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Abstract

A ring polymer molecular dynamics (RPMD) method is proposed for the
calculation of dissociative chemisorption rate coefficient on surfaces. The RPMD rate
theory is capable of handling quantum effects such as the zero-point energy and
tunneling in the dissociative chemisorption, while relies on classical trajectories for the
simulation. Applications to H> dissociative chemisorption are demonstrated. For the
highly activated process on Ag(111), strong deviations from the Arrhenius behavior are
found at low temperatures and attributed to tunneling. On Pt(111), where the
dissociation has a barrierless pathway, the RPMD rate coefficient is found to agree with
the experimentally derived thermal sticking coefficient within a factor of two over a

large temperature range. Significant quantum effects are also found.
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There is strong experimental evidence of nuclear quantum effects in reactions
involving light atoms, in both the gas phase' and extended systems.> > Recently, the
rates for recombinative desorption of Hz on Pt surfaces were accurately measured for
the first time and found to exhibit strong nuclear quantum effects even at the
temperature of 1000 K.* These new experiments challenge theory to provide a first
principles interpretation. In principle, the quantum rate coefficient can be computed by
directly solving the Schrodinger equation. However, a quantum dynamical
characterization of an elementary chemical reaction at the gas-solid interface is quite
challenging,>”’ due to the large number of surface degrees of freedom (DOFs). The
conventional wave packet method based on an explicit solution of the time-dependent
Schrédinger equation becomes impractical and there is strong desire to find a
numerically efficient method to incorporate quantum effects in rate calculations for

surface reactions.

An alternative way to rate calculations is the statistical approach such as the
transition-state theory (TST), which, due to the ease of implementation, has become a
popular method for bimolecular reactions in the gas phase.® The basic assumption is
that the rate is determined by the thermal population of the activated complex, which
once reached decays irreversibly to products.” '° As a result, the rate coefficient can be
obtained from the flux passing through a dividing surface between reactants and
products, often placed near the reaction barrier. In a typical implementation,!! the
partition functions used in TST calculations are evaluated using the harmonic oscillator

approximation. However, such approximations could drastically fail due to strong
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anharmonicity in low-frequency modes, which are especially abundant in surface
processes. When quantum tunneling is important, TST typically relies on a
semiclassical treatment,'> which might miss important multidimensional effects.
Finally, TST does not rigorously take recrossing of the dividing surface into
consideration, which can be quite important in some cases.!> Dynamical corrections

using classical trajectories have been suggested for high temperatures.'*

The ring polymer molecular dynamics (RPMD) approach proposed by
Manolopoulos and coworkers'> represents a promising alternative to TST in computing
the rate coefficient.!®!” The basic premise of RPMD is to take advantage of the
isomorphism for statistical properties in a quantum and a fictitious classical system,?
in which a quantum particle is replaced by a necklace of harmonically connected
beads." It is well suited to include quantum effects such as zero-point energy and
tunneling.'® In addition to the linear scaling law with respect to the number of particles
in the system, the RPMD rate theory has a number of desirable properties. First, it is
reduced to the classical limit when only one bead is used, which offers a convenient
way to examine the impact of quantum effects.”” Second, it is independent of the
definition of the dividing surface,'” which is very difficult to achieve in the conventional

TST calculations.

The rate theory based on RPMD has been formulated by the ad hoc replacement of
the classical Hamiltonian with the RPMD one.'® 7 Its implementation to gas-phase

bimolecular reactions'® % 2! has been applied to many systems with great success.'?



Surface reactions present additional challenges due to the large number of surface DOFs.
So far, some applications of the RPMD approach have been reported for surface
processes,???” but none has been applied to chemical reactions where bond breaking

and forming are present.

Recently, there is also significant interest in treating multidimensional
tunneling using the quantum instanton theory (QI).?® Applications of QI to dissociative
chemisorption have been reported for several systems.?**! However, it has been shown
for gas phase bimolecular reactions that RPMD outperforms QI in rate calculations.'

32 Furthermore, it is not clear how QI can be applied to a nominally barrierless process.

In this work, we present the adaptation of the RPMD rate theory to the dissociative
chemisorption (DC) of H> using a rigid surface model. We investigated two special
cases, one is the activated DC on Ag(111) and the other is the barrierless DC on Pt(111).
Our results demonstrate reasonable agreement with the available experimental sticking

rates in the latter case, and strong quantum effects in both cases.

We start with defining the rate equation for a DC process of a homonuclear diatom
(e.g., H2) on an infinite surface:

Ha(g) = 2H*
where * indicates the adsorbed state for the dissociated atomic fragments. The extension
to a polyatomic system is trivial. The rate equation can be defined either in terms of the

molecular concentration in the gas phase or by the coverage on the surface.

dlH] _ 1d[H]

dt 2 dt

= k(T)[H,]. (1)



Experimentally, it is more convenient to measure the coverage on the surface (with the
unit of 1/m?) so the rate coefficient k(T) is often given in the unit of m/s.*

Quantum mechanically, the rate coefficient can be written as,>

k(T)=Q ----- cra(t = 00), 2)

{p q}:

¢ri(0) = s [ VP [ d*Vq e FHPDS[E()]ve(p, RIE(qL)], (3)
where the reciprocal temperature is given by f = 1/kgT. The dividing surface is
defined by 6[€(q)] along the reaction coordinate é(q) and h[é(q.)] isa Heaviside
function, which counts the fraction of trajectories (p:, q;) passing through the
dividing surface to the product side at time #. The initial velocity along the reaction

coordinate &(q) is,

9¢(q) py”
ve(p,q) = T, DL @)
With the ring polymer ansatz,'> the Hamiltonian in Eq. (3) is replaced by the ring

polymer counterpart:

Hn(p: q) =

b)) N2
L2 1(|pl , 2ot e - af ™| )+Z§-‘ v(a .af), 5)

where each atom is replaced by a ring polymer consisting of n beads that are

interconnected via harmonic springs with the spring frequency of w, = @, Bn

nkl - is the n-bead reciprocal temperature, p(] ) and ql(j ) are momentum and position
B

vectors of the /™ bead of the i™ atom, respectively, m; is the atomic mass of the i atom,
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V' is the potential energy surface (PES) of the N-atom system. The corresponding ring
polymer rate theory assumes an analogous form to Eq. (3), with the ring polymer
Hamiltonian in Eq. (5) and n x 3N phase space.!® !

For DC, two dividing surfaces are introduced in terms of the ring polymer centroid
variables, analogous to the case of a bimolecular reaction in the gas phase.!® The first
dividing surface is located in the asymptotic reactant valley where the molecule is high
above the surface,

so(q) =Zw — Z, (6)
where Z is the vertical distance between the center of mass (COM) of the dissociating
molecule and the surface and Z, is an adjustable parameter that is chosen to be
sufficiently large to make the interaction between the molecule and the surface
negligible. It can be readily shown (Appendix I) that the corresponding rate coefticient
has the unit of m/s. The second dividing surface is located in the transition-state region
and can be defined as,

s1(@) = (Z¥ = 72) — (r¥ =), (7
where r is the distance between two dissociation fragments, Z*¥ and r¥ are the
corresponding distances at the saddle point of the PES.

A suitable interpolating reaction coordinate ¢é(q) that connects two dividing

surfaces is given by,

@) = 22 ®)

"~ so(@)-51(@)

such that ¢ - 0 as s; =0 and § - 1 as s; = 0. Here the overline notation q

indicates that we have taken the dividing surfaces sy(q) = 0 and s;(q) =0 to be



functions of the centroid coordinate,
q=-%",q” 9)
of a ring polymer composed of » beads.
In practice, the RPMD rate coefficient is presented'® ' in the Bennett—Chandler
factorization form,** 3
KRPMD(T) = QIST(T; )k (¢ - t; €F). (10)
Here, the first term, kQTST(T; &%), is the centroid-density quantum transition state

theory (QTST) rate coefficient'” evaluated at the peak (£¥) of the potential of mean

force (PMF) along the reaction coordinate:

1

kQTST(T) = (ZHZMZ)E e~BlW(E)-wO] (11)

where p, is the molecular mass and W (&) is the PMF calculated by using umbrella

integration:?!- 3637
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with the probability distribution

P = w1 (E5)] (13)
Here Nyindows 1s the number of biasing windows placed along the reaction coordinate
with a specific value ¢&; assigned to each window, N; is the total number of steps
sampled for window i, &; and o7 are the mean value and the variance calculated for
the ith window from the trajectory generated by the modified ring polymer Hamiltonian,

Hy(®,@) = Hy®.@) —5-Inf; (@ + 1/2 ki §(@) ~ &% (14)

where £; is the force constant which defines the strength of the bias in window i and
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The second factor in Eq. (10), K(t = ty; ¢ 1E), is the long-time limit of the time-
dependent ring polymer transmission coefficient. This is a dynamical correction to
centroid density QTST that accounts for recrossing of the reaction coordinate é(q) =
& att—t, t,is a “plateau” time, and ensures that the resulting RPMD rate coefficient

krpmp(T) will be independent of any choice of the dividing surface.'® It is given by

(f;(q) e (p.h[E(qe)- f*])
t—>t (Fe@ v @@h[v:BD])

k(t - ty; &) = (16)

where the subscripts on the brackets indicate that the averages are over the constrained
ensemble at £(q) = &* and the factor of fe (@)! is a metric tensor correction for the
effect of the constraint.*

In this work, we applied the RPMD rate theory for DC to two systems, one with a
high barrier and the other with a null barrier. For simplicity, we have assumed a rigid
surface approximation, which has been widely used in dynamics studies of H» DC
thanks to the large mass disparity.’ In addition, this constraint can be readily relaxed in
RPMD calculations, thanks to the linear scaling laws.'

For the highly-activated H> + Ag(111) system, we employed the six-dimensional
PES constructed by Jiang and Guo®® using the permutation invariant polynomial neural
network (PIP-NN) approach.*® 4! The lowest dissociation barrier for H» on Ag(111) is
at the bridge site, associated with a high and “late” barrier of 1.15 eV. A contour plot
for the PES at this site is shown as a function of Z and » with the angular coordinates

optimized in Fig. 1(a). Additional contour plots of the PES (Figs. S1 and S2) can be



found in Supporting Information (SI).

For the non-activated system, namely H> dissociation on Pt(111), there have been
many previous theoretical calculations.***¢ We choose to construct a new six-
dimensional PIP-NN PES based on 1457 density functional theory (DFT) points
generated by a trajectory-free active learning strategy.*” *® All DFT calculations were
performed by the Vienna Ab-initio Simulation Package (VASP).**3° The ionic core-
electron interactions were described by the projector-augmented wave (PAW)
method,”! and the Kohn-Sham valence electronic wave function was expanded in a
plane-wave basis set with a kinetic energy cutoff at 400 eV. The surface of Pt(111) was
modelled by a five-layer slab with a vacuum region of 15 A in the vertical direction
within a 2 x 2 (1/4 ML coverage) surface unit cell. The Brillouin zone was sampled
using a 9 x 9 x 1 '—centered k-points grid mesh. The exchange—correlation effects were
represented within GGA using the PBEa-vdW-DF2 functional.*® A total root mean
squared error (RMSE) of 6.73 meV was obtained using the PIP-NN method. A two-
dimensional PES cut of the non-activated reaction path is shown in Fig. 1(b) for
comparison, where the COM of Hz is fixed on the top site and the angular coordinates
optimized. Additional contour plots of the PES can be found in SI.

All calculations were performed using a home-made FORTRAN code in Cartesian
atomic coordinates with the ring polymer Hamiltonian in Eq. (5), thus imposing no
restriction on the overall rotational or translational motion of the system. For the
calculation of the PMF, the reaction coordinate (-0.05 to 1.10) was divided by an equal
size (d¢ = 0.01) with the force constant of the biasing potential of 2.72 (7/K) eV using
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the umbrella sampling technique as described above. In each sampling window, 60
constrained sampling trajectories of 100 ps were carried out, before which the system
was equilibrated for 20 ps with the Andersen thermostat®* for thermalization. After
determining the PMF at each temperature, the transmission coefficient was computed.
Specifically, a long (2 ns) parent trajectory was carried out with the ring-polymer
centroid constrain at the peak of PMF via the SHAKE algorithm® after an initial
equilibration period of 20 ps, constrained configurations were sampled once every 2 ps.
For each of these configurations, 150 separate unconstrained ring polymer trajectories
were spawned with different initial momenta sampled from a Boltzmann distribution.
These trajectories for Ag(111) and Pt(111) were then propagated for 150 fs and 120 fs,
respectively, which is long enough for the transmission coefficients to reach plateau
values. The time step is selected to be 0.1 fs in all RPMD calculations. The classical
rate coefficients were also calculated for comparison by setting the number of beads to

one.

For H» DC on Ag(111), the thermal rate coefficients were calculated at a number
of temperatures ranging from 300 to 1000 K. The convergence was tested with up to 32
beads, as shown in Fig. S3 at the representative temperature of 500 K. The parameter
Z. in Eq. (6) was set to 7 A for all of the temperatures considered and the s; dividing
surface was placed at the barrier at the bridge site (6= 1.0 or Z=1.10 A and =1.27 A).
The converged RPMD PMFs along the reaction coordinate ¢ are displayed in Fig. 2(a).
As shown, the free-energy barrier increases from low to high temperatures due to the

negative entropy change from reactants to the transition state. In Figs. 2(b) and 2(c),
11



the classical and RPMD PMFs are compared at two representative temperatures (500
and 1000 K), which shows the RPMD free-energy barrier is significantly lower than
the classical counterpart. This trend becomes more pronounced at lower temperatures.
At high temperatures, the difference can be attributed to the inclusion of ZPE in RPMD,
while at low temperatures, both tunneling and ZPE contribute and it is difficult to

distinguish the contributions from the two quantum effects.

The time-dependence of the converged RPMD transmission coefficient, x(t; &),
the dynamical factor, is shown in Fig. 3(a). Clearly, all the transmission coefficients
reach plateau values after initial drops from one. The transmission coefficient increases
slightly with decreasing temperature. This temperature dependence shows that the less
available thermal energy at lower temperatures leads to less recrossing of the dividing

surface.

The final RPMD rate coefficients are compared with the classical ones in Fig. 4(a)
and listed in Table 1. It is clearly shown that the rate coefficients from converged RPMD
simulations are larger than those from classical limit at all temperatures, owing to
tunneling. It also shows that the difference in the rate coefficients between the classical
and RPMD simulations increases with decreasing temperature, which is to be expected
from the larger contribution of tunneling to the centroid-density QTST rate at the lower
temperature as shown in Figs. 2(b) and 2(c). Unfortunately, there has been no

experiment on this system and a comparison is thus not possible.

The calculation for the H» DC on Pt(111) follows the same protocol as Ag(111)
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described above. In particular, Z. was set to 7 A and the s1 dividing surface was placed
at the second submerged saddle point (6= 1.0 or Z=1.55 A and =1.10 A). The
convergence was also tested with up to 32 beads, as shown in Fig. S4 at the
representative temperature of 500 K. The converged RPMD PMFs are shown in Fig.
2(d) at a number of temperatures ranging from 300 to 2000 K. There is a free-energy
barrier near the first submerged saddle point in the entrance channel. Despite the
barrierless minimum energy path at the top site, the dissociation pathways at other
surface sites all have non-negligible barriers, as shown in Fig. S2. The PMF thus
represents an effective barrier for the impinging molecule. In the meantime, the second
submerged saddle point shown in Fig. 1(b) does not lead to a free-energy barrier and
has no impact on the kinetics. This is due to the fact that dissociation pathways in other
surface sites possess no such a saddle point, as shown in Fig. S2. In addition, the free-
energy barrier on Pt(111) decreases with temperature and is much lower than Ag(111).
Interestingly, there are still some small differences between the classical and quantum
PMFs at two representative temperatures (500 and 2000 K), as shown in Fig. 2(e) and
(f), suggesting the presence of quantum effects even for such lower barrier process. The
quantum-classical difference in the barrier height becomes smaller at higher
temperatures, as the system approaches the classical limit where the quantum effect is

dominated by the ZPE.

As shown in Fig. 3(b), the transmission coefficients are smaller on Pt(111) than on
Ag(111), indicating more recrossing, presumably due to the low effective barrier of the

system. The recrossing is also more prominent at higher temperatures.
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In Fig. 4(b) and Table 1, the calculated classical and quantum rate coefficients are
compared with the experimental thermal sticking coefficients at several temperatures.
The latter were derived in Ref. # from previous experimental data. It can be seen from
the figure that the experimental data do not follow the Arrhenius behavior, namely a
straight line in the logk — 1/T plot. This curvature of the temperature dependence is
reproduced by both the classical and quantum results. The deviation from the Arrhenius
behavior in the classical limit suggests that the curvature in the temperature dependence
of the rate coefficient is not due to quantum effect. On the other hand, the difference
between the classical and quantum rate coefficients is not large (a factor of three), and
nearly independent with temperature. The RPMD rate coefficients are in reasonably
good agreement with the experimental counterparts, within a factor of two, supporting

the accuracy of the RPMD calculations.

The theory-experimental discrepancy, while small, might be attributable to a
number of factors. First, the PES might contain errors due to the uncertainty associated
with the functional. Second and perhaps more prominently, the rigid surface
approximation used here might be inadequate. Although the mass of the H atoms is low
compared with that of the metal, the fluctuation of the surface atoms might change the
PES significantly to affect the kinetics. The impact of surface motion can in principle

be included in RPMD calculations and we plan to explore this in future work.

In this work, the RPMD rate theory is extended to DC of gas phase molecules on

surfaces and applied to two prototypical systems. The main advantage of the RPMD

14



approach is its ability to include quantum effects such as zero-point energy and
tunneling, albeit approximately. In addition, it is numerically efficient for extended
systems as the computation is based on classical trajectories. Although the numerical
examples discussed in this work were based on rigid surface models, the inclusion of

the surface atoms is straightforward.

The application of this RPMD rate theory to the highly activated H, DC on Ag(111)
revealed strong nuclear quantum effects at low temperatures, resulting in a significant
deviation from the Arrhenius behavior. This is attributed to tunneling of the impinging
H: over the dissociative barrier. It is also demonstrated that the RPMD theory can be
applied to systems where the dissociation minimum energy pathway involves no
activation barrier, namely the DC of H on Pt(111). Here, the calculated rate coefficient
follows the same non-Arrhenius temperature dependence of the experimentally derived
sticking coefficient within a factor of two. Moderate quantum effects are also seen. The
favorable comparison with the experiment offers strong evidence for the reliability of

the RPMD rate theory.

As discussed in Introduction, the RPMD rate theory has many advantages over
other theoretical approaches including TST. It naturally avoids the harmonic oscillator
approximation and is capable of handling soft modes. It treats the recrossing dynamics
and the results are independent of the choice of the dividing surface, which is hard to
define properly in a multidimensional space. Most importantly, it includes quantum

effects such as tunneling and zero-point energy, thus ideally suited for studying nuclear
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quantum effects. Finally, it scales linearly with the dimensionality of the system, which

is important for extended systems.

Finally, we emphasize that further applications of the RPMD to surface reactions
can be expected. For instance, the observed strong high-temperature quantum effects in
the recombinative desorption of H> and D, reported in the recent experiment* is
amenable to an RPMD characterization. Both Eley-Rideal and Langmuir-Hinshelwood
reactions can also be treated within the same framework. Such progress will
complement the recent advances in accurate rate measurements of elemental surface

reactions.>*

Supporting information: Additional results on the PES and convergence.
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Appendix I

It is well established that cfs(t, s) is a real and odd function of ¢ which is

discontinuous at = 0 and has a positive limit as ¢ tends to zero from above.** This leads

to a well-defined TST approximation to the rate coefficient,

kQTST () = 1T cfs(t - 04;5),

1

£@ = {2l e [29] ]

=12npm; | 0q;

When using the dividing surface s,(q) = Z,, — Z = 0, it becomes

1

fol@ = (55=)

2nfuz

and therefore

cfilt = 0,550) = ( )% QF (D),

2nfuz

where the reactant partition function is given as

= (T) = Qtrans () ant 1),

with

1/2
i 14
Qf?ans(T) = (Znﬂzhz) >

and

3n/2
Uy L
Qine(T) = (ZHﬂhz) fd3r e BVint(r)

Finally, substituting Eq. (I5) into Eq. (I1) gives

1

| QTST (SO) — (ZHZMZ)E’
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which is in the unit of m/s.
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Table 1 Summary of centroid-density QTST rate coefficients, transmission coefficients
and RPMD rate coefficients for H» DC on Ag(111) and Pt(111) in the temperature
interval between 300 and 1000 K. The centroid-density QTST and RPMD rate
coefficents are given in m/s and the numbers in parentheses denote powers of 10.

T (K) Nbead kqrst K krpMD
300 32 430(-16)  0.905 3.89(-16)
400 32 7.56(-12)  0.899 6.80(-12)
500 32 3.47(-09)  0.882 3.06(-09)
Ag(111)
600 32 251(-07)  0.875 2.20(-07)
700 16 5.67(-06)  0.865 4.90(-06)
1000 16 2.05(-03)  0.845 1.73(-03)
300 32 9.71(+01)  0.584 5.67(+01)
400 32 1.34(+02) 0.565 7.57(+01)
500 32 1.73(+02)  0.546 9.45(+01)
600 32 2.17(+02) 0.540 1.17(+02)
Pt(111)
700 16 259(+02) 0534 1.38(+02)
1000 16 4.05(+02)  0.555 2.25(+02)
1500 8 7.09(+02)  0.589 4.18(+02)

2000 8 1.07(+03)  0.612 6.55(+02)
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Fig. 1. Two-dimensional contour plots with the COM of H; fixed on the bridge site of Ag(111)
(a) and the top site on Pt(111) (b), with the angular coordinates optimized. There is a substantial
barrier height of 1.15 eV for H» dissociation on Ag(111), while H, dissociation on Pt(111) has

no intrinsic barrier, but contains two submerged saddle points.
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Fig. 2. Converged RPMD PMFs (W(¢) in eV, with the number of beads marked) for the H, DC

(a and d) and comparison of the classical (dashed blue line) and RPMD (solid red line) PMFs

at two temperatures (b, ¢ and e, f). The left and right panels are for Ag(111) and on Pt(111),

respectively.
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Fig. 3. Converged RPMD transmission coefficients (with the number of beads marked) for the

H, DC. The left and right panels are for Ag(111) and on Pt(111), respectively.
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Fig. 4. Arrhenius plots of classical, RPMD and available experimental rate coefficients for the

H, DC. The left and right panels are for Ag(111) and on Pt(111), respectively.
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