
Compact binary systems in Einstein-Æther gravity: Direct integration
of the relaxed field equations to 2.5 post-Newtonian order

Fatemeh Taherasghari
1,*

and Clifford M. Will
1,2,†

1
Department of Physics, University of Florida, Gainesville, Florida 32611, USA

2
GReCO, Institut d’Astrophysique de Paris, CNRS, Sorbonne Université,
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The Einstein-Æther theory is an alternative theory of gravity in which the spacetime metric is

supplemented by a long-range timelike vector field (the “aether” field). Here, for the first time, we apply the

full formalism of post-Minkowskian theory and of the direct integration of the relaxed Einstein equations

(DIRE), to this theory of gravity, with the goal of deriving equations of motion and gravitational waveforms

for orbiting compact bodies to high orders in a post-Newtonian expansion. Because the aether field is

constrained to have unit norm, a naive application of post-Minkowskian theory leads to contributions to the

effective energy momentum tensor that are linear in the perturbative fields. We show that a suitable

redefinition of fields using an array of “superpotentials” can eliminate such linear terms to any desired post-

Newtonian order, resulting in flat spacetime wave equations for all fields, with sources consisting of matter

terms and terms quadratic and higher in the fields. As an initial application of this new method, and as a

foundation for obtaining the equations of motion for compact binaries, we obtain explicit solutions of the

relaxed equations sufficient to obtain the metric in the near zone through 2.5 post-Newtonian order, or

O½ðv=cÞ5� beyond the Newtonian approximation.

DOI: 10.1103/PhysRevD.108.124026

I. INTRODUCTION

One of the classic approaches to devising a theory of

gravity alternative to general relativity (GR) is to postulate,

in addition to the spacetime metric, an auxiliary gravita-

tional field. The quintessential example is the 1961 Brans-

Dicke theory (which built upon earlier work by Fierz, Pauli

and Jordan) [1], in which the added field was a scalar. By

proposing a suitable action for the auxiliary field along with

a suitable coupling between it and the action for the

spacetime metric, one could obtain field equations with

reasonable mathematical properties (such as partial differ-

ential equations of order no greater than two). In addition,

one could automatically abide by very precise tests of the

Einstein equivalence principle, such as the Eötvös experi-

ment, by ensuring that the coupling to the fields of matter

involved only the spacetime metric, a concept called

“universal coupling” or “metric coupling.” This set of

ideas continues to serve as a template for inventing theories

of gravity into the present, with a profusion of theories

having multiple scalar fields, vector fields, and tensor fields

of various ranks (for reviews, see [2–8]).

One of the earliest vector-tensor theories was invented by

Will andNordtvedt [9] and later generalized byHellings and

Nordtvedt [10],motivated by a desire to explore theories that

might exhibit “preferred-frame” effects. In general relativity,

the gravitational physics of an isolated system does not

depend on its velocity relative to the rest of the universe

because the asymptotic, or large-distance limit of the metric

(which establishes the boundary conditions for solving for

the local gravitational physics) can always be transformed to

the Minkowski metric, which is independent of the motion

of the reference frame in which it is observed. The same is

true in scalar-tensor theories because the asymptotic scalar

field is also independent of reference frame. By contrast, in a

theory with a timelike vector field Kμ that is somehow

related to the distribution of mass energy, the asymptotic

field that establishes the boundary conditions for that system

would be expected to point purely in the time direction [i.e.

have components ðK0; 0; 0; 0Þ] if the system is at rest relative

to the mean rest frame of the cosmic distribution of matter.

But if an isolated systemwere tomove relative to that cosmic

frame, then the asymptotic vector field in the frame of the

system would have the form ðK0; K1; K2; K3Þ, where the

spatial part of the vector field is related to the speed and

direction of motion relative to the cosmic frame (see

Chapter 5 of [11] for a review of alternative theories of

gravity), and this would alter the internal structure and

dynamics of the isolated system.

One defect of these early theories was that the field

equation for the vector field was homogeneous and linear in

*
ftaherasghari@ufl.edu

†
cmw@phys.ufl.edu

PHYSICAL REVIEW D 108, 124026 (2023)

2470-0010=2023=108(12)=124026(19) 124026-1 © 2023 American Physical Society



Kμ with no matter source (by virtue of metric coupling), so

that Kμ ¼ 0 was an immediate solution unless one forced

the asymptotic value of K0 or jKμj to be a nonzero arbitrary
constant.

As a result, the subject of vector-tensor theories lay

somewhat dormant until Jacobson and colleagues proposed

the “Einstein-Æther ” theory [12–16]. As before, the goal

was to study violations of Lorentz invariance in gravity, now

in parallel with similar studies in matter interactions, such as

the Standard Model extension of Kostalecký and Samuel

[17]. Another motivation was the notion that such Lorentz

violations might be a classical relic of a quantum gravity

theory in which there was a fundamental quantum of length.

Other theories and generalizations followed, including the

tensor-vector-scalar (TeVeS) theory of Bekenstein [18],

designed to provide a relativistic foundation for the phe-

nomenological modified Newtonian dynamics (MOND)

proposal of Milgrom [19]; khronometric theory, a low-

energy limit of “Hořava gravity,” a proposal for a theory that

is power-counting renormalizable [20], shown later to be a

singular limit of Einstein-Æther theory [21–23]; the scalar-

tensor-vector (STV, but also called MOG) of Moffat [24],

designed to avoid the need for darkmatter; and a generalized

tensor-vector-scalar theory of Skordis [25,26], designed

mainly for cosmological investigations.

At the lowest post-Newtonian (PN) order, the para-

metrized post-Newtonian (PPN) parameters of Einstein-

Æther theory were calculated by Foster and Jacobson [16];

the values were identical to those of general relativity,

except for the “preferred-frame” parameters, α1 and α2,

which could be nonzero. Foster also derived the leading

gravitational radiation damping effects [27,28] and the PN

equations of motion for compact bodies such as neutron

stars and black holes [29], later verified by Yagi et al. [30].

Constraints on the parameters of the theory have been

placed using binary pulsar data [30–32].

The detection of gravitational waves from inspiralling

binary black holes in 2015 presented new possibilities for

testing alternative theories of gravity, and the LIGO-Virgo

collaboration has published comprehensive papers detail-

ing a wide range of tests, first using data from the discovery

event GW 150914 [33], and subsequently using data from

the full catalogue of events through the middle of the third

observing run [34]. One notable result was the observation

of the nearly coincident arrival times of the gravitational-

wave and gamma-ray signals from the binary neutron star

merger event GW170817/GRB170817 [35,36], which

placed an extremely strong bound on the speed of gravi-

tational waves, relative to that of light,

−3 × 10−15 < vg − 1 < 7 × 10−16: ð1:1Þ

This had the effect of ruling out a significant number of

alternative theories of gravity [37–40], and constraining the

Einstein-Æther theory [41].

Gravitational-wave data have also constrained the strong-

field dynamical evolution of compact binary mergers, as

reflected in the detailed time evolution of the detected

waveforms. No deviations from the predictions of general

relativity have been found, and constraints have been placed

on the coefficients of the terms in a PN expansion of the

waveform phase [34]. While these “theory agnostic” con-

straints are useful and important, they provide only limited

information about what theories might be ruled out, simply

because very few theories have been analyzed in sufficient

detail to provide predictions for these coefficients to an order

comparable to what is known for GR. In scalar-tensor

theories, considerable effort has gone toward obtaining

the coefficents up to 2PN order [42–47]. However, because

of the very strong bound on the scalar-tensor coupling

parameter ω from solar-system measurements, combined

with the fact that, in this class of theories, binary-black hole

evolution is indistinguishable from its counterpart in general

relativity, it seems unlikely that gravitational-wave mea-

surements will lead to stronger constraints, except possibly

via the detection of a favorable black-hole neutron-star

merger.

What makes the study of gravitational waves in alter-

native theories intriguing is that they generally predict the

existence of dipole and even monopole gravitational

radiation, none of which exist in GR. In particular, if the

binary source is sufficently asymmetrical, either in mass or

composition (e.g., a black-hole neutron-star binary), then

dipole gravitational radiation can lead to contributions to

the energy flux and the waveform evolution that are larger

than the conventional quadrupole contributions by a factor

of ðc=vÞ2, where v is the orbital velocity. In other words,

dipole radiation effects can occur at “-1PN” order, in a

hierarchy where quadrupole radiation is denoted by “0PN”

order. This is both a blessing and a curse. It is a blessing

because it could lead to tighter constraints on the theory

than might have been expected a priori. But it is a curse

because, in order to calculate the waveform evolution to an

order equivalent to the nPN order of general relativity, one

must determine the radiative moments of the auxiliary

fields and the equations of motion of the binary system to

the ðnþ 1ÞPN order.

These considerations have motivated us to begin an

effort to determine the equations of motion for compact

binaries and the emitted gravitational-waveform in a post-

Newtonian expansion of Einstein-Æther theory beyond the

lowest-order dipole and quadrupole contributions, and

beyond linearized theory, which constitute the current state

of the art [48,49]. Because of the significant additional

complexity of this class of theories, combined with the

“curse” of dipole radiation, our goal will be modest: to

obtain the gravitational waveform to 1.5 PN order beyond

the conventional quadrupole level. This paper is devoted to

obtaining the metric to 2.5PN order, while future papers

will obtain the equations of motion for compact bodies to
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2.5PN order, the far-zone fields to the required order, and

finally the energy flux and waveform to 1.5PN order. The

results will augment the waveform templates described

in [48,49].

In Sec. II, we review the essentials of Einstein-Æther

theory, and impose a condition on one of its four arbitrary

parameters that arises from the gravitational-wave speed

constraint from GW170817. Section III expresses the

theory in the form of “relaxed field equations” of the

post-Minkowskian method that has been used in GR and

scalar-tensor theory to carry out PN expansions (see, e.g.,

[50]). In Sec. IV we note that the presence in Einstein-

Æther theory of a vector auxiliary field with unit norm

necessitates a change of field variables in order to obtain

wave equations for the fields whose sources consists of

matter plus field contributions that are quadratic in small

quantities, thus enabling a consistent PN expansion.

Section V obtains solutions within the near-zone for the

fields to orders that permit the construction of the complete

spacetime metric to 2.5PN order. In Sec. VI we briefly

describe ongoing work and make concluding remarks.

II. EINSTEIN-ÆTHER THEORY

Einstein-Æther theory is defined by the covariant action

SÆ ≡
1

16πG0

Z

ffiffiffiffiffiffi

−g
p ½R − E

μν
αβ∇μK

α
ae∇νK

β
ae

þ λðKaeμK
μ
ae þ 1Þ�d4xþ

Z

ffiffiffiffiffiffi

−g
p

LMd
4x; ð2:1Þ

where g is the determinant of the metric gμν, R is the Ricci

scalar, ∇μ is a covariant derivative with respect to the

metric,

E
μν
αβ ¼ c1g

μνgαβ þ c2δ
μ
αδ

ν
β þ c3δ

μ
βδ

ν
α − c4K

μ
aeK

ν
aegαβ; ð2:2Þ

λ is a Lagrange multiplier designed to enforce the constraint

KaeμK
μ
ae ¼ −1, and LM is the matter Lagrangian. We use

units in which the speed of light c is unity, and the

spacetime metric has the signature ð−;þ;þ;þÞ; Greek

indices denote spacetime components and Roman indices

denote spatial components; parentheses (square brackets)

around groups of indices denote symmetrization

(antisymmetrization).

However, it is well-known that the speed of transverse-

traceless gravitational waves in this theory is given by

vg ¼ ð1 − c1 − c3Þ−1=2. Because of the extraordinary

bound from GW170817, we will make the assumption

that c3 ¼ −c1, reducing the theory to a three-parameter set

of theories. The Lagrangian for the Æther field then takes

the form

LÆ ¼ −
1

2
c1FμνF

μν − c2ð∇μK
μ
aeÞ2 þ c4jaaej2; ð2:3Þ

where

Fμν ≡ ∂νKaeμ − ∂μKaeν; a
μ
ae ≡ Kν

ae∇νK
μ
ae: ð2:4Þ

The initial studies by Jacobson et al. established the post-

Newtonian limit, studied gravitational wave propagation,

and analyzed other aspects of the theory. Here we sum-

marize the main results, but we impose the constraint

c3 ¼ −c1 a priori. The parametrized post-Newtonian

(PPN) parameters [11] are given by [16]:

γ ¼ 1; β ¼ 1; α1 ¼ −4c14;

α2 ¼
c14

c2

�

2c2c14 þ c14 − c2

2 − c14

�

; ð2:5Þ

with ξ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ 0, where c14 ¼ c1 þ c4.
The present value of the gravitational constant is given by

G ¼ G0

�

1 −
c14

2

�

−1

: ð2:6Þ

Considerations of positivity of energy impose the con-

straints c1 ≥ 0, c2 ≥ 0, and c14 ≥ 0.

III. THE RELAXED FIELD EQUATIONS

IN EINSTEIN-ÆTHER THEORY

A. Field equations

We begin by deriving the field equations in a form that

will be useful for obtaining the so-called “relaxed” field

equations, analogous to those in general relativity. Varying

the action (2.1) with respect to the Æther field yields the

field equation for K
μ
ae,

c1∇νF
μν ¼ 8πG0T

μ
ae−λK

μ
ae−c2∇

μð∇νK
ν
aeÞ

−c4ðaνae∇μKaeν−a
μ
ae∇νK

ν
ae−Kν

ae∇νa
μ
aeÞ; ð3:1Þ

where we define the matter energy-momentum tensor and

vector by

Tμν ≡
2
ffiffiffiffiffiffi

−g
p

δð ffiffiffiffiffiffi

−g
p

LMÞ
δgμν

;

Taeμ ≡ −
1
ffiffiffiffiffiffi

−g
p

δð ffiffiffiffiffiffi

−g
p

LMÞ
δK

μ
ae

: ð3:2Þ

In a conventional metric theory of gravity, where the matter

Lagrangian couples only to the metric, the quantity Taeμ

would vanish. However we anticipate treating compact

bodies, where the mass of each body may have an effective

dependence on K
μ
ae via its gravitational binding energy.

This idea is based on the original proposal by Eardley [51],

with follow-up work by Gralla [52,53]; see also [54]. This

will be addressed in detail in a subsequent paper; for now
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we will include the effective energy-momentum vector in

all our considerations.

Contracting Eq. (3.1) with Kaeμ and using the constraint

that KaeμK
μ
ae ¼ −1 yields an expression for the Lagrange

multiplier λ

λ ¼ −8πG0KaeνT
ν
ae −

1

2
c1ðFμνF

μν þ 2∇νa
ν
aeÞ

þ c2K
ν
ae∇νð∇μK

μ
aeÞ þ 2c4jaaej2: ð3:3Þ

Note that Kae · aae ¼ 0. Varying the action with respect to

the metric and making use of Eq. (3.3) to eliminate the

Lagrange multiplier λ, we obtain the field equations

Gμν ¼ 8πG0ðTμν − K
μ
aeK

ν
aeKaeαT

α
aeÞ þ Sμν; ð3:4Þ

for the metric, and

c1∇νF
μν ¼ 8πG0ðTμ

ae þ K
μ
aeKaeνT

ν
aeÞ

þ 1

2
c1K

μ
aeðFαβF

αβ þ 2∇νa
ν
aeÞ

− c2½∇μð∇νK
ν
aeÞ þ K

μ
aeK

ν
ae∇νð∇αK

α
aeÞ�

− c4½aνae∇μKaeν − a
μ
ae∇νK

ν
ae

−Kν
ae∇νa

μ
ae þ 2K

μ
aejaaej2�; ð3:5Þ

for the Æther field, where

Sμν ¼ c1

�

2K
ðμ
ae∇αF

νÞα þ Fα
μFαν − K

μ
aeK

ν
aeð∇αa

α
aeÞ −

1

4
ðgμν þ 2K

μ
aeK

ν
aeÞFαβF

αβ

�

þ c2

�

ðgμν þ K
μ
aeK

ν
aeÞKβ

ae∇βð∇αK
α
aeÞ þ

1

2
gμνð∇αK

α
aeÞ2

�

− c4

�

a
μ
aea

ν
ae −

1

2
ðgμν þ 4K

μ
aeK

ν
aeÞjaaej2 − K

μ
aeK

ν
aeð∇αa

α
aeÞ − 2aαaeð∇αK

ðμ
aeÞKνÞ

ae

þ 2a
ðμ
aeK

νÞ
ae∇αK

α
ae þ 2Kα

aeð∇αa
ðμ
aeÞKνÞ

ae

�

: ð3:6Þ

Note that contracting Eq. (3.5) with Kaeμ now yields a

trivial equality.

B. Relaxed Einstein-Æther field equations

To recast Eq. (3.4) into the form of a “relaxed” Einstein-

Æther equation, we define the quantities

g
μν ≡

ffiffiffiffiffiffi

−g
p

gμν;

Hμανβ ≡ g
μν
g
αβ − g

αν
g
βμ; ð3:7Þ

and use the identity, valid for any spacetime,

Hμανβ
;αβ ¼ ð−gÞð2Gμν þ 16πt

μν
LLÞ; ð3:8Þ

where t
μν
LL is the Landau-Lifshitz pseudotensor. We next

define the gravitational field hμν by the equation

g
μν ≡ ημν − hμν; ð3:9Þ

and impose the “Lorenz” or harmonic gauge condition

hμν;ν ¼ 0: ð3:10Þ

Substituting Eqs. (3.4), (3.9) and (3.10) into (3.8), we can

recast the field equation (3.4) into the form

□ηh
μν ¼ −16πG0τ

μν; ð3:11Þ

where □η is the flat spacetime d’Alembertian with respect

to ημν, and where

τμν ¼ ð−gÞðTμν − K
μ
aeK

ν
aeKaeαT

α
aeÞ þ ð−gÞðtμνLL þ t

μν
H Þ

þ 1

8πG0

ð−gÞSμν; ð3:12Þ

where t
μν
H is the Harmonic pseudotensor (see Eqs. (6.5)

and (6.53) of [50] for explicit formulas for ð−gÞtμνLL and

ð−gÞtμνH ).

IV. FORMAL STRUCTURE OF THE

NEAR-ZONE FIELDS

A. Metric in terms of the fields

The next task will be to solve these equations iteratively

in a post-Newtonian expansion in the near-zone, i.e. within

one characteristic gravitational wavelength λ of the center

of mass of the system, in terms of a small parameter

ϵ ∼ v2 ∼G0m=r, where v, r and m are the characteristic

velocities, separations and masses of the bodies in the

system. The strong-field internal gravity effects of each

body will be encoded in expressions for the energy-

momentum quantities Tμν and Tν
ae.
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We follow [55] (hereafter referred to as PWI) by defining

a simplified notation for the field hμν:

Ñ ≡ h00 ∼OðϵÞ;
K̃j ≡ h0j ∼Oðϵ3=2Þ;
B̃jk ≡ hjk ∼Oðϵ2Þ;
B̃≡ hjj ≡

X

j

hjj ∼Oðϵ2Þ: ð4:1Þ

We assume that the coordinate system is at rest with respect

to the mean rest frame of the universe that is singled out by

the asymptotic value of the Æther field K
μ
ae. This implies

that the asymptotic values of the spatial components vanish,

and that therefore, within the near zone, they behave as

K̃
j
ae ∼Oðϵ3=2Þ: ð4:2Þ

Later,whenwehave the equationsofmotion andgravitational

wave signals in hand, we will be able to transform them to a

frame inwhich the system is at rest, using a suitably expanded

Lorentz transformation combined with a gauge transforma-

tion (often called a “post-Galilean” transformation).

From the constraint on the norm ofK
μ
ae it follows thatK

0
ae

can be expressed in terms of the variables of Eqs. (4.1)

and (4.2):

K0
ae ¼ 1þ ϵ

4
Ñ þ ϵ2

4

�

B̃ −
3

8
Ñ2

�

þ ϵ3

16

�

Ñ B̃þ 7

8
Ñ3

þ 8K̃
j
aeK̃

j
ae − 16K̃jK̃

j
ae þ 4K̃jK̃j

�

þOðϵ4Þ: ð4:3Þ

The harmonic gauge condition becomes Ñ;0 þ K̃
j
;j ¼ 0 and

K̃
j
;0 þ B̃

jk
;k ¼ 0. Hereafter we do not distinguish between

covariant and contravariant components of spatial indices,

which are assumed to be raised or lowered using the

Minkowski metric, whose spatial components are δij.

In the equations of motion to 2.5PN order, we need to

determine the components of the physical metric and K̃
j
ae

to the following orders: g00 to Oðϵ7=2Þ, g0j to Oðϵ3Þ, gjk to
Oðϵ5=2Þ, and K̃

j
ae to Oðϵ3Þ. From the definitions (3.7) and

(3.9), one can invert to find gμν in terms of hμν to the

appropriate order in ϵ, as in PWI, Eq. (4.2). Expanding to

the required order, we find,

g00 ¼ −1þ ϵ

2
Ñ þ ϵ2

8
ð4B̃ − 3Ñ2Þ

þ ϵ3

16
ð5Ñ3

− 4Ñ B̃þ8K̃jK̃jÞ þOðϵ4Þ;

g0j ¼ −ϵ3=2K̃j þ ϵ5=2

2
ÑK̃j þOðϵ7=2Þ;

gjk ¼ δjk
�

1þ ϵ

2
Ñ −

ϵ2

8
ðÑ2 þ 4B̃Þ

�

þ ϵ2B̃jk þOðϵ3Þ;

ð−gÞ ¼ 1þ ϵÑ − ϵ2B̃þOðϵ3Þ: ð4:4Þ

B. Change of field variables

We can now use these definitions to express the field

equations and the Æther equation to the required PN order

in terms of Ñ, K̃j, B̃jk, B̃ and K̃
j
ae. For example, the

components of the combination t
μν
LL þ t

μν
H have the same

form as the components of Λμν found in Eq. (4.4) of PWI.

However, despite the fact that theÆther energy-momentum

tensor Sμν is formally quadratic and higher-order in the

fields, the fact that K0
ae ¼ 1 at lowest order implies that the

fields Ñ, K̃j, K̃
j
ae, B̃

jk, and B̃ can contribute linearly to

the effective source of the relaxed field equation. Even

worse, the function Ñ contributes to S00 at Newtonian

order. At purely linear order in the fields, the vacuum

versions of the relaxed field equations take the form for the

metric fields,

□Ñ ¼ 1

2
c14½∇2ðÑ þ ϵB̃Þ − 4ϵðK̃j

ae;0j − K̃
j
;0jÞ�;

□K̃j ¼ 1

2
c2½3Ñ;0j þ 4K̃k

ae;jk − ϵB̃;0j�;

□B̃jk ¼ −
1

2
c2δ

jk½3Ñ;00 þ 4K̃k
ae;k0 − ϵB̃;00�; ð4:5Þ

and for the Æther field,

c1½∇2ðK̃j
ae − K̃jÞ − ðK̃k

ae − K̃kÞ;kj�

¼ −
1

4
c14½Ñ;0j þ ϵB̃;0j − 4ϵðK̃j

ae − K̃jÞ;00�

−
1

4
c2½3Ñ;0j þ 4K̃k

ae;kj − ϵB̃;0j�: ð4:6Þ

In Appendix A, wewill study thewavelike solutions of these

equations as an alternative method to verify the speeds and

polarizations of waves derived in the literature [16].

These coupled, linear-order terms complicate the iter-

ation procedure that is part of the post-Minkowskian

method in general relativity or scalar-tensor theories, which

rely upon the contributions to the right-hand-side of the

relaxed equations being quadratic and higher in the small

field quantities. However, it turns out that a suitable change

of variables eliminates these linear terms to the desired

2.5PN order; details are given in Appendix B. This trans-

formation is given by

Ñ ¼ N þ ϵc14

2 − c14
Bþ ϵ

v2L
Ṙþ ϵ2c14

2ð2 − c14Þv2L
ẌB

þ ϵ2

12v4L
ðYR

ð3Þ
− c1v

2
LWT Y

ð3Þ
KaeÞ þOðϵ3NÞ;

K̃j ¼ Kj − R;j −
ϵc14

2ð2 − c14Þ
ẊB;j

−
ϵ

12v2L
ðŸR;j − c1v

2
LWT ŸKae;jÞ þOðϵ2KjÞ;
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B̃jk ¼ Bjk þ δjk
�

Ṙþ ϵc14

2ð2 − c14Þ
ẌB

þ ϵ

12v2L
ðYR

ð3Þ
− c1v

2
LWT Y

ð3Þ
KaeÞ

�

þOðϵ2BjkÞ;

K̃
j
ae ¼ K

j
ae þ Kj þ 1

2c14
ðWLR;j þ c1WTXKae;jÞ

þ ϵ

4

WL

2 − c14
ẊB;j þ

ϵ

24c14v
2
L

ðWLŸR;j

þ c1v
2
Lð1 −WLÞWT ŸKae;jÞ þOðϵ2Kj

aeÞ; ð4:7Þ

where

v2T ≡
c1

c14
;

v2L ≡
c2ð2 − c14Þ
c14ð2þ 3c2Þ

; ð4:8Þ

are the propagation speeds of the transverse and longi-

tudinal waves of the Æther field (Appendix A), and

where

WT ≡ 1 −
1

v2T
; WL ≡

�

1 −
c14

2

��

1 −
1

v2L

�

: ð4:9Þ

Here and for future use, we define an array of

“superpotentials” X, “superduperpotentials” Y and

“megasuperpotentials” Z, defined by

∇2XN≡2N; ∇2YN≡12XN ; ∇2ZN≡30YN ;

∇2XKae≡2Kk
ae;k; ∇2YKae≡12XKae; ∇2ZKae≡30YKae;

∇2XB≡2B; ∇2YB≡12XB; ∇2ZB≡30YB; ð4:10Þ

along with the superpotential combination,

R≡
1

4
c14ẊN − c1XKae; ð4:11Þ

and its own superduperpotential defined by ∇2YR ¼ 12R.
The harmonic gauge conditions Ñ;0 þ K̃

j
;j ¼ 0 and

K̃
j
;0 þ B̃

jk
;k ¼ 0 imply gauge conditions in the new variables

given by

K
j
;j þ

�

1 −
c14

2

�

Ṅ ¼ −2c1K
j
ae;j − ϵc1WTẌae þOðϵ2ṄÞ;

K̇j þ Bjk
;k ¼ OðϵK̇jÞ: ð4:12Þ

C. Final relaxed Einstein-Æther equations

In terms of the new variables, the relaxed Einstein-Æther

equations take the form

�

1 −
1

2
c14

�

□N ¼ −16πG0τ
00 þOðρϵ3Þ; ð4:13aÞ

□Kj ¼ −16πG0τ
0j þOðρϵ5=2Þ; ð4:13bÞ

□Bjk ¼ −16πG0τ
jk þOðρϵ2Þ; ð4:13cÞ

□B ¼ −16πG0τ
kk þOðρϵ3Þ; ð4:13dÞ

c1□
�Kj

ae ¼ 8πG0τ
j
ae þOðρϵ5=2Þ; ð4:13eÞ

where □
� ≡∇2 − v−2T ∂

2

0
, and where

τμν ≡ ð−gÞTμν
T þ ð16πG0Þ−1Λμν

T ;

τ
j
ae ≡ T

j
aeT þ ð8πG0Þ−1Λj

ae: ð4:14Þ

In obtaining these equations, we made use of the spatial

components of the Æther field equation (3.5) to make

further simplifications of the Sμν. Pulling all the matter

contributions together gives the total matter source tensor,

T00

T ¼ T00 − ðK0
aeÞ2KaeμT

μ
ae

þ 2ðK̃j
ae − K̃jÞðTj

ae þ K̃
j
aeKaeμT

μ
aeÞ;

T
0j
T ¼ T0j þ K0

aeT
j
ae;

T
jk
T ¼ Tjk þ 2K̃

ðj
aeT

kÞ
ae þ K̃

j
aeK̃

k
aeKaeμT

μ
ae;

T
j
aeT ¼ T

j
ae þ K̃

j
aeKaeμT

μ
ae; ð4:15Þ

where Kaeμ is a four vector with components ðKae0; K̃aejÞ.
Many of these contributions to T

μν
T are of higher PN order

than we need, but we will address this when we introduce

our “compact point mass model” for the matter sources. We

will also transform all potentials in Eq. (4.15) such as K̃j

and K̃
j
ae to our new potentials using Eqs. (4.7). The field

contributions to Sμν have been combined with the Landau-

Lifshitz and Harmonic pseudotensors to produce the total

Λ
μν
T and Λ

j
ae, given by
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Λ
00

T ¼ −
7

16
ð2 − c14ÞN;j

2

þ 7

16
ð2 − c14ÞNN;j

2 þ 1

4
ð1 − 4c14ÞN;jB;j −

1

2
ð2 − c14ÞBjkN;jk −

1

4
½ð2 − c14Þð2þ 3c14Þ − c14WL�NN̈

þ 5

16
fð2 − c14Þð1 − 2c14Þ þ c14WLgṄ2 þ ð1þ c14ÞN;jK̇

j −
1

2
ð4 − 5c14ÞṄ;jK

j þ 1

2
K

j
;kðK

j
;k þ 3Kk

;jÞ

þ 3

2
c14N;jK̇

j
ae þ

3

2
c14Ṅ;jK

j
ae −

1

2
c14N∇2Bþ 2c14K

k
ae;jðK

j
;k þ K

j
ae;kÞ þ 6c1K

½j;k�
ae K

½j;k�
ae þ 1

2
c14∇

2ðKjKjÞ

þ c14ðKj
ae∇

2Kj − Kj∇2K
j
ae þ∇2ðKjK

j
aeÞÞ þ

1

4
c1ð6 − 12c14 − 4WL − 3WTÞNK̇

j
ae;j

þ 1

2

c1

c14
ð1 − 2c14 −WLÞð3c14Ṅ − 2c1K

j
ae;jÞK

j
ae;j − 2c1ð1þWTÞKj

aeK
k
ae;kj − 2c1ð1þWTÞKjKk

ae;kj

þ 1

4
ð4ð2 − c14Þ þ 3WLÞṄ;jR;j þ

3

4
c1WTṄ;jXKae;j −

c1
c14

WLð1þWTÞKk
ae;kjR;j

−
c2
1

c14
WTð1þWTÞKk

ae;kjXKae;j −
5

4
WLṘ∇

2N −
3

8
c1WTẊKae∇

2N þ 2R;j∇
2Kj

− ðWLR;j þ c1WTXKae;jÞ∇2K
j
ae −

1

4
ð4 − 2c14 − 5WLÞ∇2ðNṘÞ þ 3

8
c1WT∇

2ðNẊKaeÞ

− ð2 − c14Þ∇2ðKjR;jÞ þ∇2½ðKj þ K
j
aeÞðWLR;j þ c1WTXKae;jÞ�

þ 1

2
ð2 − c14Þ∇2ðR;jR;jÞ þ

1

4c14
∇2jWLR;j þ c1WTXKae;jj2 þOðρϵ3Þ; ð4:16aÞ

Λ
0j
T ¼ N;k½ð1 − c2ÞKk

;j − K
j
;k� þ

3

8
ð2þ 3c2ÞṄN;j þ

1

4
c2ð6 − 3c14 −WLÞNṄ;j −

1

2
c14∇

2NðKj þ K
j
aeÞ

þ 1

2
N;k½ðc14 − 2c2ÞKk

ae;j − c14K
j
ae;k� − c2N;jkðKk þ Kk

aeÞ −
1

2

c1c2
c14

ð3 − 6c14 − 2WL −WTÞNKk
ae;kj

−
c2

2c14
N;jkðWLR;k þ c1WTXKae;kÞ þ

1

4c14
ðc2 − c14Þ∇2NðWLR;j þ c1WTXKae;jÞ

−
c2

4c14
∇2fNðWLR;j þ c1WTXKae;jÞg þOðρϵ5=2Þ; ð4:16bÞ

Λ
jk
T ¼ 1

8
ð2 − c14Þ

�

N;jN;k −
1

2
δjkN;m

2

�

þOðρϵ2Þ; ð4:16cÞ

Λ
jj
T ¼ −

1

16
ð2 − c14ÞN;j

2

þ 1

8
ð2 − c14ÞNN;j

2 −
1

4
N;jB;j þ

3

16c2
ðc2

14
− 18c2

2
− 6c2ÞṄ2 − ð1 − 3c2ÞN;jK̇

j − K½j;k�K½j;k�

þ 3

4
ðc2c14 − c14 − 5c2ÞNN̈ þ 1

2
ð6c2 − c14ÞṄ;jðKj þ K

j
aeÞ þ

1

2
ð6c2 − c14ÞN;jK̇

j
ae

þ 2c1K
½j;k�
ae K

½j;k�
ae þ 1

4
ð13c1 − 12c1c2 − c14 þ 6c2ÞNK̇

j
ae;j −

3c14c1

2c2
ṄK

j
ae;j þ 2c1ðKj þ K

j
aeÞKk

ae;kj

þ 3c2
1

c2
ðKk

ae;kÞ2 þ
1

4c14
ð6c2 − c14ÞṄ;jðWLR;j þ c1WTXKae;jÞ þ

c1

c14
Kk

ae;kjðWLR;j þ c1WTXKae;jÞ

þ 3c2

4c14
WLð∇2ðNṘÞ − Ṙ∇2NÞ þ c1

8c14
ð6c2 − c14ÞWTð∇2ðNẊKaeÞ − ẊKae∇

2NÞ þOðρϵ3Þ; ð4:16dÞ
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Λ
j
ae ¼

1

16
ð3c2 þ c14 − 3c1Þð4 − 2c14 −WLÞṄN;j −

c1

8c14
ð12c1c14 þ ð3c1 − c14 þ 2c2ÞðWL −WTÞÞNKk

ae;kj

þ 1

32
f6ðc14 þ 3c2Þ − 12c1ð2 − c14Þ þ ð3c1 − c14 þ 2c2ÞWLgNṄ;j −

c1

4c2
ðc14 − 3c1ÞN;jK

k
ae;k

þ 1

4
ð3c1 − c14 − 2c2ÞN;jkðKk þ Kk

aeÞ þ
1

4
ðc14 − c1 − 2c2ÞN;kK

k
ae;j −

1

2
c1N;kK

j
ae;k

þ 1

4
ð3c1 − 2c2ÞN;kK

k
;j −

1

4
ð6c1 − c14ÞN;kK

j
;k −

3

4
c1∇

2NðKj þ K
j
aeÞ þ

1

4
c1N∇2ð2Kj

ae − 3KjÞ

þ 1

8c14
ð3c1 − c14 − 2c2ÞN;jkðWLR;k þ c1WTXKae;kÞ −

1

16c14
ð3c1 þ c14 − 2c2Þ∇2NðWLR;j þ c1WTXKae;jÞ

−
1

16c14
ð3c1 − c14 þ 2c2Þ∇2½NðWLR;j þ c1WTXKae;jÞ� þOðρϵ5=2Þ: ð4:16eÞ

As is customary, we will define the quantities

σ ≡ T00
T þ T

jj
T ; σj ≡ T

0j
T ;

σjk ≡ Tik
T ; σ

j
ae ≡ T

j
aeT ; ð4:17Þ

and will express various potentials formally in terms of

these densities. Later we will make a PN expansion of

them, including compact body sensitivities, and iterate the

potentials to include these effects.

The gauge conditions (4.12) lead to useful conservation

equations. Adding the time derivative of Eq. (4.13a) to

the divergence of Eq. (4.13b), and making use of the

d’Alembertian of the first of Eqs. (4.12) and the divergence

of Eq. (4.13e), we obtain the equations, valid through 2PN

order

τ0ν;ν − τ
j
ae;j ¼ 0; τjν;ν ¼ 0: ð4:18Þ

D. Near-zone field to 2.5PN order

We now solve Eqs. (4.13) for field points within the near-

zone. The formal solutions of Eqs. (4.13) consist of

integrals of the source divided by jx − x0j over the past

harmonic “null” cone of the field point. These integrals

divide into two distinct integrals, an inner integral out to a

boundary where the null cone C intersects the near-zone

world tube of radius R ∼ λ, and an outer integral over the

remainder of the null cone. The retarded time of the inner

integrals over the region N can be expanded in powers of

jx − x0j, leading to bounded integrals over a constant time

hypersurface M, evaluated at the time t of the field point.

The outer integrals over the rest of the null cone C −N are

carried out using a special change of integration variables.

For a detailed pedagogical description of this method, see

Sec. 6.3 of [50]. Both the inner and outer integrals may

individually depend on the radius R, but their sum cannot;

in practice this means that one can evaluate each integral,

keeping only terms that do not depend explicitly on R.

The expansions of the inner integrals of the fields N, Kj,

Bjk, and K
j
ae are then given by

NN ¼ 2G0

2 − c14

�

4ϵ

Z

M

τ00ðt;x0Þ
jx − x

0j d
3x0 þ 2ϵ2∂2t

Z

M

τ00ðt;x0Þjx − x
0jd3x0 − 2

3
ϵ5=2IkkðtÞ

ð3Þ
−
4

3
ϵ5=2xkÏk

aeðtÞ

þ 1

6
ϵ3∂4t

Z

M

τ00ðt;x0Þjx − x
0j3d3x0 − 1

30
ϵ7=2fð4xkl þ 2r2δklÞIklðtÞ

ð5Þ
− 4xkIkllðtÞ

ð5Þ
þ IkkllðtÞ

ð5Þ
g

−
2

15
ϵ7=2r2xkIk

aeðtÞ
ð4Þ

þ N∂M

�

þOðϵ4Þ; ð4:19aÞ

K
j

N
¼ G0

�

4ϵ3=2
Z

M

τ0jðt;x0Þ
jx − x

0j d
3x0 þ 2ϵ5=2∂2t

Z

M

τ0jðt;x0Þjx − x
0jd3x0 þ 2

9
ϵ3f3xkI jkðtÞ

ð4Þ
− I jkkðtÞ

ð4Þ
þ 2ϵmjkJ mkðtÞ

ð3Þ
g

þ 2

9
ϵ3f6xkI ðjkÞ

ae ðtÞ
ð3Þ

− I
jkk
ae ðtÞ
ð3Þ

− 2I
kjk
ae ðtÞ
ð3Þ

g þ K
j
∂M

�

þOðϵ7=2Þ; ð4:19bÞ
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B
jk

N
¼ G0

�

4ϵ2
Z

M

τjkðt;x0Þ
jx − x

0j d
3x0 − 2ϵ5=2fI jkðtÞ

ð3Þ
þ 2Ï

ðjkÞ
ae ðtÞg þ 2ϵ3∂2t

Z

M

τjkðt;x0Þjx − x
0jd3x0

−
1

9
ϵ7=2f3r2I jkðtÞ

ð5Þ
− 2xlI jklðtÞ

ð5Þ
− 8xlϵmlðjJ mjkÞðtÞ

ð4Þ
þ 6MjkllðtÞ

ð3Þ
g

−
2

3
ϵ7=2fr2I ðjkÞ

ae ðtÞ
ð4Þ

þ xlI
ðjklÞ
ae ðtÞ
ð4Þ

g þ B
jk
∂M

�

þOðϵ4Þ; ð4:19cÞ

K
j

aeN
¼ −G0c

−1

1

�

2ϵ3=2
Z

M

τ
j
aeðt;x0Þ
jx − x

0j d
3x0 −

2

vT
ϵ2İ

j
ae þ

1

v2T
ϵ5=2∂2t

Z

M

τ
j
aeðt;x0Þjx − x

0jd3x0

−
1

3v3T
ϵ3fr2I j

aeðtÞ
ð3Þ

− 2xkI
jk
aeðtÞ
ð3Þ

þ I
jkk
ae ðtÞ
ð3Þ

g
�

þOðϵ7=2Þ; ð4:19dÞ

where we define the moments of the system by

IQ ≡

Z

M

τ00xQd3x;

J iQ ≡ ϵiab
Z

M

τ0bxaQd3x;

MijQ ≡

Z

M

τijxQd3x;

I
jQ
ae ≡

Z

M

τ
j
aex

Qd3x: ð4:20Þ

The index Q is a multi-index, such that xQ denotes

xi1…xiq . The integrals are taken over a constant time

hypersurfaceM at time t out to the radiusR. The structure

of the expansions for NN , K
j

N
and B

jk

N
differs from the

structure in PWI only in the odd-half order ϵ terms in NN

and B
jk

N
and in the integer-order ϵ terms in K

j

N
. This is

because the source τμν satisfies the conservation law τμν;ν ¼
δ
μ
0
τ
j
ae;j [Eq. (4.18)], and we have used this to convert a

number of terms into surface integrals at the boundary ∂M

of the near zone. In some places this leaves a residue of

terms, such as the term proportional to ϵ5=2xkÏk
aeðtÞ in NN .

Interestingly, while the terms in NN and BN that are

proportional to ϵ5=2 are nominally of 1.5PN order, we will

see below that they are purely a gauge artifact, and do not

contribute to the final metric at 1.5PN order.

The boundary termsN∂M,Ki
∂M and B

ij
∂M can be found in

Appendix C of PWI, with the replacement τ0j → τ0j − τ
j
ae,

but they will play no role in our analysis. As in PWI, we

will discard all terms that depend on the radius R of the

near-zone; these necessarily cancel against terms that arise

from integrating over the remainder of the past null cone.

As in general relativity, those “outer” integrals can be

shown to make no contribution to the near zone metric to

the 2.5PN order at which we are working (see Sec. 4. C

of PWI).

E. Definitions of PN and 2PN potentials

In the near zone, the potentials are Poisson-like poten-

tials and their generalizations. Most were defined in PWI,

but we will need to define additional potentials associated

with the Æther field. For a source f, we define the Poisson
potential to be

PðfÞ≡ 1

4π

Z

M

fðt;x0Þ
jx − x

0j d
3x0; ∇2PðfÞ ¼ −f: ð4:21Þ

We also define potentials based on the “densities” σ, σj, σjk,

and σ
j
ae:

ΣðfÞ≡
Z

M

σðt;x0Þfðt;x0Þ
jx − x

0j d3x0 ¼ Pð4πσfÞ;

Σ
jðfÞ≡

Z

M

σjðt;x0Þfðt;x0Þ
jx − x

0j d3x0 ¼ Pð4πσjfÞ;

Σ
jkðfÞ≡

Z

M

σjkðt;x0Þfðt;x0Þ
jx − x

0j d3x0 ¼ Pð4πσjkfÞ;

Σ
j
aeðfÞ≡

Z

M

σ
j
aeðt;x0Þfðt;x0Þ

jx − x
0j d3x0 ¼ Pð4πσjaefÞ; ð4:22Þ

along with the superpotentials

XðfÞ≡
Z

M

σðt;x0Þfðt;x0Þjx − x
0jd3x0;

YðfÞ≡
Z

M

σðt;x0Þfðt;x0Þjx − x
0j3d3x0; ð4:23Þ

and their obvious counterparts Xj, Xjk, X
j
ae, and so on.

Using Eq. (4.21), we can express the superpotential defined

in Eq. (4.10) in the form

XN ¼−2PðNÞ; YN ¼−12PðXNÞ; ZN ¼−30PðYNÞ;
ð4:24Þ

and so on.
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A number of potentials occur sufficiently frequently in

the PN expansion that it is useful to define them specifi-

cally. There is the “Newtonian” potential,

U ≡

Z

M

σðt;x0Þ
jx − x

0j d
3x0 ¼ Pð4πσÞ ¼ Σð1Þ: ð4:25Þ

The potentials needed for the post-Newtonian limit are

Vj≡Σ
jð1Þ; V

j
ae≡Σ

j
aeð1Þ;

Φ
jk
1
≡Σ

jkð1Þ; Φ1≡Σ
jjð1Þ; Φ2≡ΣðUÞ;

X≡Xð1Þ¼−2PðUÞ; X
j
ae≡X

j
aeð1Þ¼−2PðVj

aeÞ: ð4:26Þ

Useful 2PN potentials include:

V
j
2
≡ Σ

jðUÞ; V
j
2ae ≡ Σ

j
aeðUÞ;

Φ
j
2
≡ ΣðVjÞ; Φ

j
2ae ≡ ΣðVj

aeÞ;
X1 ≡ Xjjð1Þ ¼ −2PðΦ1Þ; X2 ≡ XðUÞ ¼ −2PðΦ2Þ;
Xj ≡ Xjð1Þ ¼ −2PðVjÞ; Y ≡ Yð1Þ;

P
ij
2
≡ PðU;iU;jÞ; P2 ≡ Pii

2
¼ Φ2 −

1

2
U2;

G1 ≡ PðU̇2Þ; G2 ≡ PðUÜÞ;
G3 ≡ −PðU̇;kVkÞ; G3ae ≡ −PðU̇;kVk

aeÞ;
G4 ≡ PðVi;jVj;iÞ; G4ae ≡ PðVi;j

aeV
j;iÞ;

Gae
4ae ≡ PðVi;j

aeV
j;i
ae Þ;

G5 ≡ −PðV̇kU;kÞ; G5ae ≡ −PðV̇k
aeU

;kÞ
G6 ≡ PðU;ij

Φ
ij
1
Þ;

Gi
7
≡ PðU;kVk;iÞ; Gi

7ae ≡ PðU;kVk;i
ae Þ;

Gi
8
≡ PðU;iU̇Þ; Gi

9
≡ PðUU̇;iÞ;

H ≡ PðU;ijP
ij
2
Þ: ð4:27Þ

V. EXPANSION OF NEAR-ZONE FIELDS

TO 2.5PN ORDER

In evaluating the contributions at each order, we shall use

the following notation,

N¼N0þ ϵN1þ ϵ3=2N1.5þ ϵ2N2þ ϵ5=2N2.5þOðϵ3Þ;
Kj ¼K

j
1
þ ϵ1=2K

j
1.5þ ϵK

j
2
þ ϵ3=2K

j
2.5þOðϵ2Þ;

B¼B1þ ϵ1=2B1.5þ ϵB2þ ϵ3=2B2.5þOðϵ2Þ;
Bij ¼B

ij
2
þ ϵ1=2B

ij
2.5þOðϵÞ;

K
j
ae ¼K

j
ae1þ ϵ1=2K

j
ae1.5þ ϵK

j
ae2þ ϵ3=2K

j
ae2.5þOðϵ2Þ;

R¼R1þ ϵ1=2R1.5þ ϵR2þ ϵ3=2R2.5þOðϵ2Þ;

XKae ¼XKae1þ ϵ1=2XKae1.5þ ϵXKae2þ ϵ3=2XKae2.5þOðϵ2Þ;
XB ¼XB2þ ϵ1=2XB2.5þOðϵÞ;
YR ¼YR2þ ϵ1=2YR2.5þOðϵÞ;

YKae ¼YKae2þ ϵ1=2YKae2.5þOðϵÞ; ð5:1Þ

where the subscript on each term indicates the level (1PN,

2PN, 2.5PN, etc.) of its leading contribution to the

equations of motion, and where we also include the

superpotential functions needed to construct the metric.

A. Newtonian, 1PN and 1.5PN solutions

At lowest order in the PN expansion, we only need to

evaluate τ00 ¼ ð−gÞT00 þOðρϵÞ ¼ σ þOðρϵÞ (recall that

σii ∼ ϵσ). Since the density has compact support, the outer

integral vanishes, and we find

N0 ¼
8G0U

2 − c14
: ð5:2Þ

The metric to Newtonian order is given by the leading term

in Eq. (4.4), g00 ¼ −1þ N=2. Using Eq. (2.6) to relate G0

to G, we obtain N0 ¼ 4GU, g00 ¼ −1þ 2GU and

−g ¼ 1þ 4GU þOðϵ2Þ.
To the next PN order, we obtain, from Eqs. (4.14), (4.16),

and (5.2),

τ00 ¼ σ − σii þ 4GσU −
7

8π
G∇U2 þOðρϵ2Þ;

τ0j ¼ σj þOðρϵ3=2Þ;

τjj ¼ σii −
1

8π
G∇U2 þOðρϵ2Þ;

τ
j
ae ¼ σ

j
ae þOðρϵ3=2Þ: ð5:3Þ

Substituting into Eqs. (4.9), and calculating terms through

1.5PN order (e.g. Oðϵ3=2Þ in N), we obtain,

N1 ¼ 7G2U2 − 4GΦ1 þ 2G2
Φ2 þ 2GẌ;

K
j
1
¼ 4

�

1 −
1

2
c14

�

GVj;

B1 ¼
�

1 −
1

2
c14

�

½G2U2 þ 4GΦ1 − 2G2
Φ2�;

K
j
ae1 ¼ −2

�

1 −
1

2
c14

�

Gc−1
1
V
j
ae;

R1 ¼ c14GẊ þ 2G

�

1 −
1

2
c14

�

X
j
ae;j;

XKae1 ¼ −
2G

c1

�

1 −
1

2
c14

�

X
j
ae;j; ð5:4Þ
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and

N1.5 ¼ −
2

3
GIkk

ð3Þ
−
4

3
GxkÏk

ae;

K
j
1.5 ¼ 0;

B1.5 ¼ −2G

�

1 −
1

2
c14

�

½Ikk
ð3Þ

þ 2Ïkk
ae �:

K
j
ae1.5 ¼

2G

c1vT

�

1 −
1

2
c14

�

İ
j
ae;

R1.5 ¼ 0;

XKae1.5 ¼ 0: ð5:5Þ

As in the GR case, it is straightforward to show that the

outer integrals and surface terms give no R-independent

terms.

We now use Eq. (4.7) to construct the original fields Ñ, B̃
etc., and then Eq. (4.4) to construct the metric to 1.5PN

order. After applying a gauge transformation,

xμ
0 ¼ xμ þ ξμ; ð5:6Þ

with

ξ0 ¼
1

2

�

1þ 1

2
c14ð3þ v−2L Þ

�

GẊ

þ 1

2

�

1 −
1

2
c14

�

ð3þ v−2L ÞGXk
ae;k

−
2

3
GÏkk

−Gİkk
ae −

1

3
Gxkİk

ae;

ξj ¼
1

3
GI

j
ae; ð5:7Þ

we obtain the 1.5PN metric

g00 ¼ −1þ 2GU − 2G2U2;

g0j ¼ −4

�

1 −
c14
2

�

GVj −
1

2

�

1 −
c14
2

ð1 − v−2L Þ
�

GẊ;j

þ 1

2

�

1 −
c14

2

�

ð1 − v−2L ÞGXk
ae;jk;

gjk ¼ δjkð1þ 2GUÞ: ð5:8Þ

In the absence of self-gravitating bodies, the source of the

Æther field vanishes, or if the bodies are weakly self-

gravitating, the Æther effects are of one PN order higher;

in either case we can set Xk
ae ¼ 0, and read off the PPN

parameters

γ ¼ 1; β ¼ 1;

α1 ¼ −4c14; α2 ¼ −
1

2
c14

�

1 −
1

v2L

�

; ð5:9Þ

with the remaining parameters vanishing [see Eq. (2.5)].

The Æther field to 1.5PN order is given by

K̃
j
ae ¼ −2

�

1 −
1

2
c14

�

Gc−1
1
V
j
ae þ 4

�

1 −
1

2
c14

�

GVj

þ 1

2
WLGẊ;j þ

1

c14

�

1 −
c14

2

�

ðWL −WTÞGXk
ae;jk

þ 2

c1vT

�

1 −
c14

2

�

Gİ
j
ae: ð5:10Þ

This is in agreement with standard results [11,16]. Note that

the 1PN solution obtained by Foster and Jacobson [16]

made use of specifically tailored gauge choices in order to

disentangle the coupled linear field contributions at 1PN

order. It was not clear how to extend that procedure to

higher orders; this is in part why we chose to redefine the

fields in a manner that could be systematically extended to

higher orders.

Notice that there are apparently no 1.5PN radiation

reaction terms in the metric. As in GR, the 1.5PN terms

proportional to I
:::kk

that appeared in N1.5 are pure gauge;

but in addition the dipole and monopoleÆther terms xkÏk
ae

and Ïkk
ae are also pure gauge. This does not imply, however,

that there is no dipole radiation reaction in this theory; those

effects will enter via the modified geodesic equation for

compact self-gravitating bodies [54]. The same situation

occurs in scalar-tensor theory [42].

B. Bjk, Kj and K
j
ae to 2.5PN order

Substituting our solutions for the fields to 1.5PN order

into Eqs. (4.14) and (4.16), we obtain

τjk ¼ σjk þ 1

4π
G

�

U;jU;k −
1

2
δjkj∇Uj2

�

; ð5:11Þ

with the solutions

B
jk
2
¼ 4G

�

1 −
c14

2

��

Φ
jk
1
þ GP

jk
2
−
G

4
δjkð2Φ2 −U2Þ

�

;

B
jk
2.5 ¼ −2G

�

1 −
c14

2

�

ðI jk
ð3Þ

þ 2Ï
ðjkÞ
ae Þ: ð5:12Þ

For Kj, we substitute the lower-order solutions into

τ0j ¼ ð1þ 4GUÞσj þ ð16πG0Þ−1Λ0j
T ; ð5:13Þ
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and use Eq. (4.19b) to obtain

K
j
2
¼ 8G2

�

1 −
c14

2

��

V
j
2
− ð1 − c14ÞΦj

2
þ UVj þ 2ð1 − c2ÞGj

7
þ 1

c1

�

c2 −
c14

2

�

G
j
7ae −

1

4v2L
ðUV

j
ae þΦ

j
2ae − V

j
2aeÞ

− 2c2PðU;jkV
kÞ þ c2

c1
PðU;jkV

k
aeÞ þ

c2

4c14
ðWL −WTÞðUXk

ae;jk þU;jX
k
ae;k þ 2PðU;jV

k
ae;kÞÞ

−
1

4
ðWL −WTÞ

�

ΣðXk
ae;jkÞ −

c2

c14
Σ;jðXk

ae;kÞ
�

þ c2

2c14
ð3 − 6c14 − 2WL −WTÞPðUVk

ae;jkÞ
�

þ G2½2ð6þ 9c2 þ c2WLÞGj
8
þ 4c2ð6 − 3c14 −WLÞGj

9
þ c14WLΣðẊ;jÞ þ c2WLðUẊ;j þ U;jẊ − Σ;jðẊÞÞ�

þ 2G

�

1 −
c14

2

�

Ẍj;

K
j
2.5 ¼

2

9

�

1 −
c14

2

�

G

�

3xkI jk
ð4Þ
− I jkk

ð4Þ
þ 2ϵmjkJ mk

ð3Þ
þ 6xkI

ðjkÞ
ae

ð3Þ

− I
jkk
ae

ð3Þ
− 2I

kjk
ae

ð3Þ
þ 18

c1vT
Gðc14Uİ

j
ae þ c2X;jkİ

k
aeÞ

�

: ð5:14Þ

Finally, for K
j
ae, we substitute the 1.5PN solutions into

τ
j
ae ¼ σ

j
ae þ ð8πG0Þ−1Λj

ae; ð5:15Þ

and use Eq. (4.19d) to obtain

K
j
ae2 ¼ −

2G2

c1

�

1 −
c14
2

��

c14V
j
2
þ c14Φ

j
2
þ ð6c1 − c14ÞUVj þ 2ð3c1 − 2c2ÞGj

7
þ 1

c1
ð2c2 þ c1 − c14ÞGj

7ae

− UV
j
ae − 2Φ

j
2ae þ 3V

j
2ae þ ð3c1 − c14 − 2c2Þ

�

2PðU;jkV
kÞ − 1

c1
PðU;jkV

k
aeÞ

�

þ 1

2
ðWL −WTÞ

�

ΣðXk
ae;jkÞ þ

3c1 − c14 − 2c2

2c14
Σ;jðXk

ae;kÞ
�

þ 1

2c14
ð12c14c1 þ ð3c1 − c14 þ 2c2ÞðWL −WTÞÞPðUVk

ae;jkÞ

−
1

2c14

�

2c14

c2
ð3c1 − c14Þ þ ð3c1 − c14 − 2c2ÞðWL −WTÞ

�

PðU;jV
k
ae;kÞ

þ 1

4c14
ðWL −WTÞðð3c1 − c14 þ 2c2ÞUXk

ae;jk − ð3c1 − c14 − 2c2ÞU;jX
k
ae;kÞ

�

−
G2

4c1
½ð8ð2 − c14Þð3c2 þ c14 − 3c1Þ þ 2ð3c1 − c14 − 4c2ÞWLÞGj

8

þ ð36c2 þ 12c14 − 24c1ð2 − c14Þ þ 2ð3c1 − c14 þ 2c2ÞWLÞGj
9

þ ð3c1 − c14 þ 2c2ÞWLUẊ;j − ð3c1 − c14 − 2c2ÞWLðU;jẊ − Σ;jðẊÞÞ þ 2c14WLΣðẊ;jÞ�

−
G

c1

�

1 −
c14

2

�

ð1 −WTÞẌj
ae;

K
j
ae2.5 ¼

G

c1

�

1 −
c14

2

��

1

3v3T
ðr2I j

ae

ð3Þ
− 2xkI

jk
ae

ð3Þ
þ I

jkk
ae

ð3Þ
Þ − 1

c1vT
Gð6c1Uİ

j
ae − ð3c1 − c14 − 2c2ÞX;jkİ

k
aeÞ

�

: ð5:16Þ

FATEMEH TAHERASGHARI and CLIFFORD M. WILL PHYS. REV. D 108, 124026 (2023)

124026-12



C. N and B to 2.5PN order

Using the 1.5PN metric (prior to the gauge transformation to the PPN gauge), we find that, to the required order,

−g ¼ 1þ 4GU þ
��

1 −
c14

2

�

ð4G2
Φ2 − 8GΦ1Þ þ ð6þ c14ÞG2U2 þ

�

2 − 3c14 þ
c14

v2L

�

GẌ

− 2

�

1 −
c14

2

��

3 −
1

v2L

�

GẊk
ae;k

�

þ
�

2

3
ð2 − 3c14ÞGIkk

ð3Þ
þ 4ð1 − c14ÞGÏkk

ae −
4

3
GxkÏk

ae

�

þOðϵ3Þ: ð5:17Þ

Inserting this along with the 1.5PN solutions for the fields into the expressions for τ00 and τjj in Eqs. (4.14) and (4.16), we

obtain

N2 ¼ 4

�

1 −
c14

2

�

G2½2GUΦ2 − 4UΦ1 − ð1þ 2c14ÞVjVj − 4ΣðΦ1Þ þ 2ΣjðVjÞ� − 2GẌ1 þ G2Ẍ2 þ
1

6
GY

ð4Þ

þ G2

��

7þ 4c14 −
10c14

2 − c14
WL

�

UẌ þ
�

1 − 12c14 −
c14

2 − c14
WL

�

ΣðẌÞ þ 2

3
Gð10þ 3c14ÞU3

− 4

�

1þ 7c14 −
c14

2 − c14
WL

�

G1 − 8

�

2þ 3c14 −
c14

2 − c14
WL

�

G2 þ 8ð4 − 5c14ÞG3

þ 24

�

1 −
c14

2

�

G4 − 16ð1þ c14ÞG5 − 16

�

1 −
c14

2

�

G6 − 16

�

1 −
c14

2

�

GH

�

þ c14G
2

��

4þ 3

2 − c14
WL

�

ðΣ̇ðẊÞ − U̇ ẊÞ − 8ΣjðẊ;jÞ þ 4ð2 − c14 −WLÞVjẊ;j −

�

c14 þ
W2

L

4 − 2c14

�

Ẋ;jẊ;j

þ 4

c1

�

3G3ae þ 3G5ae þ
1

2
WLẊ;jV

j
ae þ 2

�

1 −
c14

2

�

ðVjV
j
ae þ Σ

jðVj
aeÞ − Σ

j
aeðVjÞ − 2G4aeÞ

��

−
2

c1

�

1 −
c14

2

�

G2½ð2þ 4WTÞGae
4ae þ 3V

j
aeV

j
ae − 2ðWL −WTÞVj

aeX
k
ae;jk − 6Σ

j
aeðVj

aeÞ þ 4ð1þWTÞPðVj
aeV

k
ae;jkÞ�

þ
�

1 −
c14

2

�

G2

�

2

�

4 −
10WL − 3WT

2 − c14

�

UẊ;k
ae;k − 2

�

4þ 3ðWL −WTÞ
2 − c14

�

U̇X;k
ae;k − 16ΣjðXk

ae;jkÞ

− 2

�

2c14 þ
WLðWL −WTÞ

2 − c14

�

Ẋ;jX
k
ae;jk −

2

c14
ð1þWTÞðWL −WTÞXk

ae;kV
m
ae;m − 2

�

12þ WL

2 − c14

�

ΣðẊj
ae;jÞ

þ 8ð2 − c14 −WL þWTÞVjXk
ae;jk þ 2

�

4þ 3ðWL −WTÞ
2 − c14

�

Σ̇ðXj
ae;jÞ þ 16ð1þWTÞPðVjVk

ae;jkÞ

−
2

c14
ðWL −WTÞðð3 −WTÞΣj

aeðXk
ae;jkÞ − ð1þWTÞΣj

ae;jðXk
ae;kÞÞ

�

−G2WLð1þWTÞðẊVj
ae;j − Σ

j
ae;jðẊÞÞ

− G2WLð3 −WTÞΣj
aeðẊ;jÞ − 2

�

1 −
c14

2

�

2

G2

�

2þ ðWL −WTÞ2
c14ð2 − c14Þ

�

Xk
ae;jkX

m
ae;jm

− 2G2ð6 − 12c14 − 4WL − 3WTÞPðUV̇
j
ae;jÞ −

4

c14

�

1 −
c14

2

�

G2½1 − 2c14 −WTð1þWT −WLÞ�PðVj
ae;jV

k
ae;kÞ

− 2G2½14 − 16c14 − 3WT −WLð2 −WTÞ�PðU̇V
j
ae;jÞ;
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B2 ¼ 4

�

1 −
c14

2

�

2

G2½VjVj − 2ΣjðVjÞ þ 2G4� þ
�

1 −
c14

2

�

G2½16ΣjjðUÞ − Ẍ2 − 8ð6c2 − c14ÞG3 þ 16ð1 − 3c2ÞG5�

þG2

��

1þ 5

2
c14 − 3c2ð1 − 2c14Þ

�

UẌ −

�

1 −
c14
2

ð1þWLÞ
�

ΣðẌÞ
�

þ 2G

�

1 −
c14
2

�

Ẍ1

− 2ð10þ 3c2
14
þ 6c2ð5 − c14Þ − c14ð5 −WLÞÞG2G1 − 12ðc14 þ 5c2 − c14c2ÞG2G2

þ 1

2
G2ð6c2 − c14ÞWLðΣ̇ðẊÞ − U̇ ẊÞ − 1

c1

�

1 −
c14

2

�

ð6c2 − c14 − 5c1 − 12c1c2ÞG2UẊ
j
ae;j

þ 4

c1

�

1 −
c14
2

�

G2

�

ð6c2 − c14ÞðG3ae þ G5aeÞ −
�

1 −
c14
2

��

Gae
4ae þ

1

2
V
j
aeV

j
ae

��

þ
�

1 −
c14
2

�

WLG
2ẊV

j
ae;j

−
1

c14

�

1 −
c14

2

�

ð6c2 − c14ÞðWL −WTÞG2ðU̇X
j
ae;j − Σ̇ðXj

ae;jÞÞ þ
�

1 −
c14

2

�

WLG
2
ΣðẊj

ae;jÞ

þ 2

c14

�

1 −
c14

2

�

2

ðWL −WTÞG2½Xj
ae;jV

j
ae;j þ Σ

j
aeðXk

ae;jkÞ − Σ
j
aeðXk

ae;kÞ;j�

þ 4

c1

�

1 −
c14

2

�

2

G2
Σ
j
aeðVj

aeÞ þ
�

1 −
c14

2

�

WLG
2ðΣj

aeðẊ;jÞ − Σ
j
aeðẊÞ;jÞ

þ 8

c1

�

1 −
c14

2

�

2

G2½PðVj
aeV

k
ae;jkÞ − 2c1PðVjVk

ae;jkÞ�

þ 2

�

1 −
c14

2

��

6 − 12c14 − 4WL −WT −
6c2

c14
ðWL −WTÞ

�

G2PðU̇V
j
ae;jÞ

þ 2

c1

�

1 −
c14

2

�

G2ðð12c2 − 13Þc1 − 6c2 þ c14ÞPðUV̇
j
ae;jÞ

þ 4

c14

�

1 −
c14

2

�

2

G2ð3 − 6c14 − 2WL −WTÞPðVj
ae;jV

k
ae;kÞ;

R2 ¼ −c14

�

7G2PðUU̇Þ þ GẊ1 −
1

2
G2Ẋ2 −

1

12
G ⃛Y

�

− c1XKae2;

c1XKae2 ¼ 2

�

1 −
c14

2

�

G2

�

8c2PðU;jV
jÞ − 4

c2

c1
PðU;jV

j
aeÞ −

c2

c14
ðWL −WTÞUX

j
ae;j þ

1

2
WTX

j
aeðU;jÞ þ

1

2
WTXðVj

ae;jÞ

−
1

2
ð4 −WTÞXj

aeðUÞ;j −
1

2
ðWL −WTÞXðXk

ae;jkÞ;j − 2c14XðVjÞ;j

þ c14

c1
XðVj

aeÞ;j þ
1

c1
ð4c1c2 þ 3c1 − c14 − 2c2ÞPðUV

j
ae;jÞ þ

c2

c14
ðWL −WTÞΣðXj

ae;jÞ
�

−
1

6v2T

�

1 −
c14

2

�

GŸ
j
ae;j þ c2WLG

2ðΣðẊÞ −UẊÞ − 1

2
c14WLG

2XðẊ;jÞ;j þ 4ððc14 − 5Þc2 − c14ÞG2PðUU̇Þ;

XB2 ¼ −2

�

1 −
c14

2

�

½G2PðU2Þ − 2GX1 þ G2X2�;

YR2 ¼ c14GẎ þ 2G

�

1 −
c14

2

�

Y
j
ae;j;

YKae2 ¼ Y
j
ae;j; ð5:18Þ

and
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N2.5 ¼ −
1

30
Gfð4xkl þ 2r2δklÞIkl

ð5Þ
− 4xkIkll

ð5Þ
þ Ikkll

ð5Þ
g þ 16

3

�

1 −
3c14

2

�

G2UIkk
ð3Þ

− 4

�

1 −
c14

2

�

G2ðI jk
ð3Þ

þ 2Ï
ðjkÞ
ae ÞX;jk þ 16ð1 − c14ÞG2UÏkk

ae −
2

15
Gr2xkIk

ae

ð4Þ
−

6

v3T
İ
j
aeG

2Ẋ;j

−
8

v3T

�

1 −
c14

2

�

G2İ
j
ae

�

2Vj þ 1

2c14
ð1þWTÞXk

ae;jk

�

−
16

3
G2Ï

j
aeΣðxjÞ −

2

3

�

7þ 9

v3T

�

G2Ï
j
aeX;j;

B2.5 ¼ −
1

9

�

1 −
c14

2

�

G½3r2Ikk
ð5Þ
− 2xlIkkl

ð5Þ
− 8xlϵmlkJ mk

ð4Þ
þ 6Mkkll

ð3Þ
þ 6r2Ikk

ae

ð4Þ
þ 6xlI

ðkklÞ
ae

ð4Þ

�

þ
�

1 −
c14

2

�

G2

�

2

c1vT
ððc14 − 6c2Þðİ j

aeẊ;j þ Ï
j
aeX;jÞ þ ð2 − c14Þİ j

aeX
k
ae;jkÞ −

2

3
Ï
j
aeX;j

�

;

R2.5 ¼ −
1

18
c14Gr

2

�

Ikk
ð4Þ

þ 6

5
xjI

j
ae

ð3Þ �

− c1XKae2.5;

c1XKae2.5 ¼ −
2

9vT

�

1 −
c14

2

�

G

�

c14r
2

�

Ikk
ae

ð3Þ
−
3

5
xjI

j
ae

ð3Þ�

− 9Gðc14 þ 2c2Þİ j
aeX;j

�

;

XB2.5 ¼ −
2

3

�

1 −
c14

2

�

Gr2½Ikk
ð3Þ

þ 2Ïkk
ae �; ð5:19Þ

with YR2.5 ¼ YKae2.5 ¼ 0. It is then straightforward to

construct the physical metric and the Æther field using

Eqs. (4.4) and (4.7).

VI. FUTURE PROSPECTS

AND CONCLUDING REMARKS

We have applied post-Minkowskian theory to the

Einstein-Æther theory, and demonstrated that, after a field

transformation, the relaxed field equations can be put into a

form that parallels that of general relativity, and that is

suitable for obtaining solutions to high orders in a post-

Newtonian expansion. As an application of the method, we

obtained explicit solutions for the fields through 2.5PN

order, in terms of Poisson-like potentials and superpoten-

tials constructed from the matter densities.

In a forthcoming publication we will use these results to

obtain the equations of motion for compact binaries

through 2.5PN order. We will use the prescription pio-

neered by Eardley [51] for treating gravitationally bound

bodies in alternative theories of gravity, in which one

assumes that each body’s mass is a function of an invariant

quantity constructed from the auxiliary field(s) of the

theory, evaluated at the location of the body. For scalar-

tensor theory (Eardley’s original motivation) it is the scalar

field itself; for Einstein-Æther theory, the conventional

choice is the invariant γ ≡ −K̃μuμ, where uμ is the four-

velocity of the body (the other possible invariant K̃μK̃μ is

unity by definition, and thus trivial). This results in a

modified geodesic equation for each body, given by (see,

e.g. [54])

uνA∇ν½mAuAα þm0
AK̃

μðgμα þ uAμuAαÞ�
¼ m0

AuAμ∇αK̃
μ; ð6:1Þ

where mA ¼ mAðγÞ, m0
A ≡ dmA=dγ. This paper provides

the ingredients needed to obtain the equations of motion to

2.5PN order.
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APPENDIX A: WAVELIKE SOLUTIONS TO THE

LINEARIZED VACUUM EQUATIONS

Here we analyze the far-zone waves implied by the

linearized equations (4.5) and (4.6) using an extension of

the method described in Sec. 11.1 of [50] for decomposing

waves in the far-away wave zone in general relativity. Far

from the source we express each field in the generic form

A ¼ R−1A0ðτ; nÞ þOðR−2Þ; ðA1Þ

where τ ¼ t − R=vg, and n ¼ ∇R. Then

A;j ¼ −njȦ0=vgRþOðR−2Þ;
□A ¼ −ð1 − v−2g ÞÄ0=RþOðR−2Þ; ðA2Þ
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where a dot denotes d=dτ. We also decompose the various

vector and tensor amplitudes into their irreducible pieces

(see, e.g. Box 5.7 of [50]),

K
j
0
¼ K0n

j þ K
j
T;

K
j
ae0 ¼ Kae0n

j þ K
j
aeT;

B
jk
0
¼ 1

3
δjkB0 þ

�

njnk −
1

3
δjk

�

BLTF

þ 2nðjBkÞ
T þ B

jk
TT; ðA3Þ

where the subscripts denote the transverse (T), longitudinal

tracefree (LTF) and transverse traceless (TT) parts. Imposing

harmonic gauge Ṅ þ K
j
;j ¼ 0, and K̇j þ B

jk
;k ¼ 0, keeping

the leading 1=R amplitudes, and decomposing into irreduc-

ible parts leads to the four conditions

K0 ¼ vgN0;

vgK0 ¼
1

3
B0 þ

2

3
BLTF;

vgK
j
T ¼ B

j
T; ðA4Þ

where henceforth, we drop the dots. Under a gauge trans-

formation xα → xα þ ζα with

ζ0 ¼ R−1αðτ; nÞ þOðR−2Þ;
ζj ¼ R−1½βðτ; nÞnj þ β

j
Tðτ; nÞ� þOðR−2Þ; ðA5Þ

the amplitudes undergo the changes

N0 → N0 þ α̇þ v−1g β̇;

K0 → K0 þ v−1g α̇þ β̇;

K
j
T → K

j
T þ β̇

j
T;

B0 → B0 þ 3α̇ − v−1g β̇;

BLTF → BLTF þ 2v−1g β̇;

B
j
T → B

j
T þ v−1g β̇

j
T;

B
jk
TT → B

jk
TT;

Kae0 → Kae0 þ β̇;

K
j
aeT → K

j
aeT þ β̇

j
T: ðA6Þ

The time component of theÆther field,K0
ae is gauge invariant

to linear order.

Substituting Eqs. (A1)–(A3) (but not the harmonic

gauge conditions) into Eqs. (4.5) and (4.6) and decompos-

ing into irreducible parts, we obtain the system of nine

equations:

ð1 − v2gÞN0 ¼
c14

2
½N0 þ B0 þ 4vgðKae0 − K0Þ�; ðA7aÞ

ð1 − v2gÞK0 ¼
c14

2
vg½N0 þ B0 þ 4vgðKae0 − K0Þ�; ðA7bÞ

ð1 − v2gÞKj
T ¼ 2ðc14v2g − c1ÞðKj

aeT − K
j
TÞ; ðA7cÞ

ð1 − v2gÞB0 ¼ −
3

2
c2½v2gð3N0 − B0Þ − 4vgKae0�; ðA7dÞ

ð1 − v2gÞBLTF ¼ 0; ðA7eÞ

ð1 − v2gÞBj
T ¼ 0; ðA7fÞ

ð1 − v2gÞBjk
TT ¼ 0; ðA7gÞ

ðc1 − v2gc14ÞðKj
aeT − K

j
TÞ ¼ 0; ðA7hÞ

c14vg½N0 þ B0 þ 4vgðKae0 − K0Þ�
¼ −c2½vgð3N0 − B0Þ − 4Kae0�: ðA7iÞ

It is straightforward to show that this system has three

distinct eigenvalues for v2g.

Case 1: vg ¼ 1. In this case, BLTF, B
j
T, and B

jk
TT are

unconstrained, and K
j
aeT − K

j
T ¼ 0 (unless c4 ¼ 0).

Combining the scalar parts of the gauge conditions (A4)

and the wave equations (A7) we find that N0 ¼ K0 ¼
ðB0 þ 2BLTFÞ=3 and Kae0 ¼ ð3N0 − B0Þ=4 and thus that

2Kae0 − BLTF ¼ 0 We can then choose α and β so that N0,

K0, and B0 all vanish, and thus so that Kae0 and BLTF

vanish. Also we have that K
j
T ¼ K

j
aeT ¼ B

j
T; we can choose

β
j
T to make them all vanish. In the end, only the gauge

invariant B
jk
TT is unconstrained. This is a pure transverse

traceless metric gravitational wave, with speed unity. It was

the observational constraint on the speed of gravitational

waves set by the event GW170817 and GRB170817 that

led us to impose the constraint c1 þ c3 ¼ 0 in the

first place.

Case 2: vg¼ðc1=c14Þ1=2¼vT . In this case,K
j
aeT is uncon-

strained, while BLTF ¼ B
j
T ¼ B

jk
TT ¼ K

j
T ¼ 0. Examining

the four scalar wave equations (A7a), (A7b), (A7d), and

(A7i), we observe that the determinant of the linear system

doesnot vanish, so thatN0 ¼ K0 ¼ B0 ¼ Kae0 ¼ 0. This is a

pure transverse vector wave, with no metric perturbation, to

linear order.

Case 3: For this final case, we must consider the five

nontransverse scalar wave equations (A7a), (A7b), (A7d),

(A7e), and (A7i). Requiring the determinant of this system

to vanish yields vg ¼ 1 (Case 1) plus a solution with speed

vg ¼ vL given by

v2L ¼
c2ð2−c14Þ
c14ð2þ3c2Þ

: ðA8Þ
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The solutions are BLTF ¼ B
j
T ¼ B

jk
TT ¼ K

j
T ¼ K

j
aeT ¼ 0,

along with

N0¼
4c14

2−c14

vL

1−v2L
Kae0; K0¼vLN0; B0¼3vLK0; ðA9Þ

with Kae0 the unconstrained amplitude. This is a longi-

tudinalÆther wave with accompanying longitudinal metric

perturbations.

APPENDIX B: TRANSFORMATION

TO NEW VARIABLES

In this Appendix, we derive the transformation (4.7) that

eliminates all terms linear in the fields Ñ, K̃j, B̃jk, and K̃
j
ae

apart from terms that consist of a leading d’Alembertian of

the fields. Those linear terms are displayed in Eqs. (4.5) and

(4.6). It is known from earlier work on Einstein-Æther

theory that the d’Alembertian of N appears in the combi-

nation ð1 − c14=2Þ□N, so that the coupling constant G0 is

renormalized by that prefactor. That will be a constraint on

the solution. From the structure of Eqs. (4.5) and (4.6) it is

clear that the combination K̃
j
ae − K̃j is prevalent, so we will

define K̃
j
ae ¼ K

j
ae þ Kj þ � � �. We want to remove all

offending linear terms in the field equations through

2PN order. Finally, we will want to investigate the forms

taken by the harmonic gauge conditions Ñ;0 þ K̃
j
;j ¼ 0 and

K̃
j
;0 þ B̃

jk
;k ¼ 0 in the new variables. Because the trans-

formation of Ñ will go through 2PN order, or to relative

order ϵ2, we will want to include terms at relative order ϵ2 in

the transformation of K̃j, even though that is a PN order

higher in K̃j than we actually need for the equations of

motion; for completeness, we will also transform K̃
j
ae to the

same relative order. The second gauge condition does not

impose additional conditions on the transformations.

Accordingly we try a linear transformation of the form:

Ñ¼Nþ ϵða2Bþa3ẌN þa4ẊKþa5ẊKaeÞ

þ ϵ2ða6ẌBþa7YN

ð4Þ
þa8YK

ð3Þ
þa9YKae

ð3Þ
Þ;

B̃jk ¼Bjkþδjk½b3ẌN þb4ẊKþb5ẊKae

þ ϵðb6ẌBþb7YN

ð4Þ
þb8YK

ð3Þ
þb9YKae

ð3Þ
Þ�;

K̃j¼Kjþd3ẊN;jþd4XK;jþd5XKae;j

þ ϵðd6ẊB;jþd7YN;j

ð3Þ
þd8ŸK;jþd9ŸKae;jÞ

þ ϵ2ðd10YB;j

ð3Þ
þd11ZN;j

ð5Þ
þd12ZK;j

ð4Þ
þd13ZKae;j

ð4Þ
Þ;

K̃
j
ae ¼K

j
aeþKjþe3ẊN;jþe4XK;jþe5XKae;j

þ ϵðe6ẊB;jþe7YN;j

ð3Þ
þe8ŸK;jþe9ŸKae;jÞ

þ ϵ2ðe10 Y
ð3Þ

B;jþe11ZN;j

ð5Þ
þe12ZK;j

ð4Þ
þe13ZKae;j

ð4Þ
Þ; ðB1Þ

where the various superpotentials are defined by Eqs. (4.10).

These arbitrary coefficients can then be chosen so as to

eliminate all linear terms in Eqs. (4.5) and (4.6) through

2PN order, leaving only ð1 − c14=2Þ□N ¼ 0, □Bjk ¼ 0,

□Kj ¼ 0, and □
�Kj

ae ¼ 0, where □
� ≡∇2 − v−2T ∂

2

0
. The

resulting solution is given by Eq. (4.7). Should one wish to

go to higher PN order, it is straightforward to extend the

linear transformation (at the cost of introducing even more

exotic superpotentials), to push the offending linear terms

to even higher PN orders.

In terms of the new variables, the harmonic gauge

conditions become

K
j
;j ¼ −

�

1 −
c14

2

�

Ṅ − 2c1K
j
ae;j

þ ϵc1

�

1 −
1

v2T

��

ẌKae þ
1

12
ϵYKae

ð4Þ �

;

K̇j þ B
jk
;k ¼ 0: ðB2Þ

The first gauge condition can be used to eliminate K
j
;j and

its various superpotentials from the problem. By applying

the inverse Laplacian to this equation and iterating, we

obtain, to the required 2PN order,

XK ¼ −

�

1 −
c14

2

�

ẊN − 2c1XKae þ ϵ
c1

6
WT ŸKae;

YK ¼ −

�

1 −
c14

2

�

ẎN − 2c1YKae: ðB3Þ

These relations have been used to eliminate K
j
;j, XK , and

YK from the transformations shown in Eq. (4.7).

APPENDIX C: PROPERTIES

OF POISSON POTENTIALS

Here we summarize some useful properties of Poisson

potentials and superpotentials, defined in Sec. IV E. These

rely upon the general result, which can be obtained by

integration by parts,

Pð∇2gÞ ¼ −gþ BPðgÞ; ðC1Þ

where BPðgÞ denotes the boundary term, given by

BPðgÞ≡
1

4π

I

∂M

�

gðt;x0Þ
jx − x

0j ∂
0
r lnðgðt;x0Þjx − x

0jÞ
�

r0¼R

×R2dΩ0: ðC2Þ

The boundary terms must be carefully evaluated case by

case to determine if any R-independent terms survive. All

R- dependent terms can be discarded. At 2.5PN order, none

of these surface terms contribute. Some useful formulas

that result from this include:
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Pðj∇gj2Þ ¼ −
1

2
fg2 þ 2Pðg∇2gÞg;

Pð∇g ·∇fÞ ¼ −
1

2
ffgþ Pðf∇2gÞ þ Pðg∇2fÞg;

PðUÞ ¼ −
1

2
X; PðXÞ ¼ −

1

12
Y;

Pðj∇Uj2Þ ¼ −
1

2
U2 þΦ2;

Pð∇U ·∇ẌÞ ¼ −
1

2
fUẌ − ΣðẌÞ þ 2G2g: ðC3Þ

Other useful identities include

ΣðxiÞ ¼ xiU − X;i;

Pð1Þ ¼ −
1

6
r2;

PðxkÞ ¼ −
1

10
xkr2: ðC4Þ
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