
Leveraging Neuro-Inspired Reinforcement Learning

for Secure Reputation-based Communication in

Connected Vehicles

Heena Rathore

Department of Computer Science

Texas State University

San Marcos, Texas

heena.rathore@ieee.org

Henry Griffith

Department of Engineering

San Antonio College

San Antonio, Texas

hgriffith5@alamo.edu

Abstract—Secure communications in connected vehicles (CV)
is essential to ensure the safety of drivers, passengers and
pedestrians. As vehicles are becoming more connected and au-
tonomous, they are reliant on communication and data exchange
with infrastructure and other vehicles. Although Public Key
Infrastructure has the potential to offer secure communication,
it does not have ground truth information of vehicle location.
Reputation-based communication can provide a more reliable
approach to securing communication in a dynamic and constantly
changing environment. This paper proposes a neuro-inspired
reinforcement learning (RL) approach for reward estimation in
CV networks. Vehicles estimate the reputation of neighboring
vehicles by comparing broadcasted kinematic data with onboard
sensor estimates along with connectivity topology inspired from
brain, thereby forming a local graphical representation with rep-
utation distribution. This information is shared with a centralized
RL agent, which provides reward signals to each vehicle from
combined reputation scores to incentivize accurate reputation
estimates.

Index Terms—connected vehicles, security, reinforcement
learning, graph neural networks.

I. INTRODUCTION

Connected vehicles (CVs) have the potential to revolutionize

transportation by improving driver safety and reducing con-

gestion [1]. These benefits are achieved through cooperative

sensing and maneuvering across the CV network, enabled

by the periodic exchange of navigation and traffic messages,

specifically basic safety messages (BSMs) [2]. However, the

exchange of these messages also makes CVs vulnerable to

attacks that could disrupt the safety of the network [3]. Large-

scale CV networks are susceptible to various types of attacks,

including external attacks like denial-of-service and spoofing,

as well as internal attacks like BSM falsification and controller

area network bus hacking [4]. Detecting and preventing these

attacks is crucial for ensuring the safety and security of CV

networks [5].

Cryptography-based algorithms have traditionally been used

to detect external attacks, while machine learning (ML) and

consensus-based reputation systems are used to detect internal

attacks [6]. Though ML have gained success in CV network,

they do not take into consideration dynamic environments with

constantly changing interactions and relationships between ve-

hicles. Recently, reinforcement learning (RL) has been studied

to address the challenge of a fixed number of vehicles with

a fixed observation and action space size [7]. Similarly, it

is becoming a popular tool for investigating navigation in

cooperative decision-making [8]. RL relies on using rewards to

encourage the learning of desired behaviors, through a com-

bination of trial-and-error interactions with the environment

and the internal motivation provided by the brain’s reward

system. We believe that the neural representation of this reward

mechanism has potential benefits for developing novel RL

algorithms suited that can be tailored for CV [9].

Chen et al. [7] proposed a graph based RL for coop-

erative control and information flow among vehicles. Here,

the authors use a state space comprised of speed, position,

location, intention of the vehicles, along with an adjacency

matrix depicting how the vehicles are connected to each

other. The methodology does not capture the connectivity,

flow and clusters which can further enhance the reliability

of the entire network. Similarly in [6], the authors use RL

combined with Dampster Shafer theory for updating reputation

policy in CV network. However, the technique can lead to

overestimation of the degree of belief in a hypothesis, which

can result in incorrect decisions. Additionally, the technique

is computationally expensive and may not scale well to large

datasets.

This paper addresses the above listed issues by proposing

a framework for reward estimation in CV networks inspired

from neuroscience. The graph structure of [7] is modified to

capture qualitative aspects of the network as a whole [10]. In

addition, estimates of reputation formed at the vehicle level are

also integrated into the algorithm, which leverage the ability

of vehicles to validate peer-reported BSM broadcasts using

their onboard sensors. Vehicles learn to formulate accurate

estimates of reputation through a feedback reward framework

which fuses two information sources-1) the central entity,

incorporates Laplacian-based variable reward scheme and 2)
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TABLE I: Qualitative comparative analysis of trust and reputation models in CV

Type Description Advantages Disadvantages

Bayesian
networks [17]

A probabilistic framework for represent-
ing the interactions and relationships be-
tween vehicles and the infrastructure

Able to handle uncertainty and can be
used to infer the trustworthiness of a vehi-
cle when there is incomplete or uncertain
data

Computationally expensive and may not
scale well to large systems with many ve-
hicles, they require a significant amount
of data to train and test

Machine
learning [18]

Learn from data and can be used to infer
the trustworthiness of a vehicle based on
its past behavior and the behavior of other
vehicles in the system

Can be easily scaled to handle a large
number of vehicles and interactions in
the system, can handle non-linear rela-
tionships and can automatically extract
features from the data

Require a significant amount of data to
train and test, may also be vulnerable
to adversarial attacks if the training data
is not representative of the real-world
scenario

Social network
analysis [19]

Uses techniques from graph theory to rep-
resent the interactions and relationships
between vehicles and the infrastructure

They can provide insights into the struc-
ture and dynamics of the interactions be-
tween vehicles

Computationally expensive and may not
scale well to large systems with many
vehicles.

Game
theoretic ap-
proaches [20], [23]

Use game theory to model the interactions
between vehicles in the system

They can provide insights into the incen-
tives and motivations of vehicles

Complex to model and analyze, and may
not accurately reflect the real-world inter-
actions between vehicles

Cryptographic
methods
[11], [12], [24]

Use cryptographic techniques such as dig-
ital signature and encryption to establish
trust between vehicles and the infrastruc-
ture

A secure and tamper-proof way to estab-
lish trust and can be used to authenticate
vehicles and protect sensitive information

Computationally expensive, particularly
for large systems with many vehicles

Distributed
ledger
techniques [21]

Use blockchain technology to create a
tamper-proof and decentralized ledger of
trust and reputation scores.

Secure and decentralized Require large amount of memory to store
the transactions

the individual vehicle, where estimates of trustworthiness (de-

noted as reputation for distinction) are computed by validating

reported BSM data of nearby peers from onboard sensor

readings.

II. RELATED WORK

Public Key Infrastructure (PKI) is a security framework

used in CV that employs cryptographic algorithms like en-

cryption and digital signatures to ensure the confidentiality

and integrity of data transmitted between vehicles [11], [12].

However, PKI may not be well-suited for the highly dynamic

and decentralized environment of CV and often lacks ground

truth information about the vehicles [13], [14]. To address

these issues, trust and reputation models can be used to analyze

data transmitted from vehicles through BSM and identify and

isolate security breaches [15]. By establishing trust between

vehicles, efficient and safe interactions can be enabled. Trust

and reputation mechanisms can also be used to detect and

prevent spoofing attempts by malicious actors who may try

to impersonate other vehicles or infrastructure to launch at-

tacks [16]. Several approaches, including game theory, social

networks, machine learning, and Bayesian networks, can be

employed in trust and reputation models for CV. This section

provides the state of the art of trust and reputation algorithms

that are utilized in CV [22].

Bayesian networks provide a probabilistic framework for

representing interactions between vehicles and can handle

incomplete or uncertain data. The authors in [17] proposed

a Gaussian-distribution-based trust management model which

utilizes a Bayesian network. Here, the direct and indirect trust

values were combined into a final trust value, which was fur-

ther enhanced by incorporating third-party recommendations.

To evaluate the model’s effectiveness, the authors simulated

an on-off attack in Matlab and used trust value and detection

time as the performance metrics. The results showed that the

model had a shorter detection time and higher accuracy in

detecting the on-off attack.

Machine learning (ML) can handle large amounts of data,

non-linear relationships, and extract features automatically.

In [18], the authors present artificial intelligence and statistical

data classification framework to analyze messages in CV. The

model is trained on the US Department of Transportation

Safety Pilot Deployment Model, which integrates a ML algo-

rithm and a local trust manager. Experimental results show that

the trained model can accurately predict false alerts, achieving

a 98% accuracy rate and a 0.55% standard deviation on 25%

malicious data.

Social network analysis uses graph theory to identify poten-

tial security threats. In [19], the authors utilize social network-

based bootstrapping techniques for trust management in CV

networks. The model incorporates initial trust values, node

similarity, and a trust and reputation management system that

considers the behavior and history of nodes for long-term trust

establishment. Simulations conducted with Colt libraries in

Java show that the proposed approach is resilient to up to

60% of malicious nodes and achieves a worst-case accuracy

of 74%.

Game-theoretic approaches model the interactions between

vehicles like in [20], which explores the practicality of eval-

uating reputation management schemes for CV under dy-

namic and diverse attack scenarios using evolutionary game

theory-based solutions. The authors simulate a CV network

to introduce malicious actors with randomly initialized attack

plans and compare the results of trust factor gained using

evolutionary decision making versus static decision making.

Blockchain-based algorithms create a decentralized ledger

of trust and reputation scores. In [21], the authors propose

a multi-tier authentication and trust-building framework that
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leverages blockchain technology to enhance the safety and va-

lidity of exchanged information in CV. The experiments were

conducted by mimicking platoon structure and the simulation

results showed the tradeoff between blockchain mining time

and the number of generated blocks, as well as the impact of

vehicle speed on block generation. The comparative analysis

of trust and reputation models in CV is shown in Table I. In

this paper, we use neuro-inspired RL for trust and reputation

systems in CV for several reasons:

• CV are dynamic environments with constantly changing

interactions and relationships between vehicles. Though

RL is better suited to handle dynamic environments they

are not able to generalize well for dynamic complex

environment. Proposed work can adjust the behavior to

changing conditions in the environment, similar to how

the brain adjusts its activity in response to changing

stimuli.

• In CV, the trust and reputation of vehicles can be

uncertain, which can make it difficult to train ML al-

gorithms. RL algorithms can handle uncertainty more

effectively, as they can learn from their interactions with

the environment and adapt to changing conditions. In

the case of reputation building in CV which rely on the

collective feedback of multiple vehicles to evaluate the

behavior of individual vehicles in the network, fixed RL

reward function may fail. Reward function inspired from

neuroscience can accelerate learning convergence rates

and improve the prediction accuracy.

III. METHODS

a) Formation of Graph: In order to make proactive and

safe decisions, the CV needs not only information pertaining

to vehicles in proximity but also information pertaining to

vehicles which are far away. This makes the CV network as a

complex network like brain. Thus, at any time-step t, each ve-

hicle would have a set of N vehicles sharing local information

and a centralized authority (RSU) having global information of

G vehicles where G > N . The dynamic topology of vehicles

can be represented using a graph (N,R ⊆ N ·N) consisting

of a set of vehicles N and a relation R that specifies a directed

edge from a vehicle n to another one m whenever they are

in sensing range with each other and R is equivalent to the

reputation score. This information is shared to RSU where

it computes the laplacian of the combined computed graph

to know the continuous measure of how well the graph is

connected [10].

b) Neuro-inspired Reward Estimation: In addition to

developing the foundational theoretical algorithm for graph

based learning, we also leverage variable reward structure

in RL to mimic brain signals to speed up learning [25].

This is based on the hypothesis that each vehicle will share

the same dynamics of the environment, however, will have

different rewards based on how they have made the reputation

decisions [32], [33]. In traditional RL algorithms, an agent

transitions between different states st by taking actions at that

leads to maximum rewards r(t).
The state space contains reputation scores reported by

individual vehicles through BSM. Each vehicle calculates the

reputation score based on the reported value by the sensed

vehicle vs the actual value estimated by peer vehicle (See Fig-

ure 1 (a)). RSU stores the reputation matrix (Ri,j) reported by

Fig. 1: Proposed framework

vehicles and uses the beta distribution to model the accuracy

of each vehicle in providing information about other vehicles.

The beta distribution is a continuous probability distribution

with two positive shape parameters, denoted by α and β where

α, β > 0. given by [27]:

f(x;α, β) = (1/B(α, β)) ∗ xα−1
∗ (1− x)β−1 (1)

where x is the random variable 0 < x < 1, and B(α, β) is

the Beta function, defined as [27]:

B(α, β) = Γ(α) ∗ Γ(β)/Γ(α+ β) (2)

where Γ is the Gamma function [28]. We model the prior

and posterior belief about the accuracy of each vehicle. The

two shape parameters, α and β, are initialized to 1 for each

vehicle, which represents our initial belief about the accuracy

of each vehicle. The values of α and β can be thought of

as representing the number of “high” reputation and “low”

reputation for each vehicle. Once we have chosen the prior

values of α and β, we can update the distribution as we receive

new evidence. The updated values of α and β then represent

our posterior belief about the accuracy of the vehicle, based

on both the prior belief and the new evidence. During the

simulation, the beta distribution is updated based on the prior

and likelihood as below [29]:

posterioriα = prioriα + likelihoodj (3)

posterioriβ = prioriβ + (1− likelihoodj) (4)

The likelihood is calculated based on the reputation score

of vehicle ‘i’ from the perspective of neighboring vehicle ‘j’.

For each of the vehicle, the reputation is updated using:

Rj = wj ∗ prior
j
α + (1− wj) ∗Ri,j (5)

Here ‘w′ is the weight maintained by the RSU for each of the

vehicle and prior is the current prior. Vehicles with higher
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confidence (lower variance in their reputation scores) are given

more weight. The RSU agent adjusts its weights over time

based on the discrepancy between the predicted value and

the actual reputation score estimated by RSU. It penalizes

the vehicle which has variance in the reputation values as

compared to RSU. The rewards to individual vehicles are given

as:

ri(t) = L(t) ∗ wi(t) (6)

where L(t) is the Laplacian matrix as defined in [10] and

wi(t) is the weight for vehicle i.

IV. RESULTS

a) Vehicle Simulation: Experiments were done to simu-

late the motion of multiple vehicles in a highway setting, using

the Python libraries Matplotlib and Numpy. The simulation

involves a set of vehicles traveling on three lanes, with the

simulation time set to 200 seconds and a time step of 0.1

seconds. The safe distance between vehicles is set to 5 meters,

and the width of each lane is 3 meters. The motion model

for each vehicle is defined using the position x(t) and y(t),
velocity v(t), and lane of each vehicle, and the simulation

updates the positions of each vehicle based on the motion

model which is described as below:

x(t+ dt) = x(t) + v(t) ∗ dt

y(t+ dt) = lane width ∗ (lane+ 0.5)− y(t)
(7)

where lane is the current lane of the vehicle, lane width is

the width of each lane, and dt is the time step size. The motion

model assumes that the velocity of the vehicle is constant

over the time step dt, and that the vehicle will maintain its

desired lane position. The simulation also checks for collisions

between vehicles and updates the lane positions if necessary. If

the vehicles are in closer proximity with each other, adjacency

matrix is updated and the reputation estimates are made.

b) Adversary Model: The attacker’s primary objective

here is to manipulate the reputation scores of vehicles in

the network in order to deceive other vehicles or the overall

system. Here, the malicious vehicle tamper with the GPS

or sensor readings to provide inaccurate position informa-

tion of peer vehicles. If the estimated position is within

a threshold (0.1) from the reported position, the reputation

score of both the vehicles is assigned random floating-point

numbers, where each number is drawn uniformly from the

range [0.7, 1). However, if the estimated position is not within

the threshold, the reputation score of the reporting vehicle is

assigned random floating-point numbers, where each number

is drawn uniformly from the range [0.1, 0.6). Figure 2 shows

the reputation matrix for a reputable and non reputable CV

network.

c) RL Environment: We then simulate a custom envi-

ronment called VehicleEnv that inherits from the gym.Env

class. The state of the environment includes the reputation

scores of the vehicles. We also set the prior beliefs about the

accuracy of each vehicle using the α and β parameters of the

(a) Reputable network (b) Non reputable network

Fig. 2: Reputation score matrix (a) Five vehicles are connected

to each other (b) V3 and V4 are malicious

beta distribution. The goal of the agent is to make decisions

about which vehicles to trust based on their reputation scores.

The environment is trained for a episode length of 100. After

every episode the environment is reset to its initial state, and

initializes the reputation scores of each vehicle. We implement

a DQN algorithm in Python using the TensorFlow and Keras

libraries for implementing RL algorithm. The DQN algorithm

is implemented using a neural network with three hidden

layers, each with 24 nodes and ReLU activation function.

The network is trained using the Adam optimizer and Mean

Absolute Error (MAE) as the metric. The training is performed

for a 100 episodes, and the scores obtained in each episode

are plotted using matplotlib. The DQN algorithm uses a

BoltzmannQPolicy for exploration and SequentialMemory for

storing the past experiences of the agent. The trained DQN

agent is then tested on the environment, and the average

reward obtained over 100 episodes is printed to evaluate the

performance of the agent.

d) Results: Figure 3 shows the number of positive and

negative reputation values received for the vehicles in the

reputable network by evaluating α and β values. As we can

see, all the vehicles have high α values for reputable network.

Next, we simulate an environment where two vehicles are not

trustworthy and start giving incorrect reputation scores to all

other vehicles to increase their α values (See Figure 3(b)).

Similarly, we also plot the cumulative reward per episode and

(a) Reputable network (b) Non reputable network

Fig. 3: α and β values for the five vehicles

the results show that the rewards are continuously increasing

(Figure 4(a)). As we can see, the cumulative reward per
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episode is less as compared to the case when all the vehicles

are reputable in the network (See Figure 4(b)). We further use

following metrics for performance analysis:

• Learning curve: Figure 5 shows the plot of the agent’s

performance over time, typically as a function of the

number of episodes. The model improved the rewards

per episode by 107.62% with DQN training.

• Mean reward: The mean reward is the average reward

obtained by the agent across all episodes (see Table II).

The mean reward improved by 177.9% when the agent

was trained with DQN network.

• Sample efficiency: This metric measures how many train-

ing episodes are needed for the agent to achieve a certain

level of performance. It can help identify whether the

agent is able to learn efficiently with limited data. The

sample efficiency of 1.01 with DQN training suggests that

the algorithm requires a relatively small amount of data to

achieve a certain level of performance. This was 82.51%
better than without training the network (see Table II).

(a) Reputable network (b) Non reputable network

Fig. 4: Cumulative score per episode of RL agent

(a) Without DQN training (b) With DQN training

Fig. 5: Learning curve to evaluate agent’s performance on 100

episodes

TABLE II: Performance Analysis

Mean reward Sample efficiency

Without DQN training 3.06 0.42
DQN training 52.34 1.01

For more comprehensive evaluation we extended the work

on network of 10 vehicles where 60% of the vehicles are

not trustworthy. Figure 6 (a) shows the reward for different

vehicles when the network is reputable (denoted by strong

(a) Reward vs vehicle index (b) Cumulative reward vs iteration

Fig. 6: Reward performance for 60% attacker density

(a) Reputation score of 0.4 for
malicious vehicles

(b) Reputation score of 0.6 for
malicious vehicles

Fig. 7: Reward performance for 60% attacker density

trust) vs non reputable (denoted by weak trust). In a strong

trust scenario vehicles reward are close to each other, in

contrast to weak trust scenario. Figure 6 (b) shows the cumu-

lative reward for different vehicles when the network is non

reputable. As we can clearly see the reward of trustworthy ve-

hicle monotonically increases vs for non trustworthy vehicles.

Figure 7 (a) and (b) illustrate a comparison of rewards obtained

with average reputation scores of malicious vehicles set at

0.4 and 0.6, respectively. These comparisons were conducted

under two different average attacker density scenarios: 40%

and 60%. The proposed technique demonstrates its capability

to offer adaptable rewards, even when facing an average

reputation score of malicious vehicles as high as 0.6, as clearly

demonstrated in the figure.

e) Comparative Analysis: We compare the complexity of

our model with existing state of the art [6], [7]. The com-

plexity of the Dempster-Shafer theory proposed in [6], which

is used to reason with uncertain and incomplete information,

can be expressed in terms of the number of focal elements in

the belief function being used. The number of focal elements

can grow exponentially with the number of vehicles, so the

complexity of the Dempster-Shafer technique can be expressed

as O(2n), where n is the number of vehicles. On the other

hand, the computation of the beta function proposed in our

work has a complexity that can be expressed as O(α + β),
which means that it grows linearly with the sum of the

two shape parameters. The overall complexity of computing

the probability density function of the beta distribution for

n vehicles is O(n(α + β)) which is less in comparison to
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dempster shafer technique. In this paper, we also compute the

laplace of the adjacency matrix proposed in [7] which gives

better representation of the network including the number

of connected components, the size of the largest connected

component, and the algebraic connectivity of the network.

f) Future Directions: For the future work, we plan to

use a larger topology and dataset from [30] to evaluate the

effectiveness of the reputation building in practice. For the

future work, we also plan to build more comprehensive model

of reputation that could potentially incorporate a wider range

of capabilities such as learning factor, forgetting factor, and

other principles which plays an important role in estimating

the reputation scores [13], [31].

V. CONCLUSION

Reputation-aided peer-to-peer communication via central-

ized reputation learning improves reliability in CV communi-

cation. In this paper, a neuro-inspired RL algorithm for reward

estimation of CVs is proposed. The environment is designed

to simulate a trust-based interaction between the agents, where

the goal is to learn which agents to trust and which to avoid.

The reputation scores for each agent are updated using the beta

distribution model to store the prior beliefs about the accuracy

of each agent’s reputation score. The Laplacian of the graph

was subsequently used to compute the rewards provided to

each vehicle based on their estimates.
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