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Abstract—As the vehicles are interconnected and share in-
frastructure information among each other, the adoption of
connected vehicles (CVs) continues to surge. However, CV’s
introduce vulnerabilities related to the integrity of the shared
data, which may be compromised by either malicious attacks or
sensor failures. Detecting these vulnerabilities in CVs has become
paramount to provide safety to the passengers and pedestrians in
the network. Trust and reputation-based reinforcement learning
(RL) algorithms are one way for the detection and handle these
vulnerabilities. These algorithms fail to work when the number of
vehicles collude together to disrupt the CV network. In response
to this, we propose a trust and reputation based RL along with
multi level dempster shafer technique to deal with colluding
attacks in CVs. This integration involves fusing reputation-based
trust management on a vehicle level with a RL agent running on
road side unit. We conduct performance analysis on different RL
algorithms namely deep Q-networks, actor-critic and proximal
policy optimization.

Index Terms—connected vehicles, security, reinforcement
learning, colluding attacks.

I. INTRODUCTION

Connected vehicles (CVs) show promising results in im-
proving road safety, efficient fuel consumption, and signif-
icantly decreasing traffic congestion, representing a pivotal
development in modern transportation [1]. However, network
vulnerabilities can give rise to attacks in CV which can lead to
adverse impacts, posing a viable risk to passengers’ lives [2].
Attacks such as information manipulation, data injection, and
data falsification are classified as internal attacks and can
be particularly challenging to detect and mitigate due to the
attackers’ deeper knowledge of the system’s internals [3].
External attacks include denial of service attacks, spoofing
attacks, man-in-the-middle attacks, and others. Existing mod-
els to overcome external attacks are effective [4], but internal
attacks can remain undetected within these existing models
due to their increased sophistication [5].

Internal attacks such as information falsification have sev-
eral solutions including trust reputation models [3], there
is limited work for colluding vehicle attacks [6]. Colluding
attacks involve the cooperation of multiple malicious vehicles.
State-of-the-art solutions for these attacks employ block-chain
based approach [7], trust management system [8] and others
[9]. While well-crafted colluding attacks have the potential to
compromise most of the existing state-of-the-art frameworks
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for CV, there is a notable lack of research efforts focused on
their identification and mitigation. A well-crafted attack can
stay undetected in CV environments [6], thus, there is a need
for an efficient framework for the detection and mitigation of
such colluding attacks.

Recently, reinforcement learning (RL) models [10] have
demonstrated their superiority in adapting to CV dynamic
environments [11]. RL along with trust and reputation models
are designed to handle dynamic vehicle traffic and incentivize
good behavior while penalizing undesirable conduct. This can
be achieved by tracking and updating reputation based on
current trust scores. In our work, we propose the utilization of
a multi-level Dempster-Shafer (DS) approach with a dynamic
reputation update policy using RL for the detection and
mitigation of colluding attacks.

This paper serves as an extension of our prior work [12],
where we employed a Deep Q-based dynamic reputation up-
date policy in conjunction with a multi-level Dempster-Shafer
model. We implemented several enhancements compared to
our prior work: (1) The attacker model initiated attacks when
the reputation policy favored trust over reputation. (2) We
equipped the attacker with the ability to emulate colluding
attacks instead of traditional data falsification attacks. (3) We
adopted the final malicious score as a state value for training
the RL agent. (4) Our study encompassed a comprehensive
comparison among various RL algorithms, including deep
Q-networks (DQN), actor-critic (AC), and proximal policy
optimization (PPO).

II. BACKGROUND AND RELATED WORK
A. Related Work

Authors in [6] investigates the effectiveness of deep RL
based adaptive traffic controller system for mitigating collud-
ing attack. The authors used deep RL with negative waiting
time as a reward function to reduce the overall wait time
of the colluding vehicles. The simulations were carried out
with the SUMO traffic simulation tool [13] to generate traffic
resembling the Monaco city traffic and used ablation study
and sensitivity analysis to evaluate the average travel time and
average wait time for both colluding and normal vehicles. The
findings reveal that the proposed framework was able to reduce
the total wait time of colluding vehicles by 92% and increased
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the total travel time of normal vehicles by 62% causing them
to spend 12% more time on travel.

In [7], the authors investigate the use of ledger-based
blockchain aiming at building a trustworthy CV system against
threats targeting human safety. The authors proposed an ef-
ficient interaction verification system to avoid system attacks
using proof of interaction with a lightweight mining algorithm.
Gathering the values of average number of blocks and the
time required for miner detection values, generated from
simulations resembling an urban CV environment, proves
that the model is resilient to different threats such as black
hole miners, bad mouthing, and malicious miners. In their
discussion authors described that the proposed model will not
allow a change that’s greater than 10% in one mining cycle
which protects the system from the substantial effect of a
colluding attack.

In [8], the authors proposed the use of interaction prove-
nance as a proof of interaction considering the chronological
order of historical interactive events along with fuzzy ranges,
aggregated weights, and trustworthiness profile mapping. The
author provides information related to the effectiveness of the
proposed algorithm and how adjusting the fuzzy ranges, can
be used to mitigate colluding attacks.

In [9], the authors investigate wormhole protocol detector
(WPD), a lightweight protocol for detecting and mitigating
wormhole attacks. The author’s WPD monitors, detects out-
of-range packets, identifies the nodes participating in the
wormhole connection, avoids the wormhole links, and obtains
secure routing paths between CVs. The findings reveal that
the module can effectively identify wormhole attacks using the
WPD with 100% accuracy in different length of wormhole link
lengths and it failed to identify the encapsulation wormhole
attack, as the attacker have the ability to tamper with the
information. In this paper, we propose a novel approach
for detecting and mitigating colluding attacks in CV. The
following are the contributions:

o Current state-of-the-art solutions lack a clearly defined
profile for colluding attacks. In our research, we have es-
tablished a distinct and well-defined profile for colluding
attacks.

o We propose a multi-level DS technique along with RL
algorithm for mitigating colluding attacks which fit well
for dynamic CV networks.

o Existing solutions employ DQN for reputation-based
security. We conducted a comprehensive comparative
analysis among state-of-the-art RL algorithms. For this,
we simulated our work on RL based environment for CV
networks [15], [16].

III. PROPOSED WORK

A. Dataset for Vehicular Network Simulation

We used an open-source vehicle navigation model con-
trolled by multi-agent RL framework [15], [16] where the
navigation of the vehicles is governed in an on-ramp merging
scenario simulating general traffic conditions. Each vehicle

shares basic safety messages (BSM) which contain details
about its position, speed, headed direction, and acceleration.
Each vehicle calculates its peer reputation by comparing the
BSM reported by the vehicle with the reports generated
through its own sensor. We assume that each vehicle is
equipped with necessary sensors which help them to make
peer reports.
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B. System Model

The system architecture (Figure 1) combines decentralized
validation with centralized feedback, integrating reputation-
based trust management with an RL at the centralized authority
(CA). A multi-level implementation of DS at the Roadside
Unit (RSU) predicts false reports from vehicles, influencing
the Deep RL agent’s rewards. It starts with inter-platoon
communication, where vehicles transmit BSM, sensed by peer
vehicles. Decentralized reputation calculation at the vehicle
level sends reputation scores to the RSU, with dynamic
reputation updates (denoted as smoothing factor ¢;) assigned
by the CA. The RSU employs DS theory to combine vehicle
reputation reports, considering both peer-reported behavior and
self-reported values with centralized reputation and predict
the final malicious score. An average final malicious score,
previous smoothing factor ¢;, and previous-time rewards are
fed into the RL agent, which determines an optimal smoothing
factor, which is disseminated across the network. This factor
encourages malicious vehicles to report truthfully, while a
robust reputation update policy continuously evaluates each
vehicle’s overall behavior.

C. Attacker model

In our model, we implement a colluding attack by falsifying
the data across a group of vehicles. This is accomplished by
adding white Gaussian noise to the sensed kinematics of the
peer vehicles as shown in Figure 2. Here, vehicles within
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Fig. 2: Colluding attack where black vehicles are normal
vehicles and red are malicious vehicles forming two groups.

the colluding group (shown in red) give high reputation to
other vehicles participating in the same group. However, they
deliberately inject noise into the sensed coordinates of the
normal vehicles that are in close proximity to them (shown
in black). This strategic action aims to diminish the reputation
of the normal vehicles at the RSU, with the underlying goal
of falsely implicating them as malicious vehicles. The white
Gaussian is generated with © = 2 and o = 0.9. The noise is
introduced by intercepting the smoothing function (¢1) = 0.4,
at RSU.

D. Dempster-Shafer Technique

The DS theory of evidence is a mathematical framework
for quantifying belief in statements by combining independent
evidence from multiple sources using belief functions. It
handles uncertainty by assigning degrees of belief to subsets
of possible events and uses the DS rule to aggregate belief
functions.

a) Frame of discernment ©: Frame of discernment is
defined as © = {01,0,...... ©,} that covers individual,
mutually exclusive, discretized values of all viable outcomes
of ©. In our approach O contains two elements © = {M, N};
where M= malicious vehicle, N= normal vehicle.

b) Power Set P(©): The power set P(©) of aforesaid
random variable © is a set of all subsets of © including the
individual elements, and represents the DS frame of ©. For
our model it contains P(©)={¢, M, N, M N}

c) Evidence: Evidences are events/symptoms and one
evidence maps to single hypothesis or set of hypotheses.

d) Mass Function (m-value): Our trust regarding the
truth value of a proposition ‘A’ is dependent on the evidence
that supports the proposition which is denoted as mass function
(m-value). It relates to the weights of the elements in the P(©),
m : 2 — [0, 1], where weight of the null set is 0, m(¢) =0
and m(A) > 0. The overall sum of the mass functions of all
elements in the P(©)=1 or > {m(A)V A € 2°} = 1. Thus,
m(A) is a measure of belief assigned by a given evidence to

A, where A is any element of 2°, VA € 2°, and non belief
is forced by the lack of knowledge. We can get the lower and
upper bound of an interval from the mass function. The lower
bound is used as the belief function and the upper bound is
used to calculate the plausibility function.

e) Plausibility function (Pl): The upper bound of the
interval is called plausibility, and it is determined by taking the
sum of all the mass function of the subsets (B) that intersects
(A) where (BN A # ¢), PI(A):2° —[0,1] [14].

Y. m(B)
BNA#¢
f) DS Rule of Combination: The data collected from
the different sources are combined rationally, to focus on
the consensus opinion and use normalization to ignore all
the conflicting evidences. A cartesian product of two mass
functions is employed for the combination of evidence. The
DS combination rule determines the joint mjo from the
combination of two mass functions using equation:

_ 2pne=almi(B)ms(C)}
1-K
when A # ¢, m(¢) =0 and K = 3 p -, m1(B)m2(C)

)

miz(A)

2

E. Multi Level DS

1) Level-1 Plausibility Calculation: Level 1 corresponds to
decentralized reputation calculation at the vehicle level. Each
vehicle is equipped with the capability to sense the kinematics
of its peers. Each vehicle calculates the difference between the
sensed kinematics and the broadcasted BSMs of peer vehicle
(7). If this disparity exceeds a predefined threshold noise, the
vehicle (4) assigns a trust value of 0.1 to j; otherwise, it assigns
a trust value of 0.9.

T

3)

0.1 If A>02
it {

0.9 FElse

where A = x? — xé and z is the position reported. These trust
values are then integrated with the current reputation score
with the current smoothing factor (denoted as ¢1):

R} 4, = 01R, g+ (1—¢1)T], 4)

Each vehicle then share the calculated reputation scores to
RSU. The reputation scores shared by peer vehicles serve as
the basis for building mass functions. The RSU treats the
reputation reports provided by different vehicles as individual
pieces of evidence. Specifically, one mass function charac-
terizes the likelihood of a vehicle being normal (N), while
the other, its complement (1 - reputation score), represents
the likelihood of a vehicle being malicious (M ). For each
vehicle’s reputation report, the RSU generates a mass function
tuple consisting of m(N) (the mass function for normal
behavior), m(M) (the mass function for malicious behavior):

(&)
(6)

mli(N)RSU = Rg,dt

ma (M) =1 - Rg,dt

Authorized licensed use limited to: Texas State University. Downloaded on June 03,2024 at 14:47:36 UTC from IEEE Xplore. Restrictions apply.



The generated mass functions from the reputation reports
shared by the peer vehicles are combined using Eq. 2 which
is later used to calculate the plausibility values of vehicles
being malicious and normal. The plausibility values generated
at this stage are referred to as level-1 plausibility values where
Ply j(M) and Pl; ;(N) represent the vehicle being malicious
and normal respectively.

2) Level-2 Plausibility Calculation: In this step, RSUs
generate mass functions by calculating the difference between
the reputation report submitted by the vehicle ¢ for peer vehicle
7 and the level-1 plausibility value of the peer vehicle j being
normal indicating the vehicle’s malicious behavior.

|Rj 0, =Pl (N)5U] 1 f

! |R} 4, —PLi(N)SY|>0.2

J
mgi(M)RSU _ {
0.1 FElse

(7

mai(N)FSU =1 — may (M) (8)

This validation process is iteratively applied to each report
submitted by a vehicle for its peer vehicles. The plausibility
values from this step are considered as the level-2 plausibility
values denoted as Pl ;(M) and Ply ;(N).

3) Random Validation by RSU:

When the proportion of malicious vehicles surpasses 50%,
attackers succeed in their objective of diminishing the reputa-
tion of peer vehicles at the CA. To counteract this vulnerability,
RSU intermittently intercepts vehicle communications every
20 discrete intervals and maintains this policy for the next 20
iterations. RSU validates vehicle self-reports against their own
sensed kinematic data to establish vehicle reputations.

RV = poRIY 4 (1 — o) TSV

1,Ct ,Ct—1 1,Ct

©))

Here, ¢o is used with a default constant value of 0.2. RSU
accumulates reputation reports that vehicles share regarding
their peers. The acceptance of reputation reports despite vari-
ance is grounded in the disparate nature of trust update policies
employed by vehicles and RSU. When the variance follows a
descending order, a vehicle is attributed a trust level of 0.9;
otherwise, a trust level of 0.1 is assigned:

1;Ct

0.1 If A>0.2
{ (10)

0.9 FElse

A = ISY — g Later using Eq. (5) and (6) the centralized
mass functions (ms;(M)) and (ms,;(N)) are calculated.

FE. Combination of Level-1, Level-2 and RSU Validated Scores

RSU merges information from Level 1, Level 2, and RSU
calculated reputation to predict vehicle behavior. Employing
the DS theory of combination, RSU fuses these mass functions
to determine the final plausibility of a vehicle being malicious
and normal using Eq. 1. When the final plausibility of a vehi-
cle’s malicious behavior exceeds 0.3, the vehicle is identified
as malicious, rendering all its transmitted reputation reports
as malicious. These predictions serving as the foundation,
contribute to the formulation of rewards for the RL agent

located at CA. This multi-stage process not only bolsters the
integrity of the vehicular network against malicious behavior
but also showcases the integration of RL to incentivize reliable
reporting. The final plausibility of the vehicle’s malicious
behavior is tracked using a robust trust update policy (11)
as described in [17]. This value serves as the final malicious
score of the vehicle which is used as an indicator of vehicle
behavior at the RSU level. M55V is the cumulative malicious
score, PIfPU is the final plausibility score of the vehicle being
malicious and the values of D, 6 and o are set as 200, 2, 20

respectively.

1
MESY = MFSY + —o(MPES)D(PIFSY — EfFY) (1)

0
1
(I)(Mll,{tsj{) =1- 7(]»[5511 —-D) (12)
L4 exp (—t =
EY = MY /D (13)

G. RL model at CA

In our model we have tailored the RL agent on CA to select
the optimal smoothing factor. The state s; contains previous
smoothing factor ¢;, average final plausibility score of the
vehicles being malicious (obtained from Level 3 DS at RSU)
and previous reward value (re).

RSU
st = ¢1,0-1, PL avg

(14)

yTet—1

The reward is computed as the ratio of the number of true
reputation reports to the total number of reputation reports
computed by RSU. Subsequently, this reward is furnished to
the RL agent located in CA, which leverages it to make in-
formed selections of actions, represented as smoothing factors.

ag = ¢1 = {¢11a¢12a¢13a ""7¢1n} (15)

The overarching aim of these actions is to maximize the
cumulative reward. In a comprehensive loop, the actions
determined by the RL agent are disseminated to the vehicles,
effectively compelling them to transmit accurate reports. For
our work, the AC is a fully connected network with same
lower layers with two output layers one for each actor and
critic. We used softmax activation function for actor layer to
model probabilities.

IV. SIMULATIONS AND PERFORMANCE RESULTS

The simulations are carried out on a Lambda GPU work-
station AMD(R) Ryzen threadripper pro 3955wx 16 cores x32
with 128 GB RAM on a Ubuntu 20.04.5 LTS. In this section,
we discuss the performance of DQN, AC and PPO based
RL models in an environment where 50% of the vehicles
are participating in a colluding attack as described in Fig
2. For visualization purposes, we have selected 10 vehicles
where 2, 3, 5, 7, 9 numbered vehicles are malicious colluding
vehicles and the other five are normal vehicles. We have
plotted the values of average action values, reward values and
final plausibility scores between 1-350 episodes.
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1) DON model: Figures 3(a) and 3(b) represents the aver-
age action and reward values respectively of a DQN based RL
agent over time. Here, we can see that with average action
values ranging from 0.45 - 0.85 and average reward values
ranging from 0.4 - 1.0. This shows that the DQN agent was
unable to find an optimal smoothing factor to mitigate the
attacker thus affecting its reward values. Figure 3(c) represents
the final malicious scores of vehicles in 300" episode. High
final malicious scores of vehicles represent that the colluding
vehicles are successfully attacking the system even with DQN
model in place.

2) AC model: Figures 3(d) and 3(e) represent the average
action and reward values of a AC RL agent over time.
Here we can see that AC agent was able to find a optimal
smoothing factor of 0.94 to mitigate the colluding attack after
approximately 120" episode and was successful in forcing
the colluding vehicles to send true reputation reports. The AC
agent was able to achieve high reward value of 1.0 which can

150
Steps

50 200 250 300 350 50 100 200 250

Episodes

values (PPO model) (i) Final malicious scores (PPO model)

lluding vehicles are numbered as 2, 3, 5, 7, 9)

be seen in the reward value plot (See Figure 3(e)). Figure 3(f)
represent the final malicious scores of vehicles with AC model
in 300" episode. The values ranging from 0-6 represents that
colluding vehicles were never able to send false reputation
reports because of the AC model based mitigating agent.

3) PPO model: Figures 3(g) and 3(h) represent the average
action and reward values of a PPO agent. Here we can see that
PPO agent achieved high reward values from 100" episode
by selecting average smoothing factor as 0.77 mitigating the
colluding vehicles malicious behavior by forcing them to send
true feedbacks. We can see that the reward values are 1 from
which we can infer that the colluding vehicles are sending
true reputation reports when PPO model was implemented
at the CA. A final malicious score ranging from 0-6 in 3(i)
represents the behavior of vehicles with PPO agent in place.
As the malicious vehicles were forced to send true reputation
reports right from the 100" episode their respective malicious
scores are low.
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A. Comparative Analysis

We further describe the performance of different deep RL
agents in the selection of smoothing factors in mitigating
malicious colluding attacks across episodes. Table I contains
the average action, reward and final malicious values for DQN,
AC, and PPO RL agents between 100-150 episodes. From the
data, it is evident that the PPO agent was able to achieve
high rewards whereas AC model performed moderately by
achieving 0.84. DQN failed to mitigate the malicious vehicles
from sending the false reputation scores which can be observed
from high final malicious scores and low reward values.

Model | Action | Reward | Average final malicious score
DQN 0.68 0.63 54.56

AC 0.84 0.84 4.19

PPO 0.77 1 4.18

TABLE I: Values between 100-150 episodes

Table II contains the average action, reward and final
malicious values from DQN, AC, PPO RL agents between
200-250 episodes. From the data we can see that AC and
PPO based agents were able to achieve same reward values
and were successful in mitigating the malicious vehicles from
sending false reputation scores. We can observe that AC agent
chose 0.94 as optimal smoothing factor which was around 0.84
during 100-150 episodes to achieve high reward. From the low
reward values and high final malicious scores we can infer that
DQN based agent still suffers to mitigate malicious vehicles.

Model | Action | Reward | Average final malicious score
DQN 0.74 0.61 49.19

AC 0.94 1 4.02

PPO 0.77 1 3.72

TABLE II: Values between 200-250 episodes

Table III contains the values of average action, reward and
final malicious score from DQN, AC and PPO RL agents
between 500-750 episodes. It is evident from the table III that
the AC and PPO continued to mitigate the colluding vehicles
where as DQN agent was unable to find the optimal smoothing
factor which mitigates the malicious vehicles.

Model | Action | Reward | Average final malicious score
DON 0.72 0.61 46.8

AC 0.94 1 4.19

PPO 0.77 1 3.95

TABLE III: Values between 500-750 episodes

V. CONCLUSION

This paper proposed multi-level DS technique in conjunc-
tion with RL for detecting and mitigating colluding attacks
in CV. From the simulation it was observed that the PPO-
based RL agent showed its superiority by mitigating the
influence of colluding malicious vehicles. Preventing them
from sending false reputation scores right from the 100th
episode, whereas the AC-based agent was able to find the

optimal smoothing factor after the 120th episode. In contrast,
the DQN agent struggled to find an optimal smoothing factor
even after 750 episodes. From the simulation, we can conclude
that the AC and PPO-based agents performed efficiently in
mitigating malicious vehicles quickly, whereas the DQN-based
model taking more time than these agents to find an optimal
smoothing factor.

VI. ACKNOWLEDGMENT

This publication has been supported by NSF CISE Research
Initiation Initiative (CRII) grant #2153510 and #2313351.

REFERENCES

[1] M. Hijji et al. “6G connected vehicle framework to support intelligent
road maintenance using deep learning data fusion”. IEEE Transactions
on Intelligent Transportation, 2023.

[2] M. Amoozadeh et al., “Security vulnerabilities of connected vehicle
streams and their impact on cooperative driving”. IEEE Communications
Magazine, vol. 53, no. 6, pp.126-132, 2015.

[3] H. Rathore and H. Griffith, “Leveraging Neuro-Inspired Reinforcement
Learning for Secure Reputation-based Communication in Connected
Vehicles”, CPS-Sec Workshop, IEEE CNS, 2023.

[4] Y. Li et al., “TSP security in intelligent and connected vehicles:
Challenges and solutions”. IEEE Wireless Communications, vol. 26, no.
3, pp-125-131, 2019.

[5] H. Griffith, M. Farooq and H. Rathore, “A Data Generation Workflow
for Consensus-Based Connected Vehicle Security,” IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
2023, pp. 1-2, 2023.

[6] Qu, Ao, Yihong Tang, and Wei Ma. “Attacking deep reinforcement
learning-based traffic signal control systems with colluding vehicles,”
arXiv preprint arXiv:2111.02845 (2021).

[71 F. Kandah, B. Huber, A. Altarawneh, S. Medury and A. Skjellum,
“BLAST: Blockchain-based Trust Management in Smart Cities and Con-
nected Vehicles Setup,” IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, pp. 1-7, 2019.

[8] M. A. Hoque and R. Hasan, “An Interaction Provenance-based Trust
Management Scheme For Connected Vehicles,” in IEEE 19th Annual
Consumer Communications and Networking Conference (CCNC),, pp.
731-732, 2022.

[9] SS. Albouq and EM. Fredericks. “Detection and Avoidance of Wormhole
Attacks in Connected Vehicles,” In Proceedings of the 6th ACM Sym-
posium on Development and Analysis of Intelligent Vehicular Networks
and Applications (DIVANet ’17), Association for Computing Machinery,
pp. 107-116, 2017.

[10] S. Gyawali, Y. Qian and R. Q. Hu, “Deep Reinforcement Learning Based
Dynamic Reputation Policy in 5G Based Vehicular Communication
Networks,” in IEEE Transactions on Vehicular Technology, vol. 70, no.
6, pp. 6136-6146, 2021.

[11] Chen et al, “Graph neural network and reinforcement learning for
multi-agent cooperative control of connected autonomous vehicles,” in
Comput Aided Civ Inf. vol 36, pp 838- 857, 2021.

[12] PJ Chowdary, H. Griffith, H. Rathore, “A Multi-Level Dempster-Shafer
and Reinforcement Learning-Based Reputation System for Connected
Vehicle Security”, IEEE CCNC, 2024.

[13] P.A. Lopez et al., “Microscopic traffic simulation using sumo”. In
2018 21st international conference on intelligent transportation systems
(ITSC), pp. 2575-2582, IEEE, 2018.

[14] Sentz, K. and Ferson, “Combination of evidence in Dempster-Shafer
theory”. 2002

[15] Dong Chen et al, “Deep Multi-agent Reinforcement Learning for High-
way On-Ramp Merging in Mixed Traffic,” 2022.

[16] https://github.com/DongChen06/MARL_CAVs [accessed on august 31,
2023].

[17] D. Suo and S. E. Sarma, “Proof-of-Travel: A Protocol for Trustworthy
V2I Communication and Incentive Designs,” in IEEE Vehicular Net-
working Conference (VNC), pp. 1-4, 2020.

Authorized licensed use limited to: Texas State University. Downloaded on June 03,2024 at 14:47:36 UTC from IEEE Xplore. Restrictions apply.



