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Compact binary systems in Einstein-Ather gravity: Direct integration
of the relaxed field equations to 2.5 post-Newtonian order
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The FEinstein-Ather theory is an alternative theory of gravity in which the spacetime metric is
supplemented by a long-range timelike vector field (the “aether” field). Here, for the first time, we apply the
full formalism of post-Minkowskian theory and of the direct integration of the relaxed Einstein equations
(DIRE), to this theory of gravity, with the goal of deriving equations of motion and gravitational waveforms
for orbiting compact bodies to high orders in a post-Newtonian expansion. Because the aether field is
constrained to have unit norm, a naive application of post-Minkowskian theory leads to contributions to the
effective energy momentum tensor that are linear in the perturbative fields. We show that a suitable
redefinition of fields using an array of “superpotentials” can eliminate such linear terms to any desired post-
Newtonian order, resulting in flat spacetime wave equations for all fields, with sources consisting of matter
terms and terms quadratic and higher in the fields. As an initial application of this new method, and as a
foundation for obtaining the equations of motion for compact binaries, we obtain explicit solutions of the
relaxed equations sufficient to obtain the metric in the near zone through 2.5 post-Newtonian order, or

O[(v/c)’] beyond the Newtonian approximation.
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I. INTRODUCTION

One of the classic approaches to devising a theory of
gravity alternative to general relativity (GR) is to postulate,
in addition to the spacetime metric, an auxiliary gravita-
tional field. The quintessential example is the 1961 Brans-
Dicke theory (which built upon earlier work by Fierz, Pauli
and Jordan) [1], in which the added field was a scalar. By
proposing a suitable action for the auxiliary field along with
a suitable coupling between it and the action for the
spacetime metric, one could obtain field equations with
reasonable mathematical properties (such as partial differ-
ential equations of order no greater than two). In addition,
one could automatically abide by very precise tests of the
Einstein equivalence principle, such as the Eotvos experi-
ment, by ensuring that the coupling to the fields of matter
involved only the spacetime metric, a concept called
“universal coupling” or “metric coupling.” This set of
ideas continues to serve as a template for inventing theories
of gravity into the present, with a profusion of theories
having multiple scalar fields, vector fields, and tensor fields
of various ranks (for reviews, see [2—8]).

One of the earliest vector-tensor theories was invented by
Will and Nordtvedt [9] and later generalized by Hellings and
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Nordtvedt[10], motivated by a desire to explore theories that
might exhibit “preferred-frame” effects. In general relativity,
the gravitational physics of an isolated system does not
depend on its velocity relative to the rest of the universe
because the asymptotic, or large-distance limit of the metric
(which establishes the boundary conditions for solving for
the local gravitational physics) can always be transformed to
the Minkowski metric, which is independent of the motion
of the reference frame in which it is observed. The same is
true in scalar-tensor theories because the asymptotic scalar
field is also independent of reference frame. By contrast, in a
theory with a timelike vector field K* that is somehow
related to the distribution of mass energy, the asymptotic
field that establishes the boundary conditions for that system
would be expected to point purely in the time direction [i.e.
have components (KO, 0,0, 0)]if the system is at rest relative
to the mean rest frame of the cosmic distribution of matter.
Butifanisolated system were to move relative to that cosmic
frame, then the asymptotic vector field in the frame of the
system would have the form (K°, K!, K?, K*), where the
spatial part of the vector field is related to the speed and
direction of motion relative to the cosmic frame (see
Chapter 5 of [11] for a review of alternative theories of
gravity), and this would alter the internal structure and
dynamics of the isolated system.

One defect of these early theories was that the field
equation for the vector field was homogeneous and linear in
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K* with no matter source (by virtue of metric coupling), so
that K# = 0 was an immediate solution unless one forced
the asymptotic value of K or |K*| to be a nonzero arbitrary
constant.

As a result, the subject of vector-tensor theories lay
somewhat dormant until Jacobson and colleagues proposed
the “Einstein-/Zther ~ theory [12-16]. As before, the goal
was to study violations of Lorentz invariance in gravity, now
in parallel with similar studies in matter interactions, such as
the Standard Model extension of Kostalecky and Samuel
[17]. Another motivation was the notion that such Lorentz
violations might be a classical relic of a quantum gravity
theory in which there was a fundamental quantum of length.
Other theories and generalizations followed, including the
tensor-vector-scalar (TeVeS) theory of Bekenstein [18],
designed to provide a relativistic foundation for the phe-
nomenological modified Newtonian dynamics (MOND)
proposal of Milgrom [19]; khronometric theory, a low-
energy limit of “Horava gravity,” a proposal for a theory that
is power-counting renormalizable [20], shown later to be a
singular limit of Einstein-Zther theory [21-23]; the scalar-
tensor-vector (STV, but also called MOG) of Moffat [24],
designed to avoid the need for dark matter; and a generalized
tensor-vector-scalar theory of Skordis [25,26], designed
mainly for cosmological investigations.

At the lowest post-Newtonian (PN) order, the para-
metrized post-Newtonian (PPN) parameters of Einstein-
Ather theory were calculated by Foster and Jacobson [16];
the values were identical to those of general relativity,
except for the “preferred-frame” parameters, @; and a,,
which could be nonzero. Foster also derived the leading
gravitational radiation damping effects [27,28] and the PN
equations of motion for compact bodies such as neutron
stars and black holes [29], later verified by Yagi et al. [30].
Constraints on the parameters of the theory have been
placed using binary pulsar data [30-32].

The detection of gravitational waves from inspiralling
binary black holes in 2015 presented new possibilities for
testing alternative theories of gravity, and the LIGO-Virgo
collaboration has published comprehensive papers detail-
ing a wide range of tests, first using data from the discovery
event GW 150914 [33], and subsequently using data from
the full catalogue of events through the middle of the third
observing run [34]. One notable result was the observation
of the nearly coincident arrival times of the gravitational-
wave and gamma-ray signals from the binary neutron star
merger event GW170817/GRB170817 [35,36], which
placed an extremely strong bound on the speed of gravi-
tational waves, relative to that of light,

-3x107% < v, -1 <7 x 107", (1.1)
This had the effect of ruling out a significant number of
alternative theories of gravity [37—40], and constraining the
Einstein-Zther theory [41].

Gravitational-wave data have also constrained the strong-
field dynamical evolution of compact binary mergers, as
reflected in the detailed time evolution of the detected
waveforms. No deviations from the predictions of general
relativity have been found, and constraints have been placed
on the coefficients of the terms in a PN expansion of the
waveform phase [34]. While these “theory agnostic” con-
straints are useful and important, they provide only limited
information about what theories might be ruled out, simply
because very few theories have been analyzed in sufficient
detail to provide predictions for these coefficients to an order
comparable to what is known for GR. In scalar-tensor
theories, considerable effort has gone toward obtaining
the coefficents up to 2PN order [42—-47]. However, because
of the very strong bound on the scalar-tensor coupling
parameter @ from solar-system measurements, combined
with the fact that, in this class of theories, binary-black hole
evolution is indistinguishable from its counterpart in general
relativity, it seems unlikely that gravitational-wave mea-
surements will lead to stronger constraints, except possibly
via the detection of a favorable black-hole neutron-star
merger.

What makes the study of gravitational waves in alter-
native theories intriguing is that they generally predict the
existence of dipole and even monopole gravitational
radiation, none of which exist in GR. In particular, if the
binary source is sufficently asymmetrical, either in mass or
composition (e.g., a black-hole neutron-star binary), then
dipole gravitational radiation can lead to contributions to
the energy flux and the waveform evolution that are larger
than the conventional quadrupole contributions by a factor
of (¢/v)?, where v is the orbital velocity. In other words,
dipole radiation effects can occur at “-1PN” order, in a
hierarchy where quadrupole radiation is denoted by “OPN”
order. This is both a blessing and a curse. It is a blessing
because it could lead to tighter constraints on the theory
than might have been expected a priori. But it is a curse
because, in order to calculate the waveform evolution to an
order equivalent to the nPN order of general relativity, one
must determine the radiative moments of the auxiliary
fields and the equations of motion of the binary system to
the (n + 1)PN order.

These considerations have motivated us to begin an
effort to determine the equations of motion for compact
binaries and the emitted gravitational-waveform in a post-
Newtonian expansion of Einstein-Zther theory beyond the
lowest-order dipole and quadrupole contributions, and
beyond linearized theory, which constitute the current state
of the art [48,49]. Because of the significant additional
complexity of this class of theories, combined with the
“curse” of dipole radiation, our goal will be modest: to
obtain the gravitational waveform to 1.5 PN order beyond
the conventional quadrupole level. This paper is devoted to
obtaining the metric to 2.5PN order, while future papers
will obtain the equations of motion for compact bodies to

124026-2



COMPACT BINARY SYSTEMS IN EINSTEIN-ATHER ...

PHYS. REV. D 108, 124026 (2023)

2.5PN order, the far-zone fields to the required order, and
finally the energy flux and waveform to 1.5PN order. The
results will augment the waveform templates described
in [48,49].

In Sec. II, we review the essentials of Einstein-ZAther
theory, and impose a condition on one of its four arbitrary
parameters that arises from the gravitational-wave speed
constraint from GW170817. Section III expresses the
theory in the form of “relaxed field equations” of the
post-Minkowskian method that has been used in GR and
scalar-tensor theory to carry out PN expansions (see, e.g.,
[50]). In Sec. IV we note that the presence in Einstein-
Ather theory of a vector auxiliary field with unit norm
necessitates a change of field variables in order to obtain
wave equations for the fields whose sources consists of
matter plus field contributions that are quadratic in small
quantities, thus enabling a consistent PN expansion.
Section V obtains solutions within the near-zone for the
fields to orders that permit the construction of the complete
spacetime metric to 2.5PN order. In Sec. VI we briefly
describe ongoing work and make concluding remarks.

II. EINSTEIN-AZTHER THEORY

Einstein-Zther theory is defined by the covariant action

1
— v o p
Sg = ToxGe / V=4IR - BV, K&V, Kh

+ A(K e, Khe + 1)]d*x + / V=9Lyd*x, (2.1)

where g is the determinant of the metric g,,, R is the Ricci
scalar, V, is a covariant derivative with respect to the
metric,

Eyy = 19" Gop + €280 + 30404 — c4KaeKieGap,  (2.2)
A1s a Lagrange multiplier designed to enforce the constraint
K,deﬂKéfe = —1, and L), is the matter Lagrangian. We use
units in which the speed of light ¢ is unity, and the
spacetime metric has the signature (—,+,+,+); Greek
indices denote spacetime components and Roman indices
denote spatial components; parentheses (square brackets)
around groups of indices denote symmetrization
(antisymmetrization).

However, it is well-known that the speed of transverse-
traceless gravitational waves in this theory is given by
v,=(1=c;—c;)7"2. Because of the extraordinary
bound from GW170817, we will make the assumption
that c; = —cy, reducing the theory to a three-parameter set
of theories. The Lagrangian for the Ather field then takes
the form

1
‘C}E = _ECIF;ADF”D - CZ(vﬂKZe)z + C4|aae‘2’ (23)

where
F,=0,Ky—0,Kpe, dge = K4V, Ke. (2.4)

The initial studies by Jacobson et al. established the post-
Newtonian limit, studied gravitational wave propagation,
and analyzed other aspects of the theory. Here we sum-
marize the main results, but we impose the constraint
¢y = —c; a priori. The parametrized post-Newtonian
(PPN) parameters [11] are given by [16]:

y:]’ ﬁzla a1:_4cl4’
Cig (2¢2C14 +Crla— 0

az:;( o ) (2.5)
(&) Clq

withé=a3; =, ={ =3 =_{, =0, where ¢y = ¢ + ¢4.
The present value of the gravitational constant is given by

ST
G=Gy|l1l-—— .

Considerations of positivity of energy impose the con-
straints ¢; >0, ¢, >0, and ¢4 > 0.

(2.6)

III. THE RELAXED FIELD EQUATIONS
IN EINSTEIN-ZTHER THEORY
A. Field equations

We begin by deriving the field equations in a form that
will be useful for obtaining the so-called “relaxed” field
equations, analogous to those in general relativity. Varying
the action (2.1) with respect to the Ather field yields the
field equation for Kb,

CIVDF”” = 87TG0T’;:8 —ﬂK’;e - CQV” (VUK;C)

_C4(agevMKaeu _agevuK;e_ngvva’;e)7 (31)

where we define the matter energy-momentum tensor and
vector by

o = 2 9W/=9ku)

Vo' 59/41/
_ 1 5(\/ —9L)
Tae# = _ﬁle':e' (3.2)

In a conventional metric theory of gravity, where the matter
Lagrangian couples only to the metric, the quantity 7',
would vanish. However we anticipate treating compact
bodies, where the mass of each body may have an effective
dependence on K%. via its gravitational binding energy.
This idea is based on the original proposal by Eardley [51],
with follow-up work by Gralla [52,53]; see also [54]. This
will be addressed in detail in a subsequent paper; for now
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we will include the effective energy-momentum vector in
all our considerations.

Contracting Eq. (3.1) with K, and using the constraint
that K, Kb = —1 yields an expression for the Lagrange
multiplier 4

1
A= =871GoKye, Tze — §C1 (F/wF}w + 2V, aj.)
+ K5V, (VKe) + 26404 |- (3:3)

Note that K, - a,. = 0. Varying the action with respect to
the metric and making use of Eq. (3.3) to eliminate the
Lagrange multiplier 4, we obtain the field equations

G = 872Gy (T" — K" KY K ouTS) + S, (3.4)

for the metric, and
|V " = 81Gy(The + KheK e, T

1
+ E clKlﬁfe(Fa[)’Faﬂ + 2vyage)

— o[VH(V,K%.) + KieK5V, (VoK)
—C4 [agevMKaey - agevnge
—K%.V,dhe + 2Khe|a,. ). (3.5)

for the Ather field, where

1
s = [ZKg’éVaF”" + Fo P = KieKie (Vadie) =7 (0" + 2KacKie) Fop P

1
oo (0 + RERSKLT(V,5) + 30V,

1 v
-y [ =5 (9" +AKLK | ~ KiK' (Voak) = 2a5(V K Kl

2l KAV K+ ngeNaaﬁf;)K;z] .

Note that contracting Eq. (3.5) with K., now yields a
trivial equality.

B. Relaxed Einstein-Zther field equations

To recast Eq. (3.4) into the form of a “relaxed” Einstein-
Ather equation, we define the quantities

¢ = /=99,
HVovh = gﬂvgaﬂ — gm’gﬂﬂ’ (37)
and use the identity, valid for any spacetime,
HFP Ly = (—g)(2G 4+ 1678Y), (3.8)

where #7 is the Landau-Lifshitz pseudotensor. We next
define the gravitational field #** by the equation

g =t — b,

(3.9)
and impose the “Lorenz” or harmonic gauge condition
m, =0. (3.10)

Substituting Egs. (3.4), (3.9) and (3.10) into (3.8), we can
recast the field equation (3.4) into the form

(3.6)

O,k = —162Gye, (3.11)

where [, is the flat spacetime d’Alembertian with respect
to 1,,, and where

o = (=g)(T" — KieKieKueaTe) + (—9) (177, + 1)

1
(=9)8",

+ 87TGO

(3.12)

where #; is the Harmonic pseudotensor (see Egs. (6.5)
and (6.53) of [50] for explicit formulas for (—g)#/; and

(=9) )

IV. FORMAL STRUCTURE OF THE
NEAR-ZONE FIELDS

A. Metric in terms of the fields

The next task will be to solve these equations iteratively
in a post-Newtonian expansion in the near-zone, i.e. within
one characteristic gravitational wavelength A of the center
of mass of the system, in terms of a small parameter
€ ~v* ~Gym/r, where v, r and m are the characteristic
velocities, separations and masses of the bodies in the
system. The strong-field internal gravity effects of each
body will be encoded in expressions for the energy-
momentum quantities 7 and T%..
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We follow [55] (hereafter referred to as PWI) by defining
a simplified notation for the field A*:

N=h"~0(e),

K= W ~ 0(e¥2),

Bi* = nik ~ 0(€?),
B=hi= Zhjj ~ O(€?).

J

(4.1)

We assume that the coordinate system is at rest with respect
to the mean rest frame of the universe that is singled out by
the asymptotic value of the Ather field K%.. This implies
that the asymptotic values of the spatial components vanish,
and that therefore, within the near zone, they behave as

Kl ~0(?). (4.2)

Later, when we have the equations of motion and gravitational
wave signals in hand, we will be able to transform them to a
frame in which the system is at rest, using a suitably expanded
Lorentz transformation combined with a gauge transforma-
tion (often called a “post-Galilean” transformation).

From the constraint on the norm of K% it follows that K9,
can be expressed in terms of the variables of Egs. (4.1)
and (4.2):

€~ (. 3. el . 7.
KO =1+-N+—(B-=N? — |INB+=-N?
a +4 +4< 8 )+16[ +8

+ 8KJ K], — 16K/ K}, + 412/1?1} +0(e*).  (4.3)

The harmonic gauge condition becomes N o+ I~(’ ;=0and

I~(JO + B’,f = 0. Hereafter we do not distinguish between
covariant and contravariant components of spatial indices,
which are assumed to be raised or lowered using the
Minkowski metric, whose spatial components are &;;.

In the equations of motion to 2.5PN order, we need to
determine the components of the physical metric and K7
to the following orders: g to O(e”/?), gy, to O(€?), gj; to
0(€%/?), and Kj. to O(e?). From the definitions (3.7) and
(3.9), one can invert to find g,, in terms of A* to the
appropriate order in €, as in PWI, Eq. (4.2). Expanding to
the required order, we find,

e?

2 (4B — 3N?)

€ ~
Jdoo = -1 + EN +
3
+ f—6 (SN? — AN B+8KIK7) + O(e*).
5/2

g0 = —€2KI + %Ni{f +0(?),

2
gk = 5fk{1 +§N —%(ﬂﬂ +4B)} +2B*F + 0(e%),

(—9) =1+eN—-eB+ 0(&%). (4.4)

B. Change of field variables

We can now use these definitions to express the field
equations and the Ather equation to the required PN order
in terms of N, K/, B/*, B and KJ.. For example, the
components of the combination 77, + ¢ have the same
form as the components of A** found in Eq. (4.4) of PWL
However, despite the fact that the ZAther energy-momentum
tensor $*¥ is formally quadratic and higher-order in the
fields, the fact that K9, = 1 at lowest order implies that the
fields N, K/, K., B/*, and B can contribute linearly to
the effective source of the relaxed field equation. Even
worse, the function N contributes to S% at Newtonian
order. At purely linear order in the fields, the vacuum
versions of the relaxed field equations take the form for the
metric fields,

_1 o R g K/

ON = EC14[V2(N + €B) — 4e(Kye ; — K'o;)]s
-1 N = B

OKT = 5 e23N oy + 4K, j = eBo).

OB = 3 a3 g0 + 4KL o — B ], (4.5)
and for the Ather field,
1 [Vz(f({;e - i(j) - (i(]zfe - i(k),kj]
= —%014[&0}' + €E,0j - 4€(f(ée — K7) ]
— pealBN g ARy, — By (4.6)

In Appendix A, we will study the wavelike solutions of these
equations as an alternative method to verify the speeds and
polarizations of waves derived in the literature [16].

These coupled, linear-order terms complicate the iter-
ation procedure that is part of the post-Minkowskian
method in general relativity or scalar-tensor theories, which
rely upon the contributions to the right-hand-side of the
relaxed equations being quadratic and higher in the small
field quantities. However, it turns out that a suitable change
of variables eliminates these linear terms to the desired
2.5PN order; details are given in Appendix B. This trans-
formation is given by

2

€C14 €°Cly

~ € . .
N=N+—"B+—R+————-X
+2—C|4 +1}% +2(2_Cl4)v% ?
e 03 ) 3
W(YR =g WrY gae) + O(€'N),
L
~ . . €C14 .
Ki=Ki—-R. ———14 %
T22—c)

€ . . _
- 1202 (YR,j - CIU%WTYKae,j) + 0(621(]),
L
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Bik — pik L sik| g 14 %
" +2(2_Cl4) ?
B S P 0(e2B*
+—=5 (Yr—cvpWr Y gee) | + O(e°B7),
1207
o . . 1
Kie = Kl. + K’ +F(WLR,,' + 1 WrXkge j)
14
€ WL
ST 1%
+42—c " oac 142( LYk
+cvf(1 =W )Wr¥a ;) + 0(e2KYe). (4.7)
where
2 — 1
= 014’
2 :M 4.8
= ca(2+3¢)’ (48)

are the propagation speeds of the transverse and longi-
tudinal waves of the Ather field (Appendix A), and
where

Here and for future use, we define an array of

“superpotentials” X, “superduperpotentials” Y and
“megasuperpotentials” Z, defined by

VZXNEQ,N V2YN512XN, V2ZNE30YN’
v XKae—zKae k> v2YKaeE 12XKae’ v2ZKaeE:;OYKaeﬂ

V2XBEZB, VZYBEIQ,XB, V2Z3530YB, (410)
along with the superpotential combination,

1 .
REZC14XN_CIXK£1€’ (411)

and its own superduperpotential defined by V~2<Y r = 12R.

The harmonic gauge conditions N g+ K’ ;=0 and
K%, + B’ = 0 imply gauge conditions in the new variables
given by

K{j+<1 Cl4>N_ —2¢,K), ; — ec; WX, + O(e?N),

2

K/ + B/* ;= O(eK/). (4.12)

C. Final relaxed Einstein-Ather equations

In terms of the new variables, the relaxed Einstein-ZAther
equations take the form

1
<1 - ECM) ON = —162Gyz™ + O(pe?), (4.13a)
0K/ = —162Gyt" + O(pe’’?), (4.13b)
OB* = —162Gyt/* + O(pe?), (4.13¢)
OB = 162G, + 0(pe), (4.13d)
ci0* Kl = 872Gythe + O(pe¥/?), (4.13¢)
where [J* = V2 — 17203, and where

™ = (—g)TY + (162Gy) "' Ay,

Tle = Tl + (87Go) ™' Ale. (4.14)

In obtaining these equations, we made use of the spatial
components of the ZAther field equation (3.5) to make
further simplifications of the S$#*. Pulling all the matter
contributions together gives the total matter source tensor,

P =T%— (K%) KaeuThe
+ 2(Kle = KI)(The + KK o, The),
Ty = T% 4 K. T},
T = T 4 2KUTR + KiKE K o, The,

aep
T’ T = =T} + K] KaeﬂT’je, (4.15)

where K, is a four vector with components (K¢, K, i)
Many of these contributions to 7% are of higher PN order
than we need, but we will address this when we introduce
our “compact point mass model” for the matter sources. We
will also transform all potentials in Eq. (4.15) such as K/
and KJ. to our new potentials using Eqs. (4.7). The field
contributions to $#** have been combined with the Landau-
Lifshitz and Harmonic pseudotensors to produce the total

A¥ and Al., given by
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00 _
Ay =

‘ 4 3 . 1
AY = N[(1- )K= K] + 3 (2+3¢)NN ;i +

jk _
Ay =

Ji
Ay =

7
——(2 - 014)N,12

16

7 , 1 1 1 )
+E(2—014)NNJ +Z(1—4614)N,j3,/—5(2—014)B/kN,jk—Z[(2—6’14)(2+3014)—014WL]NN

5 . 1 1

+1¢ (2=ci)(1 =2¢14) + cuWIN? + (1 + ¢c14)N. K’—§(4 5¢14)N K’+2K’ (Kf +3K%)

3 3 1 o
+2C14N Kae+2C14N Kae—ECMNv B+2C14Kaej(K] —f—K] )+6Cl jk]KUk]—f—ECMvz(K]K])

. A , : o 1
+ ¢14(K4eV? K/ — KIV2K)e + V2 (K/K)) + Zc] (6 —12¢y, —4W, — 3W;)NK!

ae,j
1C1

+=—(1=2¢c14 = W) (BeuN - 2¢ aej) —2¢(1 4+ Wr)Ka,

-2 K/K*
Yen ci(1+Wr)

ae kj ae,kj

1 . 3
+Z(4(2— C14) +3WL)N’jR.j + -

R;
4

. C
CIWTN,jXKae,j —C—MW (1 +WT)Kaekj

2

C
——L W (1 + W) K, i Xkae.j

5 . 3 . ‘
» —~W,RV?N — 3¢l WiXka VPN + 2R V2K

4
2 i 1 S 3 -
LR+ ciWrXkae )V Kae — 1 (4 =2c14 —5W,)V*(NR) + §C1WTV (NXkqe)
—c14)VA(K'R ;) + V?[(K/ + Kﬁe)(WLR,j + \WrXkae i)

- (W
- (2
1
3

1
(2—-c14)VA(R R, )+F14v2|WLR,j + 1 WrXkae ;1> + O(pe?), (4.16a)

. 1 . :
C2(6 - 3C14 - WL)NNJ - EC14V2N(KJ + K{le)

4

1 K gk Lcic
+§N,k[(014 —2¢))KE, ;= caKle ) — &N ju(K* + Kk) — = o ——(3=6c14 —2W — Wr)NKL,

1

- THN K (WLR o+ ciWrXkger) + ders (c2 = cla) VEN(WLR ;4 ¢\ WrXkqe j)

c vz{N(WLR + CIWTXKae j)} + O(PES/Z) (416b)

14

1 | R, 5
g(z - C14) N,jN.,k — 55] N,m -+ 0(p€ ), (4160)

! 2

1_6(2 —c14)N

! 1 3 2 2 2 i ] ik

+-(2=c14)NN 2 ==N B +—(c}, — 18¢3 — 6¢,)N? — (1 = 3c;)N ;K/ — KUK KA

8 4 16¢ :

3 oo o .
+ Z(Czcm —¢14 —5¢2)NN + 3 (6¢ — c14)N j(K' + Kze) + 2 5 (6¢y = c14)N jKe

& 1 3cy4c

+2¢, KEHKUH 4 +7(13¢1 = 12¢16 = ey + 6¢2)NKY, ; — 21;‘ LNK], ; + 26 (K7 + Kle)KE

3¢t ok 1 k
+— o (Kae 0)? +F,4 (6¢2 — c1a)N j(WLR ;j + ¢\ WrXkae ) L - Kae i (WLR j 4+ WrXkae )

3 . ,

T WL(VENR) = RV2N) 4 (66, = 1) Wr(V(NXkoe) = oo V2N) + O (o), (4.16d)
14
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; 1
AN = E(3cz +ciy—3¢)(4=2c4 = WL)NN —g(lzclcm + (3¢t = ¢4 +2¢0) (W = Wr))NKE, 1
14
1 . c
+§{6(C14 + 3C2) - 126’1(2 - C14) + (36’1 —Cy4 + 2C2)WL}NN] —4—6}2(6'14 - 3C1)N,jK§e,k

1 1 1

1(301 —Cly — 202)N.jk(Kk + Klzfe) +Z(014 S 202) kKae] B NkKaek

1 1 3 . . 1 A .

Z<3C1 262)N’kK5~ - Z(6C1 - 614)N,kK{k — ZC]VZN(K/ + Kée) + chNVZ(ZK{le — 3Kj)
1

8c1 o Ber—ciy = 2¢)N jp(WiR i + e\ WrXgger) — (301 + 14 =20)VEN(W R ; + ¢\ WrXkqe )
1

B 166‘14

As is customary, we will define the quantities

, ) 0i
GET(}O—FT“ /ETTJ,

ok =Tk cle=T (4.17)

aeT>

and will express various potentials formally in terms of
these densities. Later we will make a PN expansion of
them, including compact body sensitivities, and iterate the
potentials to include these effects.

The gauge conditions (4.12) lead to useful conservation
equations. Adding the time derivative of Eq. (4.13a) to
the divergence of Eq. (4.13b), and making use of the
d’ Alembertian of the first of Eqs. (4.12) and the divergence
of Eq. (4.13e), we obtain the equations, valid through 2PN
order

Ny =
o 2-cy

1
+—630f/ >, x)|x = x'PdPx -
6 M
(

x = x|

2 4
- E€7/2r2xkﬂ§e(t) + N,;M} + 0(e*),

=Gy [463/2 / %d%wzéﬂaz / i(1,X')|x — X'|d3% + = 63{3xkzﬂ<(z)
M

X —X/|
3) (3) 3)

2 ” . . .
+ §e3{6xk1£é () = T (1) = 278 (1)} + K M] +0(E7?),

(3cr = c14 +262) VAIN(WLR ; + ¢ Wi Xk )] + 0(965/2)-

(4.16¢)

1 (5)
0 e"2{(4xM + 2726 TH (1)

D. Near-zone field to 2.5PN order

We now solve Egs. (4.13) for field points within the near-
zone. The formal solutions of Egs. (4.13) consist of
integrals of the source divided by |x —x'| over the past
harmonic “null” cone of the field point. These integrals
divide into two distinct integrals, an inner integral out to a
boundary where the null cone C intersects the near-zone
world tube of radius R ~ 4, and an outer integral over the
remainder of the null cone. The retarded time of the inner
integrals over the region A can be expanded in powers of
|x —x’|, leading to bounded integrals over a constant time
hypersurface M, evaluated at the time ¢ of the field point.
The outer integrals over the rest of the null cone C — N are
carried out using a special change of integration variables.
For a detailed pedagogical description of this method, see
Sec. 6.3 of [50]. Both the inner and outer integrals may
individually depend on the radius R, but their sum cannot;
in practice this means that one can evaluate each integral,
keeping only terms that do not depend explicitly on R.

The expansions of the inner integrals of the fields N, K/,

Bk, and Kl are then given by

2G 0 (¢ 2 spdh, 4 ;
0 |:4€/ w‘px/ + 26262/ TOO(Z‘, xX)|x — X’|d3x’ _ g€5/21'kk(t) _ g65/2xkz'§e(t)
M M

) (5)
— AxKTHIL(F) 4 TR (1))

(4.19a)

(4) (4) 3)
I}kk( ) + 2€mjkjn1k< )}

(4.19b)
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jk _ 2 Tjk(f’ x') 3.1 _n.5/2 j(;) (k) 3 ik Nl — /| 13+
B); = Gy |4e F— Bx' = 28HT*(t) + 2207 (1)} + 26307 [ *(2,x")|x — x!|dPx
M X = M

(5)

) 3)

1 () ' ' 3
-5 €"/2{3r2 Tk (1) — 2x'T/H (1) — 8xlemU gmR) (1) + 6MM! (1)}

2 S 4)

K’
Ix — x| ur
(3) (3) 3)

3
3vy

where we define the moments of the system by
79 = / 0xCPx,
M
Ji0 = ¢iab / 706500 3 ¢
M
MiQ = / T xQPx,
M

79 = / thex@dx. (4.20)
M

The index Q is a multi-index, such that x¢ denotes
x't...x'a. The integrals are taken over a constant time
hypersurface M at time ¢ out to the radius R. The structure
of the expansions for N, Kfv and Bj\]; differs from the
structure in PWI only in the odd-half order e terms in N
and Bf\'} and in the integer-order € terms in Kjv. This is

because the source 7# satisfies the conservation law 77 , =
N

é’gﬂe_j [Eq. (4.18)], and we have used this to convert a
number of terms into surface integrals at the boundary d M
of the near zone. In some places this leaves a residue of
terms, such as the term proportional to €3/2x*Z%. (1) in N .
Interestingly, while the terms in N, and B,  that are
proportional to €*/? are nominally of 1.5PN order, we will
see below that they are purely a gauge artifact, and do not
contribute to the final metric at 1.5PN order.

The boundary terms Ny, K, v and B;’M can be found in

Appendix C of PWI, with the replacement 7% — 7% — 7},
but they will play no role in our analysis. As in PWI, we
will discard all terms that depend on the radius R of the
near-zone; these necessarily cancel against terms that arise
from integrating over the remainder of the past null cone.
As in general relativity, those “outer” integrals can be
shown to make no contribution to the near zone metric to
the 2.5PN order at which we are working (see Sec. 4.C
of PWI).

~3HPT (0 + AT (0} + B{;’;J +0(e),

1 h ; .
— P The(t) = 2x*Tie (1) + I{Jg"(t)}] +0(7?),

(4.19¢)

TQC t7 ! 2 - j 1 /
! =—Goct! [263/2/ Tl X) By — =274, +265/26,2/ The(1,X)[x — x'|dPX
M M

Ut

(4.19d)

|
E. Definitions of PN and 2PN potentials

In the near zone, the potentials are Poisson-like poten-
tials and their generalizations. Most were defined in PWI,
but we will need to define additional potentials associated
with the Zther field. For a source f, we define the Poisson
potential to be

_ [ fx)

= d3 /’
4z o |x — X/ *

P(f)

V2P(f) = —f. (421)

We also define potentials based on the “densities” 6, o/, 6/,

and ol,:
X(f) = /M —G(t’;/)_f it X) P = P(dnof),
Y(f) = /M 6j<t{;—/_)};(ft|’ X = planol),
2H(f) = /M —Gik(?;x/_)i(/f ¥ v = planoly),
SI(f) = /MOJae<t|xX/—)J;$|t ) o = Plarolef). (4.22)
along with the superpotentials
X()= [ altx)fex)x = x|,
Y(f) = /M ot XV (1 X)) x = XPdx,  (4.23)

and their obvious counterparts X/, X’*, X/., and so on.
Using Eq. (4.21), we can express the superpotential defined
in Eq. (4.10) in the form

(4.24)

and so on.

124026-9



FATEMEH TAHERASGHARI and CLIFFORD M. WILL

PHYS. REV. D 108, 124026 (2023)

A number of potentials occur sufficiently frequently in
the PN expansion that it is useful to define them specifi-
cally. There is the “Newtonian” potential,

o=,

The potentials needed for the post-Newtonian limit are

G(I’ X/) d3x/ —

P4
|x — x| (4z0)

=3(1).  (4.25)

Vi=3i(1), Vie=zl(1),
o =3/k(1), @, =3ii(1), ®,=Z(V),

X=X(1)==2P(U), Xle=XkL(1)==2P(VL). (4.26)

Useful 2PN potentials include:

Vé Ezj(U>7 Véae _Zée(U>’

O =3(V), @ =Z(Vi),

2ae
X, =XV(1) = —2P(®,), X, =X(U) = —2P(®,),

X/ =X/(1) = =2P(V/), Y=7Y(1),

; 1
P)=P(UU)).  Py=P{=0—;U"

G, =P(U?), G,=P(UU),

Gs; = —P(U’ka), G = —P(U'nge)’
Gy=P(VHVH), Gy = P(ViIVH),
G, = P(VAVED),
Gs=—-P(V*U*),  Gspe =—P(ViU")
Ge = P(UIDY),
Gy =P(U*VH), G, = P(UMV),
Gi=P(UU), G)=P(UUY),
H = P(UPY). (4.27)

V. EXPANSION OF NEAR-ZONE FIELDS
TO 2.5PN ORDER

In evaluating the contributions at each order, we shall use
the following notation,

N=Ny+eN,+€/>N,5+€*N, +€/>Ny 5+ 0(e3),
K/ = K| +€"2K] s+ eK)+ 2K s+ O(e?),
B=B,+¢€'?B,s+¢eB, +€?B, 5+ 0(e?),

Bl = Bij + el/zBU +0(e),

Kl.= Ko + el/zK]e] st GK}iez + €3/2K£e2.5 +0(e?),
R=R,+€'’R\s+€eR, +€/*Ry 5+ O(e?),

XKae = XKael + 61/2XKael.5 =+ SXKan + €3/2XK6.62.5 + 0(62)’
Xp=Xp+e"?Xp54+0(e),
Yr="Yg+€"*Ypy5+0(e),

YKae:YKae2 Jr5‘1/2Y1(ae2.5+0(€)’ (51)

where the subscript on each term indicates the level (1PN,
2PN, 2.5PN, etc.) of its leading contribution to the
equations of motion, and where we also include the
superpotential functions needed to construct the metric.

A. Newtonian, 1PN and 1.5PN solutions

At lowest order in the PN expansion, we only need to
evaluate 1% = (—¢)T% + O(pe) = 6 + O(pe) (recall that
o'" ~ €c). Since the density has compact support, the outer
integral vanishes, and we find

8G,U
Ny =—2—. 5.2
e (5.2)

The metric to Newtonian order is given by the leading term
in Eq. (4.4), goo = —1 + N/2. Using Eq. (2.6) to relate G
to G, we obtain Ny=4GU, gy =-1+2GU and
—g=1+4GU + 0(&?).

To the next PN order, we obtain, from Eqgs. (4.14), (4.16),
and (5.2),

. 7
W =6 -6 +4GoU — 8—GVU2 + O(pe?),
n
2% = o/ + O(pe’'?),
. . 1
= ¢l — — GVU? + 0(pe?),
8x

he = ole + O(pe?). (5.3)

Substituting into Eqs. (4.9), and calculating terms through
1.5PN order (e.g. O(e¥/?) in N), we obtain,

N, = 1G*U? — 4G®, + 2G®, + 2GX,
J 1 j
Kl =4(1 —5014 GV s
1
B] = <1 —5014> [(;ZL]2 +4G(I)] - 2G2(I)2},
j 1 1y
Kael =-211 _ECM GC] Ve,

1
Rl = C14GX+ 2G<1 —EC]4>X£611

G 1\,
Xkael = o 1 —5Cu Xpe j»
1
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and

vt
Ry 5 =0,
XKael.S =0 (55)

As in the GR case, it is straightforward to show that the
outer integrals and surface terms give no R-independent
terms.

We now use Eq. (4.7) to construct the original fields N, B
etc., and then Eq. (4.4) to construct the metric to 1.5PN
order. After applying a gauge transformation,

X = x4 g, (5.6)
with
1 .
:E I+ C14(3+UL) GX
1
5 1——C|4 3+7] )GXaek
%G — GTk — —G kzk
3 3 e
1
&= gGIae, (5.7)

we obtain the 1.5PN metric

goo = -1 +2GU — 2G*U?,

1 .
doj = —4(1 C;) GV —5 (1 -2 1122)) GX
1 Ci4
+2<1_7>( )Gxﬁejk’

In the absence of self-gravitating bodies, the source of the
Ather field vanishes, or if the bodies are weakly self-
gravitating, the Ather effects are of one PN order higher;
in either case we can set XX, = 0, and read off the PPN
parameters

1 1
a; = —4C]4, o, = —§C|4<1 —v—z), (59)

L

with the remaining parameters vanishing [see Eq. (2.5)].
The Ather field to 1.5PN order is given by

o 1 i 1 .
K;jle = —2<1 —§C14>GC1_]V{1e +4<1 —5C14>GVJ

1 1
+IWLGK +— (1= ) (W, = Wr)GXl
2 L4 2 J

2 Ci4 -
+ oy (1 2 )GIae. (5.10)
This is in agreement with standard results [11,16]. Note that
the 1PN solution obtained by Foster and Jacobson [16]
made use of specifically tailored gauge choices in order to
disentangle the coupled linear field contributions at 1PN
order. It was not clear how to extend that procedure to
higher orders; this is in part why we chose to redefine the
fields in a manner that could be systematically extended to
higher orders.

Notice that there are apparently no 1.5PN radiation
reaction terms in the metric. As in GR, the 1.5PN terms
proportional to 7 that appeared in N, 5 are pure gauge;
but in addition the dipole and monopole Zther terms x*Z%,
and Z*¥ are also pure gauge. This does not imply, however,
that there is no dipole radiation reaction in this theory; those
effects will enter via the modified geodesic equation for
compact self-gravitating bodies [54]. The same situation
occurs in scalar-tensor theory [42].

B. B*, K/ and K. to 2.5PN order

Substituting our solutions for the fields to 1.5PN order
into Egs. (4.14) and (4.16), we obtain

: o1 . 1.
vk =6k + — G U/U* == 5*|VU|? ), (5.11)
4 2

with the solutions
B —aG(1- %) ok + g~ Csit 2w, — 12
) = -5 ) |®r TGPy (2D, - U?)|,

.
B = —2G (1 ~ C—;> (T + 22, (5.12)

For K/, we substitute the lower-order solutions into

D = (1 +4GU)o/ 4 (162Go)~'AY,  (5.13)
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and use Eq. (4.19b) to obtain

K} =8G? (1 - %) {vg = (1= cl)®,+ UV 421 = )G + - (Cz - %) e = 7 (UVae & Poic = Vaee)
C C
=26P(U V) + ZPU V) + 35 (Wi = Wr)(UXG, e+ UKoy + 2P(U Vi)
1 ¢ )
-0 = W) (B0 - 22,00 ) 4 52 (36 = 2W, = WoP(UVE 0

+ G2[2(6+ 9y + €W, )G+ 4cy (6 = 3cyy — W)Gh + cuW E(X ) + W, (UX ; + U X - X (X))]
n 2G<1 —2>Xf,
2
9 c @ @ e ® G 18 . ,
K= 5 < 1- %) G {3xszk — Tikk 4 pemik gmk Gk UK _ TRk _ o7k L "C Gl UTL + e X ,kI’;e)] . (5.14)
’ C1ur

Finally, for K{;e, we substitute the 1.5PN solutions into

Tée = Uée + (SﬂGO)_lAée, (515)
and use Eq. (4.19d) to obtain
j 2G6? €14 j j : j o, 1 j
KanZ_C— 1—7 C]4V2+C]4q)2+(6€1 —C14)UVJ+2(3C1 —2C2)G7+C—(2C2+C1 _614)G7ae
1 1

. . ) 1
— UVie = 2@, + 3V} + (3c; — c14 — 2¢2) <2P(U'jkv’<) - C—lP(U,jka;e)>

3C1 —Cl14 — 2C2
(W, —Wr) (Z(X];e,jk) + Tz,j(xlgefk

N[ =

+

1
+5— (12¢14¢; 4+ (3¢ = c1g +2¢2) (W, = Wi))P(UVE, 1)

2C14 ae, jk
1 2C|4 k
"0 e (Bcy —c14) + (Bey =iy = 2¢) (W = Wq) |P(U Vi i)
1
+ dc, (W, = Wr)((Bey = c14 +26)UXE, ;= (Bey — ey = 202)U,jX§e,k):|
G? i
- 4_(,‘1 [(8(2 - 6‘14)<3C2 + Clg — 36‘1) + 2(361 —Ci14 — 4C2)WL)G§

—+ (366‘2 + 12C14 - 246‘1 (2 - C14) + 2<3C1 —Cl4 + 2C2>WL)G6
+ (Bey —cra +20)WLUX j = (Bey — c1a = 200) W (U ;X — 2 (X)) + 2c14WL E(X )]

G c
-2 (1-%)a- .

4 G c 1 (3) /S 1 y .
Kj 25— 1- —14 —3(}”21ée - 2kuéle( +I;J1]ék> - G(6C'1UI£C - <3C1 —Cl4 — 2C2>Xjk.’z§e) . (516)
acs. Cq 2 37.)1 [ %a ’
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C. N and B to 2.5PN order
Using the 1.5PN metric (prior to the gauge transformation to the PPN gauge), we find that, to the required order,

C C .
—g=14+4GU + [(1 - ;‘) (4G*®, — 8GD,) + (6 4 ¢14)G*U* + (2 —3cp, + U‘{) GX
3)

1\ . 2 Lo 4
- 2(1 - C—é“) (3 - —2> GXk, k} + [g (2 =3c14)GT* + 4(1 — ¢14)GL¥ — ngkI’;e} +0(e).  (5.17)
13 ’

Inserting this along with the 1.5PN solutions for the fields into the expressions for 7% and 7// in Eqgs. (4.14) and (4.16), we
obtain

o . i} L1 @
N, = 4<1 - %) G*2GUD, = 4U®, — (1 + 2¢1,)VIV/ = 4Z(®)) +2%;(V))] - 26X, + Xy + GY

10
+G2|:<7+4C]4 —2 CI4

. . 2
WL) UX + (1 — 12614 -5 Cia WL>Z(X) +2G(10 4 3¢14)U?

—Cia —Ci4 3

—4<1+7C14—2C14 WL>G1—8(2+3C14—2CI4 WL)G2+8(4—5C14)G3

—Cl4 —Cl4
Cl4 Ci4 Ci4
+24<1—7>G4—16(1+c,4)G5—16<1—7>G6—16<1—7>GH}
.. .. o . w2 L.
+C]4G2|:<4+ WL) (E(X) - UX) - 82J(Xj) +4(2— Clg — WL)V]XJ - <C]4 +4 2L )X,jX,j
—Cl4 — 4Cyy

4 1 . ; o o . .
+ — {3G3ae + 3Gsye + 3 WLX’jV{le + 2(1 - %) (ViVie +2/(Vie) — Zhe (V7)) — 2G4ae)H
&

2

e <1 - %) G*[(2 + 4W7)Gi, + 3VieVie = 2(W, = W) VEeXE, o — 65he(Vie) + 4(1 + W) P(VEVE, )]

Cly4 ) 1OWL — 3WT ok 3(WL B WT) vk i( vk
=+ (1 —7)G |:2 (4 —2_—m UXae.k —-2(4 +2——C14 UXac,k - 162}(Xae,jk)

WL (W —Wr)
2-cy

. 2 w .
—_ 2<2C14 + X -Xk —(1 + WT)(WL —_ WT)Xk V;’é’m —_ 2<12 + L >Z(X/

JYaejk T ae.k ae,j)
Ty —Ci4
3(WL -W

‘ Ne i .
+82—cu— W, +Wp)VIX5 i + 2<4 +=5 » )Z(Xge,j) +16(1 + W) P(VIVE )

- cu (W =Wp)((3- WT)Zgle(Xlz;e,jk) - (1 + WT)Zée,j(X]z:e,k )] - G*W,(1+ WT><XV£1e,j - szle,j(X))
2 2
2 i Ci4 ’ (W, = Wrp) L vm
—~G'W,(3-Wp)Ze(X ;) - 2<1 - 7) G (2 + n=c) Xoe j1xXe,jm

o 4 ‘
= 2G*(6—12¢14 = 4W, =3W7)P(UVye ;) = — (1 - C214> G*[1 =2¢14 = Wr(1 + Wy = W)P(Vie Vi i)
' C14 S

- 262[14 - 16014 - 3WT - WL<2 - WT)}P<UV£e,j)’
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2

5 ..
+ G2 |:<1 +§C14 - 3C2(1 —26‘14)) UX— <1 —%( + WL)) ( ):| + 2G(1 _%>X1
- 2(10 "‘ 3C%4 + 6C2(5 - C14) - C14(5 - WL))GZGI - 12(C14 + 5C2 - C14C2)G2G2

1 c
G2(602—014)WL( (X) - UX)—C—1<1—¥>(6C2—014—501—120102)G2Uxée,

4 Ci4 Ci4 ae | Ci4
+ o (1 - 7) G? [(6C2 = €14)(G3ge + Gsye) — <1 -5 G + 3 VieVie || + 11— > szvge]

1 c
- (1 - %) (6¢2 — c14) (W, = W) GH(UX], ; — 2(XL, ) + (1 - 7) W, GPS(XL, )

2

c 2
+j <1 _214> (WL )Gz[Xite/ aej+zl (X§31k) 2{16( aek) ]

Véevae /k) 2Cl (V]Vae ]k)]

;( >G22£e (Vie) + ( Cz”)WLGZ(zae(' ) = Zhe(X) ;)
o (-9

(1-

6
+ 2(1 —%“) (6 —12¢1, —4W, — Wy —ﬂ(WL ))GZP(UVQCJ)
2 Ci4\
+C_ 1 —7 G ((12C2 - 13)C] —6C2 +C14) (UVae])
1
4 6'14_ 2 k
+—(1- G (3 66‘14_2WL WT)P( deVaCk>
Clg 2
R2 = —C14 |:7G2P(UU) + GXl —§G2X2 —EGY:| ClxKae2’
A 1 1
X = 2(1= ) G2 [8esP(U, V1) =42 P(UVA) = 2 (W, = W) UXL. 4 3 WaX(U,) + 3 WeX(VL )
€1 Cl4

A= WKL)~ 5 Wy = WX (K, ) = 2eX(V),

c i 1 c i
+ C_I4X(V{15),/ + 6_1 (4C1C2 + 3C1 —Ciq4 — 2C2) (Uvéjlej) + C_124 (W WT)Z( aej)
1

1 c . 1 . .
o (1= )7L+ WGP ) — U - e WG (E ) + s = s = L) GPUD)
T

Xp = —2<1 Cz”) [G?P(U?) = 2GX, + G*X,),

2
Y ka2 = Vi (5.18)

ae,j>

Yo = cuGY + 2G(1 Cl“) Yl

and
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1 (5) )
Nys = —%G{(4xk’ + 21288 —

G) ol ;
—4 <1 - %) GH(T + 22UNX 4 16(1 — ¢14)GPUTH —

8 c iy . 1
- (1 —ﬁ)cme(zw +5—(1+Wr)
T

2 Ci4

| ) )
Brs=—35 <1 - %) G[3rATH — 2xITHH —

Cl4 o 2
1 =212
- ( 2>G [CIUT((C14

4kukll+Ikkll}+
Xk

16 i o 2 9\
5 ,k> -3 G TeI(¥) -3 (7 + —3> G’LiX ).

- 6C2) (Z.-é:eX’j + I{ieX

16(1 3C14>G2UI<")"

2

2 @ 6 . .
EGrzku,]je - U—%I£6G2X’j

Ur

(3) @) <2
8xlemk Tk 1 oMM 4 62Tk + 6x/ T4
2.
)T @2- C14)Ianae,k) 3Ian.,j ;

(5.19)

4) )
Rys = —ECMG}J [Zkk + gxfzﬁe} — €1 XKae2.55
2 3 3 »
1 Xkac25 = By <1 - %)G[CMI’Q <I]§§ - gX’I{m> = 9G(cy4 + ZCZ)I{@X,]} ,
T
o) ) .
XBZ.S = —g <1 —C—;> Grz[Zkk + 2I§§],

with Ygo5 = Ygaeos = 0. It is then straightforward to
construct the physical metric and the ZAther field using
Egs. (4.4) and (4.7).

VI. FUTURE PROSPECTS
AND CONCLUDING REMARKS

We have applied post-Minkowskian theory to the
Einstein-Zther theory, and demonstrated that, after a field
transformation, the relaxed field equations can be put into a
form that parallels that of general relativity, and that is
suitable for obtaining solutions to high orders in a post-
Newtonian expansion. As an application of the method, we
obtained explicit solutions for the fields through 2.5PN
order, in terms of Poisson-like potentials and superpoten-
tials constructed from the matter densities.

In a forthcoming publication we will use these results to
obtain the equations of motion for compact binaries
through 2.5PN order. We will use the prescription pio-
neered by Eardley [51] for treating gravitationally bound
bodies in alternative theories of gravity, in which one
assumes that each body’s mass is a function of an invariant
quantity constructed from the auxiliary field(s) of the
theory, evaluated at the location of the body. For scalar-
tensor theory (Eardley’s original motivation) it is the scalar
field itself; for Einstein-Ather theory, the conventional
choice is the invariant y = —I?”uﬂ, where u* is the four-
velocity of the body (the other possible invariant K*K Y
unity by definition, and thus trivial). This results in a
modified geodesic equation for each body, given by (see,
e.g. [54])

szy[mA Upg + m;‘f(" (gua + uAy MAa)]

= myuy, VK", (6.1)
where my = my(y), m/y = dmy/dy. This paper provides
the ingredients needed to obtain the equations of motion to
2.5PN order.
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APPENDIX A: WAVELIKE SOLUTIONS TO THE
LINEARIZED VACUUM EQUATIONS

Here we analyze the far-zone waves implied by the
linearized equations (4.5) and (4.6) using an extension of
the method described in Sec. 11.1 of [50] for decomposing
waves in the far-away wave zone in general relativity. Far
from the source we express each field in the generic form

A =R"Ay(z,n) + O(R7?), (A1)
where 7 =t~ R/v,, and n = VR. Then
A;=-nlAy/v,R+ O(R™?),

0A = —(1—v;%)Ay/R + O(R7?), (A2)
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where a dot denotes d/dr. We also decompose the various
vector and tensor amplitudes into their irreducible pieces
(see, e.g. Box 5.7 of [50]),

K} = Kon/ + K,
szwO = Kaeoi’lj + KéeT’

; 1 . ) 1 .
B{)k = géjkBO -+ <n/nk - 551k> BLTF

k)

+2nUBY + B, (A3)

where the subscripts denote the transverse (T), longitudinal
tracefree (LTF) and transverse traceless (TT) parts. Imposing
harmonic gauge N + Kj/ =0, and K/ + B],f = 0, keeping
the leading 1/R amplitudes, and decomposing into irreduc-
ible parts leads to the four conditions

KO = UgNo,
1 2
UgKO = §BO + §BLTF’
v,K} = BY, (A4)

where henceforth, we drop the dots. Under a gauge trans-
formation x* — x* 4 {* with

=R 'a(z,n) + O(R™?),

é’j — R—l[ﬂ(r,n)n/ —|—ﬁ’f(r,n)] + 0<R_2)7 (AS)

the amplitudes undergo the changes

Ny - Ny +a+ v;lﬁ,
Ky— Ko+ v;1d+ﬁ,
Kt — Kt + pr.
By — By +3a - v;'p,
Bi1r — Bure + 205,
By — By + v pi.
By — Bir.
Koo = Kaeo + .
K’

2T KéeT +ﬂ!l" (A6)

The time component of the Ather field, K. is gauge invariant
to linear order.

Substituting Egs. (A1)-(A3) (but not the harmonic
gauge conditions) into Egs. (4.5) and (4.6) and decompos-

ing into irreducible parts, we obtain the system of nine
equations:

(1= 02)No = TN+ Bo + 4v,(Kuo — Ko)l. (A7)
(1= 3)Ko = 22 0,[No + By + 4v,(Kueo ~ Ko)l.  (ATH)
(1= 1)K} = 2(cpy02 — ¢)) (Kl — K%, (ATc)
(1 -v3)By = —302[05(31\70 — By) — 4v,K 0], (A74d)
(1—v2)Byqp =0, (A7e)
(1-2)B} =0, (ATf)
(1-v3)Biy =0, (ATg)
(e1 = U5€14)(K£3T - K"]F) =0, (A7h)
c14V4[No + By + 4v,(K,eo — Ko)]

= —¢[v4(3Ng — By) — 4K 0] (ATi)

It is straightforward to show that this system has three
distinct eigenvalues for v2. ‘ '
Case I1: v, = 1. In this case, Byrg, By, and B are
unconstrained, and K/, —K}; =0 (unless c¢;=0).
Combining the scalar parts of the gauge conditions (A4)
and the wave equations (A7) we find that Ny = K, =
(Bo+ 2By 1¢)/3 and K,g = (3Ny — By)/4 and thus that
2K .0 — Brtr = 0 We can then choose a and f so that N,
Ky, and B, all vanish, and thus so that K,., and B}t

vanish. Also we have that K‘é = K.+ = B%; we can choose

j
ae
P to make them all vanish. In the end, only the gauge
invariant B]TkT is unconstrained. This is a pure transverse
traceless metric gravitational wave, with speed unity. It was
the observational constraint on the speed of gravitational
waves set by the event GW170817 and GRB170817 that
led us to impose the constraint c¢; +c3 =0 in the
first place. ,

Case 2: v,=(c;/c14)"/? = vr. In this case, K/ 1 is uncon-
strained, while Bygr = B) = BJY. = K} = 0. Examining
the four scalar wave equations (A7a), (A7b), (A7d), and
(A7i), we observe that the determinant of the linear system
does not vanish, sothat Ny = Ky = By = K, = 0. Thisisa
pure transverse vector wave, with no metric perturbation, to
linear order.

Case 3: For this final case, we must consider the five
nontransverse scalar wave equations (A7a), (A7b), (A7d),
(A7e), and (A7i). Requiring the determinant of this system
to vanish yields v, = 1 (Case 1) plus a solution with speed
v, = vp given by

c2(2-cu)

c14(2+3¢,y)’ (A8)

2
V] =

124026-16



COMPACT BINARY SYSTEMS IN EINSTEIN-ATHER ...

PHYS. REV. D 108, 124026 (2023)

_ , " : .
The solutions are Byt = B} = Biy = K} = Kl =0,
along with

ey v
NO_

_2_C141_U%Kae()’ Ko=vr Ny, Bo=3v.K,. (A9)

with K, the unconstrained amplitude. This is a longi-
tudinal ZAther wave with accompanying longitudinal metric
perturbations.

APPENDIX B: TRANSFORMATION
TO NEW VARIABLES

In this Appendix, we derive the transformation (4.7) that
eliminates all terms linear in the fields N, K/, B/*, and K1,
apart from terms that consist of a leading d’ Alembertian of
the fields. Those linear terms are displayed in Egs. (4.5) and
(4.6). It is known from earlier work on Einstein-Ather
theory that the d’Alembertian of N appears in the combi-
nation (1 — ¢;4/2)0N, so that the coupling constant Gy, is
renormalized by that prefactor. That will be a constraint on
the solution. From the structure of Eqs. (4.5) and (4.6) it is
clear that the combination K7, — K/ is prevalent, so we will
define K. = Kle + K/ +---. We want to remove all
offending linear terms in the field equations through
2PN order. Finally, we will want to investigate the forms

taken by the harmonic gauge conditions N  + IN(’j =0 and
IN(jo —I—E{,f =0 in the new variables. Because the trans-

formation of N will go through 2PN order, or to relative
order €2, we will want to include terms at relative order €2 in
the transformation of K/, even though that is a PN order
higher in K/ than we actually need for the equations of

motion; for completeness, we will also transform K. to the

same relative order. The second gauge condition does not

impose additional conditions on the transformations.
Accordingly we try a linear transformation of the form:

N=N+e(aB+asXy+ayXg +asXg.)

I R B
+e*(agXp+arYy+agY g+ aoY gy ).

B/k = ik —|—5jk[b3XN + b4X[( + bSXI(ae

.. (4) (3) (3)
+e(beXp+b7Yy+bgY g +boY ko),

K=K +d3XN,j + d4XK,j + dSXKae,j

. 3) ., .,
+e(deXp;+d;Yy j+dgY j+doY gye ;)

G o) (@ @
+eX(dioYpj+dnZyj+dnZg;+di3Ziae;)

Kle =Kl + K/ + e3Xn e Xk j+ esXkae,

. (3) .. ..
+e(egXpjterYy j+esYi i +egY ke ;)

5 (3) (5) 4) 4)
+e*(ernYptenZyj+enZgj+ennlie,). (Bl)

where the various superpotentials are defined by Egs. (4.10).

These arbitrary coefficients can then be chosen so as to
eliminate all linear terms in Egs. (4.5) and (4.6) through
2PN order, leaving only (1 —c4/2)00N =0, OBy, = 0,
0K/ =0, and O*KZ, = 0, where [1* = V2 — v7203. The
resulting solution is given by Eq. (4.7). Should one wish to
go to higher PN order, it is straightforward to extend the
linear transformation (at the cost of introducing even more
exotic superpotentials), to push the offending linear terms
to even higher PN orders.

In terms of the new variables, the harmonic gauge
conditions become

i ae,j

1 .. 1 @
+ecy I_E XKae+E€YKae >

K+ B =o.

K, = —<1 —%)N—chKj

(B2)

The first gauge condition can be used to eliminate K’ ; and
its various superpotentials from the problem. By applying
the inverse Laplacian to this equation and iterating, we
obtain, to the required 2PN order,

¢ ] c ..
XK — _(1 _;)XN — ZCIXKae + engTYKae’

Y = —(1 —%) Yy —2¢1Y kae- (B3)

These relations have been used to eliminate K’jj, Xk, and
Yk from the transformations shown in Eq. (4.7).

APPENDIX C: PROPERTIES
OF POISSON POTENTIALS

Here we summarize some useful properties of Poisson
potentials and superpotentials, defined in Sec. IV E. These
rely upon the general result, which can be obtained by
integration by parts,

P(V?g) = =g+ By(9). (C1)
where Bp(g) denotes the boundary term, given by
1 g(t,x")
Bp(g9) = — d.In(g(r,x')|x — x’
o) =g [ St -x)|
x R2dSY (C2)

The boundary terms must be carefully evaluated case by
case to determine if any R-independent terms survive. All
R- dependent terms can be discarded. At 2.5PN order, none
of these surface terms contribute. Some useful formulas
that result from this include:
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P(VgP) =~ {7 +2P(5¥%9)).

P(Vg-Vf) = =5 {fg + P(/V%) + P(4VF)).
1 1

PU)=-3X.  P(X)=-13V,

1
P(VUP) = =3 U + @,

P(VU - V&) = —%{UX—Z(X) +26,). (3)

Other useful identities include

P(xK) = ——xkr2, (C4)
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