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Abstract—As the vehicles are interconnected and share in-
frastructure information among each other, the adoption of
connected vehicles (CVs) continues to surge. However, CV’s
introduce vulnerabilities related to the integrity of the shared
data, which may be compromised by either malicious attacks or
sensor failures. Detecting these vulnerabilities in CVs has become
paramount to provide safety to the passengers and pedestrians in
the network. Trust and reputation-based reinforcement learning
(RL) algorithms are one way for the detection and handle these
vulnerabilities. These algorithms fail to work when the number of
vehicles collude together to disrupt the CV network. In response
to this, we propose a trust and reputation based RL along with
multi level dempster shafer technique to deal with colluding
attacks in CVs. This integration involves fusing reputation-based
trust management on a vehicle level with a RL agent running on
road side unit. We conduct performance analysis on different RL
algorithms namely deep Q-networks, actor-critic and proximal
policy optimization.

Index Terms—connected vehicles, security, reinforcement
learning, colluding attacks.

I. INTRODUCTION

Connected vehicles (CVs) show promising results in im-

proving road safety, efficient fuel consumption, and signif-

icantly decreasing traffic congestion, representing a pivotal

development in modern transportation [1]. However, network

vulnerabilities can give rise to attacks in CV which can lead to

adverse impacts, posing a viable risk to passengers’ lives [2].

Attacks such as information manipulation, data injection, and

data falsification are classified as internal attacks and can

be particularly challenging to detect and mitigate due to the

attackers’ deeper knowledge of the system’s internals [3].

External attacks include denial of service attacks, spoofing

attacks, man-in-the-middle attacks, and others. Existing mod-

els to overcome external attacks are effective [4], but internal

attacks can remain undetected within these existing models

due to their increased sophistication [5].

Internal attacks such as information falsification have sev-

eral solutions including trust reputation models [3], there

is limited work for colluding vehicle attacks [6]. Colluding

attacks involve the cooperation of multiple malicious vehicles.

State-of-the-art solutions for these attacks employ block-chain

based approach [7], trust management system [8] and others

[9]. While well-crafted colluding attacks have the potential to

compromise most of the existing state-of-the-art frameworks

for CV, there is a notable lack of research efforts focused on

their identification and mitigation. A well-crafted attack can

stay undetected in CV environments [6], thus, there is a need

for an efficient framework for the detection and mitigation of

such colluding attacks.

Recently, reinforcement learning (RL) models [10] have

demonstrated their superiority in adapting to CV dynamic

environments [11]. RL along with trust and reputation models

are designed to handle dynamic vehicle traffic and incentivize

good behavior while penalizing undesirable conduct. This can

be achieved by tracking and updating reputation based on

current trust scores. In our work, we propose the utilization of

a multi-level Dempster-Shafer (DS) approach with a dynamic

reputation update policy using RL for the detection and

mitigation of colluding attacks.

This paper serves as an extension of our prior work [12],

where we employed a Deep Q-based dynamic reputation up-

date policy in conjunction with a multi-level Dempster-Shafer

model. We implemented several enhancements compared to

our prior work: (1) The attacker model initiated attacks when

the reputation policy favored trust over reputation. (2) We

equipped the attacker with the ability to emulate colluding

attacks instead of traditional data falsification attacks. (3) We

adopted the final malicious score as a state value for training

the RL agent. (4) Our study encompassed a comprehensive

comparison among various RL algorithms, including deep

Q-networks (DQN), actor-critic (AC), and proximal policy

optimization (PPO).

II. BACKGROUND AND RELATED WORK

A. Related Work

Authors in [6] investigates the effectiveness of deep RL

based adaptive traffic controller system for mitigating collud-

ing attack. The authors used deep RL with negative waiting

time as a reward function to reduce the overall wait time

of the colluding vehicles. The simulations were carried out

with the SUMO traffic simulation tool [13] to generate traffic

resembling the Monaco city traffic and used ablation study

and sensitivity analysis to evaluate the average travel time and

average wait time for both colluding and normal vehicles. The

findings reveal that the proposed framework was able to reduce

the total wait time of colluding vehicles by 92% and increased
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the total travel time of normal vehicles by 62% causing them

to spend 12% more time on travel.

In [7], the authors investigate the use of ledger-based

blockchain aiming at building a trustworthy CV system against

threats targeting human safety. The authors proposed an ef-

ficient interaction verification system to avoid system attacks

using proof of interaction with a lightweight mining algorithm.

Gathering the values of average number of blocks and the

time required for miner detection values, generated from

simulations resembling an urban CV environment, proves

that the model is resilient to different threats such as black

hole miners, bad mouthing, and malicious miners. In their

discussion authors described that the proposed model will not

allow a change that’s greater than 10% in one mining cycle

which protects the system from the substantial effect of a

colluding attack.

In [8], the authors proposed the use of interaction prove-

nance as a proof of interaction considering the chronological

order of historical interactive events along with fuzzy ranges,

aggregated weights, and trustworthiness profile mapping. The

author provides information related to the effectiveness of the

proposed algorithm and how adjusting the fuzzy ranges, can

be used to mitigate colluding attacks.

In [9], the authors investigate wormhole protocol detector

(WPD), a lightweight protocol for detecting and mitigating

wormhole attacks. The author’s WPD monitors, detects out-

of-range packets, identifies the nodes participating in the

wormhole connection, avoids the wormhole links, and obtains

secure routing paths between CVs. The findings reveal that

the module can effectively identify wormhole attacks using the

WPD with 100% accuracy in different length of wormhole link

lengths and it failed to identify the encapsulation wormhole

attack, as the attacker have the ability to tamper with the

information. In this paper, we propose a novel approach

for detecting and mitigating colluding attacks in CV. The

following are the contributions:

• Current state-of-the-art solutions lack a clearly defined

profile for colluding attacks. In our research, we have es-

tablished a distinct and well-defined profile for colluding

attacks.

• We propose a multi-level DS technique along with RL

algorithm for mitigating colluding attacks which fit well

for dynamic CV networks.

• Existing solutions employ DQN for reputation-based

security. We conducted a comprehensive comparative

analysis among state-of-the-art RL algorithms. For this,

we simulated our work on RL based environment for CV

networks [15], [16].

III. PROPOSED WORK

A. Dataset for Vehicular Network Simulation

We used an open-source vehicle navigation model con-

trolled by multi-agent RL framework [15], [16] where the

navigation of the vehicles is governed in an on-ramp merging

scenario simulating general traffic conditions. Each vehicle

shares basic safety messages (BSM) which contain details

about its position, speed, headed direction, and acceleration.

Each vehicle calculates its peer reputation by comparing the

BSM reported by the vehicle with the reports generated

through its own sensor. We assume that each vehicle is

equipped with necessary sensors which help them to make

peer reports.

Fig. 1: System Model

B. System Model

The system architecture (Figure 1) combines decentralized

validation with centralized feedback, integrating reputation-

based trust management with an RL at the centralized authority

(CA). A multi-level implementation of DS at the Roadside

Unit (RSU) predicts false reports from vehicles, influencing

the Deep RL agent’s rewards. It starts with inter-platoon

communication, where vehicles transmit BSM, sensed by peer

vehicles. Decentralized reputation calculation at the vehicle

level sends reputation scores to the RSU, with dynamic

reputation updates (denoted as smoothing factor φ1) assigned

by the CA. The RSU employs DS theory to combine vehicle

reputation reports, considering both peer-reported behavior and

self-reported values with centralized reputation and predict

the final malicious score. An average final malicious score,

previous smoothing factor φ1, and previous-time rewards are

fed into the RL agent, which determines an optimal smoothing

factor, which is disseminated across the network. This factor

encourages malicious vehicles to report truthfully, while a

robust reputation update policy continuously evaluates each

vehicle’s overall behavior.

C. Attacker model

In our model, we implement a colluding attack by falsifying

the data across a group of vehicles. This is accomplished by

adding white Gaussian noise to the sensed kinematics of the

peer vehicles as shown in Figure 2. Here, vehicles within
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Fig. 2: Colluding attack where black vehicles are normal

vehicles and red are malicious vehicles forming two groups.

the colluding group (shown in red) give high reputation to

other vehicles participating in the same group. However, they

deliberately inject noise into the sensed coordinates of the

normal vehicles that are in close proximity to them (shown

in black). This strategic action aims to diminish the reputation

of the normal vehicles at the RSU, with the underlying goal

of falsely implicating them as malicious vehicles. The white

Gaussian is generated with µ = 2 and σ = 0.9. The noise is

introduced by intercepting the smoothing function (φ1) ≧ 0.4,

at RSU.

D. Dempster-Shafer Technique

The DS theory of evidence is a mathematical framework

for quantifying belief in statements by combining independent

evidence from multiple sources using belief functions. It

handles uncertainty by assigning degrees of belief to subsets

of possible events and uses the DS rule to aggregate belief

functions.

a) Frame of discernment Θ: Frame of discernment is

defined as Θ = {Θ1,Θ2. . . . . .Θn} that covers individual,

mutually exclusive, discretized values of all viable outcomes

of Θ. In our approach Θ contains two elements Θ = {M,N};

where M= malicious vehicle, N= normal vehicle.

b) Power Set P(Θ): The power set P(Θ) of aforesaid

random variable Θ is a set of all subsets of Θ including the

individual elements, and represents the DS frame of Θ. For

our model it contains P(Θ)={φ,M,N,MN}.
c) Evidence: Evidences are events/symptoms and one

evidence maps to single hypothesis or set of hypotheses.

d) Mass Function (m-value): Our trust regarding the

truth value of a proposition ‘A’ is dependent on the evidence

that supports the proposition which is denoted as mass function

(m-value). It relates to the weights of the elements in the P(Θ),

m : 2Θ → [0, 1], where weight of the null set is 0, m(φ) = 0
and m(A) g 0. The overall sum of the mass functions of all

elements in the P(Θ)=1 or
∑

{m(A) ∀ A ∈ 2Θ} = 1. Thus,

m(A) is a measure of belief assigned by a given evidence to

A, where A is any element of 2Θ, ∀A ∈ 2Θ, and non belief

is forced by the lack of knowledge. We can get the lower and

upper bound of an interval from the mass function. The lower

bound is used as the belief function and the upper bound is

used to calculate the plausibility function.

e) Plausibility function (Pl): The upper bound of the

interval is called plausibility, and it is determined by taking the

sum of all the mass function of the subsets (B) that intersects

(A) where (B ∩A ̸= φ), Pl(A) : 2Θ → [0, 1] [14].

Pl(A) =
∑

B∩A ̸=φ

m(B) (1)

f) DS Rule of Combination: The data collected from

the different sources are combined rationally, to focus on

the consensus opinion and use normalization to ignore all

the conflicting evidences. A cartesian product of two mass

functions is employed for the combination of evidence. The

DS combination rule determines the joint m12 from the

combination of two mass functions using equation:

m12(A) =

∑

B∩C=A{m1(B)m2(C)}

1−K
(2)

when A ̸= φ, m(φ) = 0 and K =
∑

B∩C=φ m1(B)m2(C)

E. Multi Level DS

1) Level-1 Plausibility Calculation: Level 1 corresponds to

decentralized reputation calculation at the vehicle level. Each

vehicle is equipped with the capability to sense the kinematics

of its peers. Each vehicle calculates the difference between the

sensed kinematics and the broadcasted BSMs of peer vehicle

(j). If this disparity exceeds a predefined threshold noise, the

vehicle (i) assigns a trust value of 0.1 to j; otherwise, it assigns

a trust value of 0.9.

T i
j,t =

{0.1 If ∆>0.2

0.9 Else

(3)

where ∆ = xj
j −xi

j and x is the position reported. These trust

values are then integrated with the current reputation score

with the current smoothing factor (denoted as φ1):

Ri
j,dt

= φ1R
i
j,dt−1

+ (1− φ1)T
i
j,t (4)

Each vehicle then share the calculated reputation scores to

RSU. The reputation scores shared by peer vehicles serve as

the basis for building mass functions. The RSU treats the

reputation reports provided by different vehicles as individual

pieces of evidence. Specifically, one mass function charac-

terizes the likelihood of a vehicle being normal (N), while

the other, its complement (1 - reputation score), represents

the likelihood of a vehicle being malicious (M). For each

vehicle’s reputation report, the RSU generates a mass function

tuple consisting of m(N) (the mass function for normal

behavior), m(M) (the mass function for malicious behavior):

m1i(N)RSU = Rj
i,dt

(5)

m1i(M)RSU = 1−Rj
i,dt

(6)
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The generated mass functions from the reputation reports

shared by the peer vehicles are combined using Eq. 2 which

is later used to calculate the plausibility values of vehicles

being malicious and normal. The plausibility values generated

at this stage are referred to as level-1 plausibility values where

Pl1,j(M) and Pl1,j(N) represent the vehicle being malicious

and normal respectively.

2) Level-2 Plausibility Calculation: In this step, RSUs

generate mass functions by calculating the difference between

the reputation report submitted by the vehicle i for peer vehicle

j and the level-1 plausibility value of the peer vehicle j being

normal indicating the vehicle’s malicious behavior.

m2i(M)RSU =

{|Ri
j,dt

−Plj(N)RSU | If |Ri
j,dt

−Plj(N)RSU |>0.2

0.1 Else
(7)

m2i(N)RSU = 1−m2i(M) (8)

This validation process is iteratively applied to each report

submitted by a vehicle for its peer vehicles. The plausibility

values from this step are considered as the level-2 plausibility

values denoted as Pl2,i(M) and Pl2,i(N).
3) Random Validation by RSU:

When the proportion of malicious vehicles surpasses 50%,

attackers succeed in their objective of diminishing the reputa-

tion of peer vehicles at the CA. To counteract this vulnerability,

RSU intermittently intercepts vehicle communications every

20 discrete intervals and maintains this policy for the next 20

iterations. RSU validates vehicle self-reports against their own

sensed kinematic data to establish vehicle reputations.

RRSU
i,ct

= φ2R
RSU
i,ct−1

+ (1− φ2)T
RSU
i,ct

(9)

Here, φ2 is used with a default constant value of 0.2. RSU

accumulates reputation reports that vehicles share regarding

their peers. The acceptance of reputation reports despite vari-

ance is grounded in the disparate nature of trust update policies

employed by vehicles and RSU. When the variance follows a

descending order, a vehicle is attributed a trust level of 0.9;

otherwise, a trust level of 0.1 is assigned:

TRSU
i,ct

=

{0.1 If ∆>0.2

0.9 Else

(10)

∆ = xRSU
i − xi

i. Later using Eq. (5) and (6) the centralized

mass functions (m3,i(M)) and (m3,i(N)) are calculated.

F. Combination of Level-1, Level-2 and RSU Validated Scores

RSU merges information from Level 1, Level 2, and RSU

calculated reputation to predict vehicle behavior. Employing

the DS theory of combination, RSU fuses these mass functions

to determine the final plausibility of a vehicle being malicious

and normal using Eq. 1. When the final plausibility of a vehi-

cle’s malicious behavior exceeds 0.3, the vehicle is identified

as malicious, rendering all its transmitted reputation reports

as malicious. These predictions serving as the foundation,

contribute to the formulation of rewards for the RL agent

located at CA. This multi-stage process not only bolsters the

integrity of the vehicular network against malicious behavior

but also showcases the integration of RL to incentivize reliable

reporting. The final plausibility of the vehicle’s malicious

behavior is tracked using a robust trust update policy (11)

as described in [17]. This value serves as the final malicious

score of the vehicle which is used as an indicator of vehicle

behavior at the RSU level. MRSU
i,t is the cumulative malicious

score, PlRSU
i,t is the final plausibility score of the vehicle being

malicious and the values of D, θ and σ are set as 200, 2, 20

respectively.

MRSU
i,t = MRSU

i,t−1 +
1

θ
Φ(MRSU

i,t−1)D(PlRSU
i,t − ERSU

i,t−1) (11)

Φ(MRSU
i,t−1) = 1−

1

1 + exp (
−(MRSU

i,t−1
−D)

σ
)

(12)

ERSU
i,t−1 = (MRSU

i,t−1)/D (13)

G. RL model at CA

In our model we have tailored the RL agent on CA to select

the optimal smoothing factor. The state st contains previous

smoothing factor φ1, average final plausibility score of the

vehicles being malicious (obtained from Level 3 DS at RSU)

and previous reward value (re).

st = φ1,t−1, P lRSU
t−1 avg

, ret−1 (14)

The reward is computed as the ratio of the number of true

reputation reports to the total number of reputation reports

computed by RSU. Subsequently, this reward is furnished to

the RL agent located in CA, which leverages it to make in-

formed selections of actions, represented as smoothing factors.

at = φ1 = {φ11 , φ12 , φ13 , ...., φ1n} (15)

The overarching aim of these actions is to maximize the

cumulative reward. In a comprehensive loop, the actions

determined by the RL agent are disseminated to the vehicles,

effectively compelling them to transmit accurate reports. For

our work, the AC is a fully connected network with same

lower layers with two output layers one for each actor and

critic. We used softmax activation function for actor layer to

model probabilities.

IV. SIMULATIONS AND PERFORMANCE RESULTS

The simulations are carried out on a Lambda GPU work-

station AMD(R) Ryzen threadripper pro 3955wx 16 cores x32

with 128 GB RAM on a Ubuntu 20.04.5 LTS. In this section,

we discuss the performance of DQN, AC and PPO based

RL models in an environment where 50% of the vehicles

are participating in a colluding attack as described in Fig

2. For visualization purposes, we have selected 10 vehicles

where 2, 3, 5, 7, 9 numbered vehicles are malicious colluding

vehicles and the other five are normal vehicles. We have

plotted the values of average action values, reward values and

final plausibility scores between 1-350 episodes.
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(a) Average action values (DQN model) (b) Average reward values (DQN model) (c) Final malicious scores (DQN model)

(d) Average action values (AC model) (e) Average reward values (AC model) (f) Final malicious scores (AC model)

(g) Average action values (PPO model) (h) Average reward values (PPO model) (i) Final malicious scores (PPO model)

Fig. 3: Performance Analysis (Malicious colluding vehicles are numbered as 2, 3, 5, 7, 9)

1) DQN model: Figures 3(a) and 3(b) represents the aver-

age action and reward values respectively of a DQN based RL

agent over time. Here, we can see that with average action

values ranging from 0.45 - 0.85 and average reward values

ranging from 0.4 - 1.0. This shows that the DQN agent was

unable to find an optimal smoothing factor to mitigate the

attacker thus affecting its reward values. Figure 3(c) represents

the final malicious scores of vehicles in 300th episode. High

final malicious scores of vehicles represent that the colluding

vehicles are successfully attacking the system even with DQN

model in place.

2) AC model: Figures 3(d) and 3(e) represent the average

action and reward values of a AC RL agent over time.

Here we can see that AC agent was able to find a optimal

smoothing factor of 0.94 to mitigate the colluding attack after

approximately 120th episode and was successful in forcing

the colluding vehicles to send true reputation reports. The AC

agent was able to achieve high reward value of 1.0 which can

be seen in the reward value plot (See Figure 3(e)). Figure 3(f)

represent the final malicious scores of vehicles with AC model

in 300th episode. The values ranging from 0-6 represents that

colluding vehicles were never able to send false reputation

reports because of the AC model based mitigating agent.

3) PPO model: Figures 3(g) and 3(h) represent the average

action and reward values of a PPO agent. Here we can see that

PPO agent achieved high reward values from 100th episode

by selecting average smoothing factor as 0.77 mitigating the

colluding vehicles malicious behavior by forcing them to send

true feedbacks. We can see that the reward values are 1 from

which we can infer that the colluding vehicles are sending

true reputation reports when PPO model was implemented

at the CA. A final malicious score ranging from 0-6 in 3(i)

represents the behavior of vehicles with PPO agent in place.

As the malicious vehicles were forced to send true reputation

reports right from the 100th episode their respective malicious

scores are low.
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A. Comparative Analysis

We further describe the performance of different deep RL

agents in the selection of smoothing factors in mitigating

malicious colluding attacks across episodes. Table I contains

the average action, reward and final malicious values for DQN,

AC, and PPO RL agents between 100-150 episodes. From the

data, it is evident that the PPO agent was able to achieve

high rewards whereas AC model performed moderately by

achieving 0.84. DQN failed to mitigate the malicious vehicles

from sending the false reputation scores which can be observed

from high final malicious scores and low reward values.

Model Action Reward Average final malicious score

DQN 0.68 0.63 54.56

AC 0.84 0.84 4.19

PPO 0.77 1 4.18

TABLE I: Values between 100-150 episodes

Table II contains the average action, reward and final

malicious values from DQN, AC, PPO RL agents between

200-250 episodes. From the data we can see that AC and

PPO based agents were able to achieve same reward values

and were successful in mitigating the malicious vehicles from

sending false reputation scores. We can observe that AC agent

chose 0.94 as optimal smoothing factor which was around 0.84

during 100-150 episodes to achieve high reward. From the low

reward values and high final malicious scores we can infer that

DQN based agent still suffers to mitigate malicious vehicles.

Model Action Reward Average final malicious score

DQN 0.74 0.61 49.19

AC 0.94 1 4.02

PPO 0.77 1 3.72

TABLE II: Values between 200-250 episodes

Table III contains the values of average action, reward and

final malicious score from DQN, AC and PPO RL agents

between 500-750 episodes. It is evident from the table III that

the AC and PPO continued to mitigate the colluding vehicles

where as DQN agent was unable to find the optimal smoothing

factor which mitigates the malicious vehicles.

Model Action Reward Average final malicious score

DQN 0.72 0.61 46.8

AC 0.94 1 4.19

PPO 0.77 1 3.95

TABLE III: Values between 500-750 episodes

V. CONCLUSION

This paper proposed multi-level DS technique in conjunc-

tion with RL for detecting and mitigating colluding attacks

in CV. From the simulation it was observed that the PPO-

based RL agent showed its superiority by mitigating the

influence of colluding malicious vehicles. Preventing them

from sending false reputation scores right from the 100th

episode, whereas the AC-based agent was able to find the

optimal smoothing factor after the 120th episode. In contrast,

the DQN agent struggled to find an optimal smoothing factor

even after 750 episodes. From the simulation, we can conclude

that the AC and PPO-based agents performed efficiently in

mitigating malicious vehicles quickly, whereas the DQN-based

model taking more time than these agents to find an optimal

smoothing factor.
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