 7c,2 near 120 K deduced
from the SHG data.
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Figure 3
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Fig. 3 (a) (Top panel) Polar plots of RA SHG data measured in all polarization channels at 180 K
(grey lines) and 90 K (blue lines) for the normal and oblique incidence geometries. The intensities
are normalized by the maximum intensity of each channel at 180 K. Bottom panel displays fits to
RA SHG data as a function of ¢ using the derived functional forms of EQ SHG response under the
3m' magnetic point group. The fitted lines are normalized by their own maximum values to show
the angular rotation of the RA SHG patterns below the transition temperatures. (b) A scanning
map of MCD measured at 7= 80 K with a scale bar of 50 um. The numbered locations are where
the SHG RA patterns in the crossed channel are measured above 7c,1 (7= 200 K) and below Tc2
(T =80 K). (c) The intensities of the SHG RA patterns at the numbered locations below 7c2 (T =
80 K), normalized by the intensities at each location above Tc,1 (7 = 200 K). (d) The rotation of
the SHG RA patterns Agp at 7= 80 K with respect to the RA patterns at 7= 200 K. The signs of
Agp show a positive correlation with those of MCD values measured at 7= 80 K.
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Figure 4

i i i ol - IyEQ EQ () EQ ()
(@) Normalized intensity (b) % 1 5% Trype 15 T>Tc1glxj 05 = @ o5l T<T. @
1 12 14 16 = %
[ — ] _ ~_
200 = % =125 +0.25 ~ +0.25
Qup
ke YooXe) — L
175} o 1 0 0, t—
3 150 — . yEa©@| 1.5 Ezi: i YEQ@
~ i Totype | " : L
125 LET ! i
1 %H M {= 1+ 05
100! %@&é | 0
-0.5L i -0.5L i -0. -0.5 i
0 120 240 360 100 150 200 100 150 200 100 150 200 100 150 200
¢ (deg) T(K) T(K) T (K) T (K)
High T Low T
(d) o °W> ©)
Out-of-plane PM FM FM

PM M Fluctuating

In-plane AFM
P I /AV c
Tc,w ‘ Tc,z b a

Fig. 4 (a) Angular- and temperature-dependent RA SHG intensity obtained in the crossed polari-
zation channel at normal incidence. Temperature dependence of the SHG intensity (b) and angular
rotation Ag (c) from the TR invariant i-type and the TR broken c-type contribution, respectively.
Tc,1 and Tc,2 are marked by dashed red line and blue line, respectively. Above Tc, 1, there is tem-

perature-independent intensity from the crystallographic contribution )(EQ. Upon the transition

into the first magnetic order (M1) below Tc, 1, TR invariant i-type )(f,l? @ and TR broken c-type

)(f,[? ©contributions lead to the change in the SHG intensity and Ag, respectively, indicating a

phase transition with a critical exponent fc,1 = 0.31. On further cooling below 7Tc, 2, the SHG in-
tensity and Ap shows the additional upturn with a different exponent value of fc2 = 0.35, resulting

from another set of contributions, )(1]\3,[(111 ®and )(I]\S,[% (C), of a second magnetic order (Mun). (d) A dia-

gram of magnetic phases across 7c, 1 and 7c,2 with spin components along the out-of-plane and in-
plane directions. (e) The spin configuration below Tc, 2 illustrating the dominant FM spins along
the c-axis with the in-plane AFM canted moment within the a-b plane.
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Section 1. Functional forms of EQ SHG of crystallographic 3m and i-type 3m’

First, in order to obtain non-zero tensor elements for EQ SHG under 3m point group under normal and
oblique incidence geometries, we derived a matrix for a polar tensor' using an equation:

Xijki = OipOjqOkrOisXpqrs

where y is the polar EQ susceptibility tensor and o is a generating matrix for each point group. This equa-
tion can be applicable for the derivation of tensor elements for both structural 3m and i-type time-reversal
invariant 3m’. The number of derived independent non-zero tensor elements?® is 14. An effective nonlin-
ear polarization P is expressed by’

Pi2w) X ¥ijkiEj(w)ViE (w)

where E is the electric field of incoming light. The additional constraint of degenerate SHG symmetries (j
= [) reduces the non-zero tensor elements to 11 as shown below*

EQ(s and i)

ijkl
XXXX 0 0 0 xXyxy —yyyz 0 —yyyz Xzxz
< 0 xXXyy —yyyz) (xxyy 0 0 ) <—yyyz 0 0 )

0 —yyzy  XXzZZ —yyzy 0 0 XXZZ 0 0

0 xXxXyy —yyyz xXxyy 0 0 —yyyz 0 0
= <xyxy 0 0 ) ( 0 XXXX yyyz) < 0 yyyz xzxz)

—yyzy 0 0 0 YYZY XXZZ 0 Xxzz 0
0 —Zyyy ZZXX —Zyyy 0 0 ZZXX 0 0
<—zzyy 0 0 ) ( 0 zyyy zzxx) ( 0 ZZXX 0 )
ZXZX 0 0 0 ZXZX 0 0 0 77277

Then, we applied a transformation of the tensor elements into the rotation frame of the scattering plane
using the rotation matrix R about the crystallographic c-axis to simulate the rotational anisotropy of the
second harmonic generation using a following equation®

E E
Xirgriry (@) = RoriRyej Ry R
Finally, the functional forms for the EQ SHG intensity are derived from the equation
2
129(9) o |8 Q@) x;i51 0y ()81 (@)0r8p ()| 1(w)?

where € is the polarization of the incident and reflected light, and /(®) is the intensity of the incoming
light. By selecting the polarization of the incident and reflected beam to be crossed or parallel for the nor-
mal incidence geometry and P or S for the oblique incidence geometry, the functional forms under a se-
ries of polarization geometries are given below.
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15§ () o cos*(6) {Sinz (0) [Xzxzx €05%(8) + (2Xzzxx + Xz222) SIN*(6)

+ Xzyyycos(6) sin(8) sin(3<p)]2
+ [(ZXxxyy + 2Xxxzz T Xxyxy) COSZ(Q) Sin(e) + Xxzxz sin® (6)
+ Xyyzy cos3(8) sin(3¢p) + Xyyzy Sin(6) sin(20) sin(3<p)]2}

_ 2
122 (@) o cos?(8) cos?(3¢p) [nyzy cos?(0) + 2y, sin® (9)]

. , 2
128 (@) « cos?(0) [)(xyxy sin(9) — nyzycos(9)31n(3<p)]
. . . 2
+ sin?(6) [)(szxcos(H) — XzyyySin(6) sm(3<p)]

158 (@)  X3yzy cos?(8) cos?(3¢)

I(zlgz)ssed (QD) x X32/yzy Sin2 (347)
IFz’z?rallel((p) x ngzyzy C052(3(P)

where 6 = 11° for the experiments performed in this work. All simulated SHG RA patterns are displayed
in Fig. S1.

Normal incidence Oblique incidence

Crossed b 7

Parallel

Figure S1. Simulated EQ SHG for crystallographic 3m and i-type 3m’ for the normal incidence (left) and
the oblique incidence (right) geometries. The rotation of the scattering plane is simulated by changing an
angle ¢ about the c-axis. The three mirror planes m;, m,, and ms are indicated by gray dashed lines. The
alternating RA SHG lobes are observed in PP and SP channels while all other channels show six even
lobes.
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Section 2. Functional forms of surface ED and bulk MD SHG under the 3m and 3m’

Surface ED SHG of 3m and 3m’ (i-type)

While the ED contribution to SHG is forbidden due to the preserved inversion symmetry in the 3m, the
surface ED contribution is plausible due to an absence of the inversion symmetry at the surface, resulting
in the reduced point group to 3m. Following the same procedure in section 1, we obtained the non-zero

tensor elements for time-invariant i-type ED contribution as below. Here, the degenerate SHG symmetries
(j = k) are considered to reduce the number of the non-zero tensor elements.

0 —Xyx VyZz
(=) () (2)
Vyz 0 0

—Xyx 0 0
a-|(¥) (2) (3
0 yyzZ 0
zyy 0 0
() () ()
0 0 z7Z

The transformed matrix )(f,? 1’ nto the rotated frame is used to derive the intensity of SHG RA as a func-

tion of ¢, following an equation

120(9) o [ (20) 100 (9)67 ()e ()] 1()?
With the equation for SHG intensities, the functional forms for all polarization channels are given below.
138 (9) « [xZ,y sin?(8) + xZ,, sin® (6’)]2 + c0s*(6) (2xyyz SIN(O) + Yyyx cos() sin(f&go)]2
139 (@) o xZ,x cos*(8) cos?(3¢p)
129 (@) o x2,y sin?(8) + xZ,x cos?(6) sin?(3¢)

IEP (9) X 3y cos?(3yp)

Ig;%ssed ((P) x ijzxy sin? (34))
Igzﬁ‘allel(go) x X}zlxy C052(3§0)

In the SP channel, the intensity of SHG RA pattern is predicted to exhibit six even lobes as a function of
@, which is not consistent with the alternating lobes in the SP channel for EQ 3m as shown in Fig. S2.
This result allows us to rule out the possibility of surface ED contributions.
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— EQ3m — Surface ED 3m and 3m' (i-type)

Figure S2. SHG RA data for the SP channel fitted with the simulated SP channel of EQ SHG (red) and
SHG RA pattern simulated for time-invariant i-type surface ED contribution (blue)

Surface ED SHG of 3m/' (c-type):

For the time-reversal noninvariant (broken) c-type surface ED contribution, the polar tensor elements for
nonlinear susceptibility can be derived using'

Xijk = (_1)0-ip0-]'q0-kr)(pqr
Here, this equation is only applicable for a generating matrix o for operations including the time-reversal

operator m' in the 3m’ point group. Other generating matrixes should be applied following the equation
for the i-type surface ED SHG. Considering the degenerate symmetries (j = k),the obtained susceptibility

tensor elements are

ED _
Xijk =

() (
(32)
(=)

0
—yxy
yxXz
—yxy
0
0
—Zyx
0
0

0

) ()

) (5
) )

)

Employing the procedures to transform the matrix into the rotated frame, we obtained the functional
forms for all polarization channels used in the experiment as described below.

I3R (@) o Y3y cos®(6) cos?(3¢)

. , 2
132 (@) [—nyzxsm(e) cos(0) + Xyxy cos?(6) sm(3<p)]

129 (9) o xZyxy cos(8) cos?(3¢p)
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122 () « x2,y sin?(3¢)

I(zil?z)ssed ((P) X nglxy C052(3¢)
8% ane1 (@) & xZxy sin?(3¢)

The simulated result in the SP polarization channel for the c-type surface ED contribution is compared
with the room temperature data in Fig. S3.

— EQ3m

— Surface ED 3m' (c-type)

Figure S3. SHG RA pattern measured under the SP polarization geometry. The data is fitted with the EQ
contribution (red) under the 3m point group. SHG RA pattern simulated for the c-type surface ED contri-
bution (blue) under the 3m’ point group.

MD SHG of 3m and 3m’ (i-type):

Since the MD contribution is axial, the SHG response from bulk MD contribution is allowed in centro-
symmetric media. The derivation of the MD susceptibility tensor elements is obtained by using'

Xijk = |0'|0'ip0-jq0-kr)(pqr

where o is a generating matrix for symmetry operations and |a| is a determinant of (1 or -1). Non-zero
MD tensor elements under 3m and 3m’ (time-reversal invariant i-type) are given as below.

MD
Xijk

(5)

0
(—yxy
—yXZ

0

)

(o)
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—yxy
yxz
—yxy
0
0
—Zyx
0
0

0

) (=)

)
) )
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The intensity of SHG RA from the MD contribution can be obtained using an equation®

n A R R 2
ei’(Zw)ei’j’k'aj'XII(W’ID’m’(q))el’(w)em’(w)| I(w)?

I**(p)
where € is the Levi-Civita matrix and )(,f’:ll),m, () is the transformed matrix into the rotated frame from

the tensor elements in the unrotated frame )(f‘}',? . The functional forms for all probed polarization geome-
tries are given below.

138 (¢) o cos?(8) [cos*(8) + sin*(O)][1 + sin(20)][(Xyzx + Xzyx) SIN(O) + Xy cos(6) sin(f&go)]2
139 (@) o Y3y cos(6) [1 + sin(26)] cos*(3¢)
129 (@) %)(f,xy[?) + cos(46)][1 + sin(26)] sin?(3¢)

158 (9) & Xyxy cos?(8) [1 + sin(26)] cos?(3¢)

138 cea ()  x2yy sin?(3p)
128 a11e1(9) X X2y c0s?(39)

The derived functional form for the SP channel predicts the even six lobes of the SHG RA (Fig. S4) as
similar in the surface ED contribution under 3m.

— EQ3m — MD 3m and 3m' (i-type)

Figure S4. SHG RA data for the SP channel fitted with the simulated SP channel of EQ SHG (red) and
SHG RA pattern simulated for MD SHG (green) for 3m and 3m’ (i-type) point groups

MD SHG of 3m’ (c-type):

For the time-reversal noninvariant (broken) c-type MD contribution, the susceptibility tensor elements
can be obtained using'
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Xijk = (_1)|0'|O-ipo'jqo'kr)(pqr

Here, the equation is only applicable for a generating matrix o for operations including the time-reversal
operator such as m'in 3m’. Other generating matrixes should be applied following the equation for the i-
type MD SHG. The obtained susceptibility tensor elements are

() (5 (%)
(%) () ()

(%) () ()

The same procedure as the functional forms of the i-type MD contribution can be used to obtain the func-
tional forms as given below.

5 () %)(%yx cos*(0) [3 + cos(40)][1 + sin(260)] cos?(3¢)

132 (@) o [1 + sin(O][(xyyz + Xyzy + Xzyy) c052(6) sin(6) + ¥, sin®(6)
+ Xxyx c0s3(6) sin(3qo)]2

122 (@) x %){,%yx[B + cos(46)][1 + sin(28)] cos?(3¢)

. . . 2
135 (@) o [1 + 5in(260)][ X2y, 5in(6) — Xxyx c0s(6) sin(3¢)]
I82ssea (@) < X2yx cos?(3)
Igzﬁ‘allel(go) x Xa%yx Sinz (3§0)

The simulated result in the SP polarization channel is shown in Fig. S5, excluding the c-type MD contri-
bution.
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— EQ3m — MD 3m' (c-type)

Figure S5. SHG RA pattern measured under the SP polarization geometry. The data is fitted with the EQ
contribution (red) under the 3m point group. SHG RA pattern simulated for the c-type MD contribution
(light blue) under the 3m’ point group. The SHG RA pattern from the c-type MD contribution shows peak
lobe intensities at different ¢ values.

Electric-field-induced second harmonic generation (EFISH) from the 3m and 3m’ i-type contribu-
tions

The existence of electric field in centrosymmetric media can effectively break the inversion symmetry,
resulting in non-zero second harmonic generation. We considered the centrosymmetric media under a
built-in electric field along the out-of-plane direction, and thus the nonlinear effective polarization P is
expressed by

P,2w) o« xfi " Ej(0)ExE (w)

EFISH

where y is the third order nonlinear optical susceptibility tensor of the electric dipolar contribution

under the point group 3m, and £ is the electric field along the out-of-plane direction. )(fjiIISH for 3m and

3m'’ i-type contributions shares the same tensor elements as bulk XiEjgl for 3m and 3m’ i-type contribu-
tions with 11 nonzero tensor elements as given below.

XXXX 0 0 0 Xyxy —yyyz 0 —yyyzZ XZxZ
( 0 xXxXyy —yyyz) (xxyy 0 0 ) (—yyyz 0 0 )

0 —yyzy  XXzZZ —yyzy 0 0 XXZZ 0 0

0 xXxXyy —yyyz xXxXyy 0 0 —yyyz 0 0
EFISH __
Xijkl = (xyxy 0 0 ) < 0 xxxx yyy2> ( 0 yyyz xzx2>

—yyzy 0 0 0 yyzy xxzz 0 XXZZ 0
0 —Zyyy ZZXX —Zyyy 0 0 ZZXX 0 0
(—zzyy 0 0 ) < 0 zZyyy zzxx) < 0 ZZXX 0 )
ZXZX 0 0 0 ZXZX 0 0 0 772727

The susceptibility matrix was transformed into the rotated frame, and then the EFISH intensity is given
from

2
129 () éi,(Zw)xf,‘j!,if’l,(<p)é].,(w)ek,él,(w) I(w)?
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The polarization of the incident and reflected light was chosen to be consistent with our experimental po-
larization geometry, and the functional forms under selected polarization geometries are given below.

+ c05*(8) [2Xxxzz SIN(O) + Xyyzy cos(B) sin2(3<p)]2

132 (9) < x3y,y cos*(6) cos*(3¢)
IE9 (9) X xZezx SIN2(0) + x3y2y c0s?(6) sin?(Byp)

I8P (@) o X3,y cos?(3¢)

128 ssea(@) % X2, sin?(30)

IFZ’:;)rallel((p) x ngzyzy COSZ(3(p)

In the SP polarization channel, the simulated SHG RA pattern preserves six-fold rotational symmetry
with six even lobes, which is inconsistent with three-fold rotation symmetry of EQ 3m in the SP channel

given in Fig. S6.

— EQ3m EFISH 3m and 3m' (i-type)

Figure S6. SHG RA data for the SP channel fitted with the simulated SP channel of EQ SHG (red) and
SHG RA pattern simulated for EFISH (yellow) from the i-type 3m and 3m’ contributions

EFISH from the c-type contribution under the 3m’ magnetic point group

The time-reversal broken c-type tensor elements for the EFISH can be obtained using a following equa-
tion'

Xijkl = (_1)O-ip0-jqo-kr0'ls)(pqrs
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Here, the multiplication of -1 is only applied for the generating matrix for operations including the time-

reversal operator. The obtained susceptibility tensor elements for the c-type EFISH for 3m’ are given be-
low

EFISH
Xijkl
0 XXXy XXXZ —yxyy 0 0 XXXZ 0 0
(—yyxy 0 0 ) ( 0 xyyy —xxxz) ( 0 —XXXZ xzyz)
XXZX 0 0 0 —XXZX  XYZZ 0 xXyzz 0
—Xyyy 0 0 0 yyxXy —xxxz 0 —XXXZ —XZYZ
= ( 0 yxyy —xxxz> (—xxxy 0 0 ) (—xxxz 0 0 )
0 —XXZX —XYZZ —XXZX 0 0 —XyzZZ 0 0
ZXXX 0 0 0 —ZXXX —ZXYZ 0 zzxy 0
( 0 —ZXxXX zxyz) (—zxxx 0 0 ) (—zzxy 0 0)
0 zZXZy 0 —zxzy 0 0 0 0 0

The susceptibility matrix was transformed into the rotated frame, and then the functional forms of EFISH
intensity under employed polarization geometries are derived as below.

I3 (9) ¢ YZxzx c05°(6) cos®(3¢)

132 (9) & [~2Xxy2,5In(0) c0S(6) + Xyxzx cOS2(6) sin(f&go)]2
139 (9) ¢ YZxzx cO5%(6) cos®(3¢)

I35 (9) X XExzx SIN*(39)

I&ossea(P) X Xxzx c0s?(390)

I35 ane1 (@) € Xz 5in?(300)

The simulated SHG RA pattern in the SP polarization channel exhibits a distinct angular dependence with
the preserved six-fold rotational symmetry from the data obtained in the SP channel as shown in Fig. S7.
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— EQ3m EFISH 3m' (c-type)

Figure S7. SHG RA data for the SP channel fitted with the simulated SP channel of EQ SHG (red) and
SHG RA pattern simulated for EFISH (yellow) from the c-type 3m’ contribution
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Section 3. SHG RA data in the Cartesian coordinate for the RA patterns

In Figure 3 in the main text, the Cartesian plots of fitted SHG RA profiles are provided to visualize the
rotational phase shift Agp at low temperatures. In this section, we provide zoom-in Cartesian plots with
both raw data and the fitted results to better illustrate the mirror symmetry breaking manifested by the ro-
tational phase shift. Figure S8 shows the normalized SHG RA data (squares and dots) and their fits (solid
curves) in the crossed (Fig. S8a) and the parallel (Fig. S8c) channels both at 200 K (red) and 90 K (blue)
that are above and below the magnetic phase transitions, respectively. The zoomed-in Cartesian plots at
the two temperatures (Figs. S8b and S8d) clearly show that the 90 K data points are consistently shifted
towards the higher angles from the 200 K ones, and that their fits also exhibit a rotational phase shift

(Ap).

(a) Crossed —= 200 K (b) - 200 K
) Crossed - 90K
g T
o 1
=
805
©
é 0 |
2 0 30 60

¢ (deg)

(d) - 200 K
%‘ Parallel —-- 90K
5 -
£
©
g 0.5
©
S
s 0 :

z 1580 180 210
¢ (deg)

Fig. S8 SHG RA patterns for (a) crossed and (c) parallel channels measured at 200 K (red) and 90 K
(blue) in the polar coordinate. The Cartesian plots in (b) the crossed and (d) the parallel channels include
the data enclosed by the rectangles in (a) and (c).

We also display the Cartesian plots of raw data and fitted curves measured at 200 K and 90 K in

SS/SP/PS/PP polarization channels under the oblique incident geometry in Fig. S9. The results of all po-
larization channels consistently show that the RA patterns shift towards higher angles at 90 K.
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Fig. S9 Cartesian plots of SHG RA patterns for PP/PS/SP/SS polarization channels measured at 200 K
(red) and 90 K (blue)
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Section 4. Involved SHG processes, their coherent superpositions to fit the data, and their relation-
ship to the magnetic order parameters

From temperature-dependent SHG data, we observed two SHG anomalies (intensity enhancement and ro-
tation of SHG RA patterns) at two different temperatures (7¢,1 and 7¢>). In order to understand these
anomalies, emerging SHG radiation sources upon the phase transitions have to be identified. In this sec-
tion, first we introduce the derivation of functional forms of EQ SHG intensity from c-type contribution
for 3m’ magnetic point group, which leads to the rotation of SHG RA patterns. Second, with the derived
functional forms, we show the coherent interference between crystallographic, i-type, and c-type contri-
butions for three temperature ranges, which explains the intensity enhancement and the rotation of SHG
RA patterns as well as their temperature dependence in a consistent manner. Finally, we interpret the tem-
perature-dependent SHG data with respect to magnetic order parameters so that the characteristics of the
phase transitions and ordered states can be deduced.

Functional forms of EQ SHG of c-type 3m’

The time-reversal broken c-type tensor elements for the polar EQ SHG can be obtained using a following
equation'

Xijkl = (_1)0-ip0-]'q0-kro-ls)(pqrs
Here, the multiplication of -1 is only applied for the generating matrix for operations including the time-

reversal operator. The obtained susceptibility tensor elements for the c-type EQ SHG for 3m’ are given
below

EQ (c)
ijkl
0 XXXy XXXZ —yxXyy 0 0 XXXZ 0 0
(—yyxy 0 0 > ( 0 xXyyy —xxxz> ( 0 —XXXZ xzyz)
XXZX 0 0 0 —XXZX  XYZZ 0 Xyzz 0
—Xyyy 0 0 0 YYXy —XXXZ 0 —XXXZ —XZYZ
= ( 0 yxyy —XXXZ> <—xxxy 0 0 ) (—xxxz 0 0 )
0 —XXZX —XYyZZ —xxzx 0 0 —Xyzz 0 0
ZXXX 0 0 0 —ZXXX —ZXYZ 0 zzxy 0
( 0 —ZXXX zxyz) (—zxxx 0 0 > (—zzxy 0 0)
0 ZXZy 0 —ZXZy 0 0 0 0 0

With the obtained tensor elements, the functional forms under parallel and crossed polarization geome-
tries at the normal incidence are

I(%l(rl())ssed () x X:%xzx COSZ(B(p)

Ilgz(;)rallel((p) X X}%xzx sin2(3(p)
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which exhibits distinct ¢-dependence from those for crystallographic and i-type contributions under 3m
and 3m’ as given in section 1. Due to this angular difference, the emerging c-type contribution across the
phase transitions can lead to the rotation of the SHG RA patterns, which is described as follows.

Temperature dependence of SHG radiation sources and their coherent superposition

From the experiment, we observed two phase transitions manifested by the anomalies of the SHG RA pat-
terns at 7c;; = 175 K and Tc» = 120 K. In order to understand characteristics of these two phase transi-
tions, we identify and analyze the emergences and anomalies of the temperature dependent SHG RA pat-
terns for three different temperature ranges, attributed to emerging nonlinear susceptibilities and relevant
magnetic order parameters, which are summarized in Table 1 given below.

Table 1. Involved nonlinear susceptibility and order parameters at different temperatures.

Temperature T>175K 175 K>T7T> 120K 120K>T
Contributing EQ EQ (i) _EQ (c) EQ(i) _EQ(c) _EQ(i) .EQ(c)
susceptibilities Xs XS XMy Amy XS ’XMI sAmy oAMy o Ay
Order NA M; # 0, My; = 0 M; # 0, My; # 0
parameters

EQ ® EQ( )

Here, )(g is responsible for the crystallographic contribution above 175 K. y\, and yy are the

time-invariant i-type tensors contributing from the magnetic states with order parameters MI and My be-

Q(l) Q()

low 175 K and 120 K, respectively. Due to their time-invariant nature, ;" and y share the tensor

form identical to crystallographic Xs , and are proportional to the even powers of the order parameters.

Q(C) EQ()

In contrast, c-type x\, and y are time-noninvariant, and thus have different tensor components

from i-type counterparts, so that the emergence of c-type tensors is responsible for the rotation of SHG
RA patterns as described in section 3. These c-type tensors scale with the odd powers of the order param-
eters. Below we provide how the functional forms of intensity and rotation of the SHG RA patterns are

derived with respect to crystallographic (xg Q) magnetic i-type Q(EQ (l), Xy, (l)) and c-type ()(EQ (C),

XMIQI( )) nonlinear susceptibilities as well as magnetic order parameters (M;, My) for three temperature

ranges with a focus of crossed polarization channel.

1) Above Tc,, the SHG intensity in the crossed polarization channel as derived in section 1 is given
by

2
E
Crossed((p) x Xy}?z(;) sm(3(p)

2) Between Tc, < T < Tc¢,1 where M; # 0 and My = 0, EQ SHG contributions from M; coherently
interfere with the crystallographic contribution, and the functional form in the crossed polarization channel
becomes

E EQ (i,M)) _. EQ (cM 2
B8 ceq (@) x )(y;lzg,s) sm(3<p)+)(y32(; ')sm(3(p) Xx,?sz 2 cos(3¢)
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This form can be further simplified using the trigonometric function properties so that

138 ssea (@) Iy sin?[3(p — Ag)],

. 2 2 EQ (cMp)
_ (,EQ() , EQ(MY EQ (c,M)) 1 o .
where [y = (nyzy + Xyyzy ) + (Xxxzx ! ) and Ap = —tan 1 <X—EQ(:)):_;EQ(LMI)>' We note that in
yyzy yyzy

our experimental data, the A changes by ~ 1° whereas I, increases by a factor of ~1.5. This observation

: 2
assures that )(;:,%;C'MI) is nearly 20 times smaller than )(ESZ(;) + ngzg’MI), and thus that ()(f,?Z;C‘MI)) is

. 2
more than two orders of magnitude smaller than ()(;:;,ng,s) + )(JESZS‘M‘)) .Therefore, I, = (;(532(;) +
EQ ({,Mp EQ (¢, Mp)

2
Xyyzy ) and Ap X Y,oux

3) Below T¢, where M; # 0 and My # 0, the coherent interference of EQ SHG radiation sources from
crystallographic, M; and My contributions result in the functional form in the crossed polarization channel
to be

E EQ (i,M EQ (i,M . EQ (c,M EQ (¢,M 2
itssea (@ < | (g, + Xy + gy ™) sin(3e) = (s ™ + das ") cos(39))|

which can be simplified to be
I(%I(f:)ssed((p) x IO sin? [3(¢ - A(I’))]:

EQ(s) + yEQ @Mp) EQ (i, M) EQ (c,Mp) EQ (c,M1)

2
Where IO ~ (nyzy nyzy + nyzy ) and A(p x Xxxzx + Xxxzx

Then, we analyze temperature dependence of SHG intensity I, and RA rotation Ag with these derived
function forms by accounting the magnetic order parameters M; and M. As described above, i-type and
c-type susceptibility tensors are proportional to even and odd powers of the order parameters, respec-
tively. In the consideration of the leading order approximation, we have the following expressions:

EQ (s) EQ (iMy) EQ ({,My) EQ (¢c,My) EQ (¢,My1)
Xyg?z; =C Xyyzy © =AML, Xy = AnML Xy = BIMp, and Yy, = byMyy, where c,

ay, ay, by, and by are constant. Since the observed magnetic phase transition are the second order, the

magnetic order parameters can be expressed by M; = a;|T-T¢ | |ﬁC'1 and My = ay|T-T¢., 2|ﬁc"2 where a is
constant and £ is critical exponent of the phase transitions. By taking all derived functional forms to-
gether, I4(T) and A have the following relations with the leading order approximation:
Above Tc,
1,(T) =c? =,
Ap(T) =
Between Tc; and Tc2,

I(T) = (c + a,MIZ)2 ~c?+2caMf =C +AI|T—TC,1|2ﬁC",
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Ap(T) o< biM; = By|T-Tc. ;'

Below T¢ .,

2
I(T) = (c + M7 + a;; M) ~ 2 + 2cqiM? + 2cay M3 = C + AI|T-TC,1|2/”C’1 + AH|T-TC,2|2ﬁC’2

B B
A@(T) o biM; + byMy; = BI|T'TC,1| o4 BII|T'TC,2| 2

These are the temperature dependent functional forms that we used to fit the data in Figure 4 of the main
text. From the fitting results of critical exponents S ;= 0.31 and B ,~= 0.35 obtained from both intensity

and rotation data, the first and second phase transitions at 7¢; and 7¢> can be characterized by 3-dimen-
sional Ising-type and XY -type, respectively.
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Section 5. Minor contributions from SHG radiation sources other than EQ SHG

In this section, we consider potential magnetism-induced SHG radiation sources such as surface ED, bulk
MD, and EFISH contributions emerging upon the magnetic phase transitions. From the experimental data
in the SP polarization channel, we explicitly observe the three-fold rotation symmetry manifested by al-
ternating lobes as shown in Fig. S10 (a). This feature of the alternating lobes is preserved across the phase
transitions down to 7'= 90 K. Conversely, the simulated potential i-type and c-type SHG radiation sources
in Figs. S10 (b) and (c) show six even lobes in the SP polarization channel. This result indicates that the
alternating lobes have to be shaped to the even six lobes across the phase transitions if the considered po-
tential sources significantly contribute to the SHG signal through the interference with the crystallo-
graphic EQ SHG. This can be confirmed by measuring the intensity ratio between large and small lobes
as a function of temperature. Figure S10 (d) shows that the intensity ratio barely changes down to 90 K
while the intensity increases by nearly a factor of 1.5. This contrast strongly suggests that the magnetism-
induced ED, MD, and EFISH contributions have to be very minor even if present.

(a) (b) itype (c) ctype (d)
[ | [ |
151 10625
>
B
I3 5
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o,
E 1.25 0.6 =
T g
£ o
[o]
=
1 i 0.575

100 125 150 175 200
Temperature (K)

Figure S10. (a) SHG RA data for the SP channel measured above 7¢,; (7= 180 K) and below Tc, (7=90
K). (b) and (c) The simulated time-invariant i-type and time-noninvariant c-type radiation sources from
magnetism-induced ED (3m’), MD (3m’), and EFISH (3m’) contributions under the SP polarization ge-
ometry. (d) Temperature-dependence of the SHG intensity and the intensity ratio between large and small
lobes for the SP polarization channel.
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Section 6. Comment on symmetry evolution across the phase transitions

In the analysis of temperature-dependent SHG data, we consider that the magnetic point groups for My
and My are both 3m', which seemingly suggests no additional symmetry breaking across Tc.. If this were
to be the case, someone would reasonably raise a question of whether My is a phase transition or a cross-
over phenomenon (see Fig. S11 for the distinction between a phase transition and a cross-over: the cross-
over departs from the order-parameter-like onset). We approach this question with two steps below.

a. The crystal structure of Co3Sn,S; obeys the point group 3m, but the kagome magnetic lattice formed by
Co ions has the point group 6/mmm that is a parent point group of 3m and has higher symmetries. If we use the
Co kagome magnetic lattice to consider the emergence of the two magnetic states, M and My, we find that (i)
across Tc,1, the point group evolves from 6/mmm of the structure to 6/mm'm' of the M; phase, breaking the time-
reversal, and three vertical and three diagonal mirror symmetries; (ii) across 7c, the point group changes from
6/mm'm' of Mj to 3m', breaking the 6-fold rotational symmetry into 3-fold and also losing one m symmetry
normal to the 3-fold rotational axis. In this way, there are subsequent broken symmetries at both 7¢; and 7c .

b. In this manuscript, we used the crystalline point group of Co3Sn,Sz, 3m, to perform the symmetry anal-
ysis, because our optical SHG RA measurement probes multiple electronic bands, more than the Co kagome
lattice. In this way of analysis, both M; and My take the same magnetic point group, 3m'. Because the symmetries
further broken across 7Tc, from the Co kagome lattice analysis above, e.g., the 6-fold rotational and the one
mirror normal to the out-of-plane rotational axis, are already broken by the crystal lattice through the presence
of Sn and S ions, one may consider the lattice as an “effective” symmetry-breaking field applied across 7cp.
Strictly speaking, this presence of the symmetry breaking field for My makes it a cross-over rather than a phase
transition. However, from the consistency between the experimental data and the fit treating My across Tc as a
phase transition, we believe that the “effective” symmetry breaking field is rather weak and does not distort the
temperature dependence away from the order-parameter like behavior.

In summary, there are contributions from both M; and My to the overall intensity (i.e., mainly )(I\Fj[? @ and

)(I\E,[?I (i)) and the RA orientation (i.e., mainly )(I\E,[? © and )(I\E,I?I (C)). Using the Co kagome magnetic lattice to

perform the symmetry analysis, we can see subsequent broken symmetries across 7¢,; and ¢, for My and
M, respectively. Using the whole crystalline lattice for the symmetry analysis, we see broken symmetries
across 1c,1 but not Tc», which leads to a strict statement that M; undergoes a phase transition across 7c
but My experiences a cross-over across 7c. However, we would like to highlight that the “effective”
symmetry breaking field on My across 7c is so weak that the temperature dependence is close enough to
the order-parameter-like behavior.

— Cross-over
— Phase transition

Fig. S11 Order parameter as a function of normalized temperature 7/7¢ for
a second order phase transition and a cross-over behavior. The order pa-
rameter for the second order phase transition shows a continuous but un-
smooth onset across the onset temperature of 7c. On the contrary, the
cross-over behavior due to the presence of an “effective” field shows a
continuous and smooth increase across 7c.

Order paramter
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