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Abstract—Connected Vehicles (CVs) utilize real-time data ex-
change between vehicles and infrastructure to empower coopera-
tive decision-making. This reliance on exchanged data introduces
vulnerabilities related to the integrity of the shared data, which
may be compromised by either malicious attacks or sensor
failures. While consensus-based trust estimation algorithms offer
a scalable solution for supporting data integrity, their reliability
becomes limited for scenarios in which the majority of vehicle
nodes are corrupted, a situation that mimics social conformity
norms in humans. The research described herein demonstrates an
approach for accurately estimating vehicle trustworthiness under
majority-malicious network conditions. The Degroot model for
distributed consensus formation is modified for vehicle trust esti-
mation, which serves as input to a state-of-the-art cumulative rep-
utation estimator. By drawing parallels between the behavioral
tendencies observed in human social groups and the interactions
among CVs, we aim to provide algorithmic enhancements that
can mitigate the negative security vulnerabilities of conformity.

Index Terms—connected vehicles, reputation, consensus, social
psychology

I. INTRODUCTION

Connected vehicles (CVs) are equipped with advanced
sensing, communication, and computational capabilities that
enable real-time data sharing with nearby vehicles and in-
frastructure [1]. Information is exchanged between vehicles
in the network using a standardized protocol known as a
basic safety message (BSM). This communication fosters
cooperative decision-making [2], allowing vehicles to adapt to
changing road conditions and traffic patterns more effectively.
As these collaborative capabilities evolve, it becomes impera-
tive to scrutinize vulnerabilities in CV networks resulting from
data corruption that could compromise system performance.

There are two primary factors that can introduce data
integrity vulnerabilities in CV networks. Firstly, malicious
attacks represent intentional cyber aggressions intended to dis-
rupt network operations through data falsification. Secondly,
the sensors employed within CVs may fail as part of their
normal life cycle, thereby also affecting data integrity. To
mitigate the risks posed by these vulnerabilities, specialized
algorithms have been devised to evaluate the integrity of
data provided by each vehicle. This measure of cumulative

data integrity is typically defined as the vehicle’s reputation
or trustworthiness [3]. CVs are especially well-suited for
deploying consensus-based trust algorithms since the sensors
of each node can be utilized to validate the BSMs reported by
neighboring vehicles [4].

Consensus-based trust estimation involves the aggregation
of individual trust estimates formulated on a per-vehicle basis
across the entire network. This aggregation can be formulated
using a variety of mathematical models, including Bayesian
networks [5], distributed ledger techniques [12], and graph-
based algorithms [6]. While these algorithms perform well
when the majority of vehicles in a system are benevolent, per-
formance is rarely ensured in majority-malicious conditions.
These dynamics mimic the well-established concept of social
conformity in humans.

Social conformity refers to individuals’ tendencies to align
their opinions, beliefs, and actions with the prevailing con-
sensus of the group, even when they hold differing private
convictions. For instance, the Asch conformity experiment,
one of the most iconic studies in social psychology, vividly
demonstrated the influence of group dynamics on individual
behavior [7]. Participants, when faced with unanimous incor-
rect responses from a group of confederates, often conformed
to the group’s erroneous judgment, despite the evidence of
their own senses. During the preceding decades, social con-
formity models have undergone extensive examination and
application across diverse domains, aiming to amplify system
efficiency by replicating human behavior [8]. The strengths
of these models reside in their ability to gauge the gradual
convergence of agents’ viewpoints over time. In this study,
we adopt the DeGroot opinion dynamics model of social
conformity as a means to attain consensus among the vehicles
within the system.

II. RELATED WORK

A. Models for Trust and Reputation in CV

There are approaches aimed at enhancing trust, security, and
reliability within networks of CV. Bayesian networks offer
a probabilistic framework for capturing interactions among
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vehicles, accommodating uncertain or incomplete data. In the
work referenced by [5], the authors introduced a trust man-
agement model founded on Gaussian distributions, employing
a Bayesian network. They amalgamated direct and indirect
trust values to yield a final trust value, later fortified with
input from third-party recommendations. For assessing the
model’s efficacy, a simulation of a disruptive on-off attack
was executed using Matlab, with trust value and detection
time as evaluation criteria. Outcomes indicated that the model
exhibited quicker detection times and heightened accuracy in
pinpointing on-off attacks.

Machine Learning (ML) excels at processing extensive
data, recognizing non-linear associations, and autonomously
extracting features. As detailed in [9], researchers intro-
duced an artificial intelligence and statistical data classification
framework for scrutinizing messages within CV. The model
underwent training on the US Department of Transportation
Safety Pilot Deployment Model, integrating a ML algorithm
and a local trust manager. Empirical results manifested that
the trained model proficiently anticipated false alerts, attaining
a 98% precision rate, alongside a 0.55% standard deviation
while facing 25% adversarial data.

Social network analysis, rooted in graph theory, is employed
for detecting potential security vulnerabilities. Elucidated
in [10], the authors used social network-driven bootstrapping
methods for trust management within CV networks. This
model accommodates initial trust values, node similarity, and
a comprehensive trust and reputation management system,
which accounts for historical behavior, facilitating enduring
trust establishment. Simulations, executed through Colt li-
braries in Java, displayed the model’s resilience against up
to 60% of malicious nodes, achieving a worst-case precision
of 74%.

Game-theoretic strategies emulate vehicle interactions as
demonstrated in [6]. This research explores the feasibility
of evaluating reputation management schemes for CV within
dynamically evolving attack scenarios, through the lens of
evolutionary game theory. The study simulates a CV net-
work, introducing malevolent actors with randomly initiated
attack strategies, and subsequently compares trust factor out-
comes attained via evolutionary decision-making vis-à-vis
static decision-making.

Blockchain-based algorithms create decentralized reposi-
tories of trust and reputation scores. Outlined in [11], re-
searchers propose a multi-tier authentication and trust-building
framework harnessing blockchain technology to enhance the
reliability and integrity of shared information within CV.
Experiments emulated a platoon structure, unveiling the in-
terplay between blockchain mining duration, block generation
frequency, and the influence of vehicle velocity on block
creation.

B. Models for Social Conformity

For the past several decades, social psychology has been riv-
eted by the phenomenon of social conformity. The movement
began gaining attention in the 1950s when Solomon E. Asch

carried out his famous conformity studies [15]. These studies
had participants answer a simple question, such as comparing
the length of two lines. In his most famous experiment,
participants are given a card with one line drawn on it, and then
another card with three other lines on it. One of the lines is the
same as that on the first card, and the other two are noticeably
different. The participants must then choose which line on the
second card matches the length on the first. However, only one
of the participants is the subject of the study, and the rest are
hired to give the incorrect answer. All the hired participants
respond inaccurately and the subject’s answer is then observed.
The majority of the time, the participant will agree with his
cohort and answer erroneously, even though the correct answer
is clear.

Several other experiments have been carried out proving
this phenomenon and the factors that can affect it. Studies are
often performed on the effects of gender [16], self-confidence
[17], size of the group [18], etc. Typically, women conform
more than men, lower confidence leads to a greater chance of
conformity, and the size of the majority affects the degree of
conformity [19]. Neuroscience studies have gone so far as to
state that social conformity may be linked to reinforcement
learning [20]but that claim is still up for debate [21]. It is
easy to see the theoretical connections between conforming
socially to a group and “fitting in” being seen as a reward to
the human brain.

Social conformity not only caught the attention of the
field of psychology but also mathematicians. In this respect,
opinion dynamics is used by mathematicians that measure how
people’s opinions spread throughout a social network, and how
different factors affect this spread, and how outlying opinions
can persist throughout a disagreeing network. They have also
been used for CVs such as in [22] which implemented the
LuGre model to test the reliability of vehicle velocity reports in
systems. One popular opinion dynamics model is the DeGroot
model which offers a simple, yet effective way to model social
opinions in a system. Its specific attributes will be elaborated
on later in this paper.

III. PROPOSED WORK

Several studies have explored the idea that CV behave as
part of a social network, or have a “social brain.” [25]. Frith
and Frith [23] outline the steps taken in a “social brain” during
a social interaction and many of the steps are comparable to
parts of the reputation score calculation in CV. Exploring the
concept of social-AI, particularly within the context of social
CVs, reveals the intriguing possibility of applying theories
from social psychology to these systems. Social conformity, a
phenomenon of shared behavior, requires specific conditions
to occur. These conditions encompass having agents in close
proximity within a social network, all posed with the same
question for which there are limited answers. These agents
should possess a level of trust for their peers’ opinions. They
are then required to respond and share their answers with the
network. Moreover, there needs to be some form of incentive
for giving the “right” answer or consequences for the “wrong”
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one. Considered as part of a social network, these vehicles are
positioned within proximity. Each vehicle gives peer reports of
other vehicles’ kinematic data and, based on this, a reputation
score is calculated. Depending on the system, the reputation of
vehicles can rise or fall, constituting the reward or punishment
element.

Social conformity materializes when there’s a distinction
between majority and minority opinions. In the context of
CV networks, this occurs when a cyberattack corrupts the
majority of the system. The corrupted vehicles might falsely
label the uncorrupted minority as compromised. Consequently,
the system becomes incapable of distinguishing malicious
from benign vehicles. Drawing inspiration from the concept of
social conformity and the belief that CVs function within a so-
cial network, potentially displaying conformity-like behaviors,
this study intends to adopt a variation of the DeGroot model
for calculating reputation scores in CV networks. Through
this model, the objective is to accurately identify corrupt and
uncorrupt vehicles even under conditions where the majority
of vehicles are compromised.

A. The DeGroot Model

Taking a social network consisting of a number of agents n,
each assigned an identifier, the DeGroot model will measure
the spread of opinions across the network. Each agent com-
municates with their neighbors. Initially, every agent holds a
binary opinion that denotes a specific claim. These opinions
are organized in a vertical array, x(0), where the position
in the array corresponds to the agent’s index within the
system. In future iterations, x(t) is the opinion matrix. A is
a stochastic matrix whose rows indicate the vehicle’s trust
in other vehicles’ opinions and will be referred to as the
trust matrix. Specifically, Ai,j denotes how much agent i
trusts agent j’s opinion within the opinion matrix [24]. These
opinions evolve over time, so an opinion matrix at any time t
can be seen as:

xi,t = A ∗ xi,t−1 (1)

As t increases, the group will reach an opinion consensus
and all values in xi,t will be equal. The group consensus is
measured as:

lim
t→∞

xi = At(x(0)) (2)

Where xi is the group consensus opinion for agent i.

B. Reputation Update

Our approach incorporates a model introduced by Suo [13],
inspired by Zacharia’s [14] study on reputation systems, to
update trust values. In the centralized scenario, a vehicle’s
calculated trust value is transmitted to the Trust Authority
(TA) or Public Key Infrastructure (PKI) following a metic-
ulous plausibility assessment. Subsequently, the TA employs
a customized mechanism to update the trust value, factoring
in various parameters like the learning factor θ and the impact
of previous trust ratings (See Eq. 4). The maximum trust value
D is adapted to reflect the TA’s unwavering trust in its self-
assessment, while the prior normalized trust value (E) also

holds significant importance. Moreover, a damping function
ϕ is introduced to regulate the influence of the previous trust
value on the updated one.

RTA
i,t = RTA

i,t−1 +
ϕRTA

i,t−1D(TTA
i,t − ETA

i,t−1)

θ
(3)

Here, ϕ(RTA
i,t−1) = 1− 1

1+exp

−(RTA
i,t−1

−D)

σ

and ETA
i,t−1 =

RTA
i,t−1

D .

On the contrary, the distributed approach empowers any
vehicle verifier (represented by (j)) to contribute its trust
evaluation to the TA. In our context, ′j′ pertains to the
vehicle that issues the peer report of the vehicle nearby.
The TA’s trust update mechanism not only incorporates the
verifier’s evaluation but also takes into account the verifier’s
own credibility, as demonstrated in the following equation:

RTA
i,t = RTA

i,t−1 +
ϕRTA

i,t−1R
TA
j,t−1(T

j
i,t − ETA

i,t−1)

θ
(4)

This embodies the notion that an individual’s reputation influ-
ences the perceived trustworthiness of their recommendations.
This calculation takes place when the adjacent neighbors j are
comparing their estimated positions to the reported position
of agent i as described below. This is then used to update
the value inside the opinion matrix to calculate the reputation
scores for agent i at that time stamp.

C. Modified Model

To adapt the DeGroot model for CV use case the following
modifications were made.

• Updating opinions based on internal validity: The re-
ported coordinates of vehicle i is compared to the esti-
mated coordinates given by its peer neighbor j [4]. If the
two values are within a set threshold, vehicle j updates its
opinion of vehicle i using Eq. 4. This opinion is updated
inside of agent i’s opinion matrix and the updated matrix
is fed into Eq. 5 to generate the new opinions to be used
in the next time iteration.

• Introducing weight matrix: In order to add a layer of
validity dependent on past performance, a weight matrix
is introduced. When a reported estimation aligns with the
existing estimation, the significance of both vehicles is
augmented to a weight of 2 within the matrix. Conversely,
if the reported estimation diverges from the existing one,
the weight remains at 1.

• Removing agent self-confidence: The DeGroot model
often considers a measure of self-confidence that is stored
along the diagonals of the trust matrix at position Aii.
In order to guard against over-self-confidence, the trust
matrix is updated to have 0s along the diagonals. A
similar approach is taken in the opinion matrix.

Thus with these adaptions, the equation is as follows.

xi,t = W ∗A ∗ xi,t−1 (5)

where, xi(t) is the opinion matrix which, for CV represents
the reputation of vehicle i. W denotes the weight matrix. The
algorithm first checks if a vehicle is within the designated
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adjacency range. Once vehicles are confirmed to be within this
range, estimations and reputation calculations are performed.
If vehicles are not within the range, a default level of trust is
assumed. The algorithm calculates reputation scores for each
vehicle individually. These individual scores are then averaged
to compute a mean score. This mean score is used in the
following time iteration. The incorporation of this mean score
substantially improves both the speed of convergence and the
accuracy of calculations, leading to an overall enhancement in
the algorithm’s performance.

IV. RESULTS

A. Dataset

Department of Transportation dataset on Multi-Modal Intel-
ligent Traffic Signal Systems (MMITS) [27] contains BSMs
from thirteen vehicles’ Global Positioning System (GPS) was
used in order to test the model. For testing, only the first
30,000 rows of the dataset were used, which contained BSMs
from seven vehicles over roughly twenty-one hours (74,455
seconds). This data was processed in a Python script that
randomly corrupted a selected percentage of vehicles’ data
and then used the model to calculate reputation scores.

B. Attack Models

Our model was tested on four different types of attacks
namely constant offset, ON-OFF, drift, and chronic.

1) Constant Offset Attack: A constant offset attack simula-
tion was conducted by adding constant faulty sensor readings
in the dataset using the longitude data of the vehicles:

s′(t) = s(t) + s(t) ∗ r (6)

Where s(t) is the uncorrupted measurement and s(t) ∗ r
represents the constant offset amount to be added to the
original signal. Offsets of +.5 and +10 were added to the
estimated x position of the vehicle. In a system that is 90%
corrupt, five of the vehicles are corrupted and one is not.
Figure 1 shows the reputation scores of the vehicles in the
system with +10 offset. Corrupted Vehicles are shown in red,
uncorrupted in green.

Fig. 1. Reputation scores vs time (sec) in system with 90% off-set corruption

2) ON-OFF Attack: White Gaussian noise attack was intro-
duced using a method involving the creation of a windowing
function to establish an alternating “ON-OFF” parameter.

s(t) = s(t) + η(t).w(t) (7)

Here, w(t) takes values of either 0 or 1, embodies the
characteristics of the windowing function. It is defined by
stochastic parameters that capture the temporal dynamics of
the ON-OFF attack. Specifically, when w(t) is zero, the attack
is inactive (OFF), while a value of one signifies its activation
(ON).

Performance was tested with ON-OFF attacks that turned
on or off every 10 iterations or every 100 iterations. Figure 2
shows a graph of reputation scores in a system that is 90%
corrupt and with corruption that turns on every 100 iterations
for 100 iterations and then turns off.

Fig. 2. Reputation scores vs time (sec) in system with 90% on-off corruption

3) Drift Attack: In this, we introduce a signal manipulation
by inducing a gradual drift or shift in the signal’s values. In our
approach, a drift function is introduced to determine the rate
and direction of the drift, resulting in the following expression:

s(t) = s(t) + d.t (8)

Here, d represents the drift component and t represents time
step, dictating the extent of the shift applied to the signal at
each time point. Figure 3 shows reputation scores in a system
that is 90% corrupt with drift corruption that accumulates at
a rate of 5 times the time step. Drift of 10 times the time-step
was also tested with similar results.

Fig. 3. Reputation scores vs time (sec) in system with 90% drift corruption

4) Chronic Attack: The chronic attack model introduces a
unique form of distortion characterized by an initial increase
in values similar to a drift, followed by a subsequent decrease.

s(t) = s(t) + t.g(t) (9)
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In this equation, g(t) embodies the behavior of the chronic
function, which defines how the chronic attack evolves over
time. Chronic corruption was tested by adding 10 times
the iteration number for half the simulation time, and then
subtracting 10 times the iteration number. This is shown in
Figure 4 with 90% corruption.

Fig. 4. Reputation scores vs time (sec) in system with 90% chronic corruption

Figure 5 shows the difference between using the reputation
update discussed in III.C vs updated opinions in a binary
fashion (0 or 1). The addition of reputation update significantly
increases the reputation of uncorrupted vehicles and allows for
easier distinction between corrupt and uncorrupt vehicles.

Fig. 5. Reputation scores vs time (sec) between the two models

Figure 6 shows the effect of varying the values for θ and
σ, which are the learning and forgetting factors. The vehicle
graphed was uncorrupted in a system that was 90% corrupted
with white noise. Results for the rest of the study were
generated using a θ value of 1.2 and a σ value of 0.2.

Similarly, a corrupt vehicle from each kind of corruption
was graphed in three different levels of corruption (50%, 75%,
and 90%). Figure 7 shows the reputation scores of a corrupted
vehicle for each kind of fault: chronic, drift, white noise, on-
off, and offset, in that order.

C. Comparison

We compared our model to two different algorithms, Tan-
gleCV [12] and a Bayesian-based algorithm [26]. Figure 8
shows the reputation under the Bayesian algorithm. As seen
from the figure, the reputation of corrupted and uncorrupted
vehicles cannot be distinguished. TangleCV was chosen as a
comparison because of its nature as a social psychology-based

Fig. 6. Reputation scores vs time (sec) comparing various θ and σ values

algorithm and Bayesian was chosen because of its popularity
among reputation score algorithms. We compared these algo-
rithms in all four kinds of corruption with a corruption level of
90%. Across levels of corruption, the DeGroot model showed
the most consistent high performance.

V. CONCLUSION

This paper proposed an opinion dynamics model for achiev-
ing consensus in CV networks to establish trust. The results
were validated on MMITS dataset. The model yielded accurate
results with a fast convergence rate in majority malicious
conditions. It effectively identifies malicious and benevolent
vehicles in the presence of majority-malicious scenarios, with
F1-scores ranging from 0.92 to 1.0. It demonstrates consis-
tent performance across different corruption levels, with the
enhanced reputation scheme contributing to improved results.
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