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Abstract
We study a nonlinear-nudging modification of the Azouani–Olson–Titi continuous
data assimilation (downscaling) algorithm for the 2D incompressible Navier–Stokes
equations. We give a rigorous proof that the nonlinear-nudging system is globally
well posed and, moreover, that its solutions converge to the true solution exponen-
tially fast in time. Furthermore, we also prove that once the error has decreased below
a certain order one threshold, the convergence becomes double exponentially fast in
time, up until a precision determined by the sparsity of the observed data. In addi-
tion, we demonstrate the applicability of the analytical and sharpness of the results
computationally.
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1 Introduction

Many dissipative dynamical systems that model physical processes are chaotic and
highly sensitive to initial conditions. Hence, having incomplete information about ini-
tial conditionsmakes simulating these systems accurately a difficult task. To overcome
this issue in practice, the available spatially discrete observeddata canbeused to inform
the model via a wide variety of techniques, collectively known as data assimilation.
Data assimilation can be done using a variety of different methods which incorporate
observations into the mathematical model generally using either statistical or con-
tinuous techniques. In this paper, we focus on a continuous data assimilation (CDA)
algorithm, also known as the Azouani–Olson–Titi (AOT) algorithm. The CDA algo-
rithm is based on the mathematical theory that many dissipative evolution equations
describing fluid flow have solutions that are, in large time, determined uniquely by the
values of their solutions at a finite number of adequately distributed nodes or modes
(see, e.g., Foias et al. 2001 and references therein). It incorporates observational data
into the model at the partial differential equation (PDE) level using a feedback con-
trol (nudging) term. This paper investigates the convergence of a nonlinear-nudging
version of the CDA algorithm.

The CDA algorithm was first introduced in Azouani et al. (2014); Azouani and Titi
(2014) (see also Cao et al. 2001; Hayden et al. 2011; Olson and Titi 2003, 2008 for
early ideas in this direction). The algorithm considers a dissipative dynamical system

du
dt

= F(u), (1.1)

with an unknown initial condition.We denote a given interpolation of the observations
of the unknown reference solution u at course spatial scales by Ih(u), where h is some
characteristic length scale of the observational data (e.g., the average spatial distance
between observations). These observations are incorporated via a feedback control
term in the following modified system

dv
dt

= F(v) + μ(Ih(u) − Ih(v)), (1.2a)

v(t = 0) = v0, (1.2b)

where μ > 0 is an adequately chosen positive relaxation (nudging) parameter and v0
is any sufficiently smooth initial condition. A wide class of standard interpolants Ih
are admissible by the analysis of Azouani et al. (2014) including, e.g., piecewise con-
stant interpolation, linear interpolation, and Fourier truncation, among others, making
this algorithm very adaptable for physical models and computationally inexpensive
to implement. In the context of the 2D incompressible Navier–Stokes equations with
both no-slip and periodic boundary conditions, the global well-posedness of (1.2) and
exponential convergence in time to the reference solution u of (1.1) were proved in
Azouani et al. (2014). This algorithmwas then investigated in the context of numerous
dissipative dynamical systems under a variety of assumptions including noisy data,
incorrect parameters, incorrect models, data provided discretely in time, and assim-
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ilation of only some instead of all state variables, in, e.g., (Akbas and Çibik 2020;
Albanez et al. 2016; Altaf et al. 2017; Balakrishna and Biswas 2022; Bessaih et al.
2022, 2015; Biswas et al. 2021, 2019, 2018; Biswas and Martinez 2017; Biswas and
Price 2021; Cao et al. 2022; Carlson et al. 2020, 2022; Carlson and Larios 2021;
Carlson et al. 2023; Celik et al. 2019; Chen et al. 2021; Chow et al. 2022; Desamsetti
et al. 2019, 2022; Diegel and Rebholz 2022; Clark Di Leoni et al. 2018; Du and Shiue
2021; Farhat et al. 2020, 2018, 2015, 2023, 2016a, b, c, 2017, 2019; Foias et al. 2016;
Foyash et al. 2014; Franz et al. 2022; García-Archilla and Novo 2020; García-Archilla
et al. 2020; Gardner et al. 2021; Gesho et al. 2016; Glatt-Holtz et al. 2014; Hudson
and Jolly 2019; Ibdah et al. 2020; Jolly et al. 2019, 2017; Larios and Pei 2023, 2020;
Larios et al. 2023; Larioset al. 2023; Larios et al. 2019; Larios and Victor 2021, 2023;
Lunasin and Titi 2017; Markowich et al. 2016; Martinez 2022, ?; Mondaini and Titi
2018; Pachev et al. 2022; Pei 2019; Rebholz and Zerfas 2021; Rodrigues 2021; Titi
and Trabelsi 2022; You 2022; You andXia 2022; Zauner et al. 2022; Zerfas et al. 2019)
and the references therein. In each of these papers, exponential convergence either to
0 or up to a certain measurable error regardless of the choice of initial conditions and
the slight modification required to existing models make the CDA algorithm an effi-
cient and effective data assimilation algorithm. Classical data assimilation methods
are generally statistical in nature, including the Kalman filter and its variants as well
as 4DVAR, but these methods are non-trivial to implement and computationally much
more expensive than simply running a simulation of the dynamical system alone, mak-
ing the CDA algorithm a more efficient and potentially viable alternative for use in
certain real world models (see, e.g., Desamsetti et al. 2019, 2022; Carlson et al. 2023).

The motivation for this work comes from the computational study (Larios and Pei
2023), which introduced and investigated a nonlinear version of the CDA algorithm in
the context of theKuramoto–Sivashinsky equations. This nonlinear-nudging algorithm
computationally demonstrated super-exponential convergence in time to the reference
solution for the 1D Kuramoto–Sivashinsky equations. This was later demonstrated
with a similar modification in a computational study on the 2Dmagnetohydrodynamic
equations in Hudson and Jolly (2019). In Du and Shiue (2021), the authors adapted the
nonlinear-nudging data assimilation schemes of Larios and Pei (2023) to the context of
the Lorenz equation and proved exponential (but not super-exponential) convergence.
Note that another nonlinear approach to nudgingwas proposed and studied inGermano
(2017), but using a very different method from that in the present work. In our case, in
order to simplify the practical implementation, we consider the following nonlinear-
nudging system of equations:

vt = F(v) + μN (Ih(u) − Ih(v)) + β(Ih(u) − Ih(v)), (1.3a)

v(x, 0) = v0(x), (1.3b)

where we denote, with γ ∈ [0, 1),

N (φ) :=
{
0, if ‖φ‖L2(�) = 0,

φ‖φ‖−γ

L2(�)
, if ‖φ‖L2(�) > 0.
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Note that we formally recover the linear-nudging CDA algorithm when γ = 0. As
demonstrated computationally in Hudson and Jolly (2019) and Larios and Pei (2023),
we expect that once ‖Ih(u) − Ih(v)‖L2(�) < 1, the error of the nonlinear-nudging
algorithm should enjoy a super-exponential decay rate and reach machine precision
at an earlier time than the linear-nudging algorithm.

We anticipate that this formulation should yield double exponential convergence of
the algorithm if γ ∈ (0, 1). The paradigm equations used to demonstrate the conver-
gence of this combined linear/nonlinear-nudging algorithm are the 2D incompressible
Navier–Stokes equations. Indeed, we prove here, with certain reasonable assumptions
on Ih and given a sufficiently developed reference flow, a double-exponential decay
rate of the error, at least down to a level ε > 0, determined by h and the L2 norm (the
size) of the initial data of the reference solution u (but otherwise independent of the
initial data), and other physical parameters in the system (see Theorem 4.1 for details).
We also prove that after the precision ε is reached, which happens in finite time, the
error continues to decay to zero at least at an exponential rate.

We believe the ε barrier for super-exponential convergence discussed above is
likely insurmountable due to (1) a direct observation from the method of proof (see
Remark 4.3) and (2) a heuristic argument of the same observation for a more gen-
eral dissipative system in “Appendix 7.1.” Namely, as can be seen by the arguments
“Appendix 7.1,” the nonlinear termN (Ih(u)− Ih(v)) in (1.3a) forces the large spatial
scales (e.g., low modes) to converge at a super-exponential rate; however, this process
seems to eventually destabilize the smaller spatial scales so much that they cannot be
suppressed and stabilized by the linear viscous effect, obstructing super-exponential
convergence after error becomes sufficiently small. Therefore, we expect to see super-
exponential convergence rates for early times, which then become merely exponential
for later times once the error becomes very small. Indeed, this is what we observe in
the simulations in Sect. 5.

The paper is organized as follows: in Sect. 2 we lay out notation and state defini-
tions and preliminary theorems and results for reference; in Sect. 3 we prove a global
well-posedness result for the nonlinear-nudging system (2.3); in Sect. 4 we prove the
convergence results discussed above; in Sect. 5 we investigate our results in simula-
tions. Concluding remarks are in Sect. 6.

2 Preliminaries

The convergence of the nonlinear-nudging CDA algorithmwill be proved in this paper
in the context of the 2D incompressible Navier–Stokes equations, as a paradigm, with
periodic boundary conditions. However, the result is equally valid for general dissi-
pative systems of equations with physical boundary conditions. We begin by stating
some preliminary theoretical foundations. First, the initial-boundary value problem

ut + u · ∇u − ν�u + ∇ p = f, in � × (0, T ), (2.1a)

∇ · u = 0, in � × (0, T ), (2.1b)

u(·, 0) = u0(·), in �, (2.1c)
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determines the reference solution for the data assimilation system, where u is the
velocity, p is the pressure, ν > 0 is viscosity, � = T

2 = R
2/Z2 is the domain (and

hence the domain has unit length L = 1), T > 0, f is some forcing, u0 is the initial
condition, and the system is equipped with periodic boundary conditions.

The linear-nudgingCDAalgorithmapplied to the 2D incompressibleNavier–Stokes
equations (2.1) yields the system, with μ > 0 a constant,

vt + v · ∇v − ν�v + ∇q̃ = f + μ(Ih(u) − Ih(v)), in � × (0, T ), (2.2a)

∇ · v = 0, in � × (0, T ), (2.2b)

v(·, 0) = v0(·), in �. (2.2c)

The nonlinear-nudging CDA algorithm applied to the 2D incompressible Navier–
Stokes equations (2.1) yields the system, with constants μ, β > 0,

vt + v · ∇v − ν�v + ∇q = f + μN (Ih(u) − Ih(v))

+ β(Ih(u) − Ih(v)), in � × (0, T ), (2.3a)

∇ · v = 0, in � × (0, T ), (2.3b)

v(·, 0) = v0(·), in �. (2.3c)

We recall the following well-known spaces. Let

V = {u ∈ Ċ∞
p (�) : ∇ · u = 0},

where Ċ∞
p (�) is the space of infinitely differentiable, mean-free, periodic functions

on the torus. We denote H to be the closure of V in L2 and V to be the closure of V
in H1. The inner-product on H is the usual L2 inner-product,

(u, v) :=
∫

�

2∑
i=1

ui (x)vi (x)dx, u, v ∈ H ,

and we denote the inner-product on V by

((u, v)) :=
∫

�

2∑
i, j=1

∂u j

∂xi
(x)

∂v j

∂xi
(x)dx, u, v ∈ V .

These yield the following norms.

‖u‖H := √
(u,u), ‖u‖V := √

((u,u)).

Note that the definiteness of the V-norm follows from the Poincaré inequality (see,
e.g., Constantin and Foias 1988; Evans 2010; Temam 2001).

Define L̇2(�) to be the space of mean-free L2 functions on�. We denote the Leray
projector as Pσ : L̇2(�) → H , where for smooth functionsw, Pσw = w−∇�−1∇·w,
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(the inverse Laplacian being computed with respect to periodic boundary conditions
and the mean-free condition), and Pσ is extended to L̇2(�) by continuity (see, e.g.,
Constantin and Foias 1988; Temam 2001). We denote A : D(A) → H and B :
V × V → V ∗, where A and B are continuous extensions of the operators

Au = −Pσ �u, u ∈ V,

B(u, v) = Pσ ((u · ∇)v), u, v ∈ V,

whereD(A) := V ∩ H2(�). Note that A is a linear, self-adjoint, and positive definite
operator with compact inverse, so there exists an orthonormal basis of eigenfunctions
{wi }i∈N in H such that Awi = λiwi , with eigenvalues λi > 0 that are monotonically
nondecreasing in i (see, e.g., Constantin and Foias 1988; Temam 2001; Robinson
2001). Moreover, observe in this case (the case of periodic boundary conditions) that
A = −�. Furthermore, the following versions of Poincaré inequality hold,

λ1‖u‖2H ≤ ‖∇u‖2H for u ∈ V ,

λ1‖∇u‖2H ≤ ‖Au‖2H for u ∈ D(A),

where λ1 = 4π2 is the first eigenvalue of the Stokes operator on �.
Moreover, the bilinear operator, B, has the property that

〈B(u, v),w〉V ∗,V = −〈B(u,w), v〉V ∗,V (2.4)

for all u, v,w ∈ V ; below, we denote 〈·, ·〉 := 〈·, ·〉V ∗,V . This implies the following
identity

〈B(u, v), v〉 = 0 (2.5)

for all u, v ∈ V . Finally, the following standard inequalities hold (see, e.g., Constantin
and Foias 1988; Foias et al. 2001; Robinson 2001; Temam 2001; Temam 1995)

| 〈B(u, v),w〉 | ≤ c‖u‖1/2H ‖u‖1/2V ‖v‖V ‖w‖1/2H ‖w‖1/2V , for u, v,w ∈ V , (2.6)

| 〈B(u, v),w〉 | ≤ c‖u‖1/2H ‖Au‖1/2H ‖v‖V ‖w‖H , for u ∈ D(A), v ∈ V ,w ∈ H .

(2.7)

In this setting of 2D periodic boundary conditions, the following identity holds
(see, e.g., Constantin and Foias 1988; Robinson 2001; Temam 2001)

(B(w,w), Aw) = 0 for every w ∈ D(A). (2.8)

This implies the identity

(B(u,w), Aw) + (B(w,u), Aw) = −(B(w,w), Au) for all u,w ∈ D(A). (2.9)
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We assume that f ∈ L∞(0, T ; H) so that Pσ f = f (without loss of generality, since
the gradient part of f can be absorbed into the pressure gradient). Formally applying
the Leray projection to (2.1) yields the equivalent evolution system

ut + B(u,u) + νAu = f, (2.10)

u(x, 0) = u0(x). (2.11)

Similarly, the Leray projection can be formally applied to (2.2) to obtain the system

vt + B(v, v) + νAv = f + μPσ (Ih(u) − Ih(v)), (2.12)

v(x, 0) = v0(x). (2.13)

and to (2.3) to obtain the system

vt + B(v, v) + νAv = f + μPσN (Ih(u) − Ih(v)), (2.14)

+ βPσ (Ih(u) − Ih(v)),

v(x, 0) = v0(x). (2.15)

where for all w ∈ L2(�), we recall N (w) :=
{

‖w‖−γ

H w, ‖w‖H 
= 0,

0, ‖w‖H = 0.

Note that, with this choice of N , μ has units (length)2γ /(time)1+γ , whereas β has
units 1/(time).

The pressure gradient can be recovered by employing the following corollary of de
Rham’s Theorem (see, e.g., Temam 2001; Foias et al. 2001; Wang 1993):

g = ∇ p with p a distribution if and only if 〈g,h〉 = 0 for all h ∈ V.

Under this framework, we define the notion of a strong solution for the systems
(2.10), (2.12), and (2.14) (see, e.g., Constantin andFoias 1988;Robinson 2001; Temam
2001; Foias et al. 2001).

Definition 2.1 A strong solution of (2.10), (2.12), or (2.14) is a function u ∈
C([0, T ]; V ) ∩ L2(0, T ;D(A)) such that the equality in the system (2.10), (2.12),
or (2.14) is satisfied in L2(0, T ; H), and its time derivative du

dt ∈ L2(0, T ; H).

We cite the classical result of the existence of global strong solutions for (2.1)

Theorem 2.2 Given initial data u0 ∈ V and a forcing function f ∈ L2(0, T ; H), there
exists a unique strong solution to (2.10)u such thatu ∈ C([0, T ]; V )∩L2(0, T ;D(A))

and du
dt ∈ L2(0, T ; H).

For (2.10), we denote the dimensionless Grashof number as

G = 1

λ1ν2
lim sup
t→∞

‖f(t)‖H . (2.16)
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The following theorem, see, e.g., (Robinson 2001; Temam 2001; Constantin and
Foias 1988; Foias et al. 2001; Dascaliuc et al. 2010), details results on the large-time
behavior of the strong solutions to (2.1).

Theorem 2.3 Fix T > 0. Suppose that u is a strong solution of (2.1), corresponding
to the initial data u0 ∈ V . Then there exists a time t0 ≥ 0 which depends on ‖u0‖H
such that for all t ≥ t0,

‖u(t)‖2H ≤ 2G2ν2 and

t+T∫
t

‖u(τ )‖2V dτ ≤ 2 (1 + Tλ1ν)G2ν, (2.17)

moreover

‖u(t)‖2V ≤ 2λ1G
2ν2,

t+T∫
t

‖Au(τ )‖2Hdτ ≤ 2 (1 + Tλ1ν) λ1G
2ν. (2.18)

Furthermore, if f ∈ H is time independent, then

‖Au(t)‖2H ≤ λ21ν
2c(1 + G)4. (2.19)

We assume throughout the present work that the operator Ih is a linear operator
satisfying the following conditions

‖φ − Ih(φ)‖2L2(�)
≤ c0h

2‖∇φ‖2L2(�)
, for all φ ∈ Ḣ1(�), (2.20a)∫

�

Ih(φ) = 0 whenever
∫

�

φ = 0. (2.20b)

In our theorems, we make various additional assumptions about the interpolant Ih . We
record these here for reference, though we note that some of our theorems hypothesize
only a subset of these assumptions.

I 2h = Ih, (2.21a)

(Ih(φ),ψ) = (φ, Ih(ψ)) for all φ,ψ ∈ L̇2(�), (2.21b)

(Ihφ,φ) ≥ 0 for all φ ∈ L̇2(�), (2.21c)

‖Ihφ‖L2(�) ≤ α‖φ‖L2(�) for some α > 0 and for all φ ∈ L̇2(�), (2.21d)

(Ihφ, Aφ) ≥ 0 and for all φ ∈ D(A). (2.21e)

Note that Fourier truncation and local averaging over finite volume elements are both
operators that satisfy (2.20) (see, e.g., Azouani et al. 2014; Cockburn et al. 1997; Jones
and Titi 1993; Brenner and Scott 2008). There seems to be a technical constraint
on allowing more general interpolants, cf. Remark 4.8. Since we are working in a
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mean-free space Poincaré’s inequality applies, and combined with (2.20) we have the
following bound on ‖Ih(φ)‖L2(�):

‖Ih(φ)‖L2(�) ≤ ‖φ − Ih(φ)‖L2(�) + ‖φ‖L2(�),

≤ √
c0h‖∇φ‖L2(�) + λ

−1/2
1 ‖∇φ‖L2(�),

= (
√
c0h + λ

−1/2
1 )‖∇φ‖L2(�). (2.22)

For uniqueness of solutions to the nonlinear-nudging system and the convergence of
the solutions of the nonlinear-nudging system to the unknown reference solution of
(2.1), we will make various assumptions on the linear interpolant Ih , namely (2.21c)
and (2.21d).

For reference, we state the existence and convergence theorems of the linear-
nudging CDA algorithm as proved in Azouani et al. (2014).

Theorem 2.4 (Azouani et al. 2014) Suppose Ih satisfies (2.20), v0 ∈ V , and μc0h2 ≤
ν, where c0 is the constant in (2.20). Then system (2.12) has a unique strong solution
such that

v ∈ C([0, T ]; V ) ∩ L2(0, T ;D(A)) and
dv
dt

∈ L2(0, T ; H),

for any T > 0. Furthermore, this solution depends continuously on the initial data v0
in the V norm.

Theorem 2.5 (Azouani et al. 2014) Let � = T
2 and let u be a solution to (2.10) with

periodic boundary conditions. Let Ih satisfy (2.20). Then providedμ ≥ 5λ1c2νG2 and

h ≤
(

1
10λ1c2c0G2

)1/2
, for any v0 ∈ V the solution to (2.12) converges to the solution

of (2.10) in H exponentially fast as t → ∞, with exponential rate μ/2.

Theorem 2.6 (Azouani et al. 2014) Let � = T
2 and let u be a solution to (2.10) with

periodic boundary conditions. Let Ih satisfy (2.20). Then provided μc0h2 ≤ ν and
μ ≥ 3νλ1(2c log(2c3/2 + 8c log(1 + G))G where c is a constant dependent on the
size of the domain, for any v0 ∈ V the solution to (2.12) converges to the solution of
(2.10) in V exponentially fast as t → ∞, with exponential rate μ/2.

For proofs of similar theorems in this paper, we will use the well-known Aubin’s
compactness theorem and Schauder’s fixed point theorem, which we include for the
sake of completeness.

Theorem 2.7 (Aubin’s Compactness Theorem, Theorem 8.1 in Robinson (2001)) Let
X ⊂⊂ Z ⊂ Y be Banach spaces, with X reflexive. Suppose un is a uniformly bounded
sequence in L2(0, T ; X) and dun

dt is uniformly bounded in L p(0, T ; Y ) for some p > 1.
Then there is a subsequence that converges strongly in L2(0, T ; Z).

Theorem 2.8 (Schauder’s Fixed Point Theorem, Evans (2010)) Let X be a real Banach
space. Suppose K ⊂ X is compact and convex, and that the map A : K → K is
continuous. Then A has a fixed point in K .
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We will also employ the following elementary lemma, the proof of which is in
“Appendix.”

Lemma 2.9 Fix γ ∈ (0, 1) and ε > 0. Given a > 0 and

δ := min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a/2, a

2−γ
2

⎛
⎜⎜⎝ ε(

2−γ
2

) 2−γ
γ −

(
2−γ
2

) 2
γ

⎞
⎟⎟⎠

γ
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

then the function f : [0,∞) �→ R defined by

f (x) = ax2 − δx2−γ ,

satisfies f (x) ≥ −ε for all x ≥ 0.

3 Global Existence and Uniqueness of the Nonlinear-Nudging System

Before we can prove convergence of the solutions of (2.3) to the reference solution u
of (2.1), we must demonstrate that solutions to (2.3) exist globally in time; we employ
fixed pointmethods. The advantage of this approach ismany-fold, harnessing the prop-
erties of solutions to the Navier–Stokes equation directly and using the monotonicity
of the nonlinear-nudging term to best effect.

Remark 3.1 Note that in the theorems, in the following sections, we claim that we
critically assume 0 < μc0h2 < ν, and we remark there is a constant 1 multiplying μ

to maintain proper units.

Theorem 3.2 Let T > 0. Suppose Ih satisfies (2.20), 0 < μc0h2 < ν, and 0 <

βc0h2 < ν. Fix 0 < γ < 1. Let v0 ∈ V be initial data and f ∈ H be the time-
independent forcing function for (2.14). Let u ∈ C([0, T ]; V ) ∩ L2(0, T ;D(A)) be a
strong solution to system (2.10)with initial data u0 ∈ V and the same forcing function
f . Then there exists a strong solution v ∈ C([0, T ]; V ) ∩ L2(0, T ;D(A)) to system
(2.14).

Proof Given v ∈ L2(0, T ; V ), consider the system

ũt + B (̃u, ũ) + νAũ = g(v), (3.1)

ũ(x, 0) = v0(x). (3.2)

Once we prove that

g(v) = f + μPσN (Ih(u − v)) + βPσ Ih(u − v)

maps elements v ∈ L2(0, T ; V ) to L2(0, T ; H), this will guarantee the existence
of an operator F : L2(0, T ; V ) → C([0, T ]; V ) ∩ L2(0, T ;D(A)), in particular
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F : v �→ ũ, where ũ is the standard solution to the NSE given by Theorem 2.2. Indeed,
by assumption f ∈ H and hence trivially

∫ T
0 |f |2dx = T |f |2 < ∞, so we only need

to prove that the second and third terms of g reside in L2(0, T ; H):

∫ T

0
‖PσN (Ih(u − v))‖2Hdt

≤
∫ T

0
‖N (Ih(u − v))‖2L2(�)

dt =
∫ T

0
‖Ih(u − v)‖2(1−γ )

L2(�)
dt

≤ (λ
−1/2
1 + h

√
c0)

2(1−γ )

∫ T

0
‖u − v‖2(1−γ )

V dt

≤ 22(1−γ )(λ
−1/2
1 + h

√
c0)

2(1−γ )

∫ T

0

(
‖u‖2(1−γ )

V + ‖v‖2(1−γ )

V

)
dt

≤ 22(1−γ )(λ
−1/2
1 + h

√
c0)

2(1−γ )T γ
(
‖u‖2(1−γ )

L2(0,T ;V )
+ ‖v‖2(1−γ )

L2(0,T ;V )

)
< ∞, (3.3)

where for the second inequality, we applied (2.22). The same analysis with γ = 0
shows that the third term is also in L2(0, T ; H). Thus, g(v) ∈ L2(0, T ; H) for any v ∈
L2(0, T ; V ). Next, we show g : L2(0, T ; V ) → L2(0, T ; H) is continuous. To this
end, let vk → v in L2(0, T ; V ). For the sake of contradiction suppose there exists an
ε0 > 0 and a subsequence {vk j } such that ‖g(vk j )−g(v)‖L2(0,T ;H) ≥ ε0. Since ‖vk j −
v‖L2(0,T ;V ) → 0, there exists a subsequence {vk jl } such that ‖vk jl (t) − v(t)‖V → 0
for almost every t ∈ [0, T ]. This implies that ‖Ih(u − vk jl ) − Ih(u − v)‖H → 0

pointwise a.e. in time by (2.22), so that ‖g(vk jl )−g(v)‖2H → 0 pointwise a.e. in time.

Furthermore, there exists w ∈ L2(0, T ; V ) such that ‖Ih(u− vk jl )‖H ≤ ‖w‖V for all
k jl ∈ N and for a.e. t ∈ [0, T ]; then
∫ T

0
‖g(vk jl ) − g(v)‖2Hdt

≤
∫ T

0

(
μ‖Ih(u − vk jl )‖

1−γ

H + μ‖Ih(u − v)‖1−γ

H

+ β‖Ih(vk jl − u)‖H + β‖Ih(v − u)‖H
)2
dt

≤
∫ T

0

(
μ‖w‖2(1−γ )

V + β‖w‖2V + μ‖Ih(u − v)‖1−γ

H + β‖Ih(u − v)‖H
)2

< ∞,

where the finiteness follows directly from the bounds computed in (3.3). Hence,
by the Lebesgue Dominated Convergence Theorem, g(vk jl ) → g(v) strongly in

L2(0, T ; H). This is a contradiction, and hence g : L2(0, T ; V ) → L2(0, T ; H)

is continuous. By these arguments, g(v) ∈ L2(0, T ; H), and thus, F is now well
defined as guaranteed by Theorem 2.2.

To show that F is continuous, take a sequence {vk} ⊂ L2(0, T ; V ) with vk → v
in L2(0, T ; V ), with the associated sequence of solutions F(vk) = ũk to (3.1). Let
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M > 0 be such that ‖vk‖L2(0,T ;V ) ≤ M for all k ∈ N. Take the H inner-product of
(3.1) with Aũk and use standard energy estimate techniques to obtain

1

2

d

dt
‖̃uk‖2V + ν‖Aũk‖2H ≤ 1

2ν
‖g(vk)‖2H + ν

2
‖Aũk‖2H

hence

d

dt
‖̃uk‖2V + ν‖Aũk‖2H ≤ 1

ν
‖g(vk)‖2H ,

which implies that since the initial data are independent of k,

‖̃uk(t)‖2V + ν

∫ t

0
‖Aũk‖2Hdt ≤ ‖̃uk(0)‖2V + 1

ν

∫ t

0
‖g(vk)‖2Hdt

≤ ‖v0‖2V + 2

ν
T ‖ f ‖2H + Cγ (μ, h)

ν
T γ (‖u‖2(1−γ )

L2(0,T ;V )
+ ‖vk‖2(1−γ )

L2(0,T ;V )
)

+ C(β, h)

ν
(‖u‖2L2(0,T ;V )

+ ‖vk‖2L2(0,T ;V )
)

≤ ‖v0‖2V + 2

ν
T ‖ f ‖2H + Cγ (h, μ)

ν
T γ (‖u‖2(1−γ )

L2(0,T ;V )
+ M2(1−γ ))

+ C(β, h)

ν
(‖u‖2L2(0,T ;V )

+ M2), (3.4)

where Cγ (h, μ) = 22−γ μ2
(√

c0h + λ
− 1

2
1

)2(1−γ )

and C(h, β) = 4β2

(√
c0h + λ

− 1
2

1

)2

.

By (3.4),weknow that {ũk} is uniformlybounded inC([0, T ]; V )∩L2(0, T ;D(A)).
We show that {ũk} is a Cauchy sequence. Let m ≥ k and wm,k = ũm − ũk ; then wm,k

satisfies

d

dt
wm,k + νAwm,k + B(ũk ,wm,k) + B(wm,k , ũk) + B(wm,k ,wm,k) = g(vk) − g(vm).

(3.5)

Taking the inner product with Awm,k in H and applying (2.8), (2.9),

1

2

d

dt
‖wm,k‖2V + ν‖Awm,k‖2H = (B(wm,k,wm,k), Aũk) + (g(vk) − g(vm), Awm,k).

(3.6)

Thus, employing Poincaré’s and Young’s inequalities,
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1

2

d

dt
‖wm,k‖2V + ν‖Awm,k‖2H ≤ c‖wm,k‖

1
2
H‖Awm,k‖

1
2
H‖wm,k‖V ‖Aũk‖H

+ ‖g(vk) − g(vm)‖H‖Awm,k‖H
≤ c

4
3 λ

− 1
3

1 ν−3‖Aũk‖
4
3
H‖wm,k‖2V

+ ν

2
‖Awm,k‖2H + 1

ν
‖g(vk) − g(vm)‖2H , (3.7)

which yields

d

dt
‖wm,k‖2V + ν‖Awm,k‖2H ≤ 2c

4
3 λ

− 1
3

1 ν−3‖Aũk‖
4
3
H‖wm,k‖2V + 2

ν
‖g(vk) − g(vm)‖2H

(3.8)

which implies, with c̃ = 2c
4
3 λ

− 1
3

1 ν−3

d

dt
‖wm,k‖2V ≤ c̃‖AũK ‖

4
3
H‖wm,k‖2V + 2

ν
‖g(vk) − g(vm)‖2H (3.9)

and by Grönwall’s inequality, (since wk,m(0) = 0),

‖wk,m(t)‖2V ≤
∫ t

0
exp

(
c̃
∫ t

s
‖Aũk(τ )‖

4
3
Hdτ

)
2

ν
‖g(vk(s)) − g(vm(s))‖2Hds

(3.10)

≤ exp

(
c̃
∫ T

0
‖Aũk(τ )‖

4
3
Hdτ

)∫ T

0

2

ν
‖g(vk(s)) − g(vm(s))‖2Hds

(3.11)

Thus, taking the supremum and applying Hölder’s inequality,

sup
0≤t≤T

‖wk,m(t)‖2V ≤ exp

⎛
⎝c̃

(∫ T

0
‖Aũk(τ )‖2Hdτ

) 2
3

T
1
3

⎞
⎠ ‖g(vk(s))

− g(vm(s))‖2L2(0,T ;H)
. (3.12)

By the uniform bound on ‖Aũk(τ )‖2
L2(0,T ;H)

and since g is continuous, we have
the {ũk} is Cauchy in the C([0, T ]; V ) norm; hence, it converges to some ũ ∈
C([0, T ]; V ). Next, we directly integrate (3.8), using wk,m(0) = 0, to obtain

ν

∫ T

0
‖Awm,k‖2Hds ≤ c̃

(∫ T

0
‖Aũk(s)‖2Hds

) 2
3

T
1
3

(
sup

0≤t≤T
‖wm,k‖2V

)

+ 2

ν
‖g(vk) − g(vm)‖2L2(0,T ;H)

, (3.13)
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which implies that {Aũk} is Cauchy in L2(0, T ; H) and converges to Aũ in this norm.
Next, we show that dũk

dt → dũ
dt in L2(0, T ; H). First we observe that, via (2.7),

‖B(ũk, ũk) − B(ũ, ũ)‖H + ‖B(ũk, ũ)‖H + ‖B(ũk, ũk − ũ)‖H
≤ c‖ũk − ũ‖

1
2
H‖Aũk − Aũ‖

1
2
H‖ũ‖V + c‖ũk‖

1
2
H‖Aũk‖

1
2
H‖ũk − ũ‖V . (3.14)

And thus,

∫ T

0
‖B (̃uk − ũ, ũk − ũ)‖2Hdt ≤ c

1

λ1
‖̃u‖2L∞(0,T ;V )‖Aũk − Aũ‖2L2(0,T ;H)

+ c‖̃uk − ũ‖2L∞(0,T ;V )‖̃uk‖L2(0,T ;H)‖Aũk‖L2(0,T ;H),

which from the fact that ũk → ũ strongly in C([0, T ]; V ) ∩ L2(0, T ;D(A)) implies
B(ũk, ũk) converges to B(ũ, ũ) in L2(0, T ; H). Since

dũk
dt

= −νAũk − B(ũk, ũk) + g(vk), (3.15)

the right-hand side converges in L2(0, T ; H), thus dũk
dt converges to dũ

dt in L
2(0, T ; H).

Thus, F(vk) → F(v) in C([0, T ]; V ) ∩ L2(0, T ;D(A)).
Next we show that F is a compact operator on L2(0, T ; V ). For any bounded

sequence {vk} ⊂ L2(0, T ; V ) the estimate (3.4) holds, implying that {̃uk} is uniformly
bounded, in particular, in L2(0, T ;D(A)), and the same arguments can be followed
(3.15) show uniform boundedness instead of convergence, i.e., { dũkdt } is uniformly
bounded in L2(0, T ; H). Thus, by Aubin’s Compactness Theorem, there exists a
subsequence {vk j } such that F(vk j ) = ũk j converges strongly in L2(0, T ; V ). Thus,
F is a (nonlinear) continuous compact operator.

We implement a version of the Schauder Fixed Point Theorem which states that
for a closed, bounded, convex set B in a Banach space X , if F : X → X is a compact
operator such that F : B → B, then F has a fixed point in B, (see, e.g., Conway

1990). For given initial data v0 ∈ V , fix R >
‖v0‖2V
νλ1

. Set1

T∗ := R

νλ1R + 1
ν2λ1

‖f‖2H + Cγ (h,μ)

ν1+γ λ
γ
1

(
‖u‖2(1−γ )

L2(0,T ;V )
+ R(1−γ )

)
+ C(h,β)

ν

(
‖u‖2

L2(0,T ;V )
+ R

) .

and

B :=
{
v ∈ L2(0, T ; V ) :

∫ T∗

0
‖v‖2V ≤ R

}
;

1 It is straightforward, though slightly laborious, to check that the expression for T∗ is dimensionally
correct.
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in particular note that the chosen B is closed, bounded, and convex. Notice that T∗ <
1

νλ1
. Given any v ∈ B, we note that by definition F(v) = ũ ∈ C([0, T∗]; V ) ∩

L2(0, T∗;D(A)) and thus ũ ∈ L2(0, T∗; V ). Moreover, using an identical estimate to
the first inequality in (3.4), except that we integrate over [0, T∗] and use g(v) instead
of g(vk), we obtain

∫ T∗

0
‖̃u‖2V dt ≤ T∗‖v0‖2V + 1

ν
T 2∗ ‖f‖2H

+ T 1+γ∗
Cγ (h, μ)

ν

((∫ T∗

0
‖u‖2V

)1−γ

+
(∫ T∗

0
‖v‖2V

)1−γ
)

+ T∗
C(β, h)

ν

(∫ T∗

0
‖u‖2V +

∫ T∗

0
‖v‖2V

)

≤ T∗
(
νλ1R + 1

ν
T∗‖f‖2H + Cγ (h, μ)

ν
T γ∗

(
‖u‖2(1−γ )

L2(0,T ;V )
+ R1−γ

)
+ C(β, h)

ν

(
‖u‖2L2(0,T ;V )

+ R
) )

≤ T∗
(
νλ1R + 1

ν2λ1
‖f‖2H + Cγ (h, μ)

ν1+γ λ
γ
1

(
‖u‖2(1−γ )

L2(0,T ;V )
+ R1−γ

)

+ C(β, h)

ν

(
‖u‖2L2(0,T ;V )

+ R
) )

≤ R

by the definition of T∗. In other words, ũ ∈ B, and hence, F : B → B. Since F
is compact on L2(0, T ; V ), there exists a fixed point of F in B, i.e., F(v) = v on
[0, T∗]. Call this fixed point v1 ∈ C([0, T ∗]; V ) ∩ L2(0, T ∗;D(A)). Consider (3.1)
with initial data v1(T∗/2) (which is allowed, because solutions must be continuous in

time). Now choose R̃ > max

{
R,

‖v1(T∗/2)‖2V
νλ1

}
and

B̃ :=
{
v ∈ L2(0, T ; V ) :

∫ T̃∗

T∗/2
‖v‖2V ≤ R̃

}
(3.16)

and

T̃ ∗ := T∗
2

+ �T ,

where

�T = R̃

νλ1 R̃ + 1
ν2λ1

‖f‖2H + Cγ (h,μ)

ν1+γ λ
γ
1

(
‖u‖2(1−γ )

L2(0,T ;V )
+ R̃(1−γ )

)
+ C(h,β)

ν

(
‖u‖2

L2(0,T ;V )
+ R̃

) .

Notice that T∗/2 < T∗ < T̃∗, and notice, moreover, that the length �T of the interval
is slightly larger than that of the previous interval because the function x

a+bx1−γ +cx
is
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monotonically increasing in x for a, b, c, x > 0. Integrating from T∗/2 to T̃∗ yields
that ‖̃u‖2

L2(T∗/2,T̃∗;V )
≤ R̃ implying that ũ ∈ B. Hence, F has a fixed point v2 ∈ B̃ such

that F(v2) = v2 on [T∗/2, T̃∗], and moreover, v2(T∗/2) = v1(T∗/2). By induction on
T̃∗, F has a fixed point v ∈ C([0, T ]; V ) ∩ L2(0, T ;D(A)). ��

Remark 3.3 Alternatively one can use Schaefer’s Fixed Point Theorem in which one
does not have to bootstrap in time as in the above proof.

Theorem 3.4 Suppose Ih satisfies (2.20), (2.21a), and (2.21b). Then system (2.14)with
initial data v0 ∈ V possesses a unique strong solution.

Proof Suppose v1 and v2 are two strong solutions to (2.3) with the same initial con-
dition. Let w1 = u − v1, w2 = u − v2, and V := v1 − v2 = w2 −w1. Then V solves
the system

dV
dt

+ νAV + B(V, v1) + B(v2,V) = μPσ (N (Ih(w1)) − N (Ih(w2)))

− β Ih(V)

∇ · V = 0

V(x, 0) = 0.

We prove that N is a monotone operator on L2(�): given u1,u2 ∈ L2(�), with
u1 
= u2 and nonzero (the proof is similar if for instance u2 = 0),

(‖u1‖−γ

H u1 − ‖u2‖−γ

H u2,u1 − u2)

= ‖u1‖2−γ

H + ‖u2‖2−γ

H − (‖u1‖−γ

H + ‖u2‖−γ

H )(u1,u2)

≥ ‖u1‖2−γ

H + ‖u2‖2−γ

H − (‖u1‖−γ

H + ‖u2‖−γ

H )‖u1‖H‖u2‖H
= ‖u1‖2−γ

H − ‖u1‖1−γ

H ‖u2‖H + ‖u2‖2−γ

H − ‖u2‖1−γ

H ‖u1‖H
= (‖u1‖1−γ

H − ‖u2‖1−γ

H )(‖u1‖H − ‖u2‖H )

≥ 0.

Since Ih is linear and satisfies (2.21a), (2.21b), we take the inner-product with V

1

2

d

dt
‖V‖2H + ν‖V‖2V

= −(B(V, v1),V) + μ(Pσ (N (Ih(w1)) − N (Ih(w2))),V) − β(Ih(V),V)

= −(B(V, v1),V) − μ

⎛
⎝ Ih(w1)

‖Ih(w1)‖γ

L2(�)

− Ih(w2)

‖Ih(w2)‖γ

L2(�)

,w1 − w2

⎞
⎠ − β‖Ih(V)‖2

≤ −(B(V, v1),V) − μ

⎛
⎝Ih

⎛
⎝ w1

‖Ih(w1)‖γ

L2(�)

− w2

‖Ih(w2)‖γ

L2(�)

⎞
⎠ ,w1 − w2

⎞
⎠
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= −(B(V, v1),V) − μ

⎛
⎝Ih

⎛
⎝ w1

‖Ih(w1)‖γ

L2(�)

− w2

‖Ih(w2)‖γ

L2(�)

⎞
⎠ , Ih(w1 − w2)

⎞
⎠

= −(B(V, v1),V) − μ (N (Ihw1) − N (Ihw2), Ih(w1) − Ih(w2)) (3.17)

where monotonicity now implies we can drop the middle term to obtain

≤ −(B(V, v1),V)

≤ c‖v1‖V ‖V‖H‖V‖V
≤ c2

2ν
‖v1‖2V ‖V‖2H + ν

2
‖V‖2V .

Hence,

d

dt
‖V‖2H + ν‖V‖2V ≤ c2

ν
‖v1‖2V ‖V‖2H .

Integrating in time, we obtain

‖V(t)‖2H ≤ ‖V(0)‖2He
c2
ν

∫ t
0 ‖v1‖2V ds = 0.

Thus, v1 = v2, and strong solutions to (2.3) are unique. ��
Remark 3.5 Notice that if β = 0, the proof for existence/uniqueness holds for the full
range of values of ‖Ih(u − v)‖H .

4 Convergence

In this section, we prove that solutions to (2.14) converge to the solution of (2.10) at
least exponentially. Given a prescribed error ε > 0, v a strong solution to (2.14) and
u a strong solution to (2.10), we prove that if ‖u − v‖ is not less than epsilon before
the exponential convergence of the solutions begins, then there is a small interval
in time in which ‖v − u‖ converges in finite time at least at a double-exponential
rate and in finite time in both the H and V norms up to the chosen small error ε.
To demonstrate the double-exponential convergence, we use the simple fact that for
y ∈ (0, 1], 1 − y−γ ≤ log(yγ ).

For the convergence in H , we make the assumption that Ih satisfies (2.20), (2.21c),
and (2.21d). For instance, interpolants given by projection onto low Fourier modes
and local averaging over finite volume elements satisfy these conditions. The proof
for the convergence in the V norm holds for the case for interpolants that satisfy
(2.20) with the additional assumption of (2.21e), which holds, e.g., in the case where
Ih is a projection onto low Fourier modes. Hence, the convergence theorems below
will consider the (2.14) initialized with data based on evolving (2.12) past a specific,
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sufficient large time (depending only on known system parameters and observable
data).

We now introduce a less restrictive assumption than (2.21b), namely (2.21c), which
will be employed to show the convergence of all strong solutions of (2.14) to the
corresponding unique reference solution of (2.10). Specifically, since we no longer
assume that (2.21b) holds, we do not necessarily have a unique strong solution to
(2.14), but we have global existence by Theorem 3.2. Therefore, we will show in
Theorem 4.1 that all the strong solutions to (2.14) under assumption (2.21c), regardless
of their uniqueness, converge to the unique strong reference solution of (2.10).

Theorem 4.1 Fix 0 < γ < 1. Let Ih be an interpolant satisfying (2.20), (2.21c), and
(2.21d). Let v ∈ C([0, T ]; V ) ∩ L2(0, T ;D(A)) be a strong solution to (2.14) with
initial data v0 ∈ V and time-independent forcing f ∈ H and u ∈ C([0, T ]; V ) ∩
L2(0, T ;D(A)) the strong solution to (2.10) with initial data u0 ∈ V and the same

forcing f . Fix 0 < ε � min

{
1, e− αγ

γμ ,
(

μα−γ

μα−γ +1

)1/γ
, ‖u(0) − v(0)‖H

}
. Let μ, β be

chosen so that

μ > max

{
5c2λ1G

2ν, αγ c2λ1G
2ν,

αγ

γ

}
, β > c2λ1G

2ν (4.1)

where c, α are the specified constants in (2.6), (2.21d), respectively. Let h > 0 be
given so that

• μc0h2 < ν/2,
• βc0h2 < ν, and

• h ≤ aαγ (ε/2)γ /2(ν)1−γ /2

μ
√
c0

,

where2

a :=
((

2 − γ

2

)(2−γ )/γ

−
(
2 − γ

2

)2/γ
)γ /2

λ
(1−γ )/2
1 2γ /2−1

= (2 − γ )1−
γ
2 γ γ/2λ

(1−γ )/2
1 2

γ
2 −2.

Then for all t ≥ t̃ (where t̃ is as prescribed in Theorem 2.3), ‖v − u‖2H → 0 at least
exponentially as in Azouani et al. (2014). If ‖v(t̃) − u(t̃)‖H > ε, then there is a time
interval [t0, t∗] such that ‖v − u‖2H → ε at a double-exponential rate. In particular,

‖v(t) − u(t)‖2H ≤ A exp
(−b exp

(
μα−γ γ (t − t0)

))
,

for all t < t∗, where A := exp
(
− 1

μα−γ γ

)
and b := 1

μα−γ γ
(−(μα−γ γ −

1) log ‖w(t0)‖2H ) > 0.

2 It is straight forward to show that γ ∈ (0, 1) implies a > 0. A slightly more involved calculation shows

that a ≤ 1
2λ

(1−γ )/2
1 .
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Remark 4.2 Notice that ε is chosen very close to min {1, ‖u0 − v0‖H }, as

e− αγ

γμ ,

(
μα−γ

μα−γ + 1

)1/γ

∼ 1.

Proof Assume the hypotheses and let w := v − u. We take the difference of (2.10)
and (2.14), yielding the system

wt + B(w,u) + B(v,w) + νAw = −μPσN (w) − βPσ Ih(w) (4.2a)

w(x, 0) = v0 − u0. (4.2b)

We take the action of (4.2a) with w and use the Lions–Magenes Lemma to obtain

1

2

d

dt
‖w‖2H + 〈B(w,u),w〉 + ν‖w‖2V = −μ(N (w),w) − β(Ih(w),w) (4.3)

Suppose without loss of generality that ‖w(0)‖H > 1. Since (Ihw,w) ≥ 0, the right-
hand side of (4.3) is non-positive; indeed, (Ihw,w) ≥ 0 implies (N (Ih(w)),w) ≥ 0,
and thus, we can omit the nonlinear term to obtain

1

2

d

dt
‖w‖2H + 〈B(w,u),w〉 + ν‖w‖2V ≤ −β(Ih(w),w). (4.4)

Following the analysis of Carlson et al. (2020), we obtain the energy estimate

d

dt
‖w‖2H +

(
β − c2

ν
‖u‖2V

)
‖w‖2H ≤ 0.

Since we have chosen β > c2λ1G2ν, we can continue to follow the analysis of
Carlson et al. (2020) to obtain exponential convergence for t ≥ t̃ , t̃ being t0 given in
Theorem 2.3.

If ‖w(t̃)‖2H < ε, then we are done. Otherwise, due to the exponential convergence
for t ≥ t̃ and the fact that w ∈ C([0, T ]; V ), there is an interval [t0, t∗] over which

ε < ‖w(t)‖2H < min

{
e− αγ

γμ ,

(
μα−γ

μα−γ + 1

)1/γ
}

(4.5)

for t ∈ [t0, t∗]. Thus, denoting η := α−γ and utilizing ‖Ihw‖H ≤ α‖w‖H , (2.21c),
(2.6), the Cauchy–Schwarz inequality, Young’s inequality, and Poincaré’s inequality,
for a.e. t ∈ [t0, t∗],

1

2

d

dt
‖w‖2H + ν‖w‖2V

= −〈B(w,u),w〉 − μ(‖Ih(w)‖−γ

H Ih(w),w) − β(Ihw,w)

≤ −〈B(w,u),w〉 − μη(‖w‖−γ

H Ih(w),w) − β(Ihw,w)
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≤ −〈B(w,u),w〉 − μη(‖w‖−γ

H Ih(w),w)

≤ −〈B(w,u),w〉 + μη[−‖w‖2−γ

H + ‖w‖−γ

H (w − Ihw,w)]
≤ c‖w‖H‖w‖V ‖u‖V − μη‖w‖2−γ

H + μη
√
c0h‖w‖V ‖w‖1−γ

H

≤ c2

2ν
‖u‖2V ‖w‖2H + ν

2
‖w‖2V − μη‖w‖2−γ

H + μη
√
c0h

λ
(1−γ )/2
1

‖w‖2−γ

V .

By Theorem 2.3, ‖u(t)‖2V ≤ 2λ1G2(ν)2 for all t ∈ [t0, T ], so condition (4.1) implies

that μ > c2
2ν ‖u‖2V for all t ∈ [t0, T ], and hence,

1

2

d

dt
‖w‖2H + ν

2
‖w‖2V − μη

√
c0h

λ
(1−γ )/2
1

‖w‖2−γ

V ≤ c2

2ν
‖u‖2V ‖w‖2H − μη‖w‖2−γ

H

≤ μη(‖w‖2H − ‖w‖2−γ

H ).

We can write expression involving the ‖w‖V terms on the left-hand side in the form
of f (x) = ax2−b(h)x2−γ , where x is taken to be ‖w‖V . By Lemma 2.9, the term b(h)

determines theminimumvalue of f (x) and it can be shown via the proof of Lemma 2.9

that h is small enough so that the condition ν
2‖w‖2V − μη

√
c0h

λ
(1−γ )/2
1

‖w‖2−γ

V ≥ −ε/2 holds.

Note that h is bounded above by an expression involving the constant a.
As a consequence of our smallness condition on h,

1

2

d

dt
‖w‖2H − ε/2 ≤ μη(‖w‖2H − ‖w‖2−γ

H )

or simply

d

dt
‖w‖2H ≤ 2μη(‖w‖2H − ‖w‖2−γ

H ) + ε. (4.6)

Furthermore, we note that the first term on the right-hand side is negative. Recall
that, by (4.5), we are considering ‖w(t)‖2

L2(�)
< 1 for times t ∈ [t0, t∗]. Thus,

applying the fact that for y ∈ (0, 1] we have 1 − y−γ ≤ log(yγ ),

d

dt
‖w‖2H ≤ 2μη(1 − ‖w‖−γ

H )‖w‖2H + ε

≤ 2μη(log ‖w‖γ

H )‖w‖2H + ε

= γμη(log ‖w‖2H )‖w‖2H + ε. (4.7)

Thus, we have two inequalities (4.6), a Bernoulli type differential inequality, and
(4.7), each of which provides different information. We analyze (4.6) first to directly
obtain convergence to ε in finite time.
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Byour initial assumptions,we note specifically that ‖w(t)‖2H > ε for all t ∈ [t0, t∗],
and therefore, for a.e. t ∈ [t0, t∗],

d

dt
‖w‖2H ≤ 2(μη + 1)‖w‖2H − 2μη‖w‖2−γ

H .

With z = ‖w‖γ

H ,

dz

dt
≤ γ (μη + 1)

(
z − μη

μη + 1

)
,

which can be rewritten as

d

dt
log

(
μη

μη + 1
− z

)
≥ γ (μη + 1)

and integrating from t0 to t ≤ t∗,

z(t) ≤ μη

μη + 1
−
(

μη

μη + 1
− z(t0)

)
eγ (μη+1)(t−t0),

or in other words,

‖w(t)‖γ

H ≤ μη

μη + 1
−
(

μη

μη + 1
− ‖w(t0)‖γ

H

)
eγ (μη+1)(t−t0). (4.8)

The right-hand side of this inequality monotonically approaches−∞ as t → ∞. Note
that we fixed the interval [t0, t∗] such that (4.5) holds, but since we have demonstrated
that on this time interval ‖w(t)‖H decays monotonically in time, there exists a time
which we relabel t∗ such that ‖w(t∗)‖2H = ε and the same decay we have computed
holds over the interval [t0, t∗).3

We note that the decay rate itself is better characterized by utilizing the inequality
(4.7). Again, since ‖w(t)‖2 > ε for all t ∈ [t0, t∗), then for a.e. t ∈ [t0, t∗),

d

dt
‖w‖2H ≤ (γμη(log ‖w‖2H ) + 1)‖w‖2H .

Substituting z = − log ‖w‖2H , we obtain
dz

dt
≥ γμηz − 1,

which is equivalent to stating that

d

dt
(log (μηγ z − 1)) ≥ μηγ.

3 The value for t∗, while not computable, can be bounded. This bound, here and for Theorem 4.5, is
computed in “Appendix.”
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Integrating over the interval [t0, t] for t < t∗, we have that

z(t) ≥ 1

μηγ

(
1 + elog (μηγ z(t0)−1)+μηγ (t∗−t0)

)
,

which can be rewritten as

log ‖w(t)‖2H ≤ − 1

μηγ

(
1 + elog (−(μηγ−1) log ‖w(t0)‖2H )+μηγ (t∗−t0)

)
.

This implies

‖w(t)‖2H ≤ A exp (−b exp (μηγ (t − t0))) ,

where A := exp
(
− 1

μηγ

)
and b := 1

μηγ
(−(μηγ −1) log ‖w(t0)‖2H ). Hence, ‖w(t)‖2H

decays monotonically at least double exponentially on the interval [t0, t∗).
Now, we note that convergence to 0 still holds, since, only using the assumptions

on μ and h,

1

2

d

dt
‖w‖2H + 〈B(w,u),w〉 + ν‖w‖2V = −μ(PσN (Ihw),w)

= −μ(|Ihw|−γ Ihw,w) − μ(Ihw,w)

≤ −μ(Ihw,w),

and therefore by Theorem 2.5, by our choice of μ and h, convergence to 0 still holds.
��
Remark 4.3 Note that in Theorem 4.1, convergence in finite time double-exponentially
holds by simply analyzing (4.7). If it was possible for the proof to be improved to shrink
ε to 0, then the inequality (4.6) demonstrates that we would still obtain convergence in
the H norm in finite time. The main roadblock keeping us from sending ε to 0 is that,
unlike in the linear-nudging case, where we can employ the inequality μc0h2 < ν, in
the nonlinear-nudging case, the analogous inequality is μc0h2‖w‖−γ < ν. Hence, as
‖w‖H → 0, eventually this bound will be violated.

Corollary 4.4 Assume the hypotheses of Theorem 4.1, except with assumption (2.21c)
replaced by assumption (2.21b). Then the unique strong solution of (2.14) satisfies the
same conclusions of Theorem 4.1.

Proof Observe that assumption (2.21b) implies (2.21c). Therefore, by Theorem 3.4
under the more restrictive assumption (2.21b) (instead of (2.21c)), (2.14) has a global
unique strong solution. By Theorem 4.1, this unique strong solution converges to the
unique reference strong solution as claimed. ��

In the following theorem, we provide a proof of the double-exponential and finite
time convergence of v to u in the V norm. In this setting, we require a slightly different
restriction on the interpolant, namely (2.21e).
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Theorem 4.5 Fix 0 < γ < 1. Let Ih satisfy (2.20) and (2.21e). Let v ∈ C([0, T ]; V )∩
L2(0, T ;D(A)) be a strong solution to (2.14) with initial data v0 ∈ V and
forcing f ∈ H and u ∈ C([0, T ]; V ) ∩ L2(0, T ;D(A)) the strong solution to
the (2.10) with initial data u0 ∈ V and the same forcing f . Fix 0 < ε �
min

{
1, e

− 1

μγλ
γ/2
1 ,

(
μλ

γ/2
1

μλ
γ/2
1 +1

)1/γ

, ‖u(0) − v0‖V
}
. Let μ, β be chosen so that

μ > max

{
(
√
c0 + λ

−1/2
1 )γ cλ21(ν)2(1 + G)4,

1

γ λγ/2 , 3λ1ν JG

}
, (4.9)

β > 3λ1ν JG (4.10)

where c is the constant given by the inequality (2.7), and

J := 2c log
(
2c3/2

)
+ 4c log(1 + G).

Choose h such that

• h < 1 (where 1 has units of length, i.e., it is the linear size of the domain)
• μc0h2 < ν and

• h ≤ a(ε/2)γ /2(ν)1−γ /2

μ
√
c0

,

where a :=
((

2−γ
2

)(2−γ )/γ −
(
2−γ
2

)2/γ)γ /2

λ
(1−2γ )/2
1 2γ /2−1. Then for all t > t̃

(where t̃ is prescribed in Theorem 2.3), ‖v − u‖2V → 0 at least exponentially as in
Azouani et al. (2014). If ‖v(t̃) − u(t̃)‖ > ε, then there is a time interval [t0, t∗] such
that ‖v − u‖2V → ε at a double-exponential rate. In particular,

‖v(t) − u(t)‖2V ≤ Ke−beμγλγ/2(t−t0)

,

where K := e
− 1

μγλγ/2 and b := 1
μγλγ/2 (−(μγ λγ/2 − 1) log ‖v(t0) − u(t0)‖2V ).

Remark 4.6 Note that in the case where Ih = Pm , the projection onto the Fourier
modes of index m < 1/h, it is clear that both (2.21e) and (2.21d) hold (with α = 1),
so the hypotheses of the theorem hold in this example.

Proof Letw := v−u.We take the difference of (2.10) with (2.14), yielding the system

wt + B(w,u) + B(v,w) + νAw = −μPσN (Ih(w)) − βPσ Ih(w)

w(x, 0) = v0 − u0. (4.11)

Taking the H inner-product of (4.11) with Aw and applying the Lions–Magenes
Lemma, we obtain
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1

2

d

dt
‖w‖2V + (B(u,w), Aw) + (B(w,u), Aw) + (B(w,w), Aw) + ν‖Aw‖2H

= −μ(N (w), Aw) − β(Ihw, Aw),

which can be rewritten (using (2.9)) as

1

2

d

dt
‖w‖2V − (B(w,w), Au) + ν‖Aw‖2H = −μ(N (w), Aw) − β(Ihw, Aw)

Suppose without loss of generality ‖w(0)‖V > 1. Via assumption (2.21e),

1

2

d

dt
‖w‖2V − (B(w,w), Au) + ν‖Aw‖2H ≤ −β(Ihw, Aw).

Following the analysis of Azouani et al. (2014), we obtain the estimate

d

dt
‖w‖2V + 1

2

[
β − J 2

β
‖Au‖2H

]
‖w‖2V ≤ 0. (4.12)

Since β > 3λ1ν JG, we can continue to follow the analysis to obtain exponential
convergence for t ≥ t̃ , where t̃ is t0 from Theorem 2.3. If ‖w(t̃)‖2V < ε, then we
are done. Otherwise, due to the exponential convergence for t ≥ t̃ and the fact that
w ∈ C([0, T ]; V ), there is an interval [t0, t∗] over which

ε < ‖w(t)‖2H < min

⎧⎨
⎩e

− 1

μγλ
γ/2
1 ,

(
μλ

γ/2
1

μλ
γ/2
1 + 1

)1/γ
⎫⎬
⎭ (4.13)

for t ∈ [t0, t∗]. Using ‖Au‖2H ≤ cλ21(ν)2(1 + G)4 and (Ihw, Aw) ≥ 0, we have that
for a.e. t ∈ [t0, t∗],

1

2

d

dt
‖w‖2V + ν‖Aw‖2H

≤ −(B(w,w), Au) − μc(h)‖w‖−γ

V (Ihw, Aw) − β(Ihw, Aw)

≤ −(B(w,w), Au) − μc(h)‖w‖−γ

V (Ihw, Aw)

= −(B(w,w), Au) + μc(h)[(1 − ‖w‖−γ

V )‖w‖2V − ‖w‖2V
+ ‖w‖−γ

V (w − Ihw, Aw)]
≤ c‖w‖1/2H ‖Aw‖1/2H ‖w‖V ‖Au‖H

+ μc(h)(1 − ‖w‖−γ

V )‖w‖2V
+ μc(h)

√
c0h‖w‖−γ

V ‖w‖V ‖Aw‖H − μc(h)‖w‖2V
≤ cλ1‖Aw‖H‖w‖V ‖Au‖H

+ μc(h)(1 − ‖w‖−γ

V )‖w‖2V
+ μc(h)

√
c0h‖w‖1−γ

V ‖Aw‖H − μc(h)‖w‖2V
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≤ cλ21
2ν

‖w‖2V ‖Au‖2H + ν

2
‖Aw‖2H

+ μc(h)(1 − ‖w‖−γ

V )‖w‖2V + μc(h)
√
c0h‖w‖1−γ

V ‖Aw‖H
− μc(h)‖w‖2V ,

where c(h) = (
√
c0h + λ

−1/2
1 )−γ . Since h < 1, it follows that c(h) ≥ (

√
c0 +

λ
−1/2
1 )−γ := η. Note also that this constant can be bounded above by a constant

independent of h, specifically, c(h) ≤ (λ−1/2)−γ = λ
γ/2
1 . Hence,

1

2

d

dt
‖w‖2V + ν

2
‖Aw‖2H +

[
μη − cλ21

2ν
‖Au‖2H

]
‖w‖2V

≤ μη(1 − ‖w‖−γ

V )‖w‖2V + μ
√
c0h

λ
(1−2γ )/2
1

‖Aw‖2−γ

H .

Since ‖Au(t)‖2H ≤ cλ21(ν)2(1 + G)4 for all t ∈ [t0, T ] due to Theorem 2.3, then

the condition (4.9) implies that μη − cλ21
2ν ‖Au‖2H ≥ 0. Secondly, the same reason-

ing in Theorem 4.1 utilizing Lemma 2.9 shows that h is sufficiently small so that(
ν
2‖Aw‖2H − μ

√
c0h

λ
(1−2γ )/2
1

‖Aw‖2−γ

H

)
≥ −ε/2 for our given tolerance ε > 0. Hence, we

obtain the inequality

d

dt
‖w‖2V ≤ 2μλ

γ/2
1 (1 − ‖w‖−γ

V )‖w‖2V + ε. (4.14)

Furthermore, we note that the first term on the right-hand side is negative, and
applying the fact that for y ∈ (0, 1] we have 1 − y−γ ≤ log(yγ ), we note that

d

dt
‖w‖2V ≤ 2μλγ/2(log ‖w‖γ

V )‖w‖2V + ε

= γμλγ/2(log ‖w‖2V )‖w‖2V + ε. (4.15)

Thus, we have two inequalities analogous to those in Theorem 4.1. We once again
analyze (4.14) first to directly obtain convergence to ε in finite time. By our initial
assumptions, we note specifically that ‖w(t)‖2V > ε for all t ∈ [t0, t∗] and therefore
for a.e. t ∈ [t0, t∗],

d

dt
‖w‖2V ≤ 2(μλ

γ/2
1 + 1)‖w‖2V − 2μλ

γ/2
1 ‖w‖2−γ

V .

Using the same methods as in Theorem 4.1, we obtain, for any t ≤ t∗,

‖w(t)‖γ

V ≤ μλ
γ/2
1

μλ
γ/2
1 + 1

−
(

μλ
γ/2
1

μλ
γ/2
1 + 1

− ‖w(t0)‖γ

V

)
eγ (μλ

γ/2
1 +1)(t−t0), (4.16)
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and again note the right-hand side of this inequality approaches −∞ as t → ∞. Note
that we fixed the interval [t0, t∗] such that (4.5) holds, but since we have demonstrated
that on this time interval ‖w(t)‖H decays monotonically in time, there exists a time
which we relabel t∗ such that ‖w(t∗)‖2H = ε and the same decay we have computed
holds over the interval [t0, t∗).

As in Theorem 4.1, we note that the decay rate itself is better characterized by
utilizing the inequality (4.15). Since ‖w‖2V > ε for all t ∈ [t0, t∗), then for a.e.
t ∈ [t0, t∗),

d

dt
‖w‖2V ≤ (γμλγ/2(log ‖w‖2V ) + 1)‖w‖2V .

Following similar steps to those in the proof of Theorem 4.1, we arrive at

log ‖w(t)‖2V ≤ − 1

μηγλγ/2

(
1 + elog (−(μγ λγ/2−1) log ‖w(t0)‖2V )+μγλγ/2(t−t0)

)
‖w(t)‖2V ≤ Ke−beμγλγ/2(t−t0)

,

where K := e
− 1

μγλγ/2 and b := 1
μγλγ/2 (−(μγ λγ/2 − 1) log ‖w(t0)‖2V ). Hence, ‖w‖2V

decays monotonically at least double exponentially on the interval [t0, t∗).
In addition, note that with these assumptions on the interpolant we can directly

obtain double-exponential and finite-in-time L2 convergence of ‖w‖2H to ε/λ1 due to
Poincaré’s inequality.

We again note that

1

2

d

dt
‖w‖2V − (B(w,w), Au) + ν‖Aw‖2H

= −μ (N (Ih(w)), Aw)

= −μ
(|Ihw|−γ Ih(w), Aw

) − μ (Ih(w), Aw) ,

≤ −μ (Ih(w), Aw) ,

using the assumption that (Ih(w), Aw) ≥ 0. By our choice of μ and h, we have by
Theorem 2.6 that exponential convergence still holds. ��
Remark 4.7 Instead of considering the nonlinear-nudging CDA algorithm imple-
mented for all time, one could alternatively consider the case where fewer data points
are observed initially and utilize the linear-nudging CDA algorithm up until a com-
putable time T (see “Appendix 7.3”) where ‖w‖ < 1 for either the H or V norm
(where the exact upper bound is what is given in the hypotheses of Theorems 4.1
and 4.5). This nonlinear term would then be given by setting β = 0 and N redefined
as

N (φ) :=

⎧⎪⎨
⎪⎩
0, if ‖φ‖L2(�) = 0,

φ‖φ‖−γ

L2(�)
, if 0 < ‖φ‖L2(�) < 1,

φ, if 1 ≤ ‖φ‖L2(�).
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Then, one could “turn on” the nonlinearity by initializing the nonlinear-nudging CDA
system with data from the linear-nudging CDA system. In this setting, the h for the
linear-nudging data assimilation is fixed, and then, depending on the choice of ε, one
can determine whether to maintain or decrease h (or refine the grid on which one is
interpolating) in order to always guarantee double-exponential convergence. In other
words, the error of the convergence prescribed requires a tuning of the accuracy of
the interpolant: the smaller the error, the smaller we required h to be, i.e., the more
accurate the interpolant needed to be. For example, in the case of Fourier truncation,
one would need a greater number of observed wave modes, and in the case of volume
interpolation, one would have to have knowledge of the average of the solution over
smaller volumes covering the domain. This implementation of the linear-nudging
CDA algorithm and subsequently the nonlinear-nudging CDA algorithm could be
implemented computationally as well, where the time to switch between the linear-
nudging CDA algorithm and the nonlinear-nudging CDA algorithm (with or without
the linear piece) is computed in “Appendix 7.3.”

Remark 4.8 Onecould alsowork through similar existence and convergence arguments
for type 2 interpolants, where Ih instead satisfies the bound

‖φ − Ih(φ)‖2L2(�)
≤ 1

4c
2
0h

4‖φ‖2H2(�)
. (4.17)

However, it is not very illuminating nor does it necessarily expand our possible choice
of interpolants, as the methods of proof for the super-exponential convergence rely
most heavily on the other assumptions being made on Ih , notably, in Theorem 4.1 the
proof of the super-exponential convergence relies exclusively on the bounds (2.21c),
(2.21d), while in Theorem 4.5 the proof for the super-exponential convergence relies
exclusively on the condition (2.21e) and (2.20). In particular, one needs that the nonlin-
ear weight can be bounded in the H and V norms, respectively, which is not provided
by the bound (2.22).

5 Computational Results

In this section, we present some simulations of the nonlinear-nudging data assimilation
algorithm discussed above, in the context of the 2D incompressible Navier–Stokes
equations with periodic boundary conditions and forcing over a wide range of scales.
In particular, we demonstrate that the convergence rate is super-exponential in time,
until the error becomesquite small (‖ψ−ψDA‖L2 ≈ 5×10−12 in our trials, see notation
below), at which point the convergence becomes merely exponential, as discussed in
Remark 4.3 and “Appendix 7.1.” The results are shown in (5.2a).

All simulations were carried out using pseudo-spectral methods at the stream-
function level in our own MATLAB code and run using MATLAB version 2020b.
The mean-free stream functions ψ and ψDA were determined by ∇⊥ψ = u and
∇⊥ψDA = v. Fourier transforms were computed using MATLAB’s fftn tool. The
linear viscosity term was handled implicitly using an integrating factor method Euler
algorithm, as described in, e.g., Kassam and Trefethen (2005). For the interpolation
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Fig. 1 Initial data and forcing

operator Ih , we used a projection onto low Fourier modes.We used a uniform time step
of�t = 3.1250×10−4, which is sufficient to satisfy the advectiveCFL constraint. The
nonlinear term was treated explicitly (respecting the 2/3’s dealiasing rule), using the
Basdevant formulation (see, e.g., Basdevant 1983; Emami and Bowman 2018). The
periodic domainwas [−π, π)2 with a uniformmesh of 10242 grid points. Initial datau0
for the “true” simulation generated by starting with zero initial data, and then running
the simulation until the energy, and enstrophy, appeared to be in an approximately
statistically steady state (judged visually), which happened at t ≈ 240. The energy
spectrum of the initial data ψ0 and the corresponding vorticity (�ψ0) are pictured in
Fig. 1.

As for the forcing, in light of Remark 4.3, we were interested in a time-independent
force which injects energy at high wave modes in order to better see the effect of the
nonlinear-nudging data assimilation term (see 7.1 for further rationale). Therefore, we
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determined a forcing by choosing normally distributed random values for the real and
complex part of each Fourier coefficient fk of the force with wavenumber between 16
and 64; namely, the set {k = (k1, k2)| 162 ≤ k21 +k22 ≤ 642} (in fact, only half of
the wavemodes were assigned and the rest were computed using the reality condition
f−k = fk). MATLAB’s random number generator was initialized using rng(0) for
consistency and reproducibility. The curl of the forcing, and its energy spectrum, is
pictured in Fig. 1.

Our parameters were chosen as follows: The Grashof number was G = 250, 000,
the viscosity was ν = 0.008, and h was chosen so that wavemodes of wavenum-
bers less than or equal to 32 were observed, that is, the wavemodes at wavenumbers{
k = (k1, k2)| 0 < k21 + k22 ≤ 322

}
were observed. For the nonlinear-nudging data

assimilation parameters, we choose γ = 0.1, and μ = β = 2. These parameter
ranges were not finely tuned to exhibit any special behavior, other than avoiding insta-
bility (seen, e.g., when μ is too large). In our own tests (data not reported here),
we observed that modest changes in these parameter values did not yield significant
qualitative changes in the results, indicating qualitative robustness of the results.

Remark 5.1 It may be worth noting that the nonlinear scheme studied in the present
work essentially consists of computing a power of an L2 norm, and multiplying μ by
the resulting scalar, hence we do not expect major increases in computational cost.
Indeed, while wemade no special attempt to optimize the computation of the nonlinear
data assimilation term in our code, in informal tests at resolution 20482, we measured
only a 1–2% increase in the CPU-time per time-step when switching from the linear to
nonlinear data assimilation scheme. One could likely achieve even greater efficiency
by, e.g., parallelizing the computation of the L2 norm.

These graphics in particular corroborate our analysis in terms of the failing of
super-exponential convergence due the ε-barrier being reached, as seen in Fig. 2. In
particular, in Fig. 2a, convergence appears exponential at early times, then becomes
super-exponential, and finally returns to merely exponential at later times. The devia-
tions from an exponential fit were observed to be fairly small: 1.7×10−4 at early times
(see Fig. 2b) and 2.2×10−14 at later times. In between these times, super-exponential
convergence is observed (see Fig. 2a).

6 Conclusion

In this paper, we proved the existence of solutions to the nonlinear-nudging data
assimilation system under the same assumptions on the interpolant as that of the linear-
nudging data assimilation system. Uniqueness of solutions was proven to hold under
more stringent assumptions on the interpolant operator of the observedmeasurements.
With different assumptions on the interpolant, convergence of any corresponding
solution to the nonlinear-nudging data assimilation to the true solution of the 2D
incompressible Navier–Stokes equations was shown to be obtained up to a prescribed
error in finite time at an at least double-exponential rate. In particular, any solution of
the nonlinear-nudging system, even in regimes where uniqueness might not hold, will
converge to the true solution. These results provide a theoretical foundation for the
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Fig. 2 A L2 error between the assimilated and true solutions. B, C Deviations from exponential fits

computational results seen in simulations in Larios and Pei (2023) and Hudson and
Jolly (2019), and the present work.
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7 Appendix

7.1 Heuristic Argument for the�-Barrier

We analyze (1.3a) in the Navier–Stokes case (2.10), i.e.,F(v) = −B(v, v)−νAv+ f ,
with Ih = Pm , i.e., projection onto the low Fourier modes of index m < 1/h. This
yields the equation

vt + νAv = B(v, v) − μ‖Pm(u − v)‖−γ

L2(�)
Pm(v − u) − βPm(v − u) (7.1)

Set w = v − u. Subtracting (7.1) from the reference system, one obtains

wt + νAw = B(v, v) − B(u,u) − μ‖Pmw‖−γ

L2(�)
Pmw − βPmw. (7.2)

Taking a (formal) inner-product with w and simplifying yield

1

2

d

dt
‖w‖2L2(�)

+ ν‖A1/2w‖2L2(�)

= 〈B(v, v) − B(u,u),w〉 − μ‖Pmw‖−γ ‖Pmw‖2L2(�)
− β‖Pmw‖2L2(�)

. (7.3)

Denoting Qm := I − Pm and noting that ‖w‖2
L2 = ‖Pmw‖2

L2 + ‖Qmw‖2
L2 ,

1

2

d

dt
‖w‖2L2(�)

+ ν‖A1/2w‖2L2(�)
+ β‖w‖2L2(�)

+ μ‖Pmw‖−γ

L2(�)
‖w‖2L2(�)

= 〈B(v, v) − B(u,u),w〉 + μ‖Pmw‖−γ

L2(�)
‖Qmw‖2L2(�)

+ β‖Qmw‖2L2(�)

Rearranging, we obtain

1

2

d

dt
‖w‖2L2(�)

+ ν

2
‖Pm A1/2w‖2L2(�)

+ ν

2
‖A1/2w‖2L2(�)

+ β‖w‖2L2(�)
+ μ‖Pmw‖−γ

L2(�)
‖w‖2L2(�)

= 〈B(v, v) − B(u,u),w〉 + μ‖Pmw‖−γ

L2(�)
‖Qmw‖2L2(�)

+ β‖Qmw‖2L2(�)
− ν

2
‖Qm A1/2w‖2L2(�)

(7.4)
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We leave part of the dissipation on the left-hand side to absorb terms bounding
B(v, v) − B(u,u). The terms ‖Qmw‖2

L2(�)
and ‖Qmw‖2−γ

L2(�)
are the terms hindering

the exponential convergence of v to the reference solution u, and hence, we want these
last three terms to be negative overall. We expand the last three terms on the right-hand
side to obtain

∞∑
|k|=m+1

(μ‖Pmw‖−γ

L2 + β − ν

2
|k|2)|ŵk|2 ≤ 0. (7.5)

No matter how large one takes m (i.e., how small h is taken, since we generally take
m ∼ L/h2, where L is a characteristic length scale), as ‖w‖L2(�) → 0, ‖Pmw‖−γ

L2 →
∞, indicating there is a time at which the error becomes small enough that this term
will hurt the rate of convergence rather than help. Moreover, we see from (7.4) that the
largerβ is chosen (e.g., in order to enhance the convergence rate of the small scales), the
more strongly the small scales (as measured by ‖Qmw‖2

L2(�)
) are destabilized. This

appears to be the reason why the super-exponential convergence rate is eventually
destroyed, as seen both in our analysis and in our simulations. We refer to this as a
“spill-over” effect, namely, the phenomenon that increased control of the large scales
leads to increased destabilization of the small scales. In the case of the Navier–Stokes
equations, the spill-over of energy into the small scales is controlled by the presence of
viscosity; namely, for large enough ν, the error in the small scales is damped strongly
enough to counteract the spill-over effect.

Marvelously, in the Navier–Stokes case, the exponential convergence still holds in
spite of the spill-over effect. This can be seen by writing (7.3) as

1

2

d

dt
‖w‖2L2(�)

+ ν‖A1/2w‖2L2(�)

= 〈B(v, v) − B(u, u),w〉 − (β + μ)‖Pmw‖2L2(�)
+ μ(‖Pmw‖2L2(�)

− ‖Pmw‖2−γ

L2(�)
);

(7.6)

the final term becomes negative as ‖w‖L2(�) → 0, and hence, exponential conver-
gence is maintained with an improved rate than for the standard linear-nudging CDA
algorithm thanks to the added μ in the linear term. In other words, although the rate
of convergence is no longer super exponential, the nonlinear-nudging term does not
become so malicious as ‖w‖L2(�) → 0 that it counteracts the standard exponential
convergence and in fact it still improves the exponential rate of convergence. This fur-
ther elucidates our comments in Remark 4.7, i.e., an exponential rate of convergence
can be maintained by the nonlinear-nudging term alone.
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7.2 Proof of Lemma 2.9

Proof Let δ := min

⎧⎪⎨
⎪⎩a/2, a

2−γ
2

⎛
⎝ ε(

2−γ
2

) 2−γ
γ −

(
2−γ
2

) 2
γ

⎞
⎠

γ
2

⎫⎪⎬
⎪⎭. Note that f (x) has two

critical points at x = 0 and x = x0 :=
(

(2−γ )δ
2a

) 1
γ
. We further note that f (x0) is a

global minimum since f (0) = 0,

f (x0) = a

((
(2 − γ )δ

2a

) 1
γ

)2

− δ

((
(2 − γ )δ

2a

) 1
γ

)2−γ

= a− 2−γ
γ δ

2
γ

⎛
⎝(2 − γ

2

) 2
γ −

(
2 − γ

2

) 2−γ
γ

⎞
⎠ ≤ 0,

f ′(x) ≥ 0 for all x ≥ x0, and f ′(x) ≤ 0 for x ≤ x0. Indeed, f ′(x) ≥ 0 for all x ≥ x0
since

f ′(x) ≥ 2ax − (2 − γ )δx1−γ
0

= 2ax − (2 − γ )δ

(
(2 − γ )δ

2a

) 1−γ
γ

= 2a

(
x −

(
(2 − γ )δ

2a

) 1
γ

)

= 2a(x − x0)

≥ 0,

and f ′(x) ≤ 0 for all x ≤ x0 since

f ′(x) ≤ 2ax0 − (2 − γ )δx1−γ

= 2a

(
(2 − γ )δ

2a

) 1
γ − (2 − γ )δx1−γ

= (2 − γ )δ(

(
(2 − γ )δ

2a

) 1−γ
γ − x1−γ )

= (2 − γ )δ(x1−γ
0 − x1−γ )

≤ 0.

Hence, f (x) ≥ f (x0) for all x ∈ R≥0. Thus, denoting
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b :=
⎛
⎝(2 − γ

2

) 2−γ
γ −

(
2 − γ

2

) 2
γ

⎞
⎠ ≥ 0,

our choice of δ yields

f (x) ≥ f (x0) = a− 2−γ
γ δ

2
γ (−b)

≥ a− 2−γ
γ

(
a

2−γ
2

( ε

b

) γ
2
) 2

γ

(−b) = −ε.

��

7.3 Computation of Explicit Times atWhich the Nonlinear-Nudging Term in the
Algorithm Improves the Convergence Rate

Note that one can compute a time ta at which u is in the absorbing ball (see, e.g.
Foias et al. 2001; Robinson 2001; Temam 2001) so that Theorem 2.3 applies and the
exponential decay in Azouani et al. (2014) holds. The decay of the nonlinear-nudging
algorithm is controlled by the exponential decay of the linear-nudging algorithm in
Azouani et al. (2014) (see the beginning of the proofs of Theorems 4.1,4.5) can be
written explicitly as (for reference, see, e.g., Carlson et al. 2020)

‖u(t) − v(t)‖2H ≤ ‖u(ta) − v(ta)‖2He1+r/2e− r
2T (t−ta),

where 1
νλ1

< T < ∞ and

r = lim inf
t→∞

∫ t+T

t
β − 2c2

ν
‖u(s)‖2ds

≥ Tβ − 2c2

ν

(
2(1 + λ1T ν)νG2

)
> 0,

and c is the constant from the inequality (2.6).
By the assumptions of Theorem 4.1, we need that ‖u(t0) − v(t0)‖H < RH , where

RH = min

{
e
− 1

βγλ
γ/2
1 ,

(
βλ

γ/2
1

βλ
γ/2
1 +1

)1/γ
}
, so we need to choose ta such that

‖u(ta) − v(ta)‖2He1+r/2e− r
2T (t−ta) < R2

H .

Bounding ‖u(ta)‖2H using Theorem 2.3 and using the bounds on r , we instead find a
time ta such that

‖u(ta) − v(ta)‖2He1+r/2e− r
2T (t−ta)

≤ 2(2(ν)2G2 + ‖v(ta)‖2H )e1+βT e−β/2− c2
νT (2(1+λ1Tβ)νG2)(t−ta)

< R2
H .
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Thus, we determine the nonlinear-nudging system can be initialized from any time
t0 such that

t0 > ta −
log

{
R2
He

−1−βT

2(2(ν)2G2+‖v(ta)‖2H )

}
β/2 − c2

T ν
(2(1 + λ1νT )νG2)

.

There is no need to observe ‖v(ta)‖H at the fixed time ta ; instead, the bound from
Azouani et al. (2014)

‖v(ta)‖2H ≤ e−νλ1ta‖v0‖2H + M

βνλ1
(1 − e−νλta ) := RHSH ,

where M is a constant such that ‖ f + βPσ Ih(w))‖2H < M , can be used to choose a
time t0 such that

t0 > ta −
log

{
R2
H e

−1−βT

2(2(ν)2G2+RHSH )
)

}
β/2 − c2

T ν
(2(1 + λ1νT )νG2)

.

For the setting of Theorem 4.5, we have the bound

‖u(t) − v(t)‖2V ≤ ‖u(ta) − v(ta)‖2e�+1+r/2e− r
2T (t−ta),

where λ1ν ≤ T < ∞,

r = lim inf
t→∞

∫ t+T

t

1

2

(
β − J 2

β
‖Au‖2H

)
ds >

5

6
JG > 0,

and

� = lim inf
t→∞

∫ t+T

t
max

{
1

2

(
β − J 2

β
‖Au‖2H

)
, 0

}
ds ≥ r > 0,

with J = 2c log(2c3/2)+4c log(1+G) and c is the constant dependent on the domain
determined from the Brezis–Gallouet inequality. By the assumptions of Theorem 4.5,

we need that ‖u(t0) − v(t0)‖V < RV , where RV = min

{
e
− 1

βγλ
γ/2
1 ,

(
βλ

γ/2
1

βλ
γ/2
1 +1

)1/γ
}
,

so we need to choose t0 such that

‖u(ta) − v(ta)‖2V e�+1+r/2e− r
2T (t−ta) < R2

V .

Again, bounding ‖u(ta)‖2V using Theorem 2.3 and using the bounds on � and r , we
instead find a time ta such that

‖u(ta) − v(ta)‖2V e�+1+r/2e− r
2T (t−ta)

123



37 Page 36 of 41 Journal of Nonlinear Science (2024) 34 :37

≤ 2(2λ1(ν)2G2 + ‖v(ta)‖2)e1+βT e− 5
6GJ (t−ta) < R2

V

Then, the nonlinear-nudging system can be initialized from any time t0 such that

t0 > ta − 6

5GJ
log

{
R2
V e

−(1+βT )

2(2λ1(ν)2G2 + ‖v(ta)‖2V )

}
.

Again, there is no need to observe ‖v(ta)‖V at the fixed time ta , since the bound from
Azouani et al. (2014)

‖v(ta)‖2V ≤ RHSV

:= e
54c4

(ν)3

(
1
ν
‖v0‖2H+ T

νβ
M
)2(

1
ν
‖v0‖2V + M

βνλ1

)2 (
‖v0‖2V + 4T

ν
M

)

where M is the same constant such that ‖ f + βPσ Ih(w))‖2H < M can be used to
choose a time t0 such that

t0 > ta − 6

5GJ
log

{
R2
V e

−(1+βT )

2
(
2λ1(ν)2G2 + RHSV

)
}

.

7.4 Bounding the Length of the Interval overWhich Double-Exponential
Convergence Holds

In Theorems 4.1, 4.5, we noted that there exists an interval [t0, t∗) over which the
double-exponential convergence holds. While the proof does not allow for t∗ to have
an explicit value, it is bounded above. Indeed, for Theorem 4.1, we rewrite (4.8) and
note

ε
γ
2 < ‖w(t)‖γ

H ≤ μη

μη + 1
−
(

μη

μη + 1
− ‖w(t0)‖γ

H

)
eγ (μη+1)(t∗−t0)

μη

μη + 1
− ε

γ
2 >

(
μη

μη + 1
− ‖w(t0)‖γ

H

)
eγ (μη+1)(t−t0)

μη
μη+1 − ε

γ
2

μη
μη+1 − ‖w(t0)‖γ

H

> eγ (μη+1)(t−t0)

log

⎛
⎝ μη

μη+1 − ε
γ
2

μη
μη+1 − ‖w(t0)‖γ

H

⎞
⎠ > γ (μη + 1)(t − t0)

t < t0 + 1

γ (μη + 1)
log

⎛
⎝ μη

μη+1 − ε
γ
2

μη
μη+1 − ‖w(t0)‖γ

H

⎞
⎠ .

123



Journal of Nonlinear Science (2024) 34 :37 Page 37 of 41 37

Hence, t∗ ≤ t0 + 1
γ (μη+1) log

(
μη

μη+1−ε
γ
2

μη
μη+1−‖w(t0)‖γ

H

)
.

The analogous bound for t∗ in Theorem 4.5 follows from the analogous inequality
(4.16):

ε
γ
2 < ‖w(t)‖γ

V ≤ μλ
γ/2
1

μλ
γ/2
1 + 1

−
(

μλ
γ/2
1

μλ
γ/2
1 + 1

− ‖w(t0)‖γ

V

)
eγ (μλ

γ/2
1 +1)(t−t0)

μλ
γ/2
1

μλ
γ/2
1 + 1

− ε
γ
2 >

(
μλ

γ/2
1

μλ
γ/2
1 + 1

− ‖w(t0)‖γ

V

)
eγ (μλ

γ/2
1 +1)(t−t0)

μλ
γ/2
1

μλ
γ/2
1 +1

− ε
γ
2(

μλ
γ/2
1

μλ
γ/2
1 +1

− ‖w(t0)‖γ

V

) > eγ (μλ
γ/2
1 +1)(t−t0)

log

⎛
⎜⎜⎝

μλ
γ/2
1

μλ
γ/2
1 +1

− ε
γ
2(

μλ
γ/2
1

μλ
γ/2
1 +1

− ‖w(t0)‖γ

V

)
⎞
⎟⎟⎠ > γ (μλ

γ/2
1 + 1)(t − t0)

t < t0 + 1

γ (μλ
γ/2
1 + 1)

log

⎛
⎜⎜⎝

μλ
γ/2
1

μλ
γ/2
1 +1

− ε
γ
2(

μλ
γ/2
1

μλ
γ/2
1 +1

− ‖w(t0)‖γ

V

)
⎞
⎟⎟⎠ .

Therefore, t∗ ≤ t0 + 1
γ (μλ

γ/2
1 +1)

log

⎛
⎜⎜⎝

μλ
γ/2
1

μλ
γ/2
1 +1

−ε
γ
2

(
μλ

γ/2
1

μλ
γ/2
1 +1

−‖w(t0)‖γ
V

)
⎞
⎟⎟⎠.
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