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Abstract—Data falsification attack in connected vehicles (CV)
refer to the manipulation or alteration of data within the
vehicle’s communication systems. This paper discusses the critical
challenges in ensuring the security of CV networks where vehicle
data integrity is paramount to prevent data falsification. Various
existing solutions, such as machine learning and reputation-
based approaches, have limitations in terms of scalability and
robustness. To address these issues, we propose a novel multi-
level Dempster-Shafer with reinforcement learning (RL)-based
reputation system for CV networks. We use decentralized vali-
dation that combines self and peer reports of vehicles along with
centralized feedback from road side unit, merging reputation-
based trust management with Deep RL. By incorporating a multi-
level Dempster-Shafer model, we elevate prediction accuracy
and reward values while dynamic RL optimizes the process of
reputation updates.

I. INTRODUCTION

Connected vehicles (CV) are equipped with sensors to
streamline navigation and facilitate easy transportation [1].
This is achieved by sharing basic security messages (BSM)
which contains the crucial information of each vehicle such
as latitude and longitudinal position, speed, acceleration and
others [2]. Ensuring the security of this data is essential,
serving as a safeguard for the integrity of the CV network
and preventing malicious actors from tampering with it.

BSM data is manipulated by compromising the integrity of
the data by injecting falsified information in it [3], [4], [5].
This type of falsification pose a considerable challenge in
terms of detection and mitigation since the attackers possess a
deeper knowledge of the system’s internals. The state of art so-
lutions for data falsification comprises of machine learning [6],
and reputation based approaches [7], [8], [9] and others [10].
Machine learning approaches face challenges as they require
large and diverse labelled datasets for the detection of data
falsification. Further, reputation systems often rely on static
and predefined trust scores based on historical data and may
lack the ability to adapt well to the rapidly changing CV
network.

Reinforcement learning (RL) based reputation systems offer
the potential to improve trust and security in CV networks. In

[11] the authors had discusses deep RL with the reputation
system to build a dynamic reputation update policy. The model
is characterized by a centralized deployment strategy, which,
while commendable in its initial application, raises concerns
about scalability and overall robustness. By predominantly
focusing on vehicle feedbacks for reputation updates, the
scheme does not incorporate self and peer report validation
[2], thus limiting the comprehensiveness of its trust assessment
framework. Moreover, the scope of the presented results
is constrained within attacker densities ranging from 40%
to 60%, omitting exploration of its effectiveness in more
hostile scenarios that could significantly impact real-world
deployment. Additionally, the reliance on the Simulation of
Urban MObility (SUMO) traffic simulator [12] for simulations
poses a potential limitation, as this platform may not fully
encapsulate the intricacies and complexities inherent in RL
framework. These identified gaps collectively underscore the
need for an enhanced and comprehensive approach to trust and
security within CV.

Our research addresses issues by introducing a hybrid
deployment model that optimizes scalability and adaptability
in CV. By integrating self and peer reports alongside traditional
vehicle feedbacks, our framework enhances reputation updates
and data falsification detection accuracy. Unlike previous
studies, we comprehensively evaluate our scheme at an 80%
attacker density, shedding light on its robustness in highly
challenging scenarios. To address a critical gap, we define
a sophisticated internal attacker model, enriching our threat
analysis with a realistic representation of potential adversarial
behavior. Furthermore, we enhance simulation realism by tran-
sitioning to a multi-agent RL controlled environment, ensuring
practical relevance in complex CV networks.

The paper outline is organized as follows: Section II
summarizes related work for security in CV towards data
falsification attacks [13]. Section III presents proposed multi
level system architecture, and attacker model. Section IV
shows the simulation results. Finally, Section V concludes the
paper with proposed future work.
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II. BACKGROUND AND RELATED WORK

A. Related Work

Feng et al. [14] explores diverse threat scenarios, attack
strategies, and protective measures for BSM related traffic
safety and control systems. The authors propose a security
analysis framework, encompassing risk assessment, defense
solutions, security testing, and utilizing data from the hy-
brid Mcity model with cross-validation, proof of validation,
and trajectory-based hierarchical defense. The threat model
outlined in their paper centers around a central management
system, which, as a single point of failure, poses significant
reliability and scalability challenges.

In [15], the authors present artificial intelligence and statis-
tical data classification framework to analyze messages in CV.
The model is trained on the US Department of Transportation
Safety Pilot Deployment Model, which integrates a ML al-
gorithm and a local trust manager. Experimental results show
that the trained model can accurately predict false alerts, it
attains an 98% accuracy rate while maintaining a relatively low
0.55% standard deviation when subjected to 25% malicious
data. The model’s performance heavily rely on the specific
characteristics of the data it was trained on, and its ability to
handle novel, unseen data remains unaddressed.

Chen et al. [10] focuses on a trust-based service manage-
ment mechanism to secure information dissemination, em-
phasizing the need for a Decentralized Trust Management
System (DTMS). The authors propose a Blockchain-based
DTMS and evaluate its performance using data from a test bed
and comparing it to a blockchain-based non trust evaluation
scheme. The findings show that the DTMS exhibits an efficient
consensus design, with high throughput and low latency,
making it suitable for large-scale transportation environments.

Suo [24] draws inspiration from Zacharia’s work on rep-
utation systems [25]. The authors assess the effectiveness of
both centralized and distributed architectures, as described in
reference [26]. In the centralized approach the trust authority
underwent a plausibility assessment vs in the decentralized
approach, the plausibility assessment was done by the peer
vehicle. Though the model had learning rate and forgetting
rate as the parameter, rule-based reputation systems are char-
acterized by their static nature, and lack the ability to adapt
the rules over time.

The authors in [11] develop a dynamic reputation update
policy using deep RL and DS theory for feedback combination.
The simulation involves a scenario with normal and malicious
vehicles, and the results demonstrate the effectiveness of
the proposed scheme in predicting true messages accurately.
Overall, the paper highlights the use of dynamic reputation
policy as a collaborative misbehavior detection system in
5G-based CV networks [11]. However, it also gives rise to
concerns regarding scalability and overall robustness. The
primary focus on vehicle feedback for reputation updates
neglects the inclusion of self and peer report validation, as
highlighted in reference [2]. The study’s reported results are
confined to scenarios with attacker densities ranging from 40%

to 60%, excluding an exploration of its effectiveness in more
hostile environments that could substantially impact real-world
deployment. Another limitation is the absence of a detailed
examination of attacker models, leading to a deficiency in
providing a comprehensive threat analysis. This gap arises due
to the lack of a well-defined attacker profile. Additionally, the
reliance on the SUMO traffic simulator [12] for simulations
where the platform did not fully capture the RL framework. In
this paper, we address these issues by providing a comprehen-
sive approach to trust and security in CV networks. Following
are the contributions:

• Present a multi level hierarchical structure for evidence
and hypothesis.

• Implementation of multi level DS technique to handle
uncertainties at Road Side Unit (RSU). In many real-
world situations, sources of information may provide
contradictory data. Multi level DST provides a systematic
way to combine and manage these conflicting pieces
of evidence, allowing RSU to weigh the importance of
different sources.

• Introduce well defined attacker profile with the simula-
tions performed in RL framework dedicated for vehicle
navigation.

III. PROPOSED WORK

A. Dataset for Vehicle Networks Simulation

We used an open source vehicle navigation model controlled
by multi agent RL agent framework [22], [23] where the
navigation of the vehicles is governed in a on ramp merging
scenario simulating general traffic conditions. Each vehicle
shares BSM which contains the details about its position,
speed, headed direction, acceleration. At vehicle level we im-
plemented multi level system architecture, where each vehicle
calculates its peer reputation by comparing the BSM reported
by the vehicle with the self reports generated through its
own sensor. We assume that each vehicle is equipped with
necessary sensors which help them to make peer reports.

B. System Model

The system architecture (Figure 1) combines decentralized
validation with centralized feedback, integrating reputation-
based trust management with a Deep Q-learning agent at the
Centralized Authority (CA). A multi-level implementation of
DS at the RSU predicts false reports from vehicles, influencing
the Deep RL agent’s rewards. It starts with inter-platoon
communication, where vehicles transmit BSM, sensed by peer
vehicles. Decentralised reputation calculation at the vehicle
level identifies malicious vehicles, generating reputation scores
sent to the RSU, with dynamic reputation updates (smoothing
factor) assigned by the CA. The RSU employs DS the-
ory to combine vehicle reputation reports, considering both
peer-reported behavior and self-reported veracity. An average
reputation score, reputation update policy, and previous-time
rewards feed into the RL agent, which determines an op-
timal smoothing factor disseminated across the network for
decentralized vehicle-level reputation calculation. This factor
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Fig. 1: System Model

Fig. 2: Attacker Model

encourages malicious vehicles to report truthfully, while a
robust reputation update policy continuously evaluates each
vehicle’s overall behavior.

C. Attacker model

In our model we implement data falsification attack by
adding a white Gaussian noise to the sensed kinematics of
the peer vehicles as shown in Figure 2. The white Gaussian
is generated with µ = 2 and σ = 0.9. The noise is introduced
by intercepting the smoothing function (ϕ1) ≧ 0.4.

D. Dempster-Shafer Technique

The DS theory of evidence is a mathematical framework
for quantifying belief in statements by combining independent
evidence from multiple sources using belief functions. Unlike
traditional probability theory, it handles uncertainty by assign-
ing degrees of belief to subsets of possible events. It assumes
inherent ignorance leading to uncertainty and uses the DS rule
to aggregate belief functions.

a) Frame of discernment Θ: Frame of discernment is
defined as Θ = {Θ1,Θ2. . . . . .Θn} that covers individual,
mutually exclusive, discretized values of all viable outcomes
of Θ. In our approach Θ contains two elements Θ = {M,N};
where M= malicious vehicle, N= normal vehicle.

b) Power Set P(Θ): The power set P(Θ) of aforesaid
random variable Θ is a set of all subsets of Θ including the
individual elements, represents the DS frame of Θ. For our
model it contains P(Θ)={ϕ,M,N,MN}.

c) Evidence: Evidences are events/symptoms and one
evidence maps to single hypothesis or set of hypotheses.
We consider the reputation score from the vehicles as the
evidences in the level 1. In level 2, the difference between
the plausibility values from level 1 and the reputation reports
from the vehicles are considered as evidences. For level
3, plausibility scores from level 1, level 2 and reputation
calculated by RSU is considered as a evidence.

d) Mass Function (m-value): Our trust regarding the
truth value of a proposition ‘A’ is dependent on the evi-
dence that supports the proposition which is denoted as mass
function(m-value). It relates to the weights of the elements
in the P(Θ), m : 2Θ → [0, 1], where weight of the null
set is 0, m(ϕ) = 0 and m(A) ≥ 0. The overall sum
of the mass function’s of all elements in the P(Θ)=1 or∑

{m(A) ∀ A ∈ 2Θ} = 1. Thus, m(A) is a measure of
belief assigned by a given evidence to A, where A is any
element of 2Θ, ∀A ∈ 2Θ, and non belief is forced by the lack
of knowledge. We can get the lower and upper bound of an
interval from the mass function. The lower bound is used as
the belief function and the upper bound is used to calculate
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the plausibility function.
e) Plausibility function (Pl): The upper bound of the

interval is called as plausibility, and it is determined by taking
the sum of all the mass function of the subsets (B) that
intersects (A) where (B ∩A ̸= ϕ), Pl(A) : 2Θ → [0, 1] [13].

Pl(A) =
∑

B∩A̸=ϕ

m(B) (1)

f) DS Rule of Combination: The data collected from
the different sources are combined rationally, to focus on
the consensus opinion and use normalization to ignore all
the conflicting evidence. A cartesian product of two mass
functions is employed for the combination of evidence. The
DS combination rule determines the joint m1−2 from the
combination of two mass function using equation:

m1−2(A) =

∑
B∩C=A{m1(B)m2(C)}

1−K
(2)

when A ̸= ϕ, m(ϕ) = 0 and K =
∑

B∩C=ϕ m1(B)m2(C)

E. Multi Level System Architecture

1) Level-1 Plausibility Calculation: Level 1 corresponds to
decentralized reputation calculation at the vehicle level. Each
vehicle is equipped with the capability to sense the kinematics
of its peers. Each vehicle calculates the difference between the
sensed kinematics and the broadcasted BSMs of peer vehicle
(j). If this disparity exceeds a predefined threshold noise, the
vehicle (i) assigns a trust value of 0.1 to j; otherwise, it assigns
a trust value of 0.9.

T i
j,t =

{0.1 If ∆>0.2

0.9 Else

(3)

where ∆ = xj
j −xi

j and x is the position reported. These trust
values are then integrated with the current reputation score
through the dynamic reputation update policy with dynamic
smoothing factor (denoted as ϕ1):

Ri
j,dt

= ϕ1R
i
j,dt−1

+ (1− ϕ1)T
i
j,t (4)

Each vehicle then share the calculated reputation scores to
RSU. The reputation scores shared by peer vehicles serve as
the basis for building mass functions. The RSU treats the
reputation reports provided by different vehicles as individual
pieces of evidence. Specifically, one mass function charac-
terizes the likelihood of a vehicle being normal (N), while
the other, its complement (1 - reputation score), represents
the likelihood of a vehicle being malicious (M). For each
vehicle’s reputation report, the RSU generates a mass function
tuple consisting of m(N) (the mass function for normal
behavior), m(M) (the mass function for malicious behavior):

m1i(N)RSU = Rj
i,dt

(5)

m1i(M)RSU = 1−Rj
i,dt

(6)

The generated mass functions from the reputation reports
shared by the peer vehicles are combined using Eq. 2 which
is later used to calculate the plausibility values of vehicles

being malicious and normal. The plausibility values generated
at this stage are referred to as level-1 plausibility values where
Pl1,j(M) and Pl1,j(N) represents the level-1 plausibility of
the vehicle being malicious and normal respectively.

2) Level-2 Plausibility Calculation: The plausibility calcu-
lation described in the previous step solely relies on reputation
reports from peer vehicles. However, in real world scenarios
attackers can exploit a model by deliberately sending false,
low reputation reports of peers to the RSU. To address this
challenge, in addition to aggregating peer reputation reports,
it is essential to validate the accuracy of the reputation reports
provided by each vehicle about their peer vehicles. In this step,
RSUs generates mass functions by calculating the difference
between the reputation report submitted by the vehicle i for
peer vehicle j and the level-1 plausibility value of the peer
vehicle j being normal indicating the vehicle’s malicious
behavior.

m2i(M)RSU =

{|Ri
j,dt

−Plj(N)RSU | If |Ri
j,dt

−Plj(N)RSU |>0.2

0.1 Else
(7)

m2i(N)RSU = 1−m2i(M) (8)

This validation process is iteratively applied to each report
submitted by a vehicle for its peer vehicles. The plausibility
values from this step are considered as the level-2 plausibility
values where Pl2,i(M) and Pl2,i(N) represents the level-
2 plausibility of the vehicle being malicious and normal
respectively.

3) Random Validation by RSU:
When the proportion of malicious vehicles surpasses 50%,

attackers succeed in their objective of diminishing the reputa-
tion of peer vehicles at the CA. To counteract this vulnerability,
RSUs intermittently intercept vehicle communications in every
20 discrete intervals and maintains this policy for next 20
iterations. RSUs validate vehicle self-reports against its own
sensed kinematic data to establish vehicle reputations.

RRSU
i,ct = ϕ2R

RSU
i,ct−1

+ (1− ϕ2)T
RSU
i,ct (9)

ϕ2 = 0.2. RSUs accumulates reputation reports that vehicles
share regarding their peers. The acceptance of reputation
reports despite variance is grounded in the disparate nature of
trust update policies employed by vehicles and RSUs. When
the variance follows a descending order, a vehicle is attributed
a trust level of 0.9; otherwise, a trust level of 0.1 is assigned:

TRSU
i,ct =

{0.1 If ∆>0.2

0.9 Else

(10)

∆ = xRSU
i − xi

i. Later using Eq. (5) and (6) the centralized
mass functions (m3,i(M)) and (m3,i(N)) are calculated.

F. Level-3 Combination of Level-1, Level-2 and Centralized
Validated Scores

RSU merges information from level 1, level 2 and RSU
calculated reputation to predict vehicle behavior. Employing
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Fig. 3: Centralized Reinforcement Learning Model

the DS theory of combination, RSU fuses these mass func-
tions to determine the final plausibility of a vehicle being
malicious and normal using Eq. 1. When the final plausibility
of a vehicle’s malicious behavior exceeds 0.3, the vehicle is
identified as malicious, rendering all its transmitted reputation
reports as malicious. This validation procedure extends to all
vehicles within the network. These predictions, serving as
the foundation, contribute to the formulation of rewards for
the RL agent located at CA. This multi-stage process not
only bolsters the integrity of the vehicular network against
malicious behavior but also showcases the integration of RL to
incentivize reliable reporting. The final plausibility of vehicle’s
malicious behavior is tracked using a robust trust update policy
(Eq. 11) as mentioned in [27], for the over all behavior history
and this is served as the malicious score of the vehicle which
is used as a indicator for vehicles behavior at the RSU level.
MRSU

i,t is the cumulative malicious score, PlRSU
i,t is the final

plausibility score of the vehicle being malicious and the values
of D, θ and σ are set as 200, 2, 20 respectively.

MRSU
i,t = MRSU

i,t−1 +
1

θ
Φ(MRSU

i,t−1)D(PlRSU
i,t − ERSU

i,t−1) (11)

Φ(MRSU
i,t−1) = 1− 1

1 + exp (
−(MRSU

i,t−1−D)

σ )
(12)

ERSU
i,t−1 = (MRSU

i,t−1)/D (13)

G. Deep-Q RL model at CA

In our model we have tailored the Q-learning RL agent to
select the optimal smoothing factor. The state st contains pre-
vious smoothing factor ϕ1, average reputation of the vehicles
and reward (See Figure 3).

st = ϕ1,t−1, R
RSU
avg , ret−1 (14)

The RSU calculates the average reputation as described
in [11]. The reward is computed as the ratio of the number
of true reputation reports to the total number of reputation
reports. The agent after observing the current state will select
the optimal smoothing factor.

at = ϕ1 = {ϕ11 , ϕ12 , ϕ13 , ...., ϕ1n} (15)

Subsequently, this reward is furnished to the RL agent located
in CA, which leverages it to make informed selections of
actions, represented as smoothing factors. The overarching aim
of these actions is to maximize the cumulative reward. In a
comprehensive loop, the actions determined by the RL agent
are disseminated to the vehicles, effectively compelling them
to transmit accurate reports. For our work, the deep Q-network
is a full connected network with two hidden layers.

IV. SIMULATIONS AND PERFORMANCE RESULTS

A. Simulation Settings

The simulations are carried out on a Lambda GPU work-
station AMD(R) Ryzen threadripper pro 3955wx 16 cores x32
with 128 GB RAM on a Ubuntu 20.04.5 LTS. The dynamics of
the vehicles is controlled by a Multi agent RL based navigation
model which is designed for the navigation of the vehicles in
a on ramp merging scenario, Every vehicles will broadcast
the BSM’s periodically and vehicles can also sense over a
predefined space called as sensing range with the help of the
onboard sensors, using which the vehicles will validate the
BSM of other vehicles and build a reputation score using a
dynamic reputation update policy and sends reputation report
to the roadside unit, multi level DS model along with a
centralized reputation calculation is carried out in the road
side unit to predict the false reports from the vehicles, later
the number of true reports out of total number of reports is
sent to the deep Q RL agent model as a part of the state
to find the optimal smoothing factor residing in the CA. The
Deep Q Network is a fully connected neural network which
contains one input layer, one hidden layer and one output layer.
The RL agent select the random value for smoothing factor
to explore the network for 300 episodes and starts selecting
optimal smoothing factor as a part of exploitation.

B. Performance analysis

The performance of the model is showcased in two scenarios
one with 20% attacker density and other with 80% attacker
density. The rest of the section contains plots of plausibility
scores of vehicle being malicious from level 1 reputation report
combination, level 2 reputation reports calculation, reputation
scores from the RSU and final plausibility scores of the
vehicles. A subset of the vehicles are selected for the better
representation. In this subset there are 8 vehicles names range
in [0,7] in the network, In a 20% attacker scenario vehicles
2, 5 are malicious. In a 80% attacker density vehicle 3,6 are
normal vehicles.

1) Level 1 malicious plausibility: Figures 4 (a) and (b)
represents the level 1 plausibility scores for 20% and 80%
attacker density respectively. It can be seen that the malicious
vehicles were successful in framing the normal vehicles as
malicious vehicles at the RSU.

2) Level 2 malicious plausibility: Figures 5 (a) and (b) are
generated using the plausibility of vehicle being malicious
which are calculated in the level 2 peer report verification
process for 20% and 80% attacker density respectively.
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(a) (b)

Fig. 4: (a) 20% attacker density where vehicles 2,5 are
malicious, (b) 80% attacker density where vehicles 3,6 are
normal

(a) (b)

Fig. 5: (a) 20% attacker density where vehicles 2,5 are
malicious, (b) 80% attacker density where vehicles 3,6 are
normal

3) Reputation values calculated by RSU: Figures 6 (a) and
(b) presents the values of vehicles centralized reputation in
both 20% and 80% attacker density scenario. We can see that
the RSU was able to identify the malicious vehicles behavior
in every cycle.

(a) (b)

Fig. 6: (a) 20% attacker density where vehicles 2,5 are
malicious, (b) 80% attacker density where vehicles 3,6 are
normal

4) Final malicious score of vehicles: It can be seen from the
final malicious score (See Figure 7) generated using Eq. 11,
that our hybrid malicious detection model is able to identify

the malicious vehicles in both 20% and 80% attacker density
scenarios starting from 20 iterations.

(a) (b)

Fig. 7: (a) 20% attacker density where vehicles 2,5 are
malicious, (b) 80% attacker density where vehicles 3,6 are
normal

5) Action and reward values: Figures 8 (a) and (b) show the
action and reward values of RL agent in 20% attacker density
and 80% attacker density respectively. It is evident from
Figure 8 that the RL agent performs well in both scenarios.
The reward values in the 20% attacker density ranges between
0.87 - 0.99, where as in the 80% attacker density the reward
ranges between 0.80 - 0.99. In both the cases, the RL agent,
learns the smoothing factor to be in the range of 0.1-0.4
suggesting higher weights to trust values rather than reputation
accumulated.

(a) (b)

Fig. 8: Action and reward values for: (a) 20% attacker density
where vehicles 2, 5 are malicious, (b) 80% attacker density
where vehicles 3, 6 are normal

C. Comparative Analysis

We have compared our model with deep RL algorithm
proposed in [11]. The superiority of the our multi level DS
along with deep RL over standard deep RL reputation method
[11] in the 20% and 80% attacker density can be seen from
Figure 9. Our proposed work reputation reward is high and
ranges between 0.8-0.95 where as in the case of deep RL
algorithm, reputation varies between 0.5 - 0.95. It is also
observed that the reward value decreases after 100 steps in case
of 20% attacker density and after 300 steps in 80% attacker
density.
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(a) (b)

Fig. 9: (a) 20% attacker density where vehicles 2, 5 are
malicious, (b) 80% attacker density where vehicles 3, 6 are
normal

V. CONCLUSION

We propose a three level DS model complemented by a
RL-based dynamic reputation system. By amalgamating plau-
sibility values from levels 1 and 2, as well as mass functions
generated through centralized reputation calculations, the RSU
consistently and precisely identifies malicious vehicles at each
step. This precise detection enables the calculation of accurate
reward values. These rewards are crucial for the RL agent to
determine the optimal smoothing factor based on the current
state. In both 20% and 80% attacker density scenarios, the RL
agent has learned to select ϕ1 values below 0.4 to maximize
rewards at each step. In the 20% attacker density scenario, the
RL agent consistently achieves high rewards ranging from 0.87
to 0.99. In the 80% attacker density scenario, reward values
range between 0.80 and 0.99. In the future work, we plan to
introduce other attacker models and implement different RL
algorithms such as actor-critic models, and policy gradient RL
model.
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