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Abstract—Secure communications in connected vehicles (CV)
is essential to ensure the safety of drivers, passengers and
pedestrians. As vehicles are becoming more connected and au-
tonomous, they are reliant on communication and data exchange
with infrastructure and other vehicles. Although Public Key
Infrastructure has the potential to offer secure communication,
it does not have ground truth information of vehicle location.
Reputation-based communication can provide a more reliable
approach to securing communication in a dynamic and constantly
changing environment. This paper proposes a neuro-inspired
reinforcement learning (RL) approach for reward estimation in
CV networks. Vehicles estimate the reputation of neighboring
vehicles by comparing broadcasted kinematic data with onboard
sensor estimates along with connectivity topology inspired from
brain, thereby forming a local graphical representation with rep-
utation distribution. This information is shared with a centralized
RL agent, which provides reward signals to each vehicle from
combined reputation scores to incentivize accurate reputation
estimates.

Index Terms—connected vehicles, security, reinforcement
learning, graph neural networks.

I. INTRODUCTION

Connected vehicles (CVs) have the potential to revolutionize
transportation by improving driver safety and reducing con-
gestion [1]. These benefits are achieved through cooperative
sensing and maneuvering across the CV network, enabled
by the periodic exchange of navigation and traffic messages,
specifically basic safety messages (BSMs) [2]. However, the
exchange of these messages also makes CVs vulnerable to
attacks that could disrupt the safety of the network [3]. Large-
scale CV networks are susceptible to various types of attacks,
including external attacks like denial-of-service and spoofing,
as well as internal attacks like BSM falsification and controller
area network bus hacking [4]. Detecting and preventing these
attacks is crucial for ensuring the safety and security of CV
networks [5].

Cryptography-based algorithms have traditionally been used
to detect external attacks, while machine learning (ML) and
consensus-based reputation systems are used to detect internal
attacks [6]. Though ML have gained success in CV network,
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they do not take into consideration dynamic environments with
constantly changing interactions and relationships between ve-
hicles. Recently, reinforcement learning (RL) has been studied
to address the challenge of a fixed number of vehicles with
a fixed observation and action space size [7]. Similarly, it
is becoming a popular tool for investigating navigation in
cooperative decision-making [8]. RL relies on using rewards to
encourage the learning of desired behaviors, through a com-
bination of trial-and-error interactions with the environment
and the internal motivation provided by the brain’s reward
system. We believe that the neural representation of this reward
mechanism has potential benefits for developing novel RL
algorithms suited that can be tailored for CV [9].

Chen et al. [7] proposed a graph based RL for coop-
erative control and information flow among vehicles. Here,
the authors use a state space comprised of speed, position,
location, intention of the vehicles, along with an adjacency
matrix depicting how the vehicles are connected to each
other. The methodology does not capture the connectivity,
flow and clusters which can further enhance the reliability
of the entire network. Similarly in [6], the authors use RL
combined with Dampster Shafer theory for updating reputation
policy in CV network. However, the technique can lead to
overestimation of the degree of belief in a hypothesis, which
can result in incorrect decisions. Additionally, the technique
is computationally expensive and may not scale well to large
datasets.

This paper addresses the above listed issues by proposing
a framework for reward estimation in CV networks inspired
from neuroscience. The graph structure of [7] is modified to
capture qualitative aspects of the network as a whole [10]. In
addition, estimates of reputation formed at the vehicle level are
also integrated into the algorithm, which leverage the ability
of vehicles to validate peer-reported BSM broadcasts using
their onboard sensors. Vehicles learn to formulate accurate
estimates of reputation through a feedback reward framework
which fuses two information sources-1) the central entity,
incorporates Laplacian-based variable reward scheme and 2)
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TABLE I: Qualitative comparative analysis of trust and reputation models in CV

Type

Description

Advantages

Disadvantages

Bayesian
networks [17]

A probabilistic framework for represent-
ing the interactions and relationships be-
tween vehicles and the infrastructure

Able to handle uncertainty and can be
used to infer the trustworthiness of a vehi-
cle when there is incomplete or uncertain
data

Computationally expensive and may not
scale well to large systems with many ve-
hicles, they require a significant amount
of data to train and test

Machine
learning [18]

Learn from data and can be used to infer
the trustworthiness of a vehicle based on
its past behavior and the behavior of other
vehicles in the system

Can be easily scaled to handle a large
number of vehicles and interactions in
the system, can handle non-linear rela-
tionships and can automatically extract
features from the data

Require a significant amount of data to
train and test, may also be vulnerable
to adversarial attacks if the training data
is not representative of the real-world
scenario

Social  network
analysis [19]

Uses techniques from graph theory to rep-
resent the interactions and relationships
between vehicles and the infrastructure

They can provide insights into the struc-
ture and dynamics of the interactions be-
tween vehicles

Computationally expensive and may not
scale well to large systems with many
vehicles.

techniques [21]

trust and reputation scores.

Game Use game theory to model the interactions | They can provide insights into the incen- | Complex to model and analyze, and may
theoretic ap- | between vehicles in the system tives and motivations of vehicles not accurately reflect the real-world inter-
proaches [20], [23] actions between vehicles
Cryptographic Use cryptographic techniques such as dig- | A secure and tamper-proof way to estab- | Computationally expensive, particularly
methods ital signature and encryption to establish | lish trust and can be used to authenticate | for large systems with many vehicles
[11], [12], [24] trust between vehicles and the infrastruc- | vehicles and protect sensitive information

ture
Distributed Use blockchain technology to create a | Secure and decentralized Require large amount of memory to store
ledger tamper-proof and decentralized ledger of the transactions

the individual vehicle, where estimates of trustworthiness (de-
noted as reputation for distinction) are computed by validating
reported BSM data of nearby peers from onboard sensor
readings.

II. RELATED WORK

Public Key Infrastructure (PKI) is a security framework
used in CV that employs cryptographic algorithms like en-
cryption and digital signatures to ensure the confidentiality
and integrity of data transmitted between vehicles [11], [12].
However, PKI may not be well-suited for the highly dynamic
and decentralized environment of CV and often lacks ground
truth information about the vehicles [13], [14]. To address
these issues, trust and reputation models can be used to analyze
data transmitted from vehicles through BSM and identify and
isolate security breaches [15]. By establishing trust between
vehicles, efficient and safe interactions can be enabled. Trust
and reputation mechanisms can also be used to detect and
prevent spoofing attempts by malicious actors who may try
to impersonate other vehicles or infrastructure to launch at-
tacks [16]. Several approaches, including game theory, social
networks, machine learning, and Bayesian networks, can be
employed in trust and reputation models for CV. This section
provides the state of the art of trust and reputation algorithms
that are utilized in CV [22].

Bayesian networks provide a probabilistic framework for
representing interactions between vehicles and can handle
incomplete or uncertain data. The authors in [17] proposed
a Gaussian-distribution-based trust management model which
utilizes a Bayesian network. Here, the direct and indirect trust
values were combined into a final trust value, which was fur-
ther enhanced by incorporating third-party recommendations.
To evaluate the model’s effectiveness, the authors simulated
an on-off attack in Matlab and used trust value and detection

time as the performance metrics. The results showed that the
model had a shorter detection time and higher accuracy in
detecting the on-off attack.

Machine learning (ML) can handle large amounts of data,
non-linear relationships, and extract features automatically.
In [18], the authors present artificial intelligence and statistical
data classification framework to analyze messages in CV. The
model is trained on the US Department of Transportation
Safety Pilot Deployment Model, which integrates a ML algo-
rithm and a local trust manager. Experimental results show that
the trained model can accurately predict false alerts, achieving
a 98% accuracy rate and a 0.55% standard deviation on 25%
malicious data.

Social network analysis uses graph theory to identify poten-
tial security threats. In [19], the authors utilize social network-
based bootstrapping techniques for trust management in CV
networks. The model incorporates initial trust values, node
similarity, and a trust and reputation management system that
considers the behavior and history of nodes for long-term trust
establishment. Simulations conducted with Colt libraries in
Java show that the proposed approach is resilient to up to
60% of malicious nodes and achieves a worst-case accuracy
of 74%.

Game-theoretic approaches model the interactions between
vehicles like in [20], which explores the practicality of eval-
uating reputation management schemes for CV under dy-
namic and diverse attack scenarios using evolutionary game
theory-based solutions. The authors simulate a CV network
to introduce malicious actors with randomly initialized attack
plans and compare the results of trust factor gained using
evolutionary decision making versus static decision making.

Blockchain-based algorithms create a decentralized ledger
of trust and reputation scores. In [21], the authors propose
a multi-tier authentication and trust-building framework that
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leverages blockchain technology to enhance the safety and va-
lidity of exchanged information in CV. The experiments were
conducted by mimicking platoon structure and the simulation
results showed the tradeoff between blockchain mining time
and the number of generated blocks, as well as the impact of
vehicle speed on block generation. The comparative analysis
of trust and reputation models in CV is shown in Table I. In
this paper, we use neuro-inspired RL for trust and reputation
systems in CV for several reasons:

o CV are dynamic environments with constantly changing
interactions and relationships between vehicles. Though
RL is better suited to handle dynamic environments they
are not able to generalize well for dynamic complex
environment. Proposed work can adjust the behavior to
changing conditions in the environment, similar to how
the brain adjusts its activity in response to changing
stimuli.

e In CV, the trust and reputation of vehicles can be
uncertain, which can make it difficult to train ML al-
gorithms. RL algorithms can handle uncertainty more
effectively, as they can learn from their interactions with
the environment and adapt to changing conditions. In
the case of reputation building in CV which rely on the
collective feedback of multiple vehicles to evaluate the
behavior of individual vehicles in the network, fixed RL
reward function may fail. Reward function inspired from
neuroscience can accelerate learning convergence rates
and improve the prediction accuracy.

III. METHODS

a) Formation of Graph: In order to make proactive and
safe decisions, the CV needs not only information pertaining
to vehicles in proximity but also information pertaining to
vehicles which are far away. This makes the CV network as a
complex network like brain. Thus, at any time-step ¢, each ve-
hicle would have a set of N vehicles sharing local information
and a centralized authority (RSU) having global information of
G vehicles where G > N. The dynamic topology of vehicles
can be represented using a graph (N, R C N - N) consisting
of a set of vehicles NV and a relation R that specifies a directed
edge from a vehicle n to another one m whenever they are
in sensing range with each other and R is equivalent to the
reputation score. This information is shared to RSU where
it computes the laplacian of the combined computed graph
to know the continuous measure of how well the graph is
connected [10].

b) Neuro-inspired Reward Estimation: In addition to
developing the foundational theoretical algorithm for graph
based learning, we also leverage variable reward structure
in RL to mimic brain signals to speed up learning [25].
This is based on the hypothesis that each vehicle will share
the same dynamics of the environment, however, will have
different rewards based on how they have made the reputation
decisions [32], [33]. In traditional RL algorithms, an agent

transitions between different states s; by taking actions a; that
leads to maximum rewards 7 (t).

The state space contains reputation scores reported by
individual vehicles through BSM. Each vehicle calculates the
reputation score based on the reported value by the sensed
vehicle vs the actual value estimated by peer vehicle (See Fig-
ure 1 (a)). RSU stores the reputation matrix (R; ;) reported by
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vehicles and uses the beta distribution to model the accuracy
of each vehicle in providing information about other vehicles.
The beta distribution is a continuous probability distribution
with two positive shape parameters, denoted by « and S where
«, B > 0. given by [27]:

f@ia, B) = (1/B(e, B)) x 2 L (L—2)P1 (D)

where z is the random variable 0 < = < 1, and B(«, ) is
the Beta function, defined as [27]:

B(a, B) = T'(a) «T(8)/T(a + f) 2

where I' is the Gamma function [28]. We model the prior
and posterior belief about the accuracy of each vehicle. The
two shape parameters, o and (3, are initialized to 1 for each
vehicle, which represents our initial belief about the accuracy
of each vehicle. The values of o and [ can be thought of
as representing the number of “high” reputation and “low”
reputation for each vehicle. Once we have chosen the prior
values of « and /3, we can update the distribution as we receive
new evidence. The updated values of o and § then represent
our posterior belief about the accuracy of the vehicle, based
on both the prior belief and the new evidence. During the
simulation, the beta distribution is updated based on the prior
and likelihood as below [29]:

informafiorn

Each vehicle shares individual reputation scores for
other vehicles + adjacency graph showing topology

Fig. 1: Proposed framework

posterior’, = prior’, + likelihood’ 3)
posterior% = prioré + (1 — likelihood”) 4)
The likelihood is calculated based on the reputation score

of vehicle ‘i’ from the perspective of neighboring vehicle .
For each of the vehicle, the reputation is updated using:

R; = w; *pm’ori +(1—wj)*R;; 5)

Here ‘w’ is the weight maintained by the RSU for each of the
vehicle and prior is the current prior. Vehicles with higher
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confidence (lower variance in their reputation scores) are given
more weight. The RSU agent adjusts its weights over time
based on the discrepancy between the predicted value and
the actual reputation score estimated by RSU. It penalizes
the vehicle which has variance in the reputation values as
compared to RSU. The rewards to individual vehicles are given
as:

ri(t) = L(t) x w;(t) (6)

where L(t) is the Laplacian matrix as defined in [10] and
w;(t) is the weight for vehicle i.

IV. RESULTS

a) Vehicle Simulation: Experiments were done to simu-
late the motion of multiple vehicles in a highway setting, using
the Python libraries Matplotlib and Numpy. The simulation
involves a set of vehicles traveling on three lanes, with the
simulation time set to 200 seconds and a time step of 0.1
seconds. The safe distance between vehicles is set to 5 meters,
and the width of each lane is 3 meters. The motion model
for each vehicle is defined using the position z(t) and y(t),
velocity v(t), and lane of each vehicle, and the simulation
updates the positions of each vehicle based on the motion
model which is described as below:

x(t+dt) = z(t) + v(t) = dt

7
y(t + dt) = lane_width * (lane + 0.5) — y(t) 2

where lane is the current lane of the vehicle, lane_width is
the width of each lane, and dt is the time step size. The motion
model assumes that the velocity of the vehicle is constant
over the time step dt, and that the vehicle will maintain its
desired lane position. The simulation also checks for collisions
between vehicles and updates the lane positions if necessary. If
the vehicles are in closer proximity with each other, adjacency
matrix is updated and the reputation estimates are made.

b) Adversary Model: The attacker’s primary objective
here is to manipulate the reputation scores of vehicles in
the network in order to deceive other vehicles or the overall
system. Here, the malicious vehicle tamper with the GPS
or sensor readings to provide inaccurate position informa-
tion of peer vehicles. If the estimated position is within
a threshold (0.1) from the reported position, the reputation
score of both the vehicles is assigned random floating-point
numbers, where each number is drawn uniformly from the
range [0.7, 1). However, if the estimated position is not within
the threshold, the reputation score of the reporting vehicle is
assigned random floating-point numbers, where each number
is drawn uniformly from the range [0.1, 0.6). Figure 2 shows
the reputation matrix for a reputable and non reputable CV
network.

c¢) RL Environment: We then simulate a custom envi-
ronment called VehicleEnv that inherits from the gym.Env
class. The state of the environment includes the reputation
scores of the vehicles. We also set the prior beliefs about the
accuracy of each vehicle using the o and 3 parameters of the

(a) Reputable network

(b) Non reputable network

Fig. 2: Reputation score matrix (a) Five vehicles are connected
to each other (b) V3 and V, are malicious

beta distribution. The goal of the agent is to make decisions
about which vehicles to trust based on their reputation scores.
The environment is trained for a episode length of 100. After
every episode the environment is reset to its initial state, and
initializes the reputation scores of each vehicle. We implement
a DOQN algorithm in Python using the TensorFlow and Keras
libraries for implementing RL algorithm. The DQN algorithm
is implemented using a neural network with three hidden
layers, each with 24 nodes and ReLU activation function.
The network is trained using the Adam optimizer and Mean
Absolute Error (MAE) as the metric. The training is performed
for a 100 episodes, and the scores obtained in each episode
are plotted using matplotlib. The DQN algorithm uses a
BoltzmannQPolicy for exploration and SequentialMemory for
storing the past experiences of the agent. The trained DQN
agent is then tested on the environment, and the average
reward obtained over 100 episodes is printed to evaluate the
performance of the agent.

d) Results: Figure 3 shows the number of positive and
negative reputation values received for the vehicles in the
reputable network by evaluating a and S values. As we can
see, all the vehicles have high « values for reputable network.
Next, we simulate an environment where two vehicles are not
trustworthy and start giving incorrect reputation scores to all
other vehicles to increase their v values (See Figure 3(b)).
Similarly, we also plot the cumulative reward per episode and
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Fig. 3: a and § values for the five vehicles

the results show that the rewards are continuously increasing
(Figure 4(a)). As we can see, the cumulative reward per
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episode is less as compared to the case when all the vehicles
are reputable in the network (See Figure 4(b)). We further use
following metrics for performance analysis:

o Learning curve: Figure 5 shows the plot of the agent’s
performance over time, typically as a function of the
number of episodes. The model improved the rewards
per episode by 107.62% with DQN training.

e Mean reward: The mean reward is the average reward
obtained by the agent across all episodes (see Table II).
The mean reward improved by 177.9% when the agent
was trained with DQN network.

o Sample efficiency: This metric measures how many train-
ing episodes are needed for the agent to achieve a certain
level of performance. It can help identify whether the
agent is able to learn efficiently with limited data. The
sample efficiency of 1.01 with DQN training suggests that
the algorithm requires a relatively small amount of data to
achieve a certain level of performance. This was 82.51%
better than without training the network (see Table II).
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Fig. 4: Cumulative score per episode of RL agent
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Fig. 5: Learning curve to evaluate agent’s performance on 100
episodes

TABLE II: Performance Analysis

Mean reward
3.06
52.34

Sample efficiency
0.42
1.01

Without DQN training
DQN training

For more comprehensive evaluation we extended the work
on network of 10 vehicles where 60% of the vehicles are
not trustworthy. Figure 6 (a) shows the reward for different
vehicles when the network is reputable (denoted by strong
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Fig. 6: Reward performance for 60% attacker density
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Fig. 7: Reward performance for 60% attacker density

trust) vs non reputable (denoted by weak trust). In a strong
trust scenario vehicles reward are close to each other, in
contrast to weak trust scenario. Figure 6 (b) shows the cumu-
lative reward for different vehicles when the network is non
reputable. As we can clearly see the reward of trustworthy ve-
hicle monotonically increases vs for non trustworthy vehicles.
Figure 7 (a) and (b) illustrate a comparison of rewards obtained
with average reputation scores of malicious vehicles set at
0.4 and 0.6, respectively. These comparisons were conducted
under two different average attacker density scenarios: 40%
and 60%. The proposed technique demonstrates its capability
to offer adaptable rewards, even when facing an average
reputation score of malicious vehicles as high as 0.6, as clearly
demonstrated in the figure.

e) Comparative Analysis: We compare the complexity of
our model with existing state of the art [6], [7]. The com-
plexity of the Dempster-Shafer theory proposed in [6], which
is used to reason with uncertain and incomplete information,
can be expressed in terms of the number of focal elements in
the belief function being used. The number of focal elements
can grow exponentially with the number of vehicles, so the
complexity of the Dempster-Shafer technique can be expressed
as O(2™), where n is the number of vehicles. On the other
hand, the computation of the beta function proposed in our
work has a complexity that can be expressed as O(a + ),
which means that it grows linearly with the sum of the
two shape parameters. The overall complexity of computing
the probability density function of the beta distribution for
n vehicles is O(n(a 4+ 3)) which is less in comparison to
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dempster shafer technique. In this paper, we also compute the
laplace of the adjacency matrix proposed in [7] which gives
better representation of the network including the number
of connected components, the size of the largest connected
component, and the algebraic connectivity of the network.

f) Future Directions: For the future work, we plan to
use a larger topology and dataset from [30] to evaluate the
effectiveness of the reputation building in practice. For the
future work, we also plan to build more comprehensive model
of reputation that could potentially incorporate a wider range
of capabilities such as learning factor, forgetting factor, and
other principles which plays an important role in estimating
the reputation scores [13], [31].

V. CONCLUSION

Reputation-aided peer-to-peer communication via central-
ized reputation learning improves reliability in CV communi-
cation. In this paper, a neuro-inspired RL algorithm for reward
estimation of CVs is proposed. The environment is designed
to simulate a trust-based interaction between the agents, where
the goal is to learn which agents to trust and which to avoid.
The reputation scores for each agent are updated using the beta
distribution model to store the prior beliefs about the accuracy
of each agent’s reputation score. The Laplacian of the graph
was subsequently used to compute the rewards provided to
each vehicle based on their estimates.
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