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EQUILIBRIUM CONFIGURATIONS OF A SYMMETRIC BODY
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Abstract. We study the equilibrium configurations for several fluid-structure interaction prob-
lems. The fluid is confined in a 2D unbounded channel that contains a body, free to move inside
the channel with rigid motions (transversal translations and rotations). The motion of the fluid is
generated by a Poiseuille inflow/outflow at infinity and governed by the stationary Navier--Stokes
equations. For a model where the fluid is the air and the body represents the cross-section of a sus-
pension bridge, therefore also subject to restoring elastic forces, we prove that for small inflows there
exists a unique equilibrium position, while for large inflows we numerically show the appearance of
additional equilibria. A similar uniqueness result is also obtained for a discretized 3D bridge, con-
sisting in a finite number of cross-sections interacting with the adjacent ones. The very same model,
but without restoring forces, is used to describe the mechanism of the Leonardo da Vinci ferry, which
is able to cross a river without engines. We numerically determine the optimal orientation of the
ferry that allows it to cross the river in minimal time.

Key words. equilibrium configurations, fluid-structure interaction problems, Navier--Stokes
equations
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1. Introduction. We study some fluid-structure interaction problems in an un-
bounded 2D channel containing a body and a fluid whose motion is governed by the
Navier--Stokes equations and is generated by a Poiseuille inflow/outflow at infinity.
The models considered in this paper are inspired from previous works by the au-
thors and their collaborators [2, 4, 5, 7, 8, 9, 16, 18, 21], frequently used also by the
International Association for Wind Engineering [28].

The first model views the cross-section of the deck of a suspension bridge as a
rigid rectangular body B immersed in an unbounded 2D channel

\scrC L =R\times ( - L,L)(1.1)
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3760 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

Fig. 1. The channel \scrC L with the vertically moving body B on the left and the rotating body B
on the right.

for some L > 0. The cross-section is free to move vertically and to rotate around its
barycenter under the action of the fluid flow and two restoring forces. A preliminary
analysis of the equilibrium configurations for this model was performed in [5] (see also
[6] for a revised version) by decoupling the vertical and the rotational displacements.
More precisely, in the model considered in [5], B was allowed to move either vertically
or to rotate (as in Figure 1). The full analysis is performed in the present paper
by coupling the vertical and rotational motions (see section 2.1); as we shall see,
two degrees of freedom make the analysis much more challenging. In particular,
the behavior of the fluid forces was only announced (with no proofs) in [5], while a
rigorous approach involves several delicate arguments covering a number of pages;
see section 3. Moreover, Theorem 3.5 and the numerical results in section 6.5 suggest
that the coupled system is more unstable than with just one degree of freedom.

The vertical displacements in Figure 1 (left) are generated by three kinds of forces.
There is an upwards restoring force due to the elastic action of both the hangers and
the sustaining cables of the bridge: the hangers behave as nonlinear springs which
may slacken [1, Chapter 9-VI] so that they have no downwards action. There is the
weight of the deck acting constantly downwards: this is why there will be no odd
requirement on the vertical restoring force considered in the model. Finally, there is
an elastic resistance to both bending and stretching of the whole deck for which B
merely represents a cross-section: this force is superlinear and prevents the deck from
wandering too far from its symmetric equilibrium configuration.

The detailed physical description of the model is reported in section 2, where
we also derive the system of coupled PDEs/ODEs, in dimensionless form, governing
the fluid-structure interaction problem. The equilibrium configurations are found by
solving the associated steady-state problem; see (2.11)--(2.12). Since it is written in
dimensionless form, only the Reynolds number \scrR and the stiffness of the restoring
forces remain as overall parameters, but, while the latter are fixed, we discuss the
behavior of the solutions as \scrR varies. Our strategy is to solve first the fluid equations
(2.11) for any admissible position of B within \scrC L and then to determine the equi-
librium configurations of B for which also (2.12) is satisfied. The first step is quite
standard and is performed in section 2.3, where the only difficult part is to determine
a solenoidal extension of the boundary data in order to reduce the original inhomo-
geneous Dirichlet problem to a related nonslip problem; it turns out that the relevant
a priori bounds are independent of the position of B.

Before tackling (2.12) we need to define rigorously the fluid forces---the lift and
torque. This is done in section 3, where we also analyze the main properties and
recall several equivalent ways of computing both the lift and the torque. Since these
forces depend on the (variable) position of B and on the (variable) Reynolds number
\scrR , we need to compute their derivatives with respect to these variables. This is
done in section 3.2, where, to perform these computations, we follow the strategy
of [10], which relies on the classical argument of [3] reformulated in the setting of
weak solutions to avoid estimates on the pressure. In fact, the alternative strategy of
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EQUILIBRIUM CONFIGURATIONS 3761

[3] uses the boundedness of the fluid domain, which is not the case for \scrC L \setminus B. For
this reason, the crucial point here and in [10] is to use a volume-preserving change
of variables and a solenoidal velocity after the change of variable, as in [36]. With
these derivatives in hand, we prove the main result of section 3, which is Theorem 3.5,
allowing us to compare the stabilities of models with one/two degrees of freedom.

These results and tools allow us to tackle (2.12). In section 4 (Theorem 4.3) we
prove existence, uniqueness, and stability of the equilibrium configuration for small
\scrR . This result raises the natural question of whether uniqueness is lost for large
\scrR . Although we do not have a theoretical answer, in section 6 we bring numerical
evidence that the answer might be positive: for large \scrR it seems that the equilibrium
configurations are at least three.

In section 5 we use the same model to describe a discrete 3D bridge with multiple
cross-sections interacting with the adjacent sections; their mutual action is the above-
mentioned elastic resistance of the deck. The main result (Theorem 5.1) is similar
to Theorem 4.3 and states existence, uniqueness, and stability of the equilibrium
configuration for small \scrR .

In section 7 we show that our 2D model can also be adapted to describe the
functioning of the Leonardo da Vinci ferry in Imbersago (Italy); in this case, the body
is the ferry, whereas the fluid is the water within the river flow. Besides this, the only
differences between the two models are physical in nature. While for the bridge there
are (elastic) restoring forces, for the ferry there are none. Whereas for the stability
of the bridge one aims to minimize the lift in order to reduce the oscillations, for the
Leonardo ferry one aims to maximize the lift in order to increase the velocity of the
ferry and to minimize the crossing time. By exploiting the numerics in section 6, we
explain how to reach this target in section 7.2.

Overall, we emphasize that we do not aim to give quantitative results, but we be-
lieve that our qualitative analysis already explains some of the important phenomena
in the considered fluid-structure interaction models.

2. The cross-section of the deck of a bridge in a wind flow. The (3D)
deck of a suspension bridge is usually hit by a transversal (horizontal) wind and is
then subject to both vertical and rotational displacements that are visible in each
cross-section of the deck. We focus here on a single cross-section, while in section 5
we consider multiple cross-sections.

δ

d-d

-δ

B

2.1. The 2D model. In the figure above, we show the (2D) cross-section of the
deck of a bridge as a rigid rectangular body B = [ - d, d]\times [ - \delta , \delta ]\subset R2 (d> \delta > 0) im-
mersed in a channel flow occupying the unbounded strip \scrC L in (1.1), which represents
an atmosphere layer where B is free to move, both vertically and rotationally around
its barycenter, under the action of a horizontal Poiseuille fluid flow and two restoring
forces. The position of B is identified by two parameters, h and \theta , representing, re-
spectively, a vertical translation and a rotation around its barycenter; see (2.3) and
(2.4) below. The body is subject to two restoring forces. The first force \partial hF tends to
keep the body in the middle of the channel (h= 0), while the second force \partial \theta F tends
to maintain the body horizontally (\theta = 0). These elastic forces represent, respectively,
the action of the whole (3D) deck of the suspension bridge on the cross-section B and
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3762 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

the action of the sustaining cables. They are the partial derivatives of a potential
F = F (h, \theta ) which satisfies several (physical) assumptions that will be introduced and
discussed in their dimensionless form; see (2.6)--(2.7)--(2.8)--(2.9) below.

The channel \scrC L is crossed by a horizontal fluid flow (the wind hitting the cross-
section), and we denote by \wp > 0 its pressure drop and by \mu > 0 its shear viscosity
coefficient. Then the corresponding Poiseuille velocity field \bfitv P := vP (x2)\bfite 1 is such
that

d2vP
dx2

2

= - \wp 

\mu 
, vP ( - L) = vP (L) = 0 =\Rightarrow vP (x2) =

\wp L2

2\mu 

\biggl( 
1 - x2

2

L2

\biggr) 
.

Incidentally, we recall that \bfitv P is a stationary solution of both the Stokes and Navier--
Stokes equations in \scrC L with the boundary condition \bfitv P | \partial \scrC L

= 0.
We may now set up the fluid-structure interaction evolution problem where the

motion of B is driven by the fluid flow and by the restoring forces \partial hF,\partial \theta F on some
interval of time, possibly R+. Let \bfitu and p be the velocity and pressure of the fluid in
the plane containing the cross-section Bh,\theta . Since both h and \theta depend on time, also
the fluid domain \Omega h,\theta := \scrC L \setminus Bh,\theta depends on time, and the space-time fluid domain
is not a standard cylinder but, instead,

\Omega + :=
\bigcup 
t>0

\Omega h(t),\theta (t) \times \{ t\} .

The governing equations of the fluid-structure interaction problem are then given by
the following combined system of PDEs/ODEs:

\rho (\bfitu t +\bfitu \cdot \nabla \bfitu ) - \mu \Delta u+\nabla p= 0, div\bfitu = 0 in \Omega +,

\bfitu | Sh,\theta 
= \.\theta (\bfitx  - \bfith )\bot + \.\bfith , \bfitu | \partial \scrC L

= 0, lim
| x1| \rightarrow +\infty 

\bfitu (t, x1, x2) = vP (x2)\bfite 1,

m\"h+ \partial hF (h, \theta ) = - \bfite 2 \cdot 
\int 
Sh,\theta 

\Bigl( 
\mu (\nabla \bfitu +\nabla \bfitu \top ) - p\bfitI 

\Bigr) 
\cdot \bfitn , t > 0,

I \"\theta + \partial \theta F (h, \theta ) = - 
\int 
Sh,\theta 

(\bfitx  - \bfith )\bot \cdot 
\Bigl( 
\mu (\nabla \bfitu +\nabla \bfitu \top ) - p\bfitI 

\Bigr) 
\cdot \bfitn , t > 0,

(2.1)

where \rho > 0 denotes the planar density of the fluid, I is the component of the inertia
tensor of B with respect to its barycenter and m> 0 its mass, \bfitI is the 2\times 2 identity
matrix, Sh,\theta = \partial Bh,\theta , \bfitn is the outward normal to \Omega h,\theta (pointing inward into Bh,\theta ),
and

\bfith =\bfith (t) =
\bigl( 
0, h(t)

\bigr) 
, (\bfitx  - \bfith )\bot = (h - x2, x1).

The unknowns in (2.1) are \bfitu and p for the motion of the fluid and h and \theta for
the position of the body; their knowledge fully describes the evolution of the fluid-
structure interaction.

2.2. Dimensionless equations. In order to write (2.1) in dimensionless form,
we introduce the scaling quantities

\delta (length), V =
\mu 

\rho \delta 
(velocity), T =

\delta 

V
=

\rho \delta 2

\mu 
(time), m (mass),

I (moment of inertia),

and we set

\scrR :=
\wp L2\delta \rho 

2\mu 2
, \zeta :=

\rho \delta 2

m
, \varpi :=

\rho \delta 4

I
, \sansv P (x2) := 1 - x2

2

L2
,(2.2)
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EQUILIBRIUM CONFIGURATIONS 3763

where \scrR is the relevant Reynolds number governing the flow. Of course, the width
of the channel and the length of the body changed but, to avoid new notation, we
will not use d/\delta and L/\delta as new lengths and still write \scrC L = R\times ( - L,L) and B =
[ - d, d]\times [ - 1,1]. After scaling, the admissible (noncollision) configurations of B are
given by

Bh,\theta =

\biggl( 
cos\theta  - sin\theta 
sin\theta cos\theta 

\biggr) 
B + h\bfite 2 =:Q(\theta )B + h\bfite 2 \forall (h, \theta )\in Ad(2.3)

with

Ad :=
\Bigl\{ 
(h, \theta )\in R2 : | \theta | < \pi 

2
and | h| + d| sin\theta | + cos\theta <L

\Bigr\} 
.(2.4)

The configurations \theta = \pm \pi 
2 are not included in Ad because the deck would be in a

straight-up position, which is not physically acceptable. The other constraints defining
Ad prevent collisions between the cross-section Bh,\theta and the boundary \partial \scrC L =R\times \{ \pm L\} 
of the channel. By fixing \theta = 0 or h= 0, we recover the decoupled dynamics described
in Figure 1. We assume that

L>
\sqrt{} 
d2 + 1(2.5)

so that L - d| sin\theta |  - cos\theta > 0 for all | \theta | < \pi 
2 (the body is not allowed to move vertically

on the whole range | h| <L - 1 for all \theta ). In Figure 2 we depict Ad for a couple (L,d)
satisfying (2.5).

The scaling quantities in (2.2) enable us to derive the dimensionless form of the
fluid motion. Accordingly, we need to introduce the dimensionless restoring forces.
We consider a smooth potential F \in C2(Ad) satisfying the following assumptions:

\partial hF (0, \theta ) = 0= \partial \theta F (h,0) \forall | \theta | <\pi 

2
, \forall | h| <L - 1, \kappa 1 = \partial hhF (0,0)> 0,(2.6)

\kappa 2 = \partial \theta \theta F (0,0)> 0,

h\partial hF (h, \theta )> 0 \forall (h, \theta )\in Ad, h \not = 0, and \theta \partial \theta F (0, \theta )> 0 \forall 0< | \theta | < \pi 

2
,(2.7)

where \kappa 1 (resp., \kappa 2) represents the dimensionless linearized vertical (resp., rotational)
stiffness around the equilibrium configuration (h= \theta = 0). Hence,

\kappa 1 =
\rho 2\delta 4

m\mu 2
\sigma 1, \kappa 2 =

\rho 2\delta 4

I\mu 2
\sigma 2,

with \sigma 1 (resp., \sigma 2) being the original dimensional vertical (resp., rotational) stiffness,
and, therefore, \partial hF and \partial \theta F are the restoring forces in dimensionless form. Clearly,
F is defined up to an additive constant and we can take F (0,0) = 0. Since (2.6) yields
\partial h\theta F (0,0) = 0, we then have

F (h, \theta ) =
\kappa 1

2
h2 +

\kappa 2

2
\theta 2 + o(h2 + \theta 2) as (h, \theta )\rightarrow (0,0),

which is the uncoupled Hooke's elastic law for h and \theta small.

Ad

Fig. 2. The set Ad in (2.4).
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3764 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

Although our results also hold in more general situations, the above assumptions
are justified by the behavior of real bridges. Indeed, at the collapsed Tacoma Bridge
the vertical modes of oscillations frequently changed into each other [1, pp. 20, 28], and
small torsional oscillations were never observed [31]; see also [1, p. 31]. Assumption
(2.6) states that neither vertical nor torsional oscillations can appear if they are not
already part of the oscillation. The second condition in (2.7) states that the action
of the cables is a restoring force but only in a neighborhood of the central position
h= 0.

When modeling the wind hitting a bridge, the boundary of the channel is virtual
and the physical model breaks down in the case of a collision between B and \partial \scrC L.
Hence, without affecting the modeling, we can assume that

lim inf
(| h| +d| sin \theta | +cos \theta )\rightarrow L - 

| \partial hF (h, \theta )| (L - | h|  - d| sin\theta |  - cos\theta )3/2 > 0,(2.8)

lim
| \theta | \rightarrow \pi 

2

| \partial \theta F (h, \theta )| =+\infty uniformly w.r.t. | h| \leq L - d,(2.9)

namely, there exist a strong force \partial hF preventing the collision between the cross-
section B and the boundary \partial \scrC L of the virtual channel, and a weak force \partial \theta F pre-
venting the cross-section from reaching a straight-up position. One could also assume
that (2.9) holds with \pi 

2 replaced by a smaller angle, | \theta | < \theta max, where the elastic
behavior of the bridge becomes plastic and leads to a fracture of the deck, as in the
Tacoma Bridge collapse. The power 3/2 in (2.8) is related to Proposition 3.1; an im-
provement on estimate (3.4) would allow us to relax (2.8). The rotational (torsional)
displacements depicted in Figure 1 (right) are due to the possible different behaviors of
the hangers and cables at the two endpoints of the cross-section. Assumptions (2.8)--
(2.9) state that the angular restoring force \partial \theta F in proximity of straight-up positions
may have a weaker behavior than the vertical force \partial hF in proximity of collisions.
Without assumptions (2.8)--(2.9), a weaker (merely local) form of Theorem 4.3 still
holds; see Remark 4.5. Our numerical results in section 6 suggest that (2.8) is not
needed to prevent collisions. We also refer to section 8 for more comments.

The scaling quantities (2.2) and the dimensionless linearized stiffness defined in
(2.6) enable us to rewrite (2.1) as

\bfitu t +\bfitu \cdot \nabla \bfitu  - div\bfitT (\bfitu , p) = 0, div\bfitu = 0 in \Omega +,

\bfitu | Sh,\theta 
= \.\theta (\bfitx  - \bfith )\bot + \.\bfith , \bfitu | \partial \scrC L

= 0, lim
| x1| \rightarrow +\infty 

\bfitu (t, x1, x2) =\scrR \sansv P (x2)\bfite 1,

\"h+ \partial hF (h, \theta ) = - \zeta \bfite 2 \cdot 
\int 
Sh,\theta 

\bfitT (\bfitu , p) \cdot \bfitn , t > 0,

\"\theta + \partial \theta F (h, \theta ) = - \varpi 

\int 
Sh,\theta 

(\bfitx  - \bfith )\bot \cdot (\bfitT (\bfitu , p) \cdot \bfitn ), t > 0,

(2.10)

where

\bfitT (\bfitu , p) =\nabla \bfitu +\nabla \bfitu \top  - p\bfitI 

denotes the (dimensionless) stress tensor. We emphasize that the dimensionless stiff-
ness constants are included in the dimensionless forms of \partial hF and \partial \theta F . Our goal is
to provide a qualitative analysis.

Existence, uniqueness, and long-time behavior for (2.10) are studied in [11, 19, 34].
In the present paper we aim to study the equilibrium configurations of B, and therefor,
we eliminate all time derivatives from (2.10) and consider the steady-state problems
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EQUILIBRIUM CONFIGURATIONS 3765

 - div\bfitT (\bfitu , p) +\bfitu \cdot \nabla \bfitu = 0, div\bfitu = 0 in \Omega h,\theta ,
\bfitu | Sh,\theta 

=\bfitu | \partial \scrC L
= 0, lim

| x1| \rightarrow +\infty 
\bfitu (x1, x2) =\scrR \sansv P (x2)\bfite 1,(2.11)

\partial hF (h, \theta ) = - \zeta \bfite 2 \cdot 
\int 
Sh,\theta 

\bfitT (\bfitu , p) \cdot \bfitn ,

\partial \theta F (h, \theta ) = - \varpi 

\int 
Sh,\theta 

(\bfitx  - \bfith )\bot \cdot (\bfitT (\bfitu , p) \cdot \bfitn ).
(2.12)

Our plan is first to solve (2.11) for any (h, \theta )\in Ad and then to find for which couples
(h, \theta ) \in Ad is (2.12) satisfied. These couples are called equilibrium configurations
for B.

2.3. The steady-states of the fluid equations. In order to write the weak
formulation of (2.11), we introduce a specific solenoidal extension \bfita of the Poiseuille
inflow/outflow to all \scrC L which vanishes in Bh,\theta but does not depend on h and \theta . Let
D \in (

\surd 
d2 + 1,L) be the radius of an open ball centered at 0 and containing B0,\theta for all

| \theta | < \pi 
2 ; we may assume that Bh,\theta lies entirely above the horizontal line x2 = - L+D

2 ,
otherwise Bh,\theta lies entirely below the horizontal line x2 =

L+D
2 and we can argue in

a symmetric way. Then, as depicted in Figure 3, we define

\Sigma D =
\Bigl\{ 
( - 4D, - 2D)\times ( - L,L)

\Bigr\} 
\cup 
\biggl\{ 
[ - 2D,2D]\times 

\biggl( 
 - L, - L+D

2

\biggr) \biggr\} 
\cup 
\Bigl\{ 
(2D,4D)\times ( - L,L)

\Bigr\} 
,

\Omega \ast = ( - 2D,2D)\times 
\biggl( 
 - L+D

2
,L

\biggr) 
, \Omega \infty = \{ (x1, x2)\in \scrC L : | x1| > 4D\} ,

\Omega D =\Omega h,\theta \setminus \Omega \infty .

Let \zeta \in C\infty \bigl( 
R \times [ - L,L]

\bigr) 
be a cutoff function separating the obstacle and the

Poiseuille flow at infinity such that

\zeta (x1, x2) = \zeta (x1) =

\biggl\{ 
0 if | x1| < 3D,
1 if | x1| > 4D

and \zeta even w.r.t. x1.

Let \bfitz \in H2
0 (\Sigma D) be the solution to the problem

div\bfitz = \zeta \prime (x1)\sansv P (x2) in \Sigma D, \bfitz = 0 on \partial \Sigma D.

.B

2D 4D- 2D-4D

D00*

2D 4D- 2D
B

D

-4D

Fig. 3. The regions \Sigma D, \Omega \ast , and \Omega \infty (above). The region \Omega D (below).
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3766 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

Since \zeta \prime (x1)\sansv P (x2) \in H1
0 (\Sigma D) and

\int 
\Sigma D

\zeta \prime (x1)\sansv P (x2) = 0, such \bfitz does exist [15, The-

orem III.3.3]. Hence, if we extend \bfitz by zero outside \Sigma D we obtain that \bfitz \in H2
0 (\scrC L)

and we define

\bfita (x1, x2) := \zeta (x1)\sansv P (x2)\bfite 1  - \bfitz (x1, x2), (x1, x2)\in \scrC L.(2.13)

Then div\bfita = 0 in \scrC L, \bfita \in H2
loc(\Omega h,\theta ) and \bfita (x1, x2) = \sansv P (x2)\bfite 1 in \Omega \infty . Therefore,

\bfita \equiv 0 in \Omega \ast , \bfita \cdot \nabla \bfita \equiv 0 in \Omega \infty ,  - \Delta \bfita =\nabla \Pi in \Omega \infty , where \Pi (x1, x2) =
2x1

L2
.

(2.14)

We can now define weak solutions of (2.11).

Definition 2.1. Let Vh,\theta := \{ \bfitv \in H1
0 (\Omega h,\theta ) : div\bfitv = 0 a.e. in \Omega h,\theta \} . We say

that \bfitu \in H1
loc(\Omega h,\theta ) (solenoidal) is a weak solution to (2.11) if \bfitv := \bfitu  - \scrR \bfita satisfies

\bfitv \in Vh,\theta and \int 
\Omega h,\theta 

\nabla \bfitv :\nabla \bfitvarphi =

\int 
\Omega h,\theta 

(\bfitv +\scrR \bfita ) \cdot \nabla \bfitvarphi \cdot \bfitv  - \scrR 
\int 
\Omega h,\theta 

(\bfitv +\scrR \bfita ) \cdot \nabla \bfita \cdot \bfitvarphi (2.15)

+\scrR 
\int 
\Omega h,\theta 

\Delta \bfita \cdot \bfitvarphi \forall \bfitvarphi \in Vh,\theta .

One can then associate a pressure p \in L2
loc(\Omega h,\theta ) to the weak solution \bfitu ; see [15,

section XIII.1].
The next result states existence and uniqueness of the weak solution of (2.11) for

small \scrR . The fundamental aspect is the a priori bound which is independent of the
position of B.

Proposition 2.2. There exists \gamma > 0 (independent of (h, \theta ) \in Ad) such that if
0 \leq \scrR < \gamma , then problem (2.11) admits a unique weak solution (\bfitu , p) \in H1

loc(\Omega h,\theta )\times 
L2
loc(\Omega h,\theta )/R with (\bfitu  - \scrR \sansv P\bfite 1) \in Vh,\theta (see Definition 2.1); moreover, (\bfitu , p) \in 

C\infty (\Omega h,\theta )\times C\infty (\Omega h,\theta ). Finally, there exists C > 0 depending on L and d, but not on
h and \theta , such that

\| \nabla (\bfitu  - \scrR \sansv P\bfite 1)\| L2(\Omega h,\theta ) \leq C\scrR (1 +\scrR ).(2.16)

In particular, if \scrR = 0, then \bfitu = 0 for all (h, \theta )\in Ad.

Proof. The proof is a revision of [5, Lemma 1]; see also [6]. In particular, it is
enough to show the validity of the a priori estimate (2.16) since this allows us to prove
the stated properties by the same (classical) arguments given in [15, section XIII.3].
Taking \bfitvarphi = \bfitv as test function in (2.15), by (2.14) we obtain

\| \nabla \bfitv \| 2L2(\Omega h,\theta )
= - \scrR 

\int 
\Omega h,\theta 

\bfitv \cdot \nabla \bfita \cdot \bfitv  - \scrR 2

\int 
\Omega D

\bfita \cdot \nabla \bfita \cdot \bfitv  - \scrR 
\int 
\Omega D

\nabla \bfita :\nabla \bfitv .

By the Ladyzhenskaya and Poincar\'e inequalities, we obtain the bounds\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega h,\theta 

\bfitv \cdot \nabla \bfita \cdot \bfitv 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \| \nabla \bfita \| L\infty (\Omega \infty )\| \bfitv \| 2L2(\Omega \infty )+\| \nabla \bfita \| L2(\Omega D)\| \bfitv \| 2L4(\Omega D)\leq C1\| \nabla \bfitv \| 2L2(\Omega h,\theta )
,\bigm| \bigm| \bigm| \bigm| \int 

\Omega D

\bfita \cdot \nabla \bfita \cdot \bfitv 
\bigm| \bigm| \bigm| \bigm| \leq \| \bfita \| L4(\Omega D)\| \nabla \bfita \| L2(\Omega D)\| \bfitv \| L4(\Omega D) \leq C2\| \nabla \bfitv \| L2(\Omega h,\theta ).
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EQUILIBRIUM CONFIGURATIONS 3767

Observe that C1,C2 do not depend on h, \theta . Indeed, \bfita is independent of (h, \theta ) by
construction in (2.13), and \Omega h,\theta \subset \scrC L for all (h, \theta )\in Ad, implying H1

0 (\Omega h,\theta )\subset H1
0 (\scrC L)

by trivial extension inside Bh,\theta . Summarizing, we have the estimate

\| \nabla \bfitv \| L2(\Omega h,\theta ) \leq C1\scrR \| \nabla \bfitv \| L2(\Omega h,\theta ) +C2\scrR 2 +\scrR \| \nabla \bfita \| L2(\Omega D)

by which (2.16) follows by taking \scrR small and by noticing that \| \nabla (\bfita  - \sansv P )\bfite 1\| L2(\Omega h,\theta )

is bounded by a constant independent of h and \theta .

Remark 2.3. For (h, \theta ) \in Ad, let V i
h,\theta (i = 1, . . . ,4) be the four corners of the

rectangle Bh,\theta . Then, by elliptic regularity on the smooth parts of the boundary,
the solution (\bfitu , p) of (2.11) found in Proposition 2.2 satisfies (\bfitu , p) \in C\infty \bigl( 

\Omega h,\theta \setminus 
\{ V 1

h,\theta , V
2
h,\theta , V

3
h,\theta , V

4
h,\theta \} 

\bigr) 
.

In what follows it will be useful to decompose \bfitv as follows.

Lemma 2.4. Let \gamma > 0 be as in Proposition 2.2, let \scrR < \gamma , let \bfitv be as in Defini-
tion 2.1, and let \bfitw := \bfitv /\scrR . Then\int 

\Omega h,\theta 

\nabla \bfitw :\nabla \bfitvarphi +

\int 
\Omega h,\theta 

\nabla \bfita :\nabla \bfitvarphi =\scrR 
\int 
\Omega h,\theta 

(\bfitw + \bfita ) \cdot \nabla \bfitvarphi \cdot \bfitw (2.17)

 - \scrR 
\int 
\Omega h,\theta 

(\bfitw + \bfita ) \cdot \nabla \bfita \cdot \bfitvarphi \forall \bfitvarphi \in Vh,\theta .

Let \bfitw (s) \in Vh,\theta be the Stokes flow (independent of \scrR ) weakly defined by\int 
\Omega h,\theta 

\bigl( 
\nabla \bfitw (s) +\nabla \bfita 

\bigr) 
:\nabla \bfitvarphi = 0 \forall \bfitvarphi \in Vh,\theta (2.18)

and let \bfitw (n)(\scrR ) :=\scrR  - 1(\bfitw  - \bfitw (s)), so that \bfitw =\bfitw (s) +\scrR \bfitw (n)(\scrR ) and \bfitv =\scrR \bfitw (s) +
\scrR 2\bfitw (n)(\scrR ). Then \| \nabla \bfitw (s)\| L2(\Omega h,\theta ) and \| \nabla \bfitw (n)(\scrR )\| L2(\Omega h,\theta ) are bounded indepen-
dently of (h, \theta )\in Ad.

Proof. By definition of \bfitw we have that \bfitu =\scrR (\bfitw + \bfita ) and (2.15) implies (2.17).
By taking \bfitvarphi =\bfitw (s) in (2.18), we obtain

\| \nabla \bfitw (s)\| L2(\Omega h,\theta ) \leq \| \nabla \bfita \| L2(\Omega D) \forall (h, \theta )\in Ad.

By (2.17) and by definition of \bfitw (s), we infer that \bfitw (n) \in Vh,\theta is weakly defined by\int 
\Omega h,\theta 

\nabla \bfitw (n) :\nabla \bfitvarphi 

=

\int 
\Omega h,\theta 

\bfitw (s) \cdot \nabla \bfitvarphi \cdot \bfitw (s) +

\int 
\Omega h,\theta 

\bfita \cdot \nabla \bfitvarphi \cdot \bfitw (s)  - 
\int 
\Omega h,\theta 

\bfita \cdot \nabla \bfita \cdot \bfitvarphi 

 - 
\int 
\Omega h,\theta 

\bfitw (s) \cdot \nabla \bfita \cdot \bfitvarphi +\scrR 
\int 
\Omega h,\theta 

\bfitw (n) \cdot \nabla \bfitvarphi \cdot \bfitw (s) +\scrR 
\int 
\Omega h,\theta 

\bfitw (s) \cdot \nabla \bfitvarphi \cdot \bfitw (n)

+\scrR 
\int 
\Omega h,\theta 

\bfita \cdot \nabla \bfitvarphi \cdot \bfitw (n)  - \scrR 
\int 
\Omega h,\theta 

\bfitw (n) \cdot \nabla \bfita \cdot \bfitvarphi +\scrR 2

\int 
\Omega h,\theta 

\bfitw (n) \cdot \nabla \bfitvarphi \cdot \bfitw (n).

By taking \varphi =\bfitw (n) and using the bound for \bfitw (s), we have the estimate

(1 - c1\scrR )\| \nabla \bfitw (n)\| L2(\Omega h,\theta ) \leq c2,
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3768 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

where c1 and c2 only depend on \bfita and \bfitw (s); in fact, \bfitw (s) depends linearly on \bfita 
through (2.18).

Observe that, in the previous proof, we obtained the following estimate for
\bfitw = \bfitv /\scrR :

\| \nabla \bfitw \| L2(\Omega h,\theta ) \leq \| \nabla \bfita \| L2(\Omega D) +
c2\scrR 

1 - c1\scrR 
,

where c1 and c2 only depend on \bfita . This gives further insight into (2.16).

3. Lift and torque.

3.1. Basic properties. With a solution (\bfitu , p) of (2.11) in hand, it is standard
to define the lift and torque by

\scrL (h, \theta ,\scrR ) := - \bfite 2 \cdot 
\int 
Sh,\theta 

\bfitT (\bfitu , p) \cdot \bfitn , \scrT (h, \theta ,\scrR ) := - 
\int 
Sh,\theta 

(\bfitx  - \bfith )\bot \cdot (\bfitT (\bfitu , p) \cdot \bfitn ).

(3.1)

However, the formulas in (3.1) are rigorous only if \bfitT (\bfitu , p) \cdot \bfitn \in L1(Sh,\theta ), a condition
which is guaranteed, for instance, if (\bfitu , p) \in H2

loc(\Omega h,\theta ) \times H1
loc(\Omega h,\theta ). In our case

Sh,\theta is only Lipschitz, and this regularity is not ensured so that the integrals in (3.1)
should be read as dualities; see, for instance, [21]. We will not go deeper into this
discussion both because we prefer to maintain a simpler notation and because we will
compute \scrL and \scrT with alternative formulas. To this end, for j = 1,2,3, we consider
the following Stokes flows, first introduced in [26]:

div\bfitT (\bfitw j , P j) = 0, div\bfitw j = 0 in \Omega h,\theta ,

\bfitw j | Sh,\theta 
= \bfitk j , \bfitw 

j | \partial \scrC L
= 0= lim

| x1| \rightarrow +\infty 
\bfitw j(x1, x2),

(3.2)

with

\bfitk j = \bfite j for j = 1,2 and \bfitk 3 :=\bfitx \bot = ( - x2, x1).(3.3)

Then we prove the following.

Proposition 3.1. Let (h, \theta ) \in Ad. For j = 1,2,3, the problem (3.2) admits
a unique weak solution (\bfitw j , P j) = (\bfitw j

(h,\theta ), P
j
(h,\theta )) \in H1(\Omega h,\theta ) \times L2

loc(\Omega h,\theta )/R and

(\bfitw j , P j)\in C\infty \bigl( 
\Omega h,\theta \setminus \{ V 1

h,\theta , V
2
h,\theta , V

3
h,\theta , V

4
h,\theta \} 

\bigr) 
; see Remark 2.3. Moreover, after setting

\varepsilon =

\biggl\{ 
dist(Bh,\theta ,\partial \scrC L)

2 if dist(Bh,\theta , \partial \scrC L)\leq 2,
1 otherwise,

there exist constants cj = cj(L,D)> 0 (for j = 1,2,3 and independent of \varepsilon ), such that

\| \nabla \bfitw j\| L2(\Omega h,\theta ) \leq cj\varepsilon 
 - 3

2 .(3.4)

Furthermore, (3.1) can be equivalently (and rigorously) rewritten as

\scrL (h, \theta ,\scrR ) = - 
\int 
\Omega h,\theta 

\nabla \bfitu :\nabla \bfitw 2  - 
\int 
\Omega h,\theta 

\bfitu \cdot \nabla \bfitu \cdot \bfitw 2,

\scrT (h, \theta ,\scrR ) = - 
\int 
\Omega h,\theta 

\nabla \bfitu : (h\nabla \bfitw 1 +\nabla \bfitw 3) - 
\int 
\Omega h,\theta 

\bfitu \cdot \nabla \bfitu \cdot (h\bfitw 1 +\bfitw 3).
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EQUILIBRIUM CONFIGURATIONS 3769

Proof. Existence, uniqueness, and regularity for problems (3.2) are well-known,
see e.g. [15, Chapter VI]. To get the a priori bounds (3.4), we take a smooth cut-off
function \phi such that

\phi (\bfitx ) = \phi (x1, x2) =

\left\{   1 in
\Bigl( 
 - D - \varepsilon 

2
,D+

\varepsilon 

2

\Bigr) 
\times 
\biggl( 
 - L+

3\varepsilon 

2
,L - 3\varepsilon 

2

\biggr) 
,

0 in R\times ( - L,L) \setminus ( - D - \varepsilon ,D+ \varepsilon )\times ( - L+ \varepsilon ,L - \varepsilon ),
(3.5)

where, as above, D \in (
\surd 
d2 + 1,L) is the radius of an open ball centered at 0 and

containing B0,\theta for all | \theta | < \pi 
2 and 0< \varepsilon < 2L

3 is fixed. We set K = supp\phi and

\Phi 1(\bfitx ) := ((x2\phi )x2
, - (x2\phi )x1

), \Phi 2(\bfitx ) := ( - (x1\phi )x2
, (x1\phi )x1

).(3.6)

Then, for j = 1,2, we have supp\Phi j \subset ( - D  - \varepsilon ,D + \varepsilon )\times ( - L+ \varepsilon ,L - \varepsilon ), div\Phi j = 0,
and \Phi j | Sh,\theta 

= \bfite j . Finally, we set

\Phi 3(\bfitx ) =

\biggl( 
 - 1

2

\bigl( 
| \bfitx | 2\phi 

\bigr) 
x2

,
1

2

\bigl( 
| \bfitx | 2\phi 

\bigr) 
x1

\biggr) 
,(3.7)

which satisfies supp \Phi 3 \subset ( - D - \varepsilon ,D+ \varepsilon )\times ( - L+ \varepsilon ,L - \varepsilon ), div\Phi 3 = 0, and \Phi 3| Sh,\theta 
=

( - x2, x1).
The a priori bounds (3.4) for \bfitw j then follow by adapting the proof of [5, Lemma

2] and by exploiting the auxiliary fields \Phi j defined in (3.6) and in (3.7). Some com-
putations yield

\| \Phi j\| L2(K) \leq c0\varepsilon 
 - 1/2, \| \nabla \Phi j\| L2(K) \leq c1\varepsilon 

 - 3/2

with c0 = c0(L,D) and c1 = c1(L,D) independent of \varepsilon . On the other hand, by
multiplying both sides of (3.2) by \bfitw j  - \Phi j , integrating over \Omega h,\theta , and recalling that
div\Phi j = 0 we get

\| \nabla \bfitw j\| 2L2(\Omega h,\theta )
=

\int 
\Omega h,\theta 

| \nabla \bfitw j | 2 =
\int 
K

\nabla \bfitw j :\nabla \Phi j \leq c1\varepsilon 
 - 3/2\| \nabla \bfitw j\| L2(\Omega h,\theta ),

which proves the claimed inequalities when j = 1,2. The proof of the estimate (3.4)
for \bfitw 3 follows with similar arguments by exploiting the auxiliary function \Phi 3.

Consider the unique solution (\bfitw j , P j) = (\bfitw j
(h,\theta ), P

j
(h,\theta )) of (3.2), which is smooth

in \Omega h,\theta ; for simplicity, we omit emphasizing h and \theta . Moreover, by arguing as in [15,
sections VI.1 and VI.2] we know that there exist C,\nu > 0 and P j

\pm \in R such that

| D\alpha \bfitw j(\bfitx )| + | D\alpha (P j(\bfitx ) - P j
+)| \leq Ce - \nu x1 \forall \bfitx \in \Omega h,\theta such that x1 \gg d,

| D\alpha \bfitw j(\bfitx )| + | D\alpha (P j(\bfitx ) - P j
 - )| \leq Ce\nu x1 \forall \bfitx \in \Omega h,\theta such that x1 \ll  - d

(3.8)

for every | \alpha | \geq 0. In view of the regularity stated in Proposition 2.2, we may multiply
(2.11) by \bfitw j and integrate over \Omega h,\theta to formally obtain (recall that the integrals over
Sh,\theta are, in fact, dualities)

0 = - 
\int 
\Omega h,\theta 

\bfitw j \cdot div\bfitT (\bfitu , p)+

\int 
\Omega h,\theta 

\bfitu \cdot \nabla \bfitu \cdot \bfitw j

=

\int 
\Omega h,\theta 

\nabla \bfitu :\nabla \bfitw j - 
\int 
Sh,\theta 

\bfitw j \cdot (\bfitT (\bfitu , p) \cdot \bfitn )+
\int 
\Omega h,\theta 

\bfitu \cdot \nabla \bfitu \cdot \bfitw j ,
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3770 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

which, recalling (3.3), leads to the conclusion that\int 
Sh,\theta 

\bfitk j \cdot (\bfitT (\bfitu , p) \cdot \bfitn ) =
\int 
\Omega h,\theta 

\nabla \bfitu :\nabla \bfitw j +

\int 
\Omega h,\theta 

\bfitu \cdot \nabla \bfitu \cdot \bfitw j .

All the integration by parts are justified by (3.8).

Then we prove some useful symmetry properties of \scrL and \scrT . In particular, we
show that if h = 0 or \theta = 0, symmetry arguments simplify the formulas in Propo-
sition 3.1 and reduce them to the formulas used in [5, 6] for models with a unique
degree of freedom.

Proposition 3.2. Let \gamma > 0 be as in Proposition 2.2 and let 0\leq \scrR <\gamma . Then

\scrL ( - h, - \theta ,\scrR ) = - \scrL (h, \theta ,\scrR ), \scrT ( - h, - \theta ,\scrR ) = - \scrT (h, \theta ,\scrR ) \forall (h, \theta )\in Ad(3.9)

and, therefore,

\scrL (0,0,\scrR ) = \scrT (0,0,\scrR ) = 0 \forall \scrR \in [0, \gamma ).(3.10)

Let \bfitw j be the unique solution to (3.2) for j = 2,3; see Proposition 3.1. Then

\scrL (h,0,\scrR ) = - 
\int 
\Omega h,0

\bfitu \cdot \nabla \bfitu \cdot \bfitw 2 and \scrT (0, \theta ,\scrR ) = - 
\int 
\Omega 0,\theta 

\bfitu \cdot \nabla \bfitu \cdot \bfitw 3(3.11)

for all | h| <L - 1 and all | \theta | < \pi 
2 , respectively.

Proof. Let (h, \theta )\in Ad. By Proposition 2.2, problem (2.11) in \Omega h,\theta admits a unique

weak solution (\bfitu , p) =
\bigl( 
\bfitu (h,\theta ), p(h,\theta )

\bigr) 
, with \bfitu (x1, x2) =

\bigl( 
u
(h,\theta )
1 (x1, x2), u

(h,\theta )
2 (x1, x2)

\bigr) 
.

By symmetry, we know that ( - h, - \theta ) \in Ad and, using again Proposition 2.2,
also the problem (2.11) in \Omega  - h, - \theta admits a unique weak solution

\bigl( 
\bfitu ( - h, - \theta ), p( - h, - \theta )

\bigr) 
.

With some computations, one can show that

\bfitv (x1, x2) :=
\Bigl( 
u1(x1, - x2), - u2(x1, - x2)

\Bigr) 
, q(x1, x2) = p(x1, - x2)

weakly solves (2.11) in \Omega  - h, - \theta . By uniqueness, this proves that \bfitu ( - h, - \theta ) = \bfitv and
p( - h, - \theta ) = q, namely,

\bfitu ( - h, - \theta )(\bfitx ) =
\Bigl( 
[u(h,\theta )]1(x1, - x2), - [u(h,\theta )]2(x1, - x2)

\Bigr) 
and

p( - h, - \theta )(\bfitx ) = p(h,\theta )(x1, - x2).

By formally using these symmetry properties in (3.1), we obtain (3.9). However, we
recall that (3.1) is not rigourous because the integral should be replaced by a duality.
In order to make (3.9) rigorous, we can use Proposition 3.1 and notice that similar
arguments yield

\bfitw 1
( - h, - \theta )(\bfitx ) =

\Bigl( 
[w1

(h,\theta )]1(x1, - x2), - [w1
(h,\theta )]2(x1, - x2)

\Bigr) 
and

P 1
( - h, - \theta )(\bfitx ) = P 1

(h,\theta )(x1, - x2)

and

\bfitw j
( - h, - \theta )(\bfitx ) =

\Bigl( 
 - [wj

(h,\theta )]1(x1, - x2), [w
j
(h,\theta )]2(x1, - x2)

\Bigr) 
and

P j
( - h, - \theta )(\bfitx ) = - P j

(h,\theta )(x1, - x2)
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EQUILIBRIUM CONFIGURATIONS 3771

for j = 2,3. A change of variables, combined with the formulas for \scrL and \scrT given in
Proposition 3.1, then proves (3.9).

By Proposition 3.1, in order to prove (3.11) it suffices to show that\int 
\Omega h,0

\nabla \bfitu :\nabla \bfitw 2 = 0 and

\int 
\Omega 0,\theta 

\nabla \bfitu :\nabla \bfitw 3 = 0.(3.12)

For all R >
\surd 
d2 + 1 and (h, \theta ) \in Ad, we set \Omega R

h,\theta = \Omega h,\theta \cap \{ | x1| < R\} . By Proposi-
tion 3.1 we may multiply (3.2) by \bfitu and, upon integration, get (for j = 2,3)

0 =

\int 
Sh,\theta 

\bfitu \cdot T(\bfitw j , P j) \cdot \bfitn +

\int 
| x1| =R

\bfitu \cdot T(\bfitw j , P j) \cdot \bfitn  - 
\int 
\Omega R

h,\theta 

\nabla \bfitu :\nabla \bfitw j ,

recalling that the boundary integrals are, in fact, dualities. Since \bfitu = 0 on Sh,\theta , this
yields

\int 
\Omega R

h,\theta 

\nabla \bfitu :\nabla \bfitw j =

\int 
| x1| =R

\bfitu \cdot T(\bfitw j , P j) \cdot \bfitn 

(3.13)

=

\int 
x1=R

\bfitu \cdot (\nabla \bfitw j +\nabla \bfitw j\top ) \cdot e1 - 
\int 
x1= - R

\bfitu \cdot (\nabla \bfitw j +\nabla \bfitw j\top ) \cdot e1

+

\int 
x1= - R

(\bfitu \cdot e1)P j  - 
\int 
x1=R

(\bfitu \cdot e1)P j.

In view of (3.8), the first two terms in (3.13) disappear as R\rightarrow \infty since \partial x1
wj \rightarrow 0

exponentially fast and \bfitu \rightarrow \scrR \sansv P (x2)\bfite 1. Moreover,

\bfitu (\pm R,x2) \cdot \bfite 1 \rightarrow \scrR \sansv P (x2) and P j( - R,x2) - P j(R,x2)\rightarrow P j
 -  - P j

+ as R\rightarrow \infty .

Therefore, we deduce that\int 
\Omega h,\theta 

\nabla \bfitu :\nabla \bfitw j = lim
R\rightarrow \infty 

\int 
\Omega R

h,\theta 

\nabla \bfitu :\nabla \bfitw j = (P j
 -  - P j

+)\scrR 
\int L

 - L

\sansv P (x2)dx2

= (P j
 -  - P j

+)\scrR 
4L

3
,

where we used the explicit form of \sansv P in (2.2). Hence, (3.12) follows if we prove that
P j
 - = P j

+ when \theta = 0 (j = 2) or h= 0 (j = 3).
Let \theta = 0 and let (\bfitw 2, P 2) be the unique solution to (3.2) for j = 2 in \Omega h,0. By

exploiting the symmetries of \Omega h,0, we see that also the couple

\bfitv 2(x1, x2) :=
\bigl( 
 - w2

1( - x1, x2),w
2
2( - x1, x2)

\bigr) 
, Q2(x1, x2) := P 2( - x1, x2)

solves (3.2). By uniqueness, this shows that P 2 is even with respect to x1, so that
P 2
+ = P 2

 - .
Let h = 0 and let (\bfitw 3, P 3) be the unique solution to (3.2) for j = 3 in \Omega 0,\theta . By

exploiting the symmetries of \Omega 0,\theta , we see that also the couple

\bfitv 3(\bfitx ) := - \bfitw 3( - \bfitx ), Q3(\bfitx ) := P 3( - \bfitx )

solves (3.2). By uniqueness, this shows that P 3( - \bfitx ) = P 3(\bfitx ), so that P 3
+ = P 3

 - .
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3772 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

Remark 3.3. The quantities P j
+  - P j

 - are pressure drops that determine the
forces for a Stokes flow (for which there is no convection), and it is numerically
observed in [10] that the configurations where h = 0 and \theta = 0 are the only ones for
which the torque and the lift (respectively) vanish. This leads to the conjecture that\int 
\Omega h,\theta 

\nabla \bfitu :\nabla \bfitw j \not = 0 also for the Navier--Stokes flow (2.11) if (h, \theta )\in Ad with h\theta \not = 0.

Remark 3.3 shows the importance of the solutions \bfitw j to (3.2) for j = 2,3: they
allow us to compute the pressure drops that characterize the one-degree-of-freedom
configurations. But a careful look at the proof of Proposition 3.1 emphasizes that
there is no need to introduce Stokes problems such as (3.2). This is why we conclude
this subsection by showing that the auxiliary vector fields (3.6)--(3.7) also allow us
to prove further alternative forms of (3.1). This flexibility will be used in section 3.2
since (3.6)--(3.7) can be chosen independently of the position of B close to a reference
configuration.

Proposition 3.4. Let \chi j \in H1
0 (\scrC L) be any vector field such that div \chi j = 0 in

\scrC L, supp\chi j \subset \Omega \ast and \chi j = \bfitk j in Bh,\theta for j = 1,2,3; see (3.3) and Figure 3. Then
(3.1) can be written as

\scrL (h, \theta ,\scrR ) = - 
\int 
\Omega h,\theta 

\nabla \bfitu :\nabla \chi 2  - 
\int 
\Omega h,\theta 

\bfitu \cdot \nabla \bfitu \cdot \chi 2 \forall (h, \theta )\in Ad,

(3.14)

\scrT (h, \theta ,\scrR ) = - 
\int 
\Omega h,\theta 

\nabla \bfitu : (h\nabla \chi 1 +\nabla \chi 3) - 
\int 
\Omega h,\theta 

\bfitu \cdot \nabla \bfitu \cdot (h\chi 1 + \chi 3) \forall (h, \theta )\in Ad.

(3.15)

Furthermore, if \bfitw =\bfitw (s) +\scrR \bfitw (n) is as in Lemma 2.4, then

\scrL (h,0,\scrR ) = - \scrR 2

\int 
\Omega h,0

\nabla \bfitw (n) :\nabla \chi 2  - \scrR 2

\int 
\Omega h,0

\bfitw \cdot \nabla \bfitw \cdot \chi 2 \forall | h| <L - 1,(3.16)

\scrT (0, \theta ,\scrR ) = - \scrR 2

\int 
\Omega 0,\theta 

\nabla \bfitw (n) :\nabla \chi 3  - \scrR 2

\int 
\Omega 0,\theta 

\bfitw \cdot \nabla \bfitw \cdot \chi 3 \forall | \theta | < \pi 

2
.(3.17)

Proof. Formulas (3.14)--(3.15) are derived by repeating the arguments of the proof
of Proposition 3.1 with \bfitw j replaced by \chi j . Note that supp\chi j\cap supp\bfita = \emptyset ; see (2.14).
We then use the decomposition of Lemma 2.4, with \bfitu =\bfitw in supp\chi j , to obtain

\scrL (h,0,\scrR ) = - \scrR 
\int 
\Omega h,\theta 

\nabla \bfitw (s) :\nabla \chi 2  - \scrR 2

\int 
\Omega h,\theta 

\nabla \bfitw (n) :\nabla \chi 2  - \scrR 2

\int 
\Omega h,\theta 

\bfitw \cdot \nabla \bfitw \cdot \chi 2,

\scrT (0, \theta ,\scrR ) = - \scrR 
\int 
\Omega h,\theta 

\nabla \bfitw (s) :\nabla \chi 3  - \scrR 2

\int 
\Omega h,\theta 

\nabla \bfitw (n) :\nabla \chi 3  - \scrR 2

\int 
\Omega h,\theta 

\bfitw \cdot \nabla \bfitw \cdot \chi 3.

We voluntarily did not expand the last terms in these expressions. The proof follows
if we show that \int 

\Omega h,0

\nabla \bfitw (s) :\nabla \chi 2 =

\int 
\Omega 0,\theta 

\nabla \bfitw (s) :\nabla \chi 3 = 0.(3.18)

Since \bfitw (s) solves (2.18), the vector field \bfitw \infty :=\bfitw (s) + \bfita satisfies

 - div\bfitT (\bfitw \infty , p\infty ) = 0, div\bfitw \infty = 0 in \Omega h,\theta ,
\bfitw \infty | Sh,\theta 

=\bfitw \infty | \partial \scrC L
= 0, lim

| x1| \rightarrow +\infty 
\bfitw \infty (x1, x2) = \sansv P (x2)\bfite 1
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EQUILIBRIUM CONFIGURATIONS 3773

for some p\infty \in L2
loc(\Omega h,\theta ). The lift and torque associated to \bfitw \infty can be computed

with the arguments of Propositions 3.1 and 3.4. This shows that\int 
Sh,\theta 

\bfitk j \cdot \bfitT (\bfitw \infty , p\infty ) \cdot \bfitn =

\int 
\Omega h,\theta 

\nabla \bfitw \infty :\nabla \chi j =

\int 
\Omega h,\theta 

\nabla \bfitw s :\nabla \chi j ,

where the latter equality follows by recalling that supp\chi j\cap supp\bfita = \emptyset . Arguing as in
Proposition 3.2, namely, by exploiting the symmetry properties of \bfitw \infty and \bfitw j , we
deduce (3.18).

3.2. Differentiability with respect to \bfith and \bfittheta . Our next purpose is to study
the regularity of \scrL and \scrT and their asymptotic behavior for \scrR \rightarrow 0. For simplicity,
we will prove the continuity and differentiability of \scrL and \scrT at (h, \theta ) = (0,0) only.
While the very same argument works for any (h, \theta )\in Ad, the asymptotics are specific
to the configuration (h, \theta ) = (0,0).

Theorem 3.5. Let \gamma > 0 be as in Proposition 2.2. There exist \gamma 0 \in (0, \gamma ] and
(h0, \theta 0)\in Ad (with h0, \theta 0 > 0) such that \scrL ,\scrT \in C1

\bigl( 
( - h0, h0)\times ( - \theta 0, \theta 0)\times [0, \gamma 0)

\bigr) 
and

\partial h\scrL (h, \theta ,0) = \partial \theta \scrL (h, \theta ,0) = \partial h\scrT (h, \theta ,0) = \partial \theta \scrT (h, \theta ,0) = 0(3.19)

\forall (h, \theta )\in ( - h0, h0)\times ( - \theta 0, \theta 0).

Even more, there exist \ell 0,τ0 \in R such that

\partial h\scrL (0,0,\scrR ) =O(\scrR 2), \partial \theta \scrL (0,0,\scrR ) = \ell 0\scrR +O(\scrR 2) as \scrR \rightarrow 0,
\partial h\scrT (0,0,\scrR ) = τ0\scrR +O(\scrR 2), \partial \theta \scrT (0,0,\scrR ) =O(\scrR 2) as \scrR \rightarrow 0.

(3.20)

The proof of Theorem 3.5 relies on two lemmas and is given at the end of the
subsection. Let O \subset A \subset \Omega \ast be two open neighborhoods of B0,0 so that, for \bfita as in
(2.13), we have supp\bfita \subset \scrC L \setminus A (see (2.14)); compare Figure 4 with Figure 3.

By arguing as in [36, section 4.1] (see also [11, 27]), the following result can be
proved.

Lemma 3.6. Consider h(t) = \eta t and \theta (t) = \tau t with \eta , \tau \in \{  - 1,0,1\} . For small
T > 0 there exists a volume-preserving diffeomorphism

\xi (t, \cdot ) : \Omega 0,0  - \rightarrow \Omega \eta t,\tau t(3.21)

satisfying, for all t\in [0, T ], the following properties:

\xi (t,\bfity ) =

\Biggl\{ 
Q(\tau t)\bfity + (0, \eta t) if \bfity \in O,

\bfity if \bfity \in \scrC L \setminus A,

\xi  - 1(t,\bfitx ) =

\Biggl\{ 
Q(\tau t)\top 

\bigl( 
\bfitx  - (0, \eta t)

\bigr) 
if \bfitx \in O,

\bfitx if \bfitx \in \scrC L \setminus A,

.B

0
supp

*

Fig. 4. The regions O and A in the definition of the diffeomorphism \xi .

© 2024 Elvise Berchio, Denis Bonheure, Giovanni P. Galdi, Filippo Gazzola, and Simona Perotto

D
ow

nl
oa

de
d 

06
/0

3/
24

 to
 3

7.
19

.2
06

.5
0 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



3774 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

with the matrix Q defined as in (2.3). Furthermore, we have that \xi , \.\xi \in \scrC \infty (\Omega 0,0) for
all t\in [0, T ] (here \.\xi = \partial \xi /\partial t) and

\| \xi (t,\bfity ) - \bfity \| \scrC 1(0,T ;W 2,\infty (\scrC L;\scrC L)) \leq Ct(3.22)

for some constant C > 0 independent of t\in [0, T ].

Using Lemma 3.6 we can rewrite the weak formulation (2.15) in the reference
configuration \Omega 0,0. To this end, for any vector field \bfitz defined as in \Omega \eta t,\tau t we put

\widehat \bfitz (\bfity ) = \bfitz (\xi (t,\bfity )) \forall \bfity \in \Omega 0,0, \forall t\in [0, T ].

From now on, we omit the t-dependence to save space and simplify notation. By
changing variables in (2.15), we obtain

\int 
\Omega 0,0

\nabla \bfitv (\xi (\bfity )):\nabla \bfitvarphi (\xi (\bfity )) =

\int 
\Omega 0,0

(\bfitv (\xi (\bfity ))+\scrR \bfita (\xi (\bfity ))) \cdot \nabla \bfitvarphi (\xi (\bfity )) \cdot \bfitv (\xi (\bfity ))

(3.23)

 - \scrR 
\int 
\Omega 0,0

(\bfitv (\xi (\bfity ))+\scrR \bfita (\xi (\bfity ))) \cdot \nabla \bfita (\xi (\bfity )) \cdot \bfitvarphi (\xi (\bfity ))

 - \scrR 
\int 
\Omega 0,0

\nabla \bfita (\xi (\bfity )) :\nabla \bfitvarphi (\xi (\bfity )) \forall \bfitvarphi \in Vh,\theta .

Recall that \xi is volume-preserving so that the determinant of the Jacobian \bfitJ is 1.

Then we have \nabla \bfitz (\xi (\bfity )) =\nabla \widehat \bfitz (\bfity )\bfitJ  - 1. Let \bfitA be the symmetric matrix \bfitJ  - 1
\bigl( 
\bfitJ  - 1

\bigr) \top 
so that, for small t, both \bfitA and \bfitJ are close to the identity in view of (3.22). Then,
since \xi = \bfitI where \bfita \not = 0, we have \widehat \bfita = \bfita and (3.23) becomes (summation over repeated
indexes is intended)\int 

\Omega 0,0

\bfitA ij\partial i\widehat \bfitv k\partial j \widehat \bfitvarphi k =

\int 
\Omega 0,0

\Bigl( \widehat \bfitv \cdot \nabla \widehat \bfitvarphi \bfitJ  - 1
\Bigr) 
\cdot \widehat \bfitv +\scrR 

\int 
\Omega 0,0

(\bfita \cdot \nabla \widehat \bfitvarphi ) \cdot \widehat \bfitv 
 - \scrR 

\int 
\Omega 0,0

(\widehat \bfitv +\scrR \bfita ) \cdot \nabla \bfita \cdot \widehat \bfitvarphi  - \scrR 
\int 
\Omega 0,0

\nabla \bfita :\nabla \widehat \bfitvarphi .
Observe that if div\bfitvarphi = 0 in \Omega h,\theta , then div\widehat \bfitvarphi \not = 0 in \Omega 0,0 but div\bfitvarphi = 0 in \Omega 0,0, where
\bfitvarphi = \bfitJ  - 1\widehat \bfitvarphi (we use the same notation for all the other functions). We then rewrite
the last formula as\int 

\Omega 0,0

\bfitA ij\partial i (\bfitJ \bfitv )k \partial j (\bfitJ \bfitvarphi )k =

\int 
\Omega 0,0

\bfitJ \bfitv \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitv +\scrR 
\int 
\Omega 0,0

\bfita \cdot \nabla \bfitvarphi \cdot \bfitv (3.24)

 - \scrR 
\int 
\Omega 0,0

(\bfitv +\scrR \bfita ) \cdot \nabla \bfita \cdot \bfitvarphi  - \scrR 
\int 
\Omega 0,0

\nabla \bfita :\nabla \bfitvarphi 

for every \bfitvarphi \in V0,0 (recall that \widehat \bfitv = \bfitv = \bfitv and \widehat \bfitvarphi =\bfitvarphi =\bfitvarphi on supp\bfita ). Formula (3.24) is
the weak formulation (2.15) in the reference configuration \Omega 0,0.

As in subsection 2.3, we write \bfitv =\scrR \bfitw , where \bfitw satisfies

\int 
\Omega 0,0

\bfitA ij\partial i (\bfitJ \bfitw )k \partial j (\bfitJ \bfitvarphi )k =\scrR 
\int 
\Omega 0,0

\bfitJ \bfitw \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitw +\scrR 
\int 
\Omega 0,0

\bfita \cdot \nabla \bfitvarphi \cdot \bfitw 

(3.25)

 - \scrR 
\int 
\Omega 0,0

(\bfitw +\bfita ) \cdot \nabla \bfita \cdot \bfitvarphi  - 
\int 
\Omega 0,0

\nabla \bfita :\nabla \bfitvarphi \forall \bfitvarphi \in V0,0,

which is an equivalent formulation of (2.17). Next we prove the following.
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EQUILIBRIUM CONFIGURATIONS 3775

Lemma 3.7. Let \gamma > 0 be as in Proposition 2.2. There exist \gamma 0 \in (0, \gamma ], (h0, \theta 0)\in 
Ad (with h0, \theta 0 > 0), 0 < T0 \leq T , and 0 < \gamma 0 \leq \gamma such that the solution maps
S : ( - h0, h0)\times ( - \theta 0, \theta 0)\times [0, \gamma 0)\rightarrow Vh,\theta and S : [0, \gamma 0)\times [0, T0]\rightarrow V0,0 defined by

S(h, \theta ,\scrR ) =\bfitw \scrR and S(\scrR , t) =\bfitw \scrR 

are C1; in particular, \.\bfitw 0 = 0. Here \bfitw \scrR (resp., \bfitw \scrR ) is the unique solution of (2.17)
(resp., (3.25)).

Proof. Let V \ast 
0,0 be the dual space of V0,0 and G be the map

G : ([0, \gamma )\times [0, T ]\times V0,0)\rightarrow V \ast 
0,0

defined by

\langle G(\scrR , t,\bfitw ),\bfitvarphi \rangle =
\int 
\Omega 0,0

\bfitA ij\partial i (\bfitJ \bfitw )k \partial j (\bfitJ \bfitvarphi )k  - \scrR 
\int 
\Omega 0,0

\bfitJ \bfitw \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitw 

(3.26)

 - \scrR 
\int 
\Omega 0,0

\bfita \cdot \nabla \bfitvarphi \cdot \bfitw +\scrR 
\int 
\Omega 0,0

(\bfitw + \bfita ) \cdot \nabla \bfita \cdot \bfitvarphi +

\int 
\Omega 0,0

\nabla \bfita :\nabla \bfitvarphi ,

where \bfitvarphi \in V0,0. By definition, \bfitw \scrR \in V0,0 is the unique weak solution of (3.25) if and
only if

G(\scrR , t,\bfitw \scrR ) = 0.

For a given \bfitw \in V0,0, (\scrR , t) \mapsto \rightarrow G(\scrR , t,\bfitw ) is C1 since \bfitA and \bfitJ depend smoothly on
t. Let us compute the G\^ateaux derivative of G(\scrR , t, \cdot ) at a given \bfitw \in V0,0 in the
direction \bfitu \in V0,0:

\langle D\bfitw G(\scrR , t,\bfitw )(\bfitu ),\bfitvarphi \rangle =
\int 
\Omega 0,0

\bfitA ij\partial i (\bfitJ \bfitu )k \partial j (\bfitJ \bfitvarphi )k  - \scrR 
\int 
\Omega 0,0

\bfitJ \bfitu \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitw (3.27)

 - \scrR 
\int 
\Omega 0,0

\bfitJ \bfitw \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitu  - \scrR 
\int 
\Omega 0,0

\bfita \cdot \nabla \bfitvarphi \cdot \bfitu 

+\scrR 
\int 
\Omega 0,0

\bfitu \cdot \nabla \bfita \cdot \bfitvarphi .

To show that G is Fr\'echet differentiable, it is enough to estimate the quadratic term\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 0,0

\bfitJ \bfitu \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitu 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \| \bfitJ \bfitu \| L4(\Omega 0,0)\| \bfitu \| L4(\Omega 0,0)\| \nabla (\bfitJ \varphi )\| L2(\Omega 0,0).

By (3.22) and using the Ladyzhenskaya and Poincar\'e inequalities, we infer that for
t\in [0, T ] \bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
\Omega 0,0

\bfitJ \bfitu \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitu 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C\| \nabla \bfitu \| 2L2(\Omega 0,0)
\| \nabla \bfitvarphi \| L2(\Omega 0,0).

By similar arguments one obtains that G\in C1([0, \gamma )\times [0, T ]\times V0,0;V
\ast 
0,0). Observe

that

D\bfitw G(0,0,\bfitw )(\bfitu )(\bfitvarphi ) =

\int 
\Omega 0,0

\nabla \bfitu :\nabla \bfitvarphi 
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3776 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

and, since for every \bfitf \in V \ast 
0,0, there exists a unique weak solution of the Stokes equation\int 
\Omega 0,0

\nabla \bfitu :\nabla \bfitvarphi = \langle \bfitf ,\bfitvarphi \rangle \forall \bfitvarphi \in V0,0,

the map D\bfitw G(0,0,\bfitw 0) is an isomorphism. Then the Implicit Function Theorem
implies that the unique solution \bfitw \scrR of (3.25) is C1 in a neighborhood [0, \gamma 0)\times [0, T0)
of (0,0). Since the mappings involved are smooth, the same conclusion follows for
\bfitw \scrR = \bfitJ \bfitw \scrR (\xi  - 1(\bfity )).

The Implicit Function Theorem also implies that

\.G(\scrR , t,\bfitw \scrR ) +D\bfitw \scrR G(\scrR , t,\bfitw \scrR )( \.\bfitw \scrR ) = 0,(3.28)

that is,\int 
\Omega 0,0

\bfitA ij\partial i
\bigl( 
\bfitJ \.\bfitw \scrR 

\bigr) 
k
\partial j (\bfitJ \bfitvarphi )k

=\scrR 
\int 
\Omega 0,0

\Bigl[ 
\bfitJ \.\bfitw \scrR \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitw \scrR + (\bfitJ \bfitw \scrR + \bfita ) \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \.\bfitw \scrR  - \.\bfitw \scrR \cdot \nabla \bfita \cdot \bfitvarphi 

\Bigr] 
 - 
\int 
\Omega 0,0

\.\bfitA ij\partial i (\bfitJ \bfitw \scrR )k \partial j (\bfitJ \bfitvarphi )k  - 
\int 
\Omega 0,0

\bfitA ij\partial i( \.\bfitJ \bfitw \scrR )k\partial j (\bfitJ \bfitvarphi )k

 - 
\int 
\Omega 0,0

\bfitA ij\partial i(\bfitJ \bfitw \scrR )k\partial j( \.\bfitJ \bfitvarphi )k

 - \scrR 
\int 
\Omega 0,0

\.\bfitJ \bfitw \scrR \cdot \nabla (\bfitJ \bfitvarphi ) \cdot \bfitw \scrR  - \scrR 
\int 
\Omega 0,0

\bfitJ \bfitw \scrR \cdot \nabla ( \.\bfitJ \bfitvarphi ) \cdot \bfitw \scrR .

Since \.G(0,0,\bfitw 0) = 0 and D\bfitw G(0,0,\bfitw 0) is an isomorphism, we conclude that
\.\bfitw 0 = 0.

By definition, \bfitv \scrR =\scrR \bfitw \scrR , so that \.\bfitv 0 = 0. Since \.\bfitv \scrR is C1 with respect to \scrR and
t, we also infer that there exists C > 0 such that

\| \nabla \.\bfitv \scrR \| L2(\Omega 0,0) \leq C\scrR (3.29)

for (\scrR , t)\in [0, \gamma 0)\times [0, T0]. We are now in a position to prove Theorem 3.5.

Proof of Theorem 3.5. We use the formulation of Proposition 3.4 (see (3.14)--
(3.15)) with vector fields \chi i (i= 1,2,3) defined as in (3.6)--(3.7) and such that K :=
supp\chi j \subset \Omega \ast . As in the proof of Lemma 2.4, the solution of (2.11) can be written as
\bfitu =\scrR (\bfitw + \bfita ) and, since K \cap supp\bfita = \emptyset , we deduce that\int 

K

\bfitu \cdot \nabla \bfitu \cdot \chi i =\scrR 2

\int 
K

(\bfitw + \bfita ) \cdot \nabla (\bfitw + \bfita ) \cdot \chi i =\scrR 2

\int 
K

\bfitw \cdot \nabla \bfitw \cdot \chi i and\int 
K

\nabla \bfitu :\nabla \chi i =\scrR 
\int 
K

\nabla \bfitw :\nabla \chi i.

To compute the derivatives of the forces, we take h(t) = \eta t and \theta (t) = \tau t with \eta , \tau \in 
\{  - 1,0,1\} . Then \scrL and \scrT are functions of t and \scrR through the formulas

\scrL (h(t), \theta (t),\scrR ) = - \scrR 2

\int 
K

\bfitw \cdot \nabla \bfitw \cdot \chi 2  - \scrR 
\int 
K

\nabla \bfitw :\nabla \chi 2,

\scrT (h(t), \theta (t),\scrR ) = - \scrR 2

\int 
K

\bfitw \cdot \nabla \bfitw \cdot (\eta t\chi 1 + \chi 3) - \scrR 
\int 
K

\nabla \bfitw : (\eta t\nabla \chi 1 +\nabla \chi 3),
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EQUILIBRIUM CONFIGURATIONS 3777

where \bfitw is defined by (2.17) with h(t) = \eta t and \theta (t) = \tau t. The derivatives (3.19)
follow if we prove that the above functions are differentiable with respect to t. To
this end, consider the integrals\int 

K

\bfitw \cdot \nabla \bfitw \cdot \chi +

\int 
K

\nabla \bfitw :\nabla \chi ,(3.30)

where \chi = \chi i for some i = 1,2,4 (with \chi 4 := \eta t\chi 1 + \chi 3). To compute the derivative
with respect to t, we first write the integrals in the reference configuration \Omega 0,0 and
obtain \int 

\Omega 0,0\cap K

\bfitw (\xi (\bfity )) \cdot \nabla \bfitw (\xi (\bfity )) \cdot \chi (\xi (\bfity )) +
\int 
\Omega 0,0\cap K

\nabla \bfitw (\xi (\bfity )) :\nabla \chi (\xi (\bfity )).

Observe that \chi 1 and \chi 2 are constant in the set where \xi is not the identity, but not
\chi 3. We then get\int 

\Omega 0,0\cap K

\bfitJ \bfitw \cdot \nabla (\bfitJ \bfitw ) \cdot \chi +

\int 
\Omega 0,0\cap K

\bfitA ij\partial i (\bfitJ \bfitw )k \partial j (\bfitJ \chi )k .(3.31)

Lemma 3.7 implies that every term in (3.31) is C1 with respect to t, and we obtain
an a priori bound for \.\bfitw from (3.29). We can therefore use the Lebesgue Theorem and
differentiate with respect to t inside the integrals:

\.(3.31) =

\int 
\Omega 0,0\cap K

\bfitJ \.\bfitw \cdot \nabla (\bfitJ \bfitw ) \cdot \chi +

\int 
\Omega 0,0\cap K

\bfitw \cdot \nabla (\bfitJ \.\bfitw ) \cdot \chi +

\int 
\Omega 0,0\cap K

\bfitJ \bfitw \cdot \nabla (\bfitJ \bfitw ) \cdot \.\chi 

+

\int 
\Omega 0,0\cap K

\.\bfitJ \bfitw \cdot \nabla (\bfitJ \bfitw ) \cdot \chi +

\int 
\Omega 0,0\cap K

\bfitJ \bfitw \cdot \nabla 
\Bigl( 
\.\bfitJ \bfitw 

\Bigr) 
\cdot \chi 

+

\int 
\Omega 0,0\cap K

\.\bfitA ij\partial i (\bfitJ \bfitw )k \partial j (\bfitJ \chi )k

+

\int 
\Omega 0,0\cap K

\bfitA ij\partial i

\Bigl( 
\.\bfitJ \bfitw 

\Bigr) 
k
\partial j (\bfitJ \chi )k +

\int 
\Omega 0,0\cap K

\bfitA ij\partial i (\bfitJ \bfitw )k \partial j

\Bigl( 
\.\bfitJ \chi 

\Bigr) 
k

+

\int 
\Omega 0,0\cap K

\bfitA ij\partial i
\bigl( 
\bfitJ \.\bfitw 

\bigr) 
k
\partial j (\bfitJ \chi )k +

\int 
\Omega 0,0\cap K

\bfitA ij\partial i (\bfitJ \bfitw )k \partial j
\bigl( 
\bfitJ \.\chi 

\bigr) 
k
.

All the terms inside the integrals are continuous with respect to t, showing that the
integrals defined by (3.30) are C1 with respect to t.

We therefore deduce the asymptotics (3.20) for \partial \theta \scrL and \partial h\scrT for some \ell 0,τ0 \in R
because \bfitw (s) is independent of \scrR ; see (2.18). Furthermore, (3.16)--(3.17) prove the
remaining asymptotics in (3.20).

Remark 3.8. Since the change of variable (3.21) is C\infty , further smoothness for \scrL 
and \scrT can be proved. Also notice that, by (3.10), any order derivative of \scrL and \scrT 
with respect to \scrR vanishes at (h, \theta ,\scrR ) = (0,0,0):

\scrL (0,0,0) = \scrT (0,0,0) =\scrL \scrR (0,0,0) = \scrT \scrR (0,0,0) =\scrL \scrR \scrR (0,0,0) = \scrT \scrR \scrR (0,0,0) = \cdot \cdot \cdot = 0.

By exploiting the oddness of h \mapsto \rightarrow \scrL (h,0,\scrR ) and of \theta \mapsto \rightarrow \scrT (0, \theta ,\scrR ) (see (3.9)), one
can also obtain the following expression through a formal Taylor expansion of \scrL as
(h,\scrR )\rightarrow (0,0) and of \scrT as (\theta ,\scrR )\rightarrow (0,0):

\scrL (h,0,\scrR ) =
\partial h\scrR \scrR \scrL (0,0,0)

2
h\scrR 2 + o(| h2 +\scrR 2| 3/2),

\scrT (0, \theta ,\scrR ) =
\partial \theta \scrR \scrR \scrT (0,0,0)

2
\theta \scrR 2 + o(| h2 +\scrR 2| 3/2).
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3778 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

4. Existence, uniqueness, and stability of the equilibrium configuration
for small \scrR . In view of (2.12) and (3.1) we define the following.

Definition 4.1. Let \scrR > 0. Given a solution (u,p) to (2.11), a couple (h, \theta )\in Ad

defines an equilibrium configuration Bh,\theta of the body B if the restoring forces balance
the fluid forces, i.e., if

\partial hF (h, \theta ) = \zeta \scrL (h, \theta ,\scrR ), \partial \theta F (h, \theta ) =\varpi \scrT (h, \theta ,\scrR ).(4.1)

Moreover, the configuration Bh,\theta is called stable if there exists \varrho > 0 such that

0< | h - h| + | \theta  - \theta | <\varrho =\Rightarrow (h - h)
\bigl( 
\zeta \scrL (h, \theta ,\scrR ) - \partial hF (h, \theta )

\bigr) 
+ (\theta  - \theta )

\bigl( 
\varpi \scrT (h, \theta ,\scrR ) - \partial \theta F (h, \theta )

\bigr) 
< 0.

It is called unstable otherwise.

In what follows, we are also interested in dealing with a unique degree of freedom
by keeping \theta = 0 (horizontal position of the body), in which case the above definition
specializes to the following one.

Definition 4.2. Let \scrR > 0. A couple (h,0)\in Ad defines a horizontal equilibrium
configuration Bh,0 of the body B if the vertical restoring force \partial hF (h,0) balances the
lift, i.e., if

\partial hF (h,0) = \zeta \scrL (h,0,\scrR ).(4.2)

Moreover, the horizontal configuration Bh,0 is called stable if there exists \varrho > 0 such
that

0< | h - h| <\varrho =\Rightarrow (h - h)
\bigl( 
\zeta \scrL (h,0,\scrR ) - \partial hF (h,0)

\bigr) 
< 0.

It is unstable otherwise.

We prove the following result.

Theorem 4.3. Let F \in C2(Ad) satisfy (2.6)--(2.9) and let \gamma > 0 be as in Propo-
sition 2.2. There exists \scrR 0(\zeta ,\varpi ) \in (0, \gamma ] such that problem (2.11)+(4.1) admits the
unique solution (\bfitu (h,\theta ), h, \theta )\equiv (\bfitu (0,0),0,0) for all \scrR \in (0,\scrR 0). Moreover, this config-
uration is stable.

Proof. By Proposition 2.2 we know that if \scrR < \gamma , then problem (2.11) admits a
unique weak solution (\bfitu , p) = (\bfitu (h,\theta ), p(h,\theta )), which also depends on \scrR , although this
will not be emphasized. Using this solution (\bfitu , p) we build the map \Psi :Ad \times [0, \gamma )\subset 
R3 \rightarrow R2 defined by \Biggl\{ 

\Psi 1(h, \theta ,\scrR ) = \partial hF (h, \theta ) - \zeta \scrL (h, \theta ,\scrR ),

\Psi 2(h, \theta ,\scrR ) = \partial \theta F (h, \theta ) - \varpi \scrT (h, \theta ,\scrR ),

where \scrL and \scrT are computed through the alternative forms obtained in Proposi-
tion 3.1. By continuous dependence (on \scrR ) and by exploiting the uniform bound
given in Proposition 2.2 (for h and \theta ), we infer that \Psi \in C0(Ad \times [0, \gamma )). Moreover,
the equilibrium conditions (4.1) can be rewritten as

\Psi 1(h, \theta ,\scrR ) = 0 and \Psi 2(h, \theta ,\scrR ) = 0.(4.3)

© 2024 Elvise Berchio, Denis Bonheure, Giovanni P. Galdi, Filippo Gazzola, and Simona Perotto

D
ow

nl
oa

de
d 

06
/0

3/
24

 to
 3

7.
19

.2
06

.5
0 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



EQUILIBRIUM CONFIGURATIONS 3779

Obviously,
\bigl( 
\bfitu (h,\theta ), p(h,\theta ), h, \theta 

\bigr) 
solves (2.11)--(4.1) if and only if \Psi (h, \theta ,\scrR ) = 0. By

(2.6) and (3.10), we know that

\Psi (0,0,\scrR ) = 0 \forall 0\leq \scrR <\gamma .(4.4)

This proves the existence of at least one equilibrium configuration. Its stability follows
if we prove that there exist \varrho > 0 and \scrR 1(\zeta ,\varpi )\in (0, \gamma ] such that

0< | h| + | \theta | <\varrho , \scrR <\scrR 1 =\Rightarrow h\Psi 1(h, \theta ,\scrR ) + \theta \Psi 2(h, \theta ,\scrR )> 0.

This is a direct consequence of (2.7), (3.10), and Theorem 3.5.
Concerning uniqueness, we have to show that

\exists \scrR 0 > 0 : 0<\scrR <\scrR 0 and \Psi (h, \theta ,\scrR ) = 0 =\Rightarrow (h, \theta ) = (0,0).(4.5)

We prove (4.5) by studying the behavior of \Psi for all (h, \theta ) \in Ad. In order to do
this, we divide Ad into four subregions Ai

d, i= 1, . . . ,4; see the sketch in Figure 5.

\bigstar A1
d = \{ (h, \theta )\in Ad : 0\leq | h| , | \theta | \leq \gamma 1\} for some \gamma 1 > 0.

From Theorem 3.5 we know that \Psi \in C1(( - h0, h0)\times ( - \theta 0, \theta 0)\times [0, \gamma 0)). On the
other hand, Proposition 2.2 yields \Psi 1(h, \theta ,0) = \partial hF (h, \theta ) and \Psi 2(h, \theta ,0) = \partial \theta F (h, \theta )
for all (h, \theta )\in ( - h0, h0)\times ( - \theta 0, \theta 0). It follows from (4.4), (2.6), and Theorem 3.5 that

\Psi (0,0,0) = (0,0) and det
\partial \Psi (0,0,0)

\partial (h, \theta )
= \partial hhF (0,0)\partial \theta \theta F (0,0) = \kappa 1\kappa 2 > 0.(4.6)

Therefore, by the Implicit Function Theorem combined with (4.4), we infer that
there exists 0 < \gamma 1 < min\{ h0, \theta 0, \gamma 0\} such that \Psi (h, \theta ,\scrR ) \not = 0 if 0 < | h| , | \theta | ,\scrR < \gamma 1.
This proves (4.5) in A1

d.

\bigstar A2
d = \{ (h, \theta )\in Ad : | h| \geq L - d| sin\theta |  - cos\theta  - \gamma 2\} for some \gamma 2 > 0.

Let a > 0 be the liminf in (2.8). Then there exists \gamma 2 > 0 such that if | h| >
L - d| sin\theta |  - cos\theta  - \gamma 2, there holds

| \partial hF (h, \theta )| > a

2(L - cos\theta  - | h|  - d| sin\theta | )3/2
.

We set \bfitU =\bfitu  - \scrR \sansv P\bfite 1. Then we have

\scrL (h, \theta ,\scrR ) = - 
\int 
\Omega h,\theta 

\nabla \bfitU :\nabla \bfitw 2  - 
\int 
\Omega h,\theta 

\Bigl( 
\bfitU \cdot \nabla \bfitU +\scrR \bfitU \cdot \nabla (\sansv P\bfite 1) +\scrR \sansv P\bfite 1 \cdot \nabla \bfitU 

\Bigr) 
\cdot \bfitw 2,

Fig. 5. Subsets of Ad \setminus (0,0) where \Psi 1 \not = 0 or \Psi 2 \not = 0.
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3780 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

because \sansv P\bfite 1 is a Stokes solution in \scrC L (thus including inside Bh,\theta ). From Proposi-
tion 2.2 and (3.4) we infer that

\| \nabla \bfitU \| L2(\Omega h,\theta ) \leq C\scrR (1 +\scrR ) and \| \nabla \bfitw 2\| L2(\Omega h,\theta ) \leq 
C

(L - cos\theta  - | h|  - d| sin\theta | )3/2

for some C = C(L,d) and C = C(L,d) > 0. By combining these facts with the
Poincar\'e and Ladyzhenskaya inequalities, we obtain\bigm| \bigm| \bigm| \bigm| \int 

\Omega h,\theta 

\Bigl( 
\bfitU \cdot \nabla \bfitU +\scrR \bfitU \cdot \nabla (\sansv P\bfite 1) +\scrR \sansv P\bfite 1 \cdot \nabla \bfitU 

\Bigr) 
\cdot \bfitw 2

\bigm| \bigm| \bigm| \bigm| 
\leq C\scrR (1 +\scrR )\| \nabla \bfitw 2\| L2(\Omega h,\theta )

\leq a

8\zeta (L - cos\theta  - | h|  - d| sin\theta | )3/2

for some C > 0. In turn, we infer that

| \Psi 1(h, \theta ,\scrR )| > a

4(L - cos\theta  - | h|  - d| sin\theta | )3/2
\forall (h, \theta )\in A2

d,

and, in turn, that \Psi (h, \theta ,\scrR ) \not = 0 for (h, \theta )\in A2
d, provided that 0<\scrR <\gamma 2.

\bigstar A3
d =

\Bigl\{ 
(h, \theta )\in Ad : | h| <L - d| sin\theta |  - cos\theta  - \gamma 2, | \theta | \geq 

\pi 

2
 - \gamma 3

\Bigr\} 
for some \gamma 3>0.

By arguing as for the region A2
d, we obtain\bigm| \bigm| \bigm| \scrT (h, \theta ,\scrR )

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega h,\theta 

\bigl( 
\nabla \bfitU :\nabla (h\bfitw 1 +\bfitw 3)

+
\Bigl( 
\bfitU \cdot \nabla \bfitU +\scrR \bfitU \cdot \nabla (\sansv P\bfite 1) +\scrR \sansv P\bfite 1 \cdot \nabla \bfitU 

\Bigr) 
\cdot (h\bfitw 1+\bfitw 3)

\Bigr) \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq K

\gamma 
3/2
2

for K > 0 independent of h, \theta and \scrR < \gamma . Then, by exploiting (2.9), we deduce that
there exists \gamma 3 = \gamma 3(K,\gamma 2)> 0 such that for all | \theta | \geq \pi 

2  - \gamma 3 there holds

| \partial \theta F (h, \theta )| > 2\varpi K

\gamma 
3/2
2

=\Rightarrow | \Psi 2(h, \theta ,\scrR )| \geq \varpi K

\gamma 
3/2
2

.

Therefore, \Psi (h, \theta ,\scrR ) \not = 0 for (h, \theta )\in A3
d.

\bigstar A4
d =Ad \setminus \{ A1

d \cup A2
d \cup A3

d\} .

By (2.7), we know that | \nabla F (h, \theta )| > 0 in A4
d. Hence, by compactness, there exists

M > 0 such that

| \nabla F (h, \theta )| 2 \geq M \forall (h, \theta )\in A4
d.(4.7)

On the other hand, arguing as in the previous cases, we infer that \scrL (h, \theta ,\scrR )\rightarrow 0
and \scrT (h, \theta ,\scrR ) \rightarrow 0 as \scrR \rightarrow 0 uniformly with respect to (h, \theta ) \in A4

d; therefore there
exists \scrR 0 \in (0, \gamma ] such that

\zeta 2\scrL (h, \theta ,\scrR )2 +\varpi 2\scrT (h, \theta ,\scrR )2 \leq M

2
\forall (h, \theta )\in A4

d, \scrR <\scrR 0.
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EQUILIBRIUM CONFIGURATIONS 3781

Combined with (4.7), this shows that (4.3) does not hold if (h, \theta ) \in A4
d and

\scrR <\scrR 0.
Since Ad =\cup 4

i=1A
i
d (see again Figure 5), (4.5) holds and the proof of Theorem 4.3

is complete.

Remark 4.4. Theorem 4.3 states that for small \scrR , the lift and the torque (3.1) are
small so that the restoring forces are the dominant contributions to the overall forces
acting on the body. This result should be complemented with some information on the
number of equilibrium configurations for larger flow rates. Theoretically, this appears
a hard open question. In section 6 we tackle this issue numerically; see Numerical
Results 6.2, 6.4, 6.3, and 6.9 for multiple equilibria in some simple situations.

Remark 4.5. In a model intended to study the behavior of particles in a fluid, the
study of the behavior of the particle close to collision with a wall is certainly much
more relevant, and the assumptions (2.8)--(2.9) would not be realistic. We do not
intend to address this issue here (see, however, section 8 for a short discussion), but
we just observe that if conditions (2.8)--(2.9) are not imposed, then the arguments
used in the proof of Theorem 4.3 still lead to a local conclusion. Namely, for any
\varepsilon > 0, there exists \scrR 0(\zeta ,\varpi , \varepsilon ) \in (0, \gamma ] such that for all \scrR \in (0,\scrR 0), the position (0,0)
yields the unique stable equilibrium configuration among the positions (h, \theta )\in Ad(\varepsilon ),
where

Ad(\varepsilon ) :=
\Bigl\{ 
(h, \theta )\in R2 : | \theta | < \pi 

2
 - \varepsilon and | h| + d| sin\theta | + cos\theta <L - \varepsilon 

\Bigr\} 
.

As a straightforward consequence of Theorem 4.3 we have the following result.

Corollary 4.6. Let F (\cdot ,0)\in C2( - L+1,L - 1) satisfy (2.6)--(2.8) and let \gamma > 0
be as in Proposition 2.2. There exists \scrR 0(\zeta ) \in (0, \gamma ] such that problem (2.11)+(4.2)
admits the unique solution (\bfitu (h,0), h,0) \equiv (\bfitu (0,0),0,0) (with \bfitu as in Proposition 2.2)
for all \scrR \in (0,\scrR 0). Moreover, this solution is stable.

Up to the stability statement, this was already proved in [5, 6] where a similar
result was also obtained when dealing with the unique degree of freedom \theta , by keeping
h= 0 (the center of mass of the body is fixed).

5. A discrete model of coupled 2D sections to describe a 3D plate. Let
B = [ - d, d] \times [ - \delta , \delta ] \subset R2 be the cross-section of a 3D plate (for instance, the deck
of a bridge) as in section 2.2. From Ventsel and Krauthammer [38, section 1.1] we
learn that plates may be classified according to the ratio between the width 2d and
the thickness 2\delta :

\bullet if d \leq 8\delta , we have a thick plate and the analysis of these plates includes all
the components of stresses, strains, and displacements as for solid 3D bodies;

\bullet if 8\delta \leq d \leq 80\delta , we have a thin plate which may behave in both linear and
nonlinear regimes according to how large the ratio is between its deflection
and its thickness 2d;

\bullet if d\geq 80\delta , the plate behaves like a membrane and lacks flexural rigidity.
Let us now turn to a suspension bridge. We view the roadway of the bridge as a

long narrow rectangular plate, hinged on its short edges where the bridge is supported
by the ground, and free on its long edges. If \Lambda denotes its length and 2d denotes its
width, a realistic assumption is that 2d \sim = \Lambda 

100 . For instance, the main span of the
Tacoma Narrows Bridge had the measurements

\Lambda = 2800 ft.\approx 853.44m, 2d= 39 ft.\approx 11.89m, 2\delta = 4ft.4
1

2

\prime \prime 
\approx 1.33m;
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3782 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

see p.11 and Drawings 2 and 3 in [1]. Therefore, d/\delta \approx 8.94 and the Tacoma Bridge
may be considered as a thin plate. This is even more evident in present and future
bridges that can all be classified as thin plates.

But a full thin plate model is inappropriate since the ratio between the length and
the width of the deck is very large. In [2], the main span of the bridge was modeled
by 2n+ 1 parallel rods labeled by i = 1, ...,2n+ 1. Each rod interacts with the two
nearest ones by means of linear attractive elastic forces and is free to move vertically
and to rotate around its barycenter; see Figure 6.

Here, we enrich the purely structural model of [2] by introducing the effect of a
flow (i.e., the wind) and replace the 1D rods with 2D cross-sections. The main novelty
is that each cross-section is immersed in a fluid as in section 2.1, and this yields 2n+1
2D Navier--Stokes equations with fluid-structure constraints, as sketched in Figure 7.

Following section 2.1, we still denote by B = [ - d, d] \times [ - 1,1] \subset R2 the cross-
sections at the central position and by \scrC L = R \times ( - L,L) the atmosphere layer on
which each cross-section is free to move vertically and rotate around its barycenter
under the action of both a Poiseuille fluid flow and restoring forces. The position of
each cross-section is identified by a couple of parameters (hi, \theta i) \in Ad and is denoted
by Bhi,\theta i . After setting (H,\Theta ) = (h1, . . . , h2n+1, \theta 1, . . . , \theta 2n+1) \in R4n+2, the potential
energy of the overall multiple cross-sections system reads

U(H,\Theta )=
2n+1\sum 
i=1

F (hi, \theta i)

\alpha i
+

Kv

2

2n+1\sum 
i=0

(hi+1  - hi)
2 +

Kt

2

2n+1\sum 
i=0

(\theta i+1  - \theta i)
2,(5.1)

where h0 = h2n+2 = \theta 0 = \theta 2n+2 = 0 (fixed extremal cross-sections), while Kv,Kt > 0
represent the vertical and torsional stiffness of the bridge and

\alpha i := (2n+ 1 - i)(i - 1) + 1

Fig. 6. Discrete suspension bridges.

Fig. 7. Air flow interacting with cross-sections of a suspension bridge.
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EQUILIBRIUM CONFIGURATIONS 3783

are weights that measure the action of the main cables on the ith cross-section. As
expected, \alpha i takes its minimum at the penultimate cross-sections of the span (for
i = 1 and i = 2n + 1) and its maximum in the middle (for i = n + 1). Finally,
F \in C2(Ad) (with Ad as in (2.4)) satisfies assumptions (2.6)--(2.9). Each cross-section
(i= 1, . . . ,2n+ 1) is subject to the two restoring forces

\partial hi
U(H,\Theta )=

1

\alpha i
\partial hi

F (hi, \theta i) +Kv(2hi  - hi+1  - hi - 1),

\partial \theta iU(H,\Theta )=
1

\alpha i
\partial \theta iF (hi, \theta i) +Kt(2\theta i  - \theta i+1  - \theta i - 1).

(5.2)

Let \bfitu i and pi be the velocity and pressure of the fluid in the plane containing the
cross-section Bhi,\theta i . Let Shi,\theta i = \partial Bhi,\theta i and let \Omega hi,\theta i = \scrC L \setminus Bhi,\theta i be the domain
occupied by the fluid in each plane; as in section 2.2, we have the dimensionless system
(i= 1, . . . ,2n+ 1) of steady-state Navier--Stokes equations:

div\bfitT (\bfitu i, pi) =\bfitu i \cdot \nabla \bfitu i, div\bfitu i = 0 in \Omega hi,\theta i ,
\bfitu i| Shi,\theta i

=\bfitu i| \partial \scrC L
= 0, lim

| x1| \rightarrow +\infty 
\bfitu i(x1, x2) =\scrR \sansv P (x2)\bfite 1.(5.3)

For a given (H,\Theta ) \in [Ad]
2n+1 (the cartesian product of 2n+ 1 times Ad, not to

be confused with the Ai
d defined in the proof of Theorem 4.3), we say that\Bigl( 

\bfitu 1
(h1,\theta 1)

, p1(h1,\theta 1)
, . . . ,\bfitu 2n+1

(h2n+1,\theta 2n+1)
, p2n+1

(h2n+1,\theta 2n+1)

\Bigr) 
is a weak solution of the coupled system made of (5.3) for i = 1, . . . ,2n + 1 if \bfitu i \in 
H1

loc(\Omega hi,\theta i , \bfitu 
i  - \scrR \sansv P\bfite 1) \in Vhi,\theta i) for all i = 1, . . . ,2n+ 1 and \bfitu i is a weak solution

of (5.3) in the sense of Definition 2.1.
For a weak solution of (5.3), we compute all the lifts and torques through Propo-

sition 3.1 and, so far, there is no interaction between the 2n+ 1 equations in (5.3).
The interaction is provided by the linear terms within the restoring forces (5.2) that
lead to the full fluid-structure interaction problem. A position (H,\Theta ) \in [Ad]

2n+1 is
an equilibrium position of the bodies Bhi,\theta i if each restoring force balances the fluid
forces, i.e., if

\partial hiU(H,\Theta )= \zeta \scrL (hi, \theta i,\scrR ), \partial \theta iU(H,\Theta )=\varpi \scrT (hi, \theta i,\scrR ) (i= 1, . . . ,2n+ 1).
(5.4)

We now state the counterpart of Proposition 2.2 and Theorem 4.3 for problem
(5.3)--(5.4). For the sake of simplicity, we give the proof only in the case of 3 cross-
sections; the extension to more cross-sections requires lots of technical computations.

Theorem 5.1. Let F \in C2(Ad) satisfy assumptions (2.6)--(2.9) and take n= 1 in
problem (5.3)--(5.4). There exists \scrR 0 \in (0, \gamma ] such that Proposition 2.2 applies to (5.3)
for i= 1,2,3 and problem (5.3)--(5.4) admits the unique solution\Bigl( 

\bfitu 1
(h1,\theta 1)

,\bfitu 2
(h2,\theta 2)

,\bfitu 3
(h3,\theta 3)

,H,\Theta 
\Bigr) 
=
\Bigl( 
\bfitu 1
(0,0),\bfitu 

2
(0,0),\bfitu 

3
(0,0),0,0

\Bigr) 
.

Proof. The only delicate part is to prove the uniqueness issue for problem (5.3)--
(5.4). To this aim, we properly modify the proof of Theorem 4.3. Assume that
0<\scrR <\gamma and fix (H,\Theta )\in [Ad]

3. To the unique weak solution\Bigl( 
\bfitu 1
(h1,\theta 1)

, p1(h1,\theta 1)
,\bfitu 2

(h2,\theta 2)
, p2(h2,\theta 2)

,\bfitu 3
(h3,\theta 3)

, p3(h3,\theta 3)

\Bigr) 
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3784 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

of (5.3) (for i= 1,2,3) we associate the map \Psi : [Ad]
3 \times [0, \gamma )\rightarrow R6 defined by\biggl\{ 

\Psi \ell (H,\Theta ,\scrR ) = \partial h\ell 
U(H,\Theta ) - \zeta \scrL (h\ell , \theta \ell ,\scrR ) if \ell = 1,2,3,

\Psi \ell (H,\Theta ,\scrR ) = \partial \theta \ell  - 3
U(H,\Theta ) - \varpi \scrT (h\ell  - 3, \theta \ell  - 3,\scrR ) if \ell = 4,5,6.

(5.5)

Note that [Ad]
3 \times [0, \gamma ) \subset R7 and recall that h0 = h4 = \theta 0 = \theta 4 = 0. Therefore, the

equilibrium conditions (5.4) can be rewritten as

\Psi \ell (H,\Theta ,\scrR ) = 0 \forall \ell = 1, . . . ,6(5.6)

and the proof of Theorem 5.1 follows if we show that

\exists \scrR 0 \in (0, \gamma ] : 0<\scrR <\scrR 0 and \Psi (H,\Theta ,\scrR ) = 0 =\Rightarrow (H,\Theta )= (0,0).(5.7)

We prove (5.7) by studying the behavior of \Psi for all (H,\Theta )\in [Ad]
3. We divide again

Ad in the four subregions Ak
d, k = 1, . . . ,4, introduced in the proof of Theorem 4.3

(see Figure 5), and we obtain 43 = 64 subregions of [Ad]
3, namely,

[Ad]
3 =

4\bigcup 
k1,k2,k3=1

Ak1

d \times Ak2

d \times Ak3

d .(5.8)

We start by showing (5.7) when

(H,\Theta )\in [A1
d]

3.

From Theorem 3.5 we know that \Psi \in C1(( - h0, h0)
3\times ( - \theta 0, \theta 0)

3\times [0, \gamma )). Then, since
by (4.4) \Psi (0,0,\scrR ) = 0 for all 0 \leq \scrR \leq \gamma , the validity of (5.7) for some \scrR 0 > 0
sufficiently small follows from the Implicit Function Theorem, provided we prove that\biggl( 

\partial \Psi (0,0,0)

\partial (H,\Theta )

\biggr) 
is invertible.(5.9)

This is a 6\times 6 tridiagonal matrix of components:

\left\{                   

aii =
1

\alpha i
\partial hhF (0,0) + 2Kv if 1\leq i\leq 3,

aii =
1

\alpha i - 3
\partial \theta \theta F (0,0) + 2Kt if 4\leq i\leq 6,

a12 = a21 = a23 = a32 = - Kv,

a45 = a54 = a56 = a65 = - Kt,

aij = 0 in all the remaining cases.

By row reduction, the matrix ( \partial \Psi (0,0,0)
\partial (H,\Theta ) ) can be reduced to an upper triangular

matrix of diagonal components di given by
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EQUILIBRIUM CONFIGURATIONS 3785

d1 =
1

\alpha 1
\partial hhF (0,0) + 2Kv > 0,

d2 =

\biggl( 
1

\alpha 1
\partial hhF (0,0) + 2Kv

\biggr) \biggl( 
1

\alpha 2
\partial hhF (0,0) + 2Kv

\biggr) 
 - K2

v > 0,

d3 =

\biggl( 
1

\alpha 1
\partial hhF (0,0) + 2Kv

\biggr) \biggl( 
1

\alpha 2
\partial hhF (0,0) + 2Kv

\biggr) \biggl( 
1

\alpha 3
\partial hhF (0,0) + 2Kv

\biggr) 

 - K2
v

\biggl( 
1

\alpha 1
\partial hhF (0,0) +

1

\alpha 3
\partial hhF (0,0) + 4Kv

\biggr) 

> 3K2
v

\biggl( 
1

\alpha 1
\partial hhF (0,0) +

1

\alpha 3
\partial hhF (0,0)

\biggr) 
+ 4K3

v > 0,

d4 =
1

\alpha 1
\partial \theta \theta F (0,0) + 2Kt > 0,

d5 =

\biggl( 
1

\alpha 1
\partial \theta \theta F (0,0) + 2Kt

\biggr) \biggl( 
1

\alpha 2
\partial \theta \theta F (0,0) + 2Kt

\biggr) 
 - K2

t > 0,

d6 =

\biggl( 
1

\alpha 1
\partial \theta \theta F (0,0) + 2Kt

\biggr) \biggl( 
1

\alpha 2
\partial \theta \theta F (0,0) + 2Kt

\biggr) \biggl( 
1

\alpha 3
\partial \theta \theta F (0,0) + 2Kt

\biggr) 

 - K2
t

\biggl( 
1

\alpha 1
\partial \theta \theta F (0,0) +

1

\alpha 3
\partial \theta \theta F (0,0) + 4Kt

\biggr) 

> 3K2
t

\biggl( 
1

\alpha 1
\partial \theta \theta F (0,0) +

1

\alpha 3
\partial \theta \theta F (0,0)

\biggr) 
+ 4K3

t > 0,

where the above inequalities come from assumption (2.6) and recalling that Kv,

Kt > 0. Therefore, | (\partial \Psi (0,0,0)
\partial (H,\Theta ) )| =

\prod 6
i=1 di \not = 0; this concludes the proof of (5.9).

We conclude the proof of (5.7) by showing that \Psi \not = 0 in the remaining 63
regions of [Ad]

3. The same kind of estimates and arguments exploited in the proof of
Theorem 4.3 for the regions A2

d, A
3
d, and A4

d allow us to prove that for 0<\scrR <\scrR 0,
- if (h\ell , \theta \ell ) \in A2

d for some \ell \in \{ 1,2,3\} , then \Psi \ell (H,\Theta ,\scrR ) \not = 0 and \Psi (H,\Theta ,
\scrR ) \not = 0;

- if (h\ell , \theta \ell ) \in A3
d for some \ell \in \{ 1,2,3\} , then \Psi \ell +3(H,\Theta ,\scrR ) \not = 0 and \Psi (H,\Theta ,

\scrR ) \not = 0;
- if (h\ell , \theta \ell ) \in A4

d for some \ell \in \{ 1,2,3\} , then | \nabla U(H,\Theta )| > 0, in view of (2.7),
and \Psi (H,\Theta ,\scrR ) \not = 0. This completes the proof of Theorem 5.1.

6. Numerical analysis of equilibrium configurations. In this section we
perform a numerical analysis that complements and enriches the analytical results
obtained in the previous one. More precisely, Theorem 4.3 is silent about the critical
value \scrR c of the Reynolds number \scrR , below which the uniqueness of the equilibrium
configuration (and its stability) is guaranteed. This leads us, on the one hand, to give
a quantitative estimate of \scrR c and, on the other hand, to investigate existence and
stability of other equilibrium configurations for \scrR >\scrR c. For simplicity, we normalize
the coefficients of the lift and torque, and the stiffness constants, namely, we set

\zeta =\varpi = 1.(6.1)
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3786 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

In all the experiments we take \scrR \leq 50, a restricted range of Reynolds numbers.
There are two reasons for this choice. First, large values of \scrR yield numerical in-
stability. Second, as we shall see, already in the range \scrR \in (0,50] several significant
differences already appear between the cases \scrR \lessapprox 1 and \scrR \gtrapprox 1. In fact, in the latter,
numerical tests show completely new features not predicted yet by the mathemati-
cal analysis, such as multiple stable equilibrium configurations. We will qualitatively
refer to these two regimes as small and large Reynolds numbers.

6.1. Numerical assessment. We discretize both the Stokes problem (3.2) and
the Navier--Stokes equations (2.11) by resorting to piecewise quadratic and linear finite
elements to approximate the velocity and the pressure, respectively. The discretization
is performed on an unstructured mesh, consisting of 65878 triangles, with a local
refinement around the obstacle. The nonlinearity of the Navier--Stokes equations
is tackled by employing the Newton scheme. In particular, to stop the iterative
procedure, we assign a maximum number of iterations set to 15, and we control the
relative increment with respect to the H1(\Omega )-norm of the velocity and the L2(\Omega )-
norm of the pressure, by setting a tolerance equal to 10 - 3. Moreover, to ensure the
convergence of the Newton method we replace the boundary condition at the outflow
in (2.11) with a homogeneous Neumann data.

Concerning the geometry of the computational setting, we replace the infinite
channel \scrC L in (1.1) with the finite domain (0, 500)\times ( - 50,50), while identifying the
obstacle B with the rectangle [244,256]\times [ - 0.7,0.7] (so that L= 50, d= 6, \delta = 0.7).
We numerically verified that the dimensions selected for the channel provide a reliable
approximation of the infinite domain configuration.

From a practical viewpoint, we have adopted a dimensionless formulation by
rescaling all the lengths with respect to the obstacle thickness, 2 \delta = 1.4, so that
\scrC L = [0,357.1429]\times [ - 35.71,35.71] and B = [174.2857,182.8571]\times [ - 0.5,0.5]. In view
of the characterization of Ad in (2.4), we know that B may collide with \partial \scrC L, which
gives numerical instability. For this reason,

the graphs of functions depending on h are plotted on the interval h\in ( - 30,30).
(6.2)

The numerical results merely concern the behavior of \scrL and \scrT , and we explain
how they can be applied to find multiple solutions to the fluid-structure interaction
problem (2.11)+(4.1). In most cases (but not all!) we assume that F = 0 (no restoring
force). Therefore the bridge model is no longer suitable to describe the applications.
The case F = 0 well describes the behavior of the Leonardo da Vinci ferry; see
section 7. In view of this application, it appears more convenient to argue in terms of
the attack angle \varphi defined by \varphi = - \theta for | \theta | < \pi 

2 . Therefore, \scrL (h,\varphi ,\scrR ) =\scrL (h, - \theta ,\scrR )
and \scrT (h,\varphi ,\scrR ) = \scrT (h, - \theta ,\scrR ).

6.2. Equilibrium and stability of horizontal configurations. We consider
the horizontal configurations of the body, that is, we take

\varphi = 0.

For all h we numerically compute the solution \bfitu (h,0) of (2.11) (when B =Bh,0). With
the solution \bfitu (h,0) of (2.11) in hand, we first seek the values of h that satisfy

\scrL (h,0,\scrR ) = 0.(6.3)
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EQUILIBRIUM CONFIGURATIONS 3787

Fig. 8. Left: plot of h \mapsto \rightarrow \scrL (h,0,\scrR ) for \scrR = 0.1 (A), \scrR = 1 (B), \scrR = 2 (C). Right: plot of
h \mapsto \rightarrow \scrL (h,0,\scrR ) for \scrR = 5 (A), \scrR = 10 (B), \scrR = 20 (C), \scrR = 30 (D), \scrR = 40 (E), \scrR = 50 (F).

Fig. 9. Left: plot of h \mapsto \rightarrow \scrL (h,0,0.1). Right: plot of h \mapsto \rightarrow \scrL (h,0,5).

According to Definition 4.2, an equilibrium configuration Bh,0 (with h solving (6.3))
is called stable if there exists \varrho > 0 such that

0< | h - h| <\varrho =\Rightarrow (h - h)\scrL (h,0,\scrR )< 0,

and is called unstable otherwise. Roughly speaking, stable equilibria tend to be
restored by the lift force, while unstable equilibria do not. In view of (3.9), for any
fixed \scrR > 0 the map h \mapsto \rightarrow \scrL (h,0,\scrR ) is an odd function of h. This is clearly visible in
the plots in Figure 8 (recall (6.2)) for several values of \scrR .

Since the behavior is less evident for the smallest values of \scrR in both pictures,
we focus on these specific graphs with ad hoc scales in Figure 9.

Figures 8 and 9 can then be used to solve (6.3) numerically, namely, the horizontal
equilibrium configurations of the body B within the fluid for which there is no lift.
We infer that if \scrR > 0 is small, then (6.3) admits the unique solution h0 = 0 and the
corresponding configuration \bfith 0 = (0,0) is stable, whereas if \scrR > 0 is large, then (6.3)
admits three solutions (h0 = 0, h+ > 0, h - = - h+), and the configuration \bfith 0 = (0,0)
is unstable, while the configurations \bfith \pm = (h\pm ,0) are stable. From Figure 9 (right)
we also infer that

Numerical Result 6.1. The map h \mapsto \rightarrow \scrL (h,0,5) is positive for h \in ( - L + 1,
h - )\cup (0, h+) and negative for h\in (h - ,0)\cup (h+,L - 1).

All these results are sketched in Figure 10.
At least for horizontal positions of the body and in the absence of restoring forces,

these numerical results give a first hint that Theorem 4.3 should be sharp. Indeed,
they suggest the next statement.
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3788 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

Fig. 10. Stability of the horizontal equilibria for \scrR small (left) and \scrR large (right).

Numerical Result 6.2. The problem

 - div\bfitT (\bfitu , p) +\bfitu \cdot \nabla \bfitu = 0, div\bfitu = 0 in \Omega h,0,
\bfitu | Sh,0

=\bfitu | \partial \scrC L
= 0, lim| x1| \rightarrow +\infty \bfitu (x1, x2) =\scrR \sansv P (x2)\bfite 1, \scrL (h,0,\scrR ) = 0

\bullet admits the unique (stable) solution (\bfitu (h,0), h,0) \equiv (\bfitu (0,0),0,0) if \scrR > 0 is
small;

\bullet admits at least three solutions (\bfitu (h,0), h,0) \in \{ (\bfitu (0,0),0,0); (\bfitu (h+,0), h+,0);
(\bfitu (h - ,0), h - ,0)\} , for some  - h - = h+ \in (0,L - 1), if \scrR > 0 is large; moreover,
the configuration \bfith 0 = (0,0) is unstable, whereas the configurations \bfith \pm =
(h\pm ,0) are stable.

Numerical Result 6.2 is reliable and quite precise; this is due to the fact that \scrR 
is large but not huge. For very large values of \scrR , we expect turbulent flows and a less
regular behavior of h \mapsto \rightarrow \scrL (h,0,\scrR ). In such a case, the number and stability of the
equilibria appear unpredictable.

We then seek horizontal positions annihilating the torque, that is, solutions to
\scrT (h,0,\scrR ) = 0. We obtain somewhat similar behaviors. For small \scrR the map h \mapsto \rightarrow 
\scrT (h,0,\scrR ) has a graph as in the left picture of Figure 9. In Figure 11 we plot the map
h \mapsto \rightarrow \scrT (h,0,5), which, as stated in (3.9), is odd. It turns out that, besides h0 = 0,
there exist two additional configurations h - < h0 < h+ (with h - =  - h+) where \scrT 
vanishes.

By comparing the right picture in Figure 9 with Figure 11 one may wonder if
they coincide. In section 6.4 we numerically show that this is not the case.

For horizontal positions (\varphi = 0), the stability analysis for the fluid-structure
interaction problem with torque leads to conclusions similar to those of Numerical
Result 6.2. Indeed, we can translate Figure 11 into the following.

Numerical Result 6.3. The problem

 - div\bfitT (\bfitu , p) +\bfitu \cdot \nabla \bfitu = 0, div\bfitu = 0 in \Omega h,0,
\bfitu | Sh,0

=\bfitu | \partial \scrC L
= 0, lim| x1| \rightarrow +\infty \bfitu (x1, x2) = 5 \sansv P (x2)\bfite 1, \scrT (h,0,5) = 0

admits three solutions (\bfitu (h,0), h,0) \in 
\bigl\{ 
(\bfitu (0,0),0,0); (\bfitu (h+,0), h+,0); (\bfitu (h - ,0), h - ,0)

\bigr\} 
for some  - h - = h+ \in (0,L - 1). If h \not \in \{ h - , h0, h+\} , the body is subject to a torque
which generates a rotation of B.

In order to analyze horizontal equilibria with purely vertical restoring forces
(\partial hF \not = 0 = \partial \varphi F ), take \zeta = 1 in (4.2); see (6.1). Then the horizontal equilibrium
configurations Bh,0 are found by solving

\partial hF (h,0) =\scrL (h,0,\scrR ).(6.4)

When \scrR is small, Corollary 4.6 shows that (2.11)+(6.4) admits the unique solution
h = 0 that is also stable. Here we numerically study the existence and stability of

© 2024 Elvise Berchio, Denis Bonheure, Giovanni P. Galdi, Filippo Gazzola, and Simona Perotto

D
ow

nl
oa

de
d 

06
/0

3/
24

 to
 3

7.
19

.2
06

.5
0 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



EQUILIBRIUM CONFIGURATIONS 3789

Fig. 11. Plot of h \mapsto \rightarrow \scrT (h,0,5) for | h| < 30; see (6.2).

Fig. 12. Graphs of h \mapsto \rightarrow \partial hF (h,0) (A) and h \mapsto \rightarrow \scrL (h,0,\scrR ) (B) for small (left) and large (right) \scrR .

other equilibrium configurations for large \scrR . According to Definition 4.2, a sufficient
condition for an equilibrium h to be stable (at a fixed \scrR > 0) is that the slope of
h \mapsto \rightarrow \partial hF (h,0) at h is larger than the slope of h \mapsto \rightarrow \scrL (h,0,\scrR ) at h. On the one
hand, we know by (2.6) that \partial hF (h,0) \sim \kappa 1 h as h \rightarrow 0. On the other hand, in
Theorem 3.5 it is proved that \partial h\scrL (0,0,\scrR ) =O(\scrR 2) as \scrR \rightarrow 0. Figures 8 and 9 show
that \partial h\scrL (0,0,\scrR )< 0 for small \scrR and \partial h\scrL (0,0,\scrR )> 0 for large \scrR .

Henceforth, two different situations can happen. They are qualitatively described
in Figure 12.

The overall conclusion is then similar to that of Numerical Result 6.2.

Numerical Result 6.4. Assume that F satisfies (2.6)--(2.7). Then the problem

 - div\bfitT (\bfitu , p) +\bfitu \cdot \nabla \bfitu = 0, div\bfitu = 0 in \Omega h,0,
\bfitu | Sh,0

=\bfitu | \partial \scrC L
= 0, lim| x1| \rightarrow +\infty \bfitu (x1, x2) =\scrR \sansv P (x2)\bfite 1, \partial hF (h,0) =\scrL (h,0,\scrR )

\bullet admits the unique (stable) solution (\bfitu (h,0), h,0) \equiv (\bfitu (0,0),0,0) if \scrR > 0 is
small;

\bullet admits at least three solutions (\bfitu (h,0), h,0) \in \{ (\bfitu (0,0),0,0); (\bfitu (h+,0), h+,0);
(\bfitu (h - ,0), h - ,0)\} for some 1  - L < h - < 0 < h+ < L  - 1, if \scrR > 0 is large;
moreover, the configuration \bfith 0 = (0,0) is unstable, whereas the configurations
\bfith \pm = (h\pm ,0) are stable.

We conclude this section by emphasizing that the stability analysis for two de-
grees of freedom (both h and \varphi free) is more complex and will be investigated in
subsection 6.5, showing again the appearance of multiple equilibrium configurations
for large values of \scrR .
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6.3. Vanishing of lift and torque for generic configurations. The goal is
to collect sign properties of \scrL and \scrT together with information about the location of
the maximum point of \scrL ; this will be used in section 7.

We first maintain the angle of attack \varphi fixed, \varphi \in [0, \pi 2 ). Recalling (6.2), in
Figure 13 (left) we show the plots of h \mapsto \rightarrow \scrL (h,\varphi ,\scrR ) for \varphi \in \{ 0, \pi 

192 ,
\pi 
96 ,

\pi 
36 ,

\pi 
12 ,

\pi 
6 ,

\pi 
4 ,

\pi 
3 \} .

From Figure 13 (left) we infer the following.

Numerical Result 6.5. There exist 0 < \varphi 0 < \varphi 0 < \pi 
2 such that \scrL (h,\varphi ,5) > 0

whenever \varphi 0 <\varphi <\varphi 0 and for all h such that (h,\varphi )\in Ad.

From Figure 13 (right) we also notice that, as \varphi varies, we have the following
result.

Numerical Result 6.6. There exist \varphi \ast \approx \pi 
96 and \varphi \ast \approx 15\pi 

32 such that the maxi-
mum (lift) of the map h \mapsto \rightarrow \scrL (h,\varphi ,5) is achieved at h\approx  - 29 if \varphi \in ( - \pi 

2 ,\varphi \ast )\cup (\varphi \ast , \pi 2 )
and at h\approx 4 if \varphi \in (\varphi \ast ,\varphi 

\ast ). Moreover, \varphi \mapsto \rightarrow maxh\scrL (h,\varphi ,5) is increasing over (0,\varphi 0)
and decreasing over (\varphi 0,

\pi 
2 ) with \varphi 0 \approx \pi 

6 .

This result shows that the vertical position h where the lift attains its maximum
value (pushing upwards) is a discontinuous function of \varphi ; see the right picture in
Figure 13. The choice (6.2) was made in order to avoid the analysis for | h| > 30 since
B approaches the collision against \partial \scrC L (especially for some \varphi ) and the numerical
results appear less reliable. But since they seem to be robust enough for | h| < 30, we
may slightly improve Numerical Result 6.6 as follows.

Numerical Result 6.7. For \varphi \in ( - \pi 
2 ,\varphi \ast ) \cup (\varphi \ast , \pi 2 ) the maximum (lift) of the

map h \mapsto \rightarrow \scrL (h,\varphi ,5) is achieved at some constant h\approx  - 29 far away from \partial \scrC L.
Next, we maintain h fixed. Since we also aim to study the dependence on \scrR , in

Figure 14 we show the plots of \varphi \mapsto \rightarrow \scrL (h,\varphi ,\scrR ) for several couples (h,\scrR ). It turns out
that the angle \varphi = \varphi (\scrR ) maximizing the lift \scrL is decreasing with respect to \scrR . In
aerodynamics, it is known [32] that to maximize the lift of an airplane, the flap on
the wings has to be inclined at an angle \varphi satisfying | \varphi | = \pi /12\approx 0.26; obviously, the
sign depends on whether the aircraft is taking off or landing. Therefore, it is natural
to conjecture that \varphi (\scrR ) \downarrow \pi /12 as \scrR \rightarrow \infty .

In Figure 15 (left) we display the maximum value of the lift at a given h, uniformly
with respect to the angle of attack \varphi . As a counterpart of Figure 13 (right), in
Figure 15 (right) we display the plot of the angle \varphi = \varphi (h) maximizing the lift for
any h\in ( - 30,30). Also this map is discontinuous and, as expected, the optimal \varphi (h)
does not change sign.

Fig. 13. Left: plots of h \mapsto \rightarrow \scrL (h,\varphi ,5) for \varphi = 0 (A), \varphi = \pi 
192

(B), \varphi = \pi 
96

(C), \varphi = \pi 
36

(D),
\varphi = \pi 

12
(E), \varphi = \pi 

6
(F), \varphi = \pi 

4
(G), \varphi = \pi 

3
(H). Right: plot of h = h(\varphi ) maximizing \scrL (h,\varphi ,5) for

| \varphi | < \pi 
2
.
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EQUILIBRIUM CONFIGURATIONS 3791

Fig. 14. Plots of \varphi \mapsto \rightarrow \scrL (h,\varphi ,\scrR ) with h= 0 (A), h= 10 (B), h= 15 (C), h= 20 (D), and with
\scrR = 5 (left), \scrR = 7.5 (middle), \scrR = 10 (right).

Fig. 15. Left: plot of the map h \mapsto \rightarrow max\varphi \scrL (h,\varphi ,5). Right: plot of the angle \varphi =\varphi (h) maximiz-
ing h \mapsto \rightarrow \scrL (h,\varphi ,5) for | h| < 30; see (6.2).

6.4. Simultaneous annihilation of lift and torque. In Figure 16 we plot
the lift and torque as functions of h and \varphi . The white region represents a positive
lift/torque, the black region corresponds to a negative lift/torque, and the gray region
is associated with a small lift/torque (in absolute value). The dotted lines indicate
the zero level curves.

The corresponding views from above of the surfaces in Figure 16 in the (\varphi ,h)-
plane are provided in Figure 17. As observed in Figures 8 and 11, both the maps
h \mapsto \rightarrow \scrL (h,0,5) and h \mapsto \rightarrow \scrT (h,0,5) vanish at three different values of h: Figure 17
suggests that they vanish for the same couple of values of h \not = 0 or, at least, for very
close h. A more precise analysis shows that the latter occurs.

As expected, the positions of the zeros of (\varphi ,h) \mapsto \rightarrow \scrL (h,\varphi ,\scrR ) and (\varphi ,h) \mapsto \rightarrow 
\scrT (h,\varphi ,\scrR ) are quite sensitive to the variations of \scrR . We performed numerical tests
with \scrR \in \{ 0.01,0.1,1,10\} and with two different lengths d \in \{ 6,30\} to analyze also
the sensitivity to the aspect ratio of B. The zeros of (\varphi ,h) \mapsto \rightarrow \scrL (h,\varphi ,\scrR ) and (\varphi ,h) \mapsto \rightarrow 
\scrT (h,\varphi ,\scrR ) in Figures 18--21 are displayed for integer values of h\in [ - 30,0] on the verti-
cal axis. The positions of the zeros in the (\varphi ,h)-plane, with \varphi \in ( - \pi 

2 ,0), are indicated
by triangles \triangledown (lift) and \blacktriangle (torque) for a simpler visualization. The dots on the bottom
of Figures 19--21 show the difference between the \varphi -values of the zeros at a common
value of h. By continuity, a switch between the order of the zeros indicates that

\exists ( - h, - \varphi )\in Ad with h,\varphi > 0 s.t. \scrL ( - h, - \varphi ,\scrR ) = \scrT ( - h, - \varphi ,\scrR ) = 0.

By (3.9), we then infer that also \scrL (h,\varphi ,\scrR ) = \scrT (h,\varphi ,\scrR ) = 0 so that, besides (\varphi ,h) =
(0,0), we obtain two more configurations where \scrL = \scrT = 0. The guess is that when
such equilibria appear, the configuration (\varphi ,h) = (0, 0) becomes unstable, but we
leave this interesting issue for a future investigation.

Before reaching some conclusions, let us display the plots of the zero level curves
of \scrL and \scrT , namely,

L\scrR 
0 := \{ (h,\varphi )\in Ad : \scrL (h,\varphi ,\scrR ) = 0\} , T\scrR 

0 := \{ (h,\varphi )\in Ad : \scrT (h,\varphi ,\scrR ) = 0\} ,
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3792 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

Fig. 16. Left: plot of (h,\varphi ) \mapsto \rightarrow \scrL (h,\varphi ,5). Right: plot of (h,\varphi ) \mapsto \rightarrow \scrT (h,\varphi ,5).

Fig. 17. View from above of the graphs of (\varphi ,h) \mapsto \rightarrow \scrL (h,\varphi ,5) (left) and of (\varphi ,h) \mapsto \rightarrow \scrT (h,\varphi ,5)
(right). The dotted lines represent the zero level curves.

Fig. 18. The curves L\scrR 
0 and T\scrR 

0 for d= 6, \scrR = 0.01 (left) and \scrR = 0.1 (right).

and let us comment on them. In Figures 18--19 we display the plots for d = 6. In
Figure 18 (resp., Figure 19) the \varphi -axis is stretched by 72/\pi (resp., by 36/\pi ) and scaled
differently in the two plots.

Hence, for d = 6, the level curves L\scrR 
0 and T\scrR 

0 do not coincide for small \scrR , even
if they are close (see Figure 18): for \scrR = 0.01 they are separated with L0.01

0 \cap T0.01
0 =

\{ (0,0)\} , and for \scrR = 0.1 they get closer but still intersect only at the origin, i.e. still
L0.1
0 \cap T0.1

0 = \{ (0,0)\} . They continue to approach when \scrR increases (see Figure 19).
For \scrR = 1, we see that close to the boundary \partial \scrC L of the channel (h\lessapprox  - 25) \scrT vanishes
for a smaller value of | \varphi | than \scrL . The opposite happens after the turning point when
the position is closer to the center of the channel ( - 25\lessapprox h< 0). Therefore, for \scrR = 1
the curves cross and \{ (0,0)\} $L1

0 \cap T1
0. For \scrR = 10, the curves have a different shape

and there is no evidence of an intersection on the plotted portion, but a crossing point
probably exists closer to \partial \scrC L (for some h\lessapprox  - 30), where numerics is not reliable. We
have this feeling because, for \scrR = 10, we are in the regime where \scrL has three zeros of
the type (h,0); see Numerical Result 6.4.
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EQUILIBRIUM CONFIGURATIONS 3793

Fig. 19. The curves L\scrR 
0 and T\scrR 

0 for d= 6, \scrR = 1 (left) and \scrR = 10 (right).

Fig. 20. The curves L\scrR 
0 and T\scrR 

0 for d= 30, \scrR = 0.1 (left) and \scrR = 1 (right).

In Figures 20--21 we display the plots of L\scrR 
0 and T\scrR 

0 for d = 30, with the \varphi -axis
stretched by 72/\pi and scaled differently in the three plots.

For d= 30 and \scrR = 0.1, the curves L0.1
0 and T0.1

0 are well separated; see Figure 20
(left). They approach for \scrR = 1 and cross around h \approx  - 20; see Figure 20 (right).
Observe that \scrL and \scrT vanish for much smaller | \varphi | than for d = 6; see Figures 18
and 19. For \scrR = 10, the curves have a different shape than for d = 6 at the same
value of \scrR (see Figure 19 (right)), and now the crossing point is visible at h\approx  - 28.

Summarizing, the above discussion and Figures 18--21 lead us to state the
following

Numerical Result 6.8. For any d > 1 and any \scrR > 0 we have L\scrR 
0 \not = T\scrR 

0 .
Moreover,

\bullet if \scrR > 0 is small, then L\scrR 
0 \cap T\scrR 

0 = \{ (0,0)\} ;
\bullet if \scrR > 0 is large, then there exist h,\varphi > 0 such that \{ (0,0); (h,\varphi ); ( - h, - \varphi )\} \subseteq 

L\scrR 
0 \cap T\scrR 

0 .

6.5. Stability comparison between one and two degrees of freedom. In
this final part, we combine the rigorously proved asymptotics (3.20) from Theorem 3.5
with the qualitative numerical behavior so far obtained. As a first step, we rephrase
Numerical Result 6.8 as follows.

Numerical Result 6.9. The problem

 - div\bfitT (\bfitu , p) +\bfitu \cdot \nabla \bfitu = 0, div\bfitu = 0 in \Omega h,\varphi ,
\bfitu | Sh,\varphi 

=\bfitu | \partial \scrC L
=0, lim| x1| \rightarrow +\infty \bfitu (x1, x2)=\scrR \sansv P (x2)\bfite 1, \scrL (h,\varphi ,\scrR )=\scrT (h,\varphi ,\scrR ) = 0
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3794 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

Fig. 21. The curves L\scrR 
0 and T\scrR 

0 for d= 30 and \scrR = 10.

\bullet admits the unique (stable) solution (\bfitu (h,\varphi ), h,\varphi ) \equiv (\bfitu (0,0),0,0) if \scrR > 0 is
small;

\bullet admits at least three solutions (\bfitu (h,\varphi ), h,\varphi ) \in \{ (\bfitu (0,0),0,0); (\bfitu (h,\varphi ), h,\varphi );

(\bfitu ( - h, - \varphi ), - h, - \varphi )\} , for some (h,\varphi )\in Ad \setminus \{ (0,0)\} , if \scrR > 0 is large.

This result appears similar to Numerical Results 6.2 and 6.3, where only one
degree of freedom is considered but, as we now show, the meaning of small/large \scrR 
can be quite different.

The crucial step in the proof of Theorem 4.3 consists in showing the local unique-
ness and stability of the configuration (\bfitu (0,0),0,0). This follows from (4.6), which, by
continuity, leads to the same conclusion for \scrR small. Recalling (6.1) and that \theta = - \varphi ,
a loss of stability may then occur only at a critical value \scrR c > 0 (if it exists) such that

det
\partial \Psi (0,0,\scrR c)

\partial (h, \theta )
= det

\Biggl[ \biggl( 
\kappa 1 0
0 \kappa 2

\biggr) 
 - 
\biggl( 

\partial h\scrL (0,0,\scrR c) \partial \theta \scrL (0,0,\scrR c)
\partial h\scrT (0,0,\scrR c) \partial \theta \scrT (0,0,\scrR c)

\biggr) \Biggr] 
= 0.

(6.5)

For a single degree of freedom (when \partial h\scrT \partial \theta \scrL = 0), the threshold \scrR c > 0 is
reached when \bigl( 

\kappa 1  - \partial h\scrL (0,0,\scrR c)
\bigr) \bigl( 
\kappa 2  - \partial \theta \scrT (0,0,\scrR c)

\bigr) 
= 0.(6.6)

In fact,
\blacktriangleright if the unique degree of freedom is h, then \partial \theta \scrT = 0 and (6.6) yields \kappa 1 =

\partial h\scrL (0,0,\scrR c);
\blacktriangleright if the unique degree of freedom is \theta , then \partial h\scrL = 0 and (6.6) yields \kappa 2 =

\partial \theta \scrT (0,0,\scrR c).
This implies, in particular, that the equilibrium configuration remains stable (and
locally unique) as long as \partial h\scrL (0,0,\scrR ) \leq 0 (first case) and \partial \theta \scrT (0,0,\scrR ) \leq 0 (second
case). Figures 8, 9, and 16 show that this indeed happens for \scrR small, while for \scrR = 5
these derivatives are both positive. When they are sufficiently large, critical values
\scrR vert

c > 0 and \scrR rot
c > 0 such that

\kappa 1 = \partial h\scrL (0,0,\scrR vert
c ) or \kappa 2 = \partial \theta \scrT (0,0,\scrR rot

c )(6.7)

may exist. If this happens, by (3.20), one can derive some quantitative bounds.
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EQUILIBRIUM CONFIGURATIONS 3795

For the complete two-degrees-of-freedom system (when \partial h\scrT \partial \theta \scrL \not = 0), a new source
of possible instability appears because (6.5) yields

\kappa 1\kappa 2  - \partial \theta \scrT (0,0,\scrR c)\kappa 1  - \partial h\scrL (0,0,\scrR c)\kappa 2 = \partial \theta \scrL (0,0,\scrR c)\partial h\scrT (0,0,\scrR c)

 - \partial h\scrL (0,0,\scrR c)\partial \theta \scrT (0,0,\scrR c).

In view of (3.20), this may yield different conclusions compared to (6.7), and it may
happen that, if any, an instability arises for some \scrR c <min\{ \scrR vert

c ,\scrR rot
c \} . This purely

qualitative discussion is not at all rigorous. However, it shows that the system with
two degrees of freedom may be less stable than the system with a single degree of
freedom.

We have no statement similar to Theorem 4.3 when we consider the problem
without restoring force (F = 0) since the stiffness constants \kappa 1, \kappa 2 > 0 give the non-
degeneracy when \scrR \rightarrow 0; see (4.6). Nevertheless, the numerical plots suggest an
earlier loss of uniqueness of the equilibrium configuration with two degrees of freedom
(namely, \scrR c <min\{ \scrR vert

c ,\scrR rot
c \} ) with respect to the single degree of freedom case; see

the left plot in Figure 19 and the plot of Figure 21. In those situations, respectively,
(d,\scrR ) = (6,1) and (d,\scrR ) = (30,10), there is numerical evidence of the existence of
two new equilibria, namely,

L\scrR 
0 \cap T\scrR 

0 = \{ (0,0); (h,\varphi ); ( - h, - \varphi )\} for some h,\varphi > 0,

while there are no zeros of h \mapsto \rightarrow \scrL (h,0,\scrR ) and h \mapsto \rightarrow \scrT (h,0,\scrR ). This means that for the
model with a single degree of freedom, we still have a single equilibrium in 0, while the
equilibrium (0,0) already lost its stability in the model with two degrees of freedom.
This suggests that \scrR c <min(\scrR vert

c ,\scrR rot
c ), at least in absence of restoring forces.

7. The Leonardo da Vinci ferry.

7.1. The model. The Leonardo ferry is a special type of hand ferry which
takes its name from its inventor, Leonardo da Vinci (1452--1519). The unique, still-
functioning ferry crosses the Adda River and joins the towns of Imbersago and Villa
d'Adda (northern Italy); the ferry has a surface of 60 m2 and can carry up to 100
people and 5 cars. The idea was to exploit the lift of the river current with no use
of motorized power. Between the two banks of the river a steel cable is positioned
orthogonally to the flow, and the ferry is hooked up to the cable. The ferry is handled
by a unique operator who acts on the helm in order to orient it while, with the use
of an iron stick, he also initiates the transverse movement. As soon as the ferry is
oriented and it is moved away from the bank, the lift starts its action and the ferry
moves across the river; see Figure 22.1 Pictures of the Leonardo ferry are shown in
Figure 23.

Fig. 22. Design of the Leonardo ferry.

1Taken from Jalo di Wikipedia (in Italian), public domain, through Wikimedia Commons.
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Fig. 23. The Leonardo da Vinci ferry.

Fig. 24. Approximation of the Leonardo ferry.

The purpose of the present section is to use the model equation (2.11) in order
to study the behavior of the Leonardo ferry. Although the hull (exposed part of the
ferry) has the shape visible in Figure 23, the keel (submerged part of the ferry subject
to the action of the flow) has a rectangular shape. This is why the Adda River and
the Leonardo ferry can be represented as in the picture in Figure 24, which should be
compared with Figure 1.

The main differences are that the fluid is now the water, there is no restoring force
tending to bring the ferry towards the center of the channel, and the ferry is not free to
rotate since the orientation is kept fixed by the helm. Therefore, we put F = 0 in (2.10)
and consider the stationary problem (2.11) for some given (h, \theta )\in Ad, so that also \Omega h,\theta 

and Sh,\theta are assigned. From Proposition 2.2 we know that if \scrR > 0 is sufficiently small,
then (2.11) admits a unique solution \bfitu (h,\theta ) that we determine numerically. In fact,
for any reasonable \scrR > 0 (for which the Newton method converges) we numerically
find a solution, since the channel is bounded. Then we compute both the lift and the
torque as functions of (h, \theta )\in Ad.

As already mentioned, for the operator of the Leonardo ferry it is more conve-
nient to argue in terms of the attack angle \varphi defined by \varphi =  - \theta for | \theta | < \pi 

2 . From
subsection 6.2, we infer that

\blacktriangleright if the operator maintains the horizontal position \varphi = 0, then the ferry can-
not cross the river (see Numerical Result 6.2 and Figure 10 (and Numerical
Result 7.1 below);

\blacktriangleright the operator does not need to push the ferry away from the bank because,
in the horizontal position \varphi = 0, the lift is a repulsive force when the ferry is
close to the bank (see Figures 8, 9, and 10).

Therefore, the operator must orient the helm in a suitable way. In subsection 6.3
we analyzed numerically the function (h,\varphi ) \mapsto \rightarrow \scrL (h,\varphi ,\scrR ) in order to find the optimal
way to maneuver the ferry, namely, which attack angle \varphi minimizes the crossing time
of the ferry. To increase the upwards velocity of the Leonardo ferry, one should find
the angle maximizing \scrL for any position h\in ( - L+ d,L - d) of the ferry.
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EQUILIBRIUM CONFIGURATIONS 3797

As a further application to the Adda river, one may also be interested in evaluating
the torque, for instance, for a canoe race in the river, as there might be configurations
that keep a straight trajectory. For both the ferry and the canoe in the next subsec-
tion we give hints to the operators, by exploiting the numerical results obtained in
section 6.

7.2. How to drive the ferry. As a consequence of Numerical Results 6.2
and 6.5, we obtain the following result.

Numerical Result 7.1. If the angle of attack is zero (\varphi = 0), then the ferry
cannot cross the river:

\bullet if \scrR > 0 is small, then it moves towards the unique (stable) equilibrium posi-
tion B0,0;

\bullet if \scrR > 0 is large, then either it is still in the unstable position B0,0 or it tends
to move towards Bh - ,0 if h \in [1  - L,0), whereas it tends to move towards
Bh+,0 if h\in (0,L - 1].

Moreover, if \scrR = 5, then it moves following increasing h whenever 0< \varphi 0 < \varphi <
\varphi 0 < \pi 

2 .

Hence, in order to allow the Leonardo ferry to cross the Adda River, the operator
needs to modify the attack angle \varphi ; see Figure 23. For \scrR = 5, the last statement shows
that if the helm is oriented in such a way that \varphi 0 < \varphi < \varphi 0, then, at any position h
between the two banks, the ferry is pushed towards the upper bank (x2 = L). But if
one seeks the optimal way to reach the upper bank, the operator must follow more
precise instructions. Figure 15 (right) shows that in order to reach the maximum
speed, the helm should be kept at an angle \varphi \approx \pi 

4.5 when starting from the lower
bank; this is confirmed by Figure 13 (left), in which the graph (G), corresponding
to \varphi = \pi 

4 , lies above the other graphs in a right neighborhood of h =  - 30. A few
meters far away from the bank (at h\approx  - 24), the helm should be kept at \varphi \approx \pi 

6 . Note
that both the angles \varphi \approx \pi 

4.5 and \varphi \approx \pi 
6 belong to the interval (\varphi \ast ,\varphi 

\ast ) so that the
maximal lift is achieved for h \approx 4 (see Numerical Result 6.6), namely, slightly after
the middle of the Adda River. Finally, a few meters before reaching the upper bank
the helm should be kept again at \varphi \approx \pi 

4.5 . Of course, in the latter part, the target of
the operator is no longer to reach the maximum speed since, otherwise, the ferry will
crash against the upper bank. In view of (3.9), the angle should be \varphi \approx  - \pi 

4.5 in such
a way to slow down the ferry.

From Numerical Result 6.8, we infer that for small \scrR > 0 the only ``parking
position"" is (h,\varphi ) = (0,0), while for large \scrR there are at least three parking posi-
tions \{ (0,0); (h,\varphi ); ( - h, - \varphi )\} . If the Leonardo ferry reaches one of these positions,
it remains at rest, with no lift or torque being exerted on it. Therefore, in order to
leave these parking positions, where the ferry would remain still forever, the operator
should either move the helm or pull by hand the ferry with the hook. In other words,
these configurations are stationary solutions of (2.10) (with F = 0), and to leave them
some forcing term is needed.

The numerical results in section 6 also allow us to give hints for a canoe rower on
the river. From Numerical Result 6.3 we infer that the canoe can be kept parallel to
the flow with no effort, provided that the canoe is placed at h \in \{ h - , h0, h+\} , while
some rowing is needed in order to maintain the canoe parallel to the flow when the
canoe is not in these configurations.

Let us emphasize that the above suggestions for the operator of the ferry and for
the canoe rower are merely qualitative and do not pretend to be exact. In particular,
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3798 BERCHIO, BONHEURE, GALDI, GAZZOLA, PEROTTO

by inserting the real physical quantities we find that the Reynolds number (2.2) of
the Adda flow can be much larger than \scrR = 5, especially when the dam in Olginate
(governing the amount of water from the Lake of Como into the Adda river) is open.
Nevertheless, we were also able to show that for some \scrR larger than 5, the qualitative
behavior of the lift does not change.

8. Remarks and open problems in proximity of collisions. An example
of potential satisfying assumptions (2.6)--(2.7)--(2.8)--(2.9) is (\kappa 1, \kappa 2 > 0)

F (h, \theta ) =
\kappa 1

2
h2 +

\kappa 2

2
\theta 2 +

h2\theta 2

(L - | h|  - d| sin\theta |  - cos\theta )2
+ tan4 \theta \forall (h, \theta )\in Ad.

The assumptions are mostly based on physical motivations, but some of them
can be relaxed without altering our proofs. In particular, (2.8) is somewhat technical
and is used to prevent collisions of B with \partial \scrC L but, most probably, it can be relaxed.
When B is close to \partial \scrC L the drag force acting on B may vary and, more importantly,
B may be subject to an additional lift force known as wall-induced lift [41], which
is usually caused by two different mechanisms [37, 40]. First, the presence of a wall,
such as \partial \scrC L, breaks the symmetry of the vortex shedding behind B and generates
an effective lift force directed away from the wall; see the arrows in Figure 10. Sec-
ond, according to the inviscid theory, the pressure in the gap between B and \partial \scrC L
decreases and generates a lift force directed towards \partial \scrC L. Both these effects decay
rapidly as the distance between B and \partial \scrC L increases, and for ``large"" distances they
can be reasonably neglected [23]. Figures 8 and 9 show that when B is horizontal,
not only does the lift remain bounded in the proximity of the collision but it also
behaves repulsively; see also Numerical Result 6.2, Figure 10, and the comments on
the Leonardo ferry in subsection 7.1. Given this, most probably, the assumption (2.8)
is not needed to prevent collisions.

As far as we are aware, the study of the motion of a solid sphere through a viscous
fluid near a plane wall goes back to Goldman, Cox, and Brenner [23], who developed
a lubrication theory, following the earlier work by O'Neill [33] and Dean and O'Neill
[13]. Other shapes have been considered later on, for instance, by Cox [12]. We
also refer the reader to Hillairet and Kela\"{\i} [25] for the justification of the lubrication
approximation, at least in 3D. Assuming B is an ellipse, Bonheure, Grandmont, and
Hillairet [10] considered a Stokes flow and show that the lift and the torque are
uniformly bounded independently of the configuration. The argument can be adapted
to a Navier--Stokes flow, but not to the case of a body B with flat boundary parts. We
also mention that some numerical studies---see, for instance, [17, 30, 39]---investigate
the effect of wall proximity on the lift and torque for nonspherical shapes.

For the rectangle B, collisions with \partial \scrC L can occur only along a full edge or in a
corner, two quite different situations. For possible collisions with an edge of B (i.e.,
when \theta = \varphi = 0), we refer the reader to subsection 6.2, where the numerical tests
suggest that the lift remains bounded. For possible collisions with a corner of B, we
refer the reader to subsection 6.3; it turns out that also in this case the lift appears
to remain bounded (see Figure 13), while it is not clear if the lift remains repulsive
in proximity of collisions. To this end, one should determine the sign of the lift in
proximity of collisions, in dependence of the angle \theta =  - \varphi . More precisely, for any
\theta \in ( - \pi 

2 ,
\pi 
2 ) there exists a unique h\theta > 0 such that (h\theta , \theta ) \in \partial Ad; recall (2.4) and

Figure 2. Explicitly, it is given by

h\theta :=
\bigm| \bigm| \bigm| d| sin\theta | + cos \theta 

\bigm| \bigm| \bigm| .

© 2024 Elvise Berchio, Denis Bonheure, Giovanni P. Galdi, Filippo Gazzola, and Simona Perotto

D
ow

nl
oa

de
d 

06
/0

3/
24

 to
 3

7.
19

.2
06

.5
0 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



EQUILIBRIUM CONFIGURATIONS 3799

From Figures 16 and 17 we see that the map

\theta \mapsto \rightarrow lim
h\rightarrow h\theta 

\scrL (h, \theta ,\scrR )

is not constant, and precise information on its sign would be extremely helpful. In
fact, it appears quite interesting to understand in full generality the behavior of \scrL 
and \scrT (boundedness and sign) in proximity of collisions for a wide class of shapes of
the colliding body B. We leave this for further investigations.

By comparing the two plots in Figure 16 we infer that lift and torque display a
similar qualitative behavior, although with a different order of magnitude (of about
102). Therefore, the above comments about the boundedness of the lift apply to the
torque as well.

We also mention that some theoretical results have been obtained for unsteady
problems; see, for instance [22, 24, 35], still mainly inspired by the lubrication ap-
proximation [23, 29]. In those studies, the dynamics is not driven by a Poiseuille flow.
The fact that \sansv P vanishes on \partial \scrC L makes the analysis of the lift and the torque quite
different; see [11], where (2.1) is considered in the case where B is an ellipse. The
arguments of [11] should also allow us to show that for the solutions of (2.1), when the
body B is smoothed at the corners, collisions cannot occur, in either finite or infinite
time, and without assuming (2.8)--(2.9).

We conclude by mentioning that our results may possibly be obtained also in a
3D unbounded cylinder (not necessarily circular) at the price of much more technical
assumptions and computations. In particular, aiming to model the whole deck of
the bridge, one should argue in a non-simply-connected unbounded domain; see [20]
for the model problem set in a bounded domain. Again, we expect existence and
uniqueness of an equilibrium configuration for small Reynolds numbers.

Data availability statement. Data sharing is not applicable to this article
as no datasets were generated or analyzed during the current study. There are no
conflicts of interest.
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