
1 
 

Submitted to JPCL, 7/5/2023, revised 7/19/2023 

Ring Polymer Molecular Dynamics Approach to Quantum Dissociative 

Chemisorption Rates 

 

Liang Zhang,1 Junxiang Zuo,1 Yury V. Suleimanov,2 and Hua Guo1,* 

1Department of Chemistry and Chemical Biology, University of New Mexico, 

Albuquerque, New Mexico 87131 

2American Association for the Advancement of Science, 1200 New York Ave NW, 

Washington, D.C. 20005 

 

 

 

 

 

 

 

 

 

 

 

 

 

*: corresponding author: hguo@unm.edu 



2 
 

 
Abstract 

A ring polymer molecular dynamics (RPMD) method is proposed for the 

calculation of dissociative chemisorption rate coefficient on surfaces. The RPMD rate 

theory is capable of handling quantum effects such as the zero-point energy and 

tunneling in the dissociative chemisorption, while relies on classical trajectories for the 

simulation. Applications to H2 dissociative chemisorption are demonstrated. For the 

highly activated process on Ag(111), strong deviations from the Arrhenius behavior are 

found at low temperatures and attributed to tunneling. On Pt(111), where the 

dissociation has a barrierless pathway, the RPMD rate coefficient is found to agree with 

the experimentally derived thermal sticking coefficient within a factor of two over a 

large temperature range. Significant quantum effects are also found. 
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 There is strong experimental evidence of nuclear quantum effects in reactions 

involving light atoms, in both the gas phase1 and extended systems.2, 3 Recently, the 

rates for recombinative desorption of H2 on Pt surfaces were accurately measured for 

the first time and found to exhibit strong nuclear quantum effects even at the 

temperature of 1000 K.4 These new experiments challenge theory to provide a first 

principles interpretation. In principle, the quantum rate coefficient can be computed by 

directly solving the Schrödinger equation. However, a quantum dynamical 

characterization of an elementary chemical reaction at the gas-solid interface is quite 

challenging,5-7 due to the large number of surface degrees of freedom (DOFs). The 

conventional wave packet method based on an explicit solution of the time-dependent 

Schrödinger equation becomes impractical and there is strong desire to find a 

numerically efficient method to incorporate quantum effects in rate calculations for 

surface reactions. 

 An alternative way to rate calculations is the statistical approach such as the 

transition-state theory (TST), which, due to the ease of implementation, has become a 

popular method for bimolecular reactions in the gas phase.8 The basic assumption is 

that the rate is determined by the thermal population of the activated complex, which 

once reached decays irreversibly to products.9, 10 As a result, the rate coefficient can be 

obtained from the flux passing through a dividing surface between reactants and 

products, often placed near the reaction barrier. In a typical implementation,11 the 

partition functions used in TST calculations are evaluated using the harmonic oscillator 

approximation. However, such approximations could drastically fail due to strong 
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anharmonicity in low-frequency modes, which are especially abundant in surface 

processes. When quantum tunneling is important, TST typically relies on a 

semiclassical treatment,12 which might miss important multidimensional effects. 

Finally, TST does not rigorously take recrossing of the dividing surface into 

consideration, which can be quite important in some cases.13 Dynamical corrections 

using classical trajectories have been suggested for high temperatures.14 

 The ring polymer molecular dynamics (RPMD) approach proposed by 

Manolopoulos and coworkers15 represents a promising alternative to TST in computing 

the rate coefficient.16-19 The basic premise of RPMD is to take advantage of the 

isomorphism for statistical properties in a quantum and a fictitious classical system,20 

in which a quantum particle is replaced by a necklace of harmonically connected 

beads.15 It is well suited to include quantum effects such as zero-point energy and 

tunneling.19 In addition to the linear scaling law with respect to the number of particles 

in the system, the RPMD rate theory has a number of desirable properties. First, it is 

reduced to the classical limit when only one bead is used, which offers a convenient 

way to examine the impact of quantum effects.15 Second, it is independent of the 

definition of the dividing surface,17 which is very difficult to achieve in the conventional 

TST calculations.  

The rate theory based on RPMD has been formulated by the ad hoc replacement of 

the classical Hamiltonian with the RPMD one.16, 17 Its implementation to gas-phase 

bimolecular reactions18, 19, 21 has been applied to many systems with great success.13 
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Surface reactions present additional challenges due to the large number of surface DOFs. 

So far, some applications of the RPMD approach have been reported for surface 

processes,22-27 but none has been applied to chemical reactions where bond breaking 

and forming are present. 

 Recently, there is also significant interest in treating multidimensional 

tunneling using the quantum instanton theory (QI).28 Applications of QI to dissociative 

chemisorption have been reported for several systems.29-31 However, it has been shown 

for gas phase bimolecular reactions that RPMD outperforms QI in rate calculations.19, 

32 Furthermore, it is not clear how QI can be applied to a nominally barrierless process. 

In this work, we present the adaptation of the RPMD rate theory to the dissociative 

chemisorption (DC) of H2 using a rigid surface model. We investigated two special 

cases, one is the activated DC on Ag(111) and the other is the barrierless DC on Pt(111). 

Our results demonstrate reasonable agreement with the available experimental sticking 

rates in the latter case, and strong quantum effects in both cases.  

We start with defining the rate equation for a DC process of a homonuclear diatom 

(e.g., H2) on an infinite surface: 

 H2(g)  2H* 

where * indicates the adsorbed state for the dissociated atomic fragments. The extension 

to a polyatomic system is trivial. The rate equation can be defined either in terms of the 

molecular concentration in the gas phase or by the coverage on the surface.  

−𝑑𝑑[H2]
𝑑𝑑𝑑𝑑

= 1
2
𝑑𝑑[H∗]
𝑑𝑑𝑑𝑑

= 𝑘𝑘(𝑇𝑇)[H2].            (1) 
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Experimentally, it is more convenient to measure the coverage on the surface (with the 

unit of 1/m2) so the rate coefficient 𝑘𝑘(𝑇𝑇) is often given in the unit of m/s.4  

Quantum mechanically, the rate coefficient can be written as,33 

𝑘𝑘(𝑇𝑇) = 1
𝑄𝑄𝑟𝑟⬚(𝑇𝑇)

𝑐𝑐𝑓𝑓𝑓𝑓⬚(𝑡𝑡 → ∞),                (2) 

where 𝑄𝑄𝑟𝑟⬚(𝑇𝑇) is the reactant quantum mechanical partition function per unit volume 

and 𝑐𝑐𝑓𝑓𝑓𝑓⬚(𝑡𝑡)  the flux-side correlation function defined in the N-particle phase space 

{𝒑𝒑,𝒒𝒒}: 

𝑐𝑐𝑓𝑓𝑓𝑓⬚(𝑡𝑡) = 1
(2𝜋𝜋ℏ)3𝑁𝑁 ∫ 𝑑𝑑

3𝑁𝑁𝒑𝒑∫ 𝑑𝑑3𝑁𝑁𝒒𝒒𝑒𝑒−𝛽𝛽𝛽𝛽(𝒑𝒑,𝒒𝒒)𝛿𝛿[𝜉𝜉(𝒒𝒒)]𝑣𝑣𝜉𝜉(𝒑𝒑,𝒒𝒒)ℎ[𝜉𝜉(𝒒𝒒𝑡𝑡)],    (3) 

where the reciprocal temperature is given by 𝛽𝛽 = 1/𝑘𝑘𝐵𝐵𝑇𝑇 . The dividing surface is 

defined by 𝛿𝛿[𝜉𝜉(𝒒𝒒)] along the reaction coordinate 𝜉𝜉(𝒒𝒒) and ℎ[𝜉𝜉(𝒒𝒒𝑡𝑡)] is a Heaviside 

function, which counts the fraction of trajectories (𝒑𝒑𝑡𝑡,𝒒𝒒𝑡𝑡)  passing through the 

dividing surface to the product side at time t. The initial velocity along the reaction 

coordinate 𝜉𝜉(𝒒𝒒) is, 

𝑣𝑣𝜉𝜉(𝒑𝒑,𝒒𝒒) = ∑ 𝜕𝜕𝜕𝜕(𝒒𝒒)
𝜕𝜕𝒒𝒒𝑖𝑖

⬚
𝒑𝒑𝑖𝑖
⬚

𝑚𝑚𝑖𝑖

𝑁𝑁
𝑖𝑖=1 .                                        (4) 

With the ring polymer ansatz,15 the Hamiltonian in Eq. (3) is replaced by the ring 

polymer counterpart: 

𝐻𝐻𝑛𝑛(𝒑𝒑,𝒒𝒒) = 

∑ ∑ �
�𝒑𝒑𝑖𝑖

(𝑗𝑗)�
2

2𝑚𝑚𝑖𝑖
+ 𝑚𝑚𝑖𝑖

2
𝜔𝜔𝑛𝑛2 �𝒒𝒒𝑖𝑖

(𝑗𝑗) − 𝒒𝒒𝑖𝑖
(𝑗𝑗−1)�

2
� + ∑ 𝑉𝑉 �𝒒𝒒1

(𝑗𝑗),⋯ ,𝒒𝒒𝑁𝑁
(𝑗𝑗)�𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 ,    (5) 

where each atom is replaced by a ring polymer consisting of n beads that are 

interconnected via harmonic springs with the spring frequency of 𝜔𝜔𝑛𝑛 = 1
(𝛽𝛽𝑛𝑛ℏ), 𝛽𝛽𝑛𝑛 =

1
𝑛𝑛𝑘𝑘𝐵𝐵𝑇𝑇

 is the n-bead reciprocal temperature, 𝒑𝒑𝑖𝑖
(𝑗𝑗) and 𝒒𝒒𝑖𝑖

(𝑗𝑗) are momentum and position 

vectors of the jth bead of the ith atom, respectively, mi is the atomic mass of the ith atom, 
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V is the potential energy surface (PES) of the N-atom system. The corresponding ring 

polymer rate theory assumes an analogous form to Eq. (3), with the ring polymer 

Hamiltonian in Eq. (5) and n × 3N phase space.16, 17 

For DC, two dividing surfaces are introduced in terms of the ring polymer centroid 

variables, analogous to the case of a bimolecular reaction in the gas phase.19 The first 

dividing surface is located in the asymptotic reactant valley where the molecule is high 

above the surface,  

𝑠𝑠0(𝒒̄𝒒) = 𝑍𝑍∞ − 𝑍𝑍,                     (6) 

where Z is the vertical distance between the center of mass (COM) of the dissociating 

molecule and the surface and 𝑍𝑍∞  is an adjustable parameter that is chosen to be 

sufficiently large to make the interaction between the molecule and the surface 

negligible. It can be readily shown (Appendix I) that the corresponding rate coefficient 

has the unit of m/s. The second dividing surface is located in the transition-state region 

and can be defined as, 

𝑠𝑠1(𝒒̄𝒒) = (𝑍𝑍‡ − 𝑍𝑍) − (𝑟𝑟‡ − 𝑟𝑟),                                     (7) 

where r is the distance between two dissociation fragments, 𝑍𝑍‡  and 𝑟𝑟‡  are the 

corresponding distances at the saddle point of the PES. 

A suitable interpolating reaction coordinate 𝜉𝜉(𝒒̄𝒒)  that connects two dividing 

surfaces is given by,19 

𝜉𝜉(𝒒̄𝒒) = 𝑠𝑠0(𝒒̄𝒒)
𝑠𝑠0(𝒒̄𝒒)−𝑠𝑠1(𝒒̄𝒒),                                                (8) 

such that 𝜉𝜉 → 0  as 𝑠𝑠0 → 0  and 𝜉𝜉 → 1  as 𝑠𝑠1 → 0 . Here the overline notation 𝒒̄𝒒 

indicates that we have taken the dividing surfaces 𝑠𝑠0(𝒒̄𝒒) = 0 and 𝑠𝑠1(𝒒̄𝒒) = 0 to be 
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functions of the centroid coordinate, 

𝒒̄𝒒 = 1
𝑛𝑛
∑ 𝒒𝒒(𝑗𝑗)𝑛𝑛
𝑗𝑗=1                                                   (9) 

of a ring polymer composed of n beads. 

In practice, the RPMD rate coefficient is presented18, 19 in the Bennett–Chandler 

factorization form,34, 35 

𝑘𝑘RPMD(𝑇𝑇) = 𝑘𝑘QTST(𝑇𝑇; 𝜉𝜉‡)𝜅𝜅�𝑡𝑡 → 𝑡𝑡𝑝𝑝; 𝜉𝜉‡�.                               (10) 

Here, the first term, 𝑘𝑘QTST(𝑇𝑇; 𝜉𝜉‡) , is the centroid-density quantum transition state 

theory (QTST) rate coefficient17 evaluated at the peak (𝜉𝜉‡) of the potential of mean 

force (PMF) along the reaction coordinate: 

𝑘𝑘QTST(𝑇𝑇) = � 1
2𝜋𝜋𝜋𝜋𝜇𝜇𝑍𝑍

�
1
2 𝑒𝑒−𝛽𝛽�𝑊𝑊�𝜉𝜉‡�−𝑊𝑊(0)�,                              (11) 

where 𝜇𝜇𝑍𝑍 is the molecular mass and 𝑊𝑊(𝜉𝜉) is the PMF calculated by using umbrella 

integration:21, 36, 37 

𝑊𝑊(𝜉𝜉‡) −𝑊𝑊(0) = ∫ ∑ � 𝑁𝑁𝑖𝑖𝑃𝑃𝑖𝑖(𝜉𝜉)

∑ 𝑁𝑁𝑗𝑗𝑃𝑃𝑗𝑗(𝜉𝜉)𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑗𝑗=1

�1
𝛽𝛽
𝜉𝜉−𝜉̄𝜉𝑖𝑖
(𝜎𝜎𝑖𝑖)2

− 𝑘𝑘𝑖𝑖(𝜉𝜉 − 𝜉𝜉𝑖𝑖)��
𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑖𝑖=1

𝜉𝜉‡

0 𝑑𝑑𝑑𝑑 , (12) 

with the probability distribution 

𝑃𝑃𝑖𝑖(𝜉𝜉) = 1
𝜎𝜎𝑖𝑖√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2
�𝜉𝜉−𝜉̄𝜉𝑖𝑖

𝜎𝜎𝑖𝑖
�
2
�.            (13) 

Here Nwindows is the number of biasing windows placed along the reaction coordinate 

with a specific value 𝜉𝜉𝑖𝑖  assigned to each window, Ni is the total number of steps 

sampled for window i, 𝜉𝜉𝑖𝑖 and 𝜎𝜎𝑖𝑖2 are the mean value and the variance calculated for 

the ith window from the trajectory generated by the modified ring polymer Hamiltonian, 

𝐻𝐻𝑛𝑛
𝜉𝜉(𝒑𝒑,𝒒𝒒) = 𝐻𝐻𝑛𝑛(𝒑𝒑,𝒒𝒒) − 1

𝛽𝛽𝑛𝑛
𝑙𝑙𝑙𝑙 𝑓𝑓𝜉𝜉 (𝒒̄𝒒) + 1/2 𝑘𝑘𝑖𝑖(𝜉𝜉(𝒒̄𝒒)  −  𝜉𝜉𝑖𝑖)2,              (14) 

where ki is the force constant which defines the strength of the bias in window i and 
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𝑓𝑓𝜉𝜉(𝒒̄𝒒) = �∑ 1
2𝜋𝜋𝜋𝜋𝑚𝑚𝑖𝑖

�𝜕𝜕𝜕𝜕(𝒒̄𝒒)
𝜕𝜕𝒒̄𝒒𝑖𝑖

�
2

𝑁𝑁
𝑖𝑖=1 �

1
2
.                                   (15) 

The second factor in Eq. (10), 𝜅𝜅�𝑡𝑡 → 𝑡𝑡𝑝𝑝; 𝜉𝜉‡�, is the long-time limit of the time-

dependent ring polymer transmission coefficient. This is a dynamical correction to 

centroid density QTST that accounts for recrossing of the reaction coordinate 𝜉𝜉(𝒒̄𝒒) =

𝜉𝜉‡ at t → tp, tp is a ‘‘plateau’’ time, and ensures that the resulting RPMD rate coefficient 

kRPMD(T) will be independent of any choice of the dividing surface.19 It is given by13 

𝜅𝜅�𝑡𝑡 → 𝑡𝑡𝑝𝑝; 𝜉𝜉‡� = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→𝑡𝑡𝑝𝑝

�𝑓𝑓𝜉𝜉(𝒒̄𝒒)−1𝑣𝑣𝜉𝜉(𝒑𝒑,𝒒𝒒)ℎ�𝜉𝜉(𝒒̄𝒒𝑡𝑡)−𝜉𝜉‡��
𝜉𝜉‡

�𝑓𝑓𝜉𝜉(𝒒̄𝒒)−1𝑣𝑣𝜉𝜉(𝒑𝒑,𝒒𝒒)ℎ�𝑣𝑣𝜉𝜉(𝐩̄𝐩,𝒒̄𝒒)��
𝜉𝜉‡

,                        (16) 

where the subscripts on the brackets indicate that the averages are over the constrained 

ensemble at 𝜉𝜉(𝒒̄𝒒) = 𝜉𝜉‡ and the factor of 𝑓𝑓𝜉𝜉(𝒒̄𝒒)−1 is a metric tensor correction for the 

effect of the constraint.38 

In this work, we applied the RPMD rate theory for DC to two systems, one with a 

high barrier and the other with a null barrier. For simplicity, we have assumed a rigid 

surface approximation, which has been widely used in dynamics studies of H2 DC 

thanks to the large mass disparity.5 In addition, this constraint can be readily relaxed in 

RPMD calculations, thanks to the linear scaling laws.15 

For the highly-activated H2 + Ag(111) system, we employed the six-dimensional 

PES constructed by Jiang and Guo39 using the permutation invariant polynomial neural 

network (PIP-NN) approach.40, 41 The lowest dissociation barrier for H2 on Ag(111) is 

at the bridge site, associated with a high and “late” barrier of 1.15 eV. A contour plot 

for the PES at this site is shown as a function of Z and r with the angular coordinates 

optimized in Fig. 1(a). Additional contour plots of the PES (Figs. S1 and S2) can be 
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found in Supporting Information (SI). 

For the non-activated system, namely H2 dissociation on Pt(111), there have been 

many previous theoretical calculations.42-46 We choose to construct a new six-

dimensional PIP-NN PES based on 1457 density functional theory (DFT) points 

generated by a trajectory-free active learning strategy.47, 48 All DFT calculations were 

performed by the Vienna Ab-initio Simulation Package (VASP).49, 50 The ionic core-

electron interactions were described by the projector-augmented wave (PAW) 

method,51 and the Kohn-Sham valence electronic wave function was expanded in a 

plane-wave basis set with a kinetic energy cutoff at 400 eV. The surface of Pt(111) was 

modelled by a five-layer slab with a vacuum region of 15 Å in the vertical direction 

within a 2 × 2 (1/4 ML coverage) surface unit cell. The Brillouin zone was sampled 

using a 9 × 9 × 1 Γ–centered k-points grid mesh. The exchange–correlation effects were 

represented within GGA using the PBEα-vdW-DF2 functional.46 A total root mean 

squared error (RMSE) of 6.73 meV was obtained using the PIP-NN method. A two-

dimensional PES cut of the non-activated reaction path is shown in Fig. 1(b) for 

comparison, where the COM of H2 is fixed on the top site and the angular coordinates 

optimized. Additional contour plots of the PES can be found in SI. 

All calculations were performed using a home-made FORTRAN code in Cartesian 

atomic coordinates with the ring polymer Hamiltonian in Eq. (5), thus imposing no 

restriction on the overall rotational or translational motion of the system. For the 

calculation of the PMF, the reaction coordinate (-0.05 to 1.10) was divided by an equal 

size (dξ = 0.01) with the force constant of the biasing potential of 2.72 (T/K) eV using 



11 
 

the umbrella sampling technique as described above. In each sampling window, 60 

constrained sampling trajectories of 100 ps were carried out, before which the system 

was equilibrated for 20 ps with the Andersen thermostat52 for thermalization. After 

determining the PMF at each temperature, the transmission coefficient was computed. 

Specifically, a long (2 ns) parent trajectory was carried out with the ring-polymer 

centroid constrain at the peak of PMF via the SHAKE algorithm53 after an initial 

equilibration period of 20 ps, constrained configurations were sampled once every 2 ps. 

For each of these configurations, 150 separate unconstrained ring polymer trajectories 

were spawned with different initial momenta sampled from a Boltzmann distribution. 

These trajectories for Ag(111) and Pt(111) were then propagated for 150 fs and 120 fs, 

respectively, which is long enough for the transmission coefficients to reach plateau 

values. The time step is selected to be 0.1 fs in all RPMD calculations. The classical 

rate coefficients were also calculated for comparison by setting the number of beads to 

one. 

For H2 DC on Ag(111), the thermal rate coefficients were calculated at a number 

of temperatures ranging from 300 to 1000 K. The convergence was tested with up to 32 

beads, as shown in Fig. S3 at the representative temperature of 500 K. The parameter 

Z∞ in Eq. (6) was set to 7 Å for all of the temperatures considered and the s1 dividing 

surface was placed at the barrier at the bridge site (ξ = 1.0 or Z=1.10 Å and r=1.27 Å). 

The converged RPMD PMFs along the reaction coordinate ξ are displayed in Fig. 2(a). 

As shown, the free-energy barrier increases from low to high temperatures due to the 

negative entropy change from reactants to the transition state. In Figs. 2(b) and 2(c), 
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the classical and RPMD PMFs are compared at two representative temperatures (500 

and 1000 K), which shows the RPMD free-energy barrier is significantly lower than 

the classical counterpart. This trend becomes more pronounced at lower temperatures. 

At high temperatures, the difference can be attributed to the inclusion of ZPE in RPMD, 

while at low temperatures, both tunneling and ZPE contribute and it is difficult to 

distinguish the contributions from the two quantum effects. 

The time-dependence of the converged RPMD transmission coefficient, 𝜅𝜅(𝑡𝑡; 𝜉𝜉‡), 

the dynamical factor, is shown in Fig. 3(a). Clearly, all the transmission coefficients 

reach plateau values after initial drops from one. The transmission coefficient increases 

slightly with decreasing temperature. This temperature dependence shows that the less 

available thermal energy at lower temperatures leads to less recrossing of the dividing 

surface. 

The final RPMD rate coefficients are compared with the classical ones in Fig. 4(a) 

and listed in Table 1. It is clearly shown that the rate coefficients from converged RPMD 

simulations are larger than those from classical limit at all temperatures, owing to 

tunneling. It also shows that the difference in the rate coefficients between the classical 

and RPMD simulations increases with decreasing temperature, which is to be expected 

from the larger contribution of tunneling to the centroid-density QTST rate at the lower 

temperature as shown in Figs. 2(b) and 2(c). Unfortunately, there has been no 

experiment on this system and a comparison is thus not possible. 

The calculation for the H2 DC on Pt(111) follows the same protocol as Ag(111) 
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described above. In particular, Z∞ was set to 7 Å and the s1 dividing surface was placed 

at the second submerged saddle point (ξ = 1.0 or Z=1.55 Å and r=1.10 Å). The 

convergence was also tested with up to 32 beads, as shown in Fig. S4 at the 

representative temperature of 500 K. The converged RPMD PMFs are shown in Fig. 

2(d) at a number of temperatures ranging from 300 to 2000 K. There is a free-energy 

barrier near the first submerged saddle point in the entrance channel. Despite the 

barrierless minimum energy path at the top site, the dissociation pathways at other 

surface sites all have non-negligible barriers, as shown in Fig. S2. The PMF thus 

represents an effective barrier for the impinging molecule. In the meantime, the second 

submerged saddle point shown in Fig. 1(b) does not lead to a free-energy barrier and 

has no impact on the kinetics. This is due to the fact that dissociation pathways in other 

surface sites possess no such a saddle point, as shown in Fig. S2. In addition, the free-

energy barrier on Pt(111) decreases with temperature and is much lower than Ag(111). 

Interestingly, there are still some small differences between the classical and quantum 

PMFs at two representative temperatures (500 and 2000 K), as shown in Fig. 2(e) and 

(f), suggesting the presence of quantum effects even for such lower barrier process. The 

quantum-classical difference in the barrier height becomes smaller at higher 

temperatures, as the system approaches the classical limit where the quantum effect is 

dominated by the ZPE.  

As shown in Fig. 3(b), the transmission coefficients are smaller on Pt(111) than on 

Ag(111), indicating more recrossing, presumably due to the low effective barrier of the 

system. The recrossing is also more prominent at higher temperatures.  
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In Fig. 4(b) and Table 1, the calculated classical and quantum rate coefficients are 

compared with the experimental thermal sticking coefficients at several temperatures. 

The latter were derived in Ref. 4 from previous experimental data. It can be seen from 

the figure that the experimental data do not follow the Arrhenius behavior, namely a 

straight line in the logk – 1/T plot. This curvature of the temperature dependence is 

reproduced by both the classical and quantum results. The deviation from the Arrhenius 

behavior in the classical limit suggests that the curvature in the temperature dependence 

of the rate coefficient is not due to quantum effect. On the other hand, the difference 

between the classical and quantum rate coefficients is not large (a factor of three), and 

nearly independent with temperature. The RPMD rate coefficients are in reasonably 

good agreement with the experimental counterparts, within a factor of two, supporting 

the accuracy of the RPMD calculations.  

 The theory-experimental discrepancy, while small, might be attributable to a 

number of factors. First, the PES might contain errors due to the uncertainty associated 

with the functional. Second and perhaps more prominently, the rigid surface 

approximation used here might be inadequate. Although the mass of the H atoms is low 

compared with that of the metal, the fluctuation of the surface atoms might change the 

PES significantly to affect the kinetics. The impact of surface motion can in principle 

be included in RPMD calculations and we plan to explore this in future work.   

 In this work, the RPMD rate theory is extended to DC of gas phase molecules on 

surfaces and applied to two prototypical systems. The main advantage of the RPMD 
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approach is its ability to include quantum effects such as zero-point energy and 

tunneling, albeit approximately. In addition, it is numerically efficient for extended 

systems as the computation is based on classical trajectories. Although the numerical 

examples discussed in this work were based on rigid surface models, the inclusion of 

the surface atoms is straightforward.  

 The application of this RPMD rate theory to the highly activated H2 DC on Ag(111) 

revealed strong nuclear quantum effects at low temperatures, resulting in a significant 

deviation from the Arrhenius behavior. This is attributed to tunneling of the impinging 

H2 over the dissociative barrier. It is also demonstrated that the RPMD theory can be 

applied to systems where the dissociation minimum energy pathway involves no 

activation barrier, namely the DC of H2 on Pt(111). Here, the calculated rate coefficient 

follows the same non-Arrhenius temperature dependence of the experimentally derived 

sticking coefficient within a factor of two. Moderate quantum effects are also seen. The 

favorable comparison with the experiment offers strong evidence for the reliability of 

the RPMD rate theory.  

 As discussed in Introduction, the RPMD rate theory has many advantages over 

other theoretical approaches including TST. It naturally avoids the harmonic oscillator 

approximation and is capable of handling soft modes. It treats the recrossing dynamics 

and the results are independent of the choice of the dividing surface, which is hard to 

define properly in a multidimensional space. Most importantly, it includes quantum 

effects such as tunneling and zero-point energy, thus ideally suited for studying nuclear 
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quantum effects. Finally, it scales linearly with the dimensionality of the system, which 

is important for extended systems.  

 Finally, we emphasize that further applications of the RPMD to surface reactions 

can be expected. For instance, the observed strong high-temperature quantum effects in 

the recombinative desorption of H2 and D2 reported in the recent experiment4 is 

amenable to an RPMD characterization. Both Eley-Rideal and Langmuir-Hinshelwood 

reactions can also be treated within the same framework. Such progress will 

complement the recent advances in accurate rate measurements of elemental surface 

reactions.54 
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Appendix I 

It is well established that 𝑐𝑐𝑓𝑓𝑓𝑓⬚(𝑡𝑡; 𝑠𝑠)  is a real and odd function of t which is 

discontinuous at t = 0 and has a positive limit as t tends to zero from above.33 This leads 

to a well-defined TST approximation to the rate coefficient, 

𝑘𝑘𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝑠𝑠) = 1
𝑄𝑄𝑟𝑟⬚(𝑇𝑇)

𝑐𝑐𝑓𝑓𝑓𝑓⬚(𝑡𝑡 → 0+; 𝑠𝑠),                             (I1) 

where 

𝑐𝑐𝑓𝑓𝑓𝑓⬚(𝑡𝑡 → 0+; 𝑠𝑠)=∏ � 𝑚𝑚𝑖𝑖
2𝜋𝜋𝛽𝛽ℏ2

�
1 2⁄

3𝑁𝑁
𝑖𝑖=1 ∫ 𝑑𝑑3𝑁𝑁𝒒𝒒𝑒𝑒−𝛽𝛽𝑉𝑉(𝒒𝒒)𝛿𝛿[𝑠𝑠(𝒒̄𝒒)]𝑓𝑓𝑠𝑠(𝒒̄𝒒),          (I2) 

with 

  𝑓𝑓𝑠𝑠(𝒒̄𝒒) = �∑ 1
2𝜋𝜋𝛽𝛽𝑚𝑚𝑖𝑖

�𝜕𝜕𝜕𝜕(𝐪̄𝐪)
𝜕𝜕𝐪̄𝐪𝑖𝑖

�
2

𝑁𝑁
𝑖𝑖=1 �

1
2
.                        (I3) 

When using the dividing surface 𝑠𝑠0(𝒒̄𝒒) = 𝑍𝑍∞ − 𝑍𝑍 = 0, it becomes  

 𝑓𝑓𝑠𝑠0(𝒒̄𝒒) = � 1
2𝜋𝜋𝜋𝜋𝜇𝜇𝑍𝑍

�
1
2,                              (I4) 

and therefore 

𝑐𝑐𝑓𝑓𝑓𝑓⬚(𝑡𝑡 → 0+; 𝑠𝑠0) = � 1
2𝜋𝜋𝜋𝜋𝜇𝜇𝑍𝑍

�
1
2 𝑄𝑄𝑟𝑟⬚(𝑇𝑇),                    (I5) 

where the reactant partition function is given as 

 𝑄𝑄𝑟𝑟⬚(𝑇𝑇) = 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⬚ (𝑇𝑇)𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖⬚ (𝑇𝑇),                          (I6) 

with 

 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⬚ (𝑇𝑇) = � 𝜇𝜇𝑍𝑍
2𝜋𝜋𝜋𝜋ℏ2

�
1 2⁄

,                                (I7) 

and 

𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖⬚ (𝑇𝑇) = � 𝜇𝜇𝑟𝑟
2𝜋𝜋𝛽𝛽ℏ2

�
3𝑛𝑛 2⁄

∫ 𝑑𝑑3𝒓𝒓 𝑒𝑒−𝛽𝛽𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖(𝒓𝒓).                       (I8) 

Finally, substituting Eq. (I5) into Eq. (I1) gives 

 𝑘𝑘𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(𝑠𝑠0) = � 1
2𝜋𝜋𝜋𝜋𝜇𝜇𝑍𝑍

�
1
2,                                 (I9) 
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which is in the unit of m/s.  

 
 
 
  



19 
 

References: 
 
(1) Schatz, G. C. Tunneling in bimolecular collisions. Chem. Rev. 1987, 87, 81-89. 

(2) Meisner, J.; Kästner, J. Atom tunneling in chemistry. Angew. Chem. Int. Ed. 2016, 55, 2-16. 

(3) Markland, T. E.; Ceriotti, M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 
2018, 2, 0109. 

(4) Borodin, D.; Hertl, N.; Park, G. B.; Schwarzer, M.; Fingerhut, J.; Wang, Y.; Zuo, J.; Nitz, F.; 

Skoulatakis, G.; Kandratsenka, A.; Auerbach, D. J.; Schwarzer, D.; Guo, H.; Kitsopoulos, T. N.; Wodtke, 

A. M. Quantum effects in thermal reaction rates at metal surfaces. Science 2022, 377, 394-398. 

(5) Kroes, G.-J. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on metal 

surfaces. Prog. Surf. Sci. 1999, 60, 1-85. 

(6) Jiang, B.; Yang, M.; Xie, D.; Guo, H. Quantum dynamics of polyatomic dissociative chemisorption 

on transition metal surfaces: Mode specificity and bond selectivity. Chem. Soc. Rev. 2016, 45, 

3621-3640. 

(7) Shen, X.; Zhang, D. H. Recent advances in quantum dynamics studies of gas-surface reactions. 

Adv. Chem. Phys. 2018, 163, 77-116. 

(8) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current status of transition-state theory. J. Phys. 
Chem. 1996, 100, 12771-12800. 

(9) Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 1935, 3, 107-115. 

(10) Evans, M. G.; Polanyi, M. Some applications of the transition state method to the calculation 

of reaction velocities, especially in solution. Trans. Faraday Soc. 1935, 31, 875-894. 

(11) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice Hall, 1989. 

(12) Truhlar, D. G. Semiclassical Multidimensional Tunneling Calculations. In Tunnelling in 
Molecules: Nuclear Quantum Effects from Bio to Physical Chemistry, Kaestner, J., Kozuch, S. Eds.; 

RSC Publishing, 2021; pp 261-282. 

(13) Suleimanov, Y. V.; Aoiz, F. J.; Guo, H. Chemical reaction rate coefficients from ring polymer 

molecular dynamics: Theory and practical applications. J. Phys. Chem. A 2016, 120, 8488-8502. 

(14) Galparsoro, O.; Kaufmann, S.; Auerbach, D. J.; Kandratsenka, A.; Wodtke, A. M. First principles 

rates for surface chemistry employing exact transition state theory: application to recombinative 

desorption of hydrogen from Cu(111). Phys. Chem. Chem. Phys. 2020, 22, 17532-17539. 

(15) Craig, I. R.; Manolopoulos, D. E. Quantum statistics and classical mechanics: Real time 

correlation frunction from ring polymer molecular dynamics. J. Chem. Phys. 2004, 121, 3368-3373. 

(16) Craig, I. R.; Manolopoulos, D. E. Chemical reaction rates from ring polymer molecular dynamics. 

J. Chem. Phys. 2005, 122, 084106. 

(17) Craig, I. R.; Manolopoulos, D. E. A refined ring polymer molecular dynamics theory of chemical 

reaction rates. J. Chem. Phys. 2005, 123, 034102. 

(18) Collepardo-Guevara, R.; Suleimanov, Y. V.; Manolopoulos, D. E. Bimolecular reaction rates 

from ring polymer molecular dynamics. J. Chem. Phys. 2009, 130, 174713. 

(19) Suleimanov, Y. V.; Collepardo-Guevara, R.; Manolopoulos, D. E. Bimolecular reaction rates 

from ring polymer molecular dynamics: Application to H + CH4 → H2 + CH3. J. Chem. Phys. 2011, 

134, 044131. 

(20) Chandler, D.; Wolynes, P. G. Exploiting the isomorphism between quantum theory and 

classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 1981, 74, 4078-4095. 

(21) Suleimanov, Y. V.; Allen, J. W.; Green, W. H. RPMDrate: bimolecular chemical reaction rates 



20 
 

from ring polymer molecular dynamics. Comput. Phys. Comm. 2013, 184, 833-840. 

(22) Suleimanov, Y. V. Surface diffusion of hydrogen on Ni(100) from ring polymer molecular 

dynamics. J. Phys. Chem. C 2012, 116, 11141-11153. 

(23) Fang, W.; Richardson, J. O.; Chen, J.; Li, X.-Z.; Michaelides, A. Simultaneous deep tunneling 

and classical hopping for hydrogen diffusion on metals. Phys. Rev. Lett. 2017, 119, 126001. 

(24) Jiang, H.; Kammler, M.; Ding, F.; Dorenkamp, Y.; Manby, F. R.; Wodtke, A. M.; Miller, T. F.; 

Kandratsenka, A.; Bünermann, O. Imaging covalent bond formation by H atom scattering from 

graphene. Science 2019, 364, 379-382. 

(25) Liu, Q.; Zhang, L.; Li, Y.; Jiang, B. Ring polymer molecular dynamics in gas–surface reactions: 

Inclusion of quantum effects made simple. J. Phys. Chem. Lett. 2019, 10, 7475-7481. 

(26) Gu, K.; Li, C.; Jiang, B.; Lin, S.; Guo, H. Short- and long-time dynamics of hydrogen spillover 

from a single atom platinum active site to the Cu(111) host surface. J. Phys. Chem. C 2022, 126, 

17093-17101. 

(27) Li, C.; Li, Y.; Jiang, B. First-principles surface reaction rates by ring polymer molecular dynamics 

and neural network potential: role of anharmonicity and lattice motion. Chem. Sci. 2023, 14, 5087-

5098. 

(28) Miller, W. H.; Zhao, Y.; Ceotto, M.; Yang, S. Quantum instanton approximation for thermal rate 

constants of chemical reactions. J. Chem. Phys. 2003, 119, 1329-1342. 

(29) Wang, W.; Zhao, Y. Effect of lattice motion on dissociation and recombination rates of H2 on 

Ni(100) surface. J. Phys. Chem. C 2013, 117, 19010-19019. 

(30) Wang, W.; Zhao, Y. The dissociation and recombination rates of CH4 through the Ni(111) 

surface: The effect of lattice motion. J. Chem. Phys. 2017, 147, 044703. 

(31) Wang, W. Physisorbed state regulates the dissociation mechanism of H2O on Ni(100). J. Phys. 
Chem. A 2020, 124, 8724-8732. 

(32) Pérez de Tudela, R.; Suleimanov, Y. V.; Richardson, J. O.; Sáez Rábanos, V.; Green, W. H.; Aoiz, 

F. J. Stress test for quantum dynamics approximations: Deep tunneling in the muonium exchange 

reaction D + HMu → DMu + H. J. Phys. Chem. Lett. 2014, 5, 4219-4224. 

(33) Miller, W. H.; Schwartz, S. D.; Tromp, J. W. Quantum mechanical rate constants for bimolecular 

reactions. J. Chem. Phys. 1983, 79, 4889-4899. 

(34) Bennett, C. H. Molecular dynamics and transition state theory: the simulation of infrequent 

events. In Algorithms for Chemical Computations, ACS Symposium Series, Christofferson, R. E. Ed.; 

Vol. 46; ACS, 1977. 

(35) Chandler, D. Statistical mechanics of isomerization dynamics in liquids and the transition state 

approximation. J. Chem. Phys. 1978, 68, 2959-2970. 

(36) Kästner, J.; Thiel, W. Bridging the gas between thermodynamic integration and umbrella 

sampling provides a novel analysis method: "umbrella integration". J. Chem. Phys. 2005, 123, 

144104. 

(37) Kästner, J.; Thiel, W. Analysis of the statistical error in umbrella sampling simulations by 

umbrella integration. J. Chem. Phys. 2006, 124, 234106. 

(38) Frenkel, D.; Smit, B. Understanding Molecular Simulation, Second Edition: From Algorithms to 
Applications Academic Press, 2002. 

(39) Jiang, B.; Guo, H. Six-dimensional quantum dynamics for dissociative chemisorption of H2 and 

D2 on Ag(111) on a permutation invariant potential energy surface. Phys. Chem. Chem. Phys. 2014, 

16, 24704-24715. 



21 
 

(40) Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting 

potential energy surfaces. J. Chem. Phys. 2013, 139, 054112. 

(41) Jiang, B.; Guo, H. Permutation invariant polynomial neural network approach to fitting 

potential energy surfaces. III. Molecule-surface interactions. J. Chem. Phys. 2014, 141, 034109. 

(42) Olsen, R. A.; Kroes, G. J.; Baerends, E. J. Atomic and molecular hydrogen interacting with 

Pt(111). J. Chem. Phys. 1999, 111, 11155-11163. 

(43) Pijper, E.; Kroes, G. J.; Olsen, R. A.; Baerends, E. J. Reactive and diffractive scattering of H2 from 

Pt(111) studied using a six-dimensional wave packet method. J. Chem. Phys. 2002, 117, 5885-

5898. 

(44) Pijper, E.; Kroes, G.-J.; Olsen, R. A.; Baerends, E. J. The effect of corrugation on the quantum 

dynamics of dissociative and diffractive scattering of H2 from Pt(111). J. Chem. Phys. 2000, 113, 

8300-8312. 

(45) Crespos, C.; Collins, M. A.; Pijper, E.; Kroes, G.-J. Application of the modified Shepard 

interpolation method to the determination of the potential energy surface for a molecule–surface 

reaction: H2 + Pt(111). J. Chem. Phys. 2004, 120, 2392-2404. 

(46) Ghassemi, N. E.; Wijzenbroek, M.; Somers, M. F.; Kroes, G.-J. Chemically accurate simulation 

of dissociative chemisorption of D2 on Pt(111). Chem. Phys. Lett. 2017, 683, 329-335. 

(47) Lin, Q.; Zhang, Y.; Zhao, B.; Jiang, B. Automatically growing global reactive neural network 

potential energy surfaces: A trajectory-free active learning strategy. J. Chem. Phys. 2020, 152, 

154104. 

(48) Lin, Q.; Zhang, L.; Zhang, Y.; Jiang, B. Searching configurations in uncertainty space: Active 

learning of high-dimensional neural network reactive potentials. J. Chem. Theo. Comput. 2021, 

17, 2691-2701. 

(49) Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations 

using plane wave basis set. Phys. Rev. B 1996, 54, 11169-11186. 

(50) Kresse, G.; Furthmuller, J. Efficiency of ab initio total energy calculations for metals and 

semiconductors using plane wave basis set. Comp. Mater. Sci. 1996, 6, 15-50. 

(51) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979. 

(52) Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. 
Chem. Phys. 1980, 72, 2384-2393. 

(53) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. Numerical integration of the cartesian equations 

of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 

23, 327-341. 

(54) Park, G. B.; Kitsopoulos, T. N.; Borodin, D.; Golibrzuch, K.; Neugebohren, J.; Auerbach, D. J.; 

Campbell, C. T.; Wodtke, A. M. The kinetics of elementary thermal reactions in heterogeneous 

catalysis. Nat. Rev. Chem. 2019, 3, 723-732. 

 
  



22 
 

Table 1 Summary of centroid-density QTST rate coefficients, transmission coefficients 
and RPMD rate coefficients for H2 DC on Ag(111) and Pt(111) in the temperature 
interval between 300 and 1000 K. The centroid-density QTST and RPMD rate 
coefficents are given in m/s and the numbers in parentheses denote powers of 10. 
 

 T (K) Nbead kQTST κ kRPMD 

Ag(111) 

300 32 4.30(-16) 0.905 3.89(-16) 

400 32 7.56(-12) 0.899 6.80(-12) 

500 32 3.47(-09) 0.882 3.06(-09) 

600 32 2.51(-07) 0.875 2.20(-07) 

700 16 5.67(-06) 0.865 4.90(-06) 

1000 16 2.05(-03) 0.845 1.73(-03) 

Pt(111) 

300 32 9.71(+01) 0.584 5.67(+01) 

400 32 1.34(+02) 0.565 7.57(+01) 

500 32 1.73(+02) 0.546 9.45(+01) 

600 32 2.17(+02) 0.540 1.17(+02) 

700 16 2.59(+02) 0.534 1.38(+02) 

1000 16 4.05(+02) 0.555 2.25(+02) 

1500 8 7.09(+02) 0.589 4.18(+02) 

2000 8 1.07(+03) 0.612 6.55(+02) 
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Fig. 1. Two-dimensional contour plots with the COM of H2 fixed on the bridge site of Ag(111) 

(a) and the top site on Pt(111) (b), with the angular coordinates optimized. There is a substantial 

barrier height of 1.15 eV for H2 dissociation on Ag(111), while H2 dissociation on Pt(111) has 

no intrinsic barrier, but contains two submerged saddle points. 
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Fig. 2. Converged RPMD PMFs (W(ξ) in eV, with the number of beads marked) for the H2 DC 

(a and d) and comparison of the classical (dashed blue line) and RPMD (solid red line) PMFs 

at two temperatures (b, c and e, f). The left and right panels are for Ag(111) and on Pt(111), 

respectively.  
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Fig. 3. Converged RPMD transmission coefficients (with the number of beads marked) for the 

H2 DC. The left and right panels are for Ag(111) and on Pt(111), respectively. 
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Fig. 4. Arrhenius plots of classical, RPMD and available experimental rate coefficients for the 

H2 DC. The left and right panels are for Ag(111) and on Pt(111), respectively. 

 
 


