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Abstract

Neural Radiance Field (NeRF) has emerged as a lead-
ing technique for novel view synthesis, owing to its impres-
sive photorealistic reconstruction and rendering capability.
Nevertheless, achieving real-time NeRF rendering in large-
scale scenes has presented challenges, often leading to the
adoption of either intricate baked mesh representations with
a substantial number of triangles or resource-intensive ray
marching in baked representations. We challenge these con-
ventions, observing that high-quality geometry, represented
by meshes with substantial triangles, is not necessary for
achieving photorealistic rendering quality. Consequently,
we propose MixRT, a novel NeRF representation that in-
cludes a low-quality mesh, a view-dependent displacement
map, and a compressed NeRF model. This design effec-
tively harnesses the capabilities of existing graphics hard-
ware, thus enabling real-time NeRF rendering on edge de-
vices. Leveraging a highly-optimized WebGL-based render-
ing framework, our proposed MixRT attains real-time ren-
dering speeds on edge devices (over 30 FPS at a resolu-
tion of 1280 × 720 on a MacBook M1 Pro laptop), better
rendering quality (0.2 PSNR higher in indoor scenes of the
Unbounded-360 datasets), and a smaller storage size (less
than 80% compared to state-of-the-art methods).

1. Introduction
Neural Radiance Field (NeRF), first introduced by [23],
has been established as the state-of-the-art (SotA) technique
in novel view synthesis tasks, owing to its superior abil-
ity to deliver photorealistic rendering quality. Despite its
remarkable capabilities, the practical application of NeRF,
especially in immersive interactions on edge devices, has
been significantly hampered due to its slow rendering speed.
Recognizing this limitation, several prior works have pro-
posed various methods to enhance the efficiency of NeRF.
These methods, such as baking NeRF into more efficient
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Figure 1. Our proposed MixRT can enable real-time rendering (>
30 FPS) at a resolution of 1280 ⇥ 720 on a Macbook M1 Pro
laptop with better rendering quality and smaller storage size com-
pared to SotA works on real-time NeRF rendering [28, 38].

representations like mesh [8] or sparse voxels [16], have
achieved impressive results, demonstrating real-time ren-
dering speed (greater than 30 FPS) on edge devices. Un-
fortunately, these methods often fall short when applied to
larger-scale real-world scenes, either yielding unacceptably
slow rendering speeds or requiring prohibitive storage re-
sources. Efforts to overcome these challenges have typi-
cally focused on baking NeRF into a high-quality geometry
representations (for instance, more than 10 million trian-
gles [38]) or resorting to computationally costly ray march-
ing in the baked representations [28]. Despite offering par-
tial solutions to the challenges, these approaches still suffer
from inherent drawbacks related to efficiency and resource
requirements.

Upon careful examination, we observe a critical insight
that differs from the established conventions. We identify
that a high-quality mesh is not necessary in the baked rep-
resentations concerning rendering quality. Our observation
suggests that it is feasible to trade-off the complexity of
the baked mesh for a more refined representation of color
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fields (such as NeRF), thereby achieving a more favorable
balance between rendering quality and efficiency. Guided
by these observations, we propose MixRT, a unique NeRF
representation, that mixes different neural representations
for real-time NeRF rendering. Specifically, the propsoed
MixRT consists of (1) a low-quality mesh (approximately
15 MB compared to over 300 MB in BakedSDF [38]) that
provides coarse geometric information of the scene, (2)
a view-dependent displacement map to calibrate the ray-
mesh intersection points before fetching the corresponding
color, and (3) a compressed NeRF model, in the format of
an Instant-NGP [24] that provides the density and color
of each sampled point. This innovative combination not
only ensures the preservation of rendering quality but also
maximizes the efficient utilization of available hardware re-
sources, including Rasterizer, Texture Mapping Units, and
Single Instruction Multiple Data (SIMD) Units. This bal-
ance of resource allocation enables us to achieve real-time
rendering speeds on edge devices while minimizing storage
requirements, making it an ideal solution for performance-
conscious applications.

In summary, our key contributions are as follows:
• Through our observations, we have discovered that

achieving high rendering quality in novel view synthesis
tasks does not require high-complexity geometry repre-
sented by meshes with a vast number of triangles. This
revelation has sparked the concept of simplifying the
baked mesh and combining various neural representa-
tions. As a result, we have experienced substantial im-
provements in both efficiency and flexibility, paving the
way for more efficient and versatile rendering techniques.

• We introduce an innovative NeRF representation, which
consists of three essential components: a low-quality
mesh, a view-dependent displacement map, and a com-
pressed NeRF model. This carefully crafted design is
specifically optimized to fully harness the capabilities of
rasterizers, texture mapping units, and SIMD units in cur-
rent graphics hardware. As a result, it empowers us to
achieve real-time NeRF rendering on edge devices with-
out compromising on rendering quality.

• In addition, we develop a highly optimized WebGL-based
rendering framework, which allows our proposed MixRT
to achieve SotA rendering quality (e.g., PSNR) vs. effi-
ciency (e.g., FPS and storage size) trade-offs.

2. Related Works
2.1. NeRF on Large-Scale Scenes

Previous works on NeRF rendering for large-scale real-
world scenes can be divided into two main categories.
Works in the first category divide the entire space into mul-
tiple sub-spaces, assigning individual NeRFs with specific
radii to each. Specifically, [32, 35] align the training of

NeRFs for different sub-spaces with collected images in
varying lighting conditions; [37] takes this a step further,
using different NeRFs for views at varying scales, allow-
ing city-scale scene rendering; [13, 40] enhance the ren-
dering quality by selecting or fusing outputs from multi-
ple sub-space NeRF models. Works in the second cate-
gory map the entire space into a specific bounded space.
In particular, [4] introduces the concept of using a con-
traction function to fold the unbounded scene domain into
a finite sphere; [28] later refines this function, making it
piecewise for efficient computation of ray-AABB intersec-
tions; [5, 33] subsequently improve the contraction function
further to better handle multisample isotropic Gaussian and
voxel representations, respectively.

In our approach, MixRT, we employ the contraction
function outlined in [4] to configure the NeRF model for the
mapped finite sphere. Meanwhile, we retain the low-quality
mesh and view-dependent displacement map in their orig-
inal space. This allows us to capitalize on the optimized
rasterization pipeline which is common to most graphics
hardware.

2.2. Real-Time NeRF Rendering

Real-time rendering or view synthesis is a vital and chal-
lenging problem in computer vision and graphics, given its
significance in immersive interaction applications [1]. Early
techniques for real-time rendering are either dependent on a
vast number of images from densely sampled viewpoints
or compromised on rendering quality due to the lack of
fine-grained geometry proxies during reconstruction. For
instance, [15, 19, 22] exploit light fields to interpolate tar-
get images from densely sampled images directly, while
[14, 30, 31] utilize multi-view stereo and structure-from-
motion pipelines to construct triangle meshes for real-time
rendering. NeRF[23], on the other hand, employs a continu-
ous volumetric field, represented in a multi-layer perceptron
(MLP) network format for scene reconstruction, achieving
state-of-the-art rendering quality thanks to the ease of opti-
mizing MLP representations through gradient descent.

Following NeRF’s trailblazing results, subsequent works
have proposed ”baking” (i.e., pre-computing intermediate
results and storing them in buffers) NeRF models into more
efficient representations to achieve NeRF’s high-quality
rendering with real-time speeds. These efficient representa-
tions are well-optimized on existing graphics hardware and
include triangle meshes or sparse voxels.

In particular, [16, 28, 36, 39] bake NeRF models into
sparse voxels with compact storage formats, enabling real-
time rendering speeds with existing CUDA or WebGL
APIs. On the other hand, [8, 25, 27, 38] adopt triangle
meshes in the rendering pipeline, distilling them from pre-
trained NeRF models or training them from scratch with dif-
ferentiable rendering frameworks. Moreover, [6, 20] have



developed either fully convolution-based or MLP-based
networks to reconstruct light fields and enable real-time
NeRF rendering on mobile devices. However, their wider
application is limited either by platform-dedicated deploy-
ment tools [2] or is constrained to synthesizing front views
only. There also exist point-cloud-based works like [18]
that utilize point clouds as scene representations for faster
rendering speeds. However, their approaches, heavily rely-
ing on custom CUDA kernels for computational efficiency,
face limitations in terms of broader adaptability. Specifi-
cally, the lack of compatibility with downstream computer
graphics toolchains (e.g., editing and making collision ani-
mation in Blender [11]) limits their utility across a diverse
range of edge devices

Our proposed MixRT is unique among the mentioned
real-time NeRF rendering methods, combining a low-
quality mesh, a view-dependent displacement map, and a
compressed NeRF model in the Instant-NGP format [24].
By leveraging the rasterizers, texture mapping units, and
SIMD units accessible by WebGL APIs on most exist-
ing devices, MixRT can achieve SotA rendering qual-
ity with real-time rendering speeds, suitable storage size,
and memory requirements for large-scale real-world scenes
(e.g., Unbounded-360 dataset [4]). Specifically, thanks to
the adoption of a rasterization-based rendering pipeline,
our proposed MixRT not only supports multiple devices
through a cross-platform graphics library but is also com-
patible with existing computer graphics toolchains (e.g.,
collision detection from [17])1.

3. Preliminaries
3.1. NeRF Rendering Pipeline
NeRF [23] offers photorealistic novel views by encoding
a continuous volumetric field of points, which intercept
and emit light rays, within the parameters of an MLP net-
work. The rendering process with NeRF involves three
steps. (1) To render each pixel in the target novel view, a
ray r = o+ td is cast from the origin (such as the camera’s
center) of the target novel view o along direction d, which
passes through the respective pixel. Here, t denotes the dis-
tance between sampled points along this ray and the origin
o. (2) For each point distanced tk from the view origin o, its
location o+ tkd and direction d serve as inputs to the MLP
network (o + tkd,d) ! (�k, ck), which then outputs the
corresponding density �k and an RGB color ck. These rep-
resent the extracted features of that specific point. (3) Ad-
hering to the principles of classical volume rendering [21],
the color C(r) of the pixel corresponding to the ray r can
be computed by integrating the features of the points along

1The real-time online collision demonstration of our proposed
MixRT is available at https://licj15.github.io/MixRT/
collision_viewer/

the ray. The following equation expresses this process:

C(r) =
NX

k=1

Tk(1� exp(��k(tk+1 � tk)))ck,

where Tk = exp(�
kX

j=1

�j(tj+1 � tj)), (1)

where N denotes the number of sampled points along the
ray r and Tk indicates the accumulated transmittance along
the ray r to the point o + tkd. This transmittance repre-
sents the likelihood of the ray reaching this point without
encountering any other points.

To further accelerate NeRF’s reconstruction process,
Instant-NGP [24] replaces the MLP network of vanilla
NeRF [23] with a 3D embedding grid stored as a compact
1D hash table. As a result, the computationally heavy MLP
inferences in the standard NeRF, involving about 1 million
FLOPs, are transformed into significantly less demanding
embedding interpolation operations, requiring fewer than
0.00005 million FLOPs. Specifically, for each queried point
along the rays passing through the pixels of training im-
ages, the embeddings of its eight nearest vertices in the 3D
embedding grid are retrieved from the compact 1D hash
table using their respective table index that is determined
by their coordinates. The embeddings of the queried point
are then obtained through trilinear interpolation of these
eight embeddings. After retrieving the embeddings for the
queried points along the rays passing through the pixels as
described above, these embeddings are fed into a smaller
MLP model to obtain the corresponding density and view-
dependent color.

Unlike the vanilla NeRF which employs an MLP with
10 layers, each with 256 hidden units, this smaller MLP
comprises only 2 layers with 64 hidden units each [24].
As discussed in Sec. 3.2 and recent real-time NeRF ren-
dering studies [28, 38], Instant-NGP[24] retains the stor-
age efficiency of vanilla NeRF due to the compact 1D hash
table but can only achieve real-time rendering speeds on
high-end GPUs, such as RTX 3090Ti [26]. The challenge
remains to enable real-time rendering of large-scale real-
world scenes using Instant-NGP while maintaining storage
efficiency. As we analyze in Sec. 4.1, directly combining
low-quality meshes with Instant-NGP retains storage effi-
ciency, but fails to achieve real-time rendering speeds. In-
formed by the profiling in Sec. 4.2, our proposed MixRT
modifies the model structure of Instant-NGP to better align
with the WebGL framework, making it more accessible for
most existing devices equipped with browsers.

3.2. Discussion on Existing NeRF Representations
As detailed in Sec.2.2, prior works have explored the adop-
tion of alternative, more efficient NeRF representations in
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Table 1. Overview of Commonly-Used NeRF Representations

Representations Rendering Quality FPS VRAM Efficiency Storage Efficiency Hardware
MLP Network [23, 32] High Low High High SIMD Units

Triangle Mesh [8, 27, 38] Medium High Low Low Rasterizer
Sparse Voxels [16, 39] Medium Medium Low Low Texture/SIMD Units
Plane/Vector [7, 28] Medium Medium Medium Medium Texture/SIMD Units
Hash Table [5, 24] High Low High High SIMD Units

lieu of MLP networks for the purpose of real-time render-
ing. Yet, to date, no NeRF representation has been able to
simultaneously meet the criteria of delivering high render-
ing quality (e.g., measured by PSNR), ensuring real-time
frame rates, optimizing VRAM efficiency (which translates
to minimized memory allocation during the rendering pro-
cess), and maximizing storage efficiency (implying a com-
pact model size that’s conducive for efficient data transmis-
sion between users). This collective performance assess-
ment is comprehensively summarized in Tab. 1.

Specifically, the MLP network used in the vanilla NeRF
model [23] excels in photorealistic rendering quality. Fur-
thermore, it is highly efficient in terms of storage and mem-
ory usage, requiring only about 5 MB of network weights
for each scene in the NeRF-Synthetic dataset [23]. As such,
it is a popular choice in subsequent research focusing on
high-fidelity, large-scale NeRF rendering [4, 32]. However,
it has a significant limitation: there are no well-optimized
accelerators available in the current graphics hardware to
run this type of network efficiently (i.e., only SIMD units
such as CUDA cores can execute the model). This results
in slower rendering speeds, which restricts its application in
scenarios requiring real-time interactions.

Driven by the fact that most existing edge devices sup-
port triangle mesh effectively within their hardware ras-
terizer, studies such as [8, 27, 38] construct their rendering
pipelines based on the mesh rasterization process. Utiliz-
ing triangle mesh as NeRF representations significantly im-
proves FPS, enabling real-time rendering speeds even on
mobile devices [8], while maintaining a respectable render-
ing quality (i.e., only 0.1 lower PSNR than that of vanilla
NeRF on the NeRF-Synthetic dataset [8]). Nevertheless,
the approach’s scalability remains a concern for large-scale
real-world scenes, as the requirements for storage and mem-
ory increase proportionally with the scale of the scene, lead-
ing to over 400 MB of disk usage on the Unbounded-360
dataset [38].

In pursuit of a better balance between the MLP network
with costly volumetric ray casting and the triangle mesh
with efficient rasterization, prior works like [16, 39] have
proposed replacing the MLP network with sparse voxels,
while still employing volumetric ray casting for the render-
ing process. Leveraging the compressed format of sparse

voxels (for instance, densely packed 3D texture in [16]) and
the same volumetric ray casting technique used by vanilla
NeRF, these works achieve a respectable compromise be-
tween rendering quality and FPS. They utilize either the tex-
ture mapping units accessible via WebGL API or the SIMD
units accessible through CUDA APIs. However, akin to
the triangle mesh representations, scaling these methods to
large-scale scenes can pose significant challenges in terms
of memory and storage efficiency, as pointed out by [28].

In the effort to enhance the memory and storage effi-
ciency of sparse voxels, studies such as [7, 28] propose
using plane/vector as NeRF representations, which can be
perceived as the low-rank decomposed format of 3D voxels.
By employing a similar rendering pipeline and hardware as
used by sparse voxels, yet with a more compact represen-
tation alongside a distinct decoding method (for instance,
matrix-vector outer product in [7]) for embeddings of the
sampled points, these studies manage to maintain similar
or even superior rendering quality vs. FPS trade-offs when
compared to those using sparse voxels. In addition, they
significantly reduce the memory and storage requirements
(e.g., only requiring 188 MB vs. 3785 MB of disk space as
per [28]).

Following [24] to employ a hash table as a new NeRF
representation, numerous subsequent studies have sought
to enhance its balance between rendering quality and ef-
ficiency, given its state-of-the-art training speed. As vali-
dated by [24, 28], hash tables exhibit superior memory and
storage efficiency compared to sparse voxels or plane/vector
(for instance, only requiring ⇠100 MB vs. ⇠200 MB or
⇠400 MB of disk space in the Unbounded-360 dataset [24,
28]). Consequently, they are often used as the NeRF rep-
resentation during training, before being translated into
other representations [24, 28]. Additionally,[5] also affirms
that a hash table representation with a well-designed point
sampling strategy in ray casting can yield superior ren-
dering quality compared to MLP network representations.
Nonetheless, the hash table proposed in Instant-NGP[24] is
constrained by its limited compatibility with most devices,
thus only achieving real-time rendering speeds on high-end
GPUs with customized CUDA kernel for accessing SIMD
units in graphic hardware.

Motivated by the aforementioned comparison, discus-
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embeddings into the final rendered color.

sion, and analysis of previous works, we propose a new
form of NeRF representation. Our proposed MixRT mixes
a low-quality mesh, a view-dependent displacement map,
and a compressed NeRF model in Instant-NGP’s hash ta-
ble [24] format. This configuration is purposefully de-
signed to leverage the inherent strengths of rasterizers, tex-
ture mapping units, and SIMD units in current graphics
hardware. The proposed method empowers real-time NeRF
rendering on edge devices while maintaining better render-
ing quality (e.g., 0.2 PSNR higher on indoor scenes of the
Unbounded-360 dataset), and staying within smaller mem-
ory and storage parameters (e.g., consuming only 80% of
[28]’s disk usage), as compared to SotA methods.

4. Method
In this section, we first examine the relationship between
mesh quality and rendering quality in Sec.4.1, finding that,
with the help of color fields that are represented by hash ta-
bles, high-quality novel view synthesis doesn’t necessarily
demand meshes with extensive triangles. We then perform
the runtime profiling analysis on hash tables in Sec.4.2,
pinpointing bottlenecks to inform hash table configuration
adjustments for improved FPS. Finally, we unveil MixRT,
with the detailed design describled in Sec. 4.3, comprising:
(1) a low-quality mesh, (2) a view-dependent displacement
map, and (3) an compressed NeRF model stored in a hash
table. This design ensures MixRT’s rendering pipeline, il-
lustrated in Fig. 2, can be specifically optimized to fully har-
ness the capabilities of rasterizers, texture mapping units,
and SIMD units in current graphics hardware, enabling real-

time NeRF rendering on edge devices without rendering
quality sacrifice.

4.1. Observations on the Effect of Mesh Quality

Previous real-time NeRF rendering research that uses tri-
angle mesh as the NeRF representation highlights the im-
portance of mesh geometry quality for photorealistic ren-
dering [34, 38]. For instance, [34] delves into refining the
surface by adjusting vertex positions and face density. Yet,
we note that an ultra-detailed mesh, packed with a vast num-
ber of triangles, isn’t mandatory for photorealistic rendering
outcomes.

In particular, we made the above observations by (1) sim-
plifying the SotA high-quality mesh from [38] via the clas-
sical vertex clustering [41] and (2) querying the color of the
ray-mesh intersection points from a color field represented
by Instant-NGP [24]’s hash table. As summarized in Tab. 2,
the low-quality mesh contains more than 5 ⇥ fewer trian-
gles and faces as compared to the high-quality one but can
achieve ⇠ 0.3 higher PSNR than the high-quality mesh by
equipping a hash table as a color filed to query the color
from. Thanks to the high memory and storage efficiency of
Instant-NGP [24]’s hash table, the combination described
above only consumes 0.26 ⇥ storage size of the high-quality
mesh. However, as suggested in prior works [28, 38] and
the discussion in Sec. 3.2, the achieved FPS by the combi-
nation of simplified mesh and hash table can not satisfy the
real-time rendering requirements. The set of conducted ex-
periments implies that (1) the high-quality geometry infor-
mation represented by mesh with massive triangles is not



necessary for achieving high rendering quality and (2) re-
placing high-quality mesh with the combination of the sim-
plified low-quality mesh and a hash table as the NeRF rep-
resentation can achieve better PSNR vs. storage efficiency
trade-offs.

From the above observations, it is evident that the pri-
mary limitation of merging a low-quality mesh with other
representations is the rendering speed. Therefore, we con-
duct an in-depth runtime profiling analysis on the hash table
representation which is known for its memory and storage
efficiency, as detailed in Sec. 4.2.

4.2. Runtime Profiling Analysis

Since there is no existing runtime breakdown analysis tool
for WebGL, we perform the runtime profiling analysis on
hash tables by tuning the model structure and observing the
resulting FPS. Specifically, as summarized in Tab. 3, the ef-
fect of varying (1) hash table size, (2) number of levels, and
(3) MLP architectures on FPS implies that the number of
levels is the runtime bottleneck, i.e., tuning it can signifi-
cantly change the resulting FPS, while the other two factors
are not.

Motivated by the profiling analysis above, we propose to
modify the default model structure of Instant-NGP’s hash
table by shrinking the number of levels while enlarging the
hash table size. As suggested in Tab. 4, such modifications
can boost the rendering speed to > 30 FPS while maintain-
ing hash tables’ memory or storage efficiency.

4.3. Mixing Mesh, Texture Map, and NeRF

With the observation that high-quality mesh is not neces-
sary for achieving high rendering quality (see Sec. 4.1) and
the profiling-inspired hash table configuration can achieve
both high rendering speed and high memory or storage ef-
ficiency (see Sec. 4.2), we propose a type of NeRF repre-
sentation that comprises (1) a low-quality mesh, (2) a view-
dependant displacement map, and (3) a compressed NeRF
model in Instant-NGP [24]’s hash table format. Such a de-
sign can not only leverage the commonly agreed high ren-
dering quality, high renderings speed, and high memory and
storage efficiency of existing NeRF representations as dis-
cussed above but also fully leverage the rasterizers, texture
mapping units, and SIMD units in graphics hardware. We
summarize the rendering pipeline of our proposed MixRT

in Fig. 2 and detail the design of each part in our proposed
MixRT as follows.

4.3.1 Triangle Mesh

We leverage the standard triangle mesh format to include
the information on geometric vertices coordinates, texture
coordinates, and polygonal face elements. Unlike [38], we
do not need to store the per-vertex appearance parameters
because the color of the intersection points will be fetched
from the hash table. Following [38], the mesh is post-
processed by vertex order optimization [29] to allow higher
cache hit rates for accessing neighboring triangles.

4.3.2 View-Dependant Displacement Map

Inspired by the commonly-used normal map [9, 10] that
fakes the lighting of bumps and dents without using more
polygons, we propose a view-dependant displacement map
to calibrate the coordinate of the intersection points to be
inputted in the color field represented by Instant-NGP’s
hash table. Similar to a normal map, our proposed view-
dependant displacement map can fake more accurate coor-
dinates of the intersection points without adding new poly-
gons to the mesh. However, our proposed one can better fit
Instant-NGP [24]’s hash table and the corresponding ren-
dering pipeline that only takes the coordinates and view di-
rections as input instead of surface normal. While previous
studies [3, 12] use neural networks to predict displacement
vectors for calibrating points in volumetric rendering, this
approach is unfeasible for real-time on-device rendering. In
contrast, our method employs 2D maps for displacement
prediction, leveraging the texture mapping units of graphics
hardware.

In particular, the proposed view-dependant displacement
map consists of (1) a spherical harmonics (SH) map, mSH ,
to store the SH coefficients for guiding the encoded view
directions to output a view-dependant vector and (2) a scale
map ms to scale the outputted view-dependant vector to a
proper length and thus the scaled vector can be used as the
calibration variable of the coordinate of the ray-mesh inter-
section points. The shape of the SH map mSH and scale
map ms is designed to be [Rm, Rm, 3 ⇥ (DSH + 1)2] and
[Rm, Rm, 1], respectively. Rm represents the resolution of
the map and DSH is the SH degree used in SH map mSH .

Table 2. Comparison between (1) the high-quality triangle mesh from [38] and (2) the combination of the low-quality mesh (simplified
from the high-quality mesh) and Instant-NGP’s [24] hash table, in terms of the average PSNR vs. storage size or FPS trade-offs on the
indoor scenes of Unbounded-360 dataset. The FPS was measured on a Macbook M1 Pro laptop with a resolution of 1280 ⇥ 720.

Representations # # of Vertices on # # of Faces on " Avg. PSNR # Storage "FPSRoom Counter Kitchen Bonsai Room Counter Kitchen Bonsai

Mesh from [38] 7,060,849 11,950,574 13,539,203 13,343,679 14,110,659 23,892,064 27,056,127 26,679,898 27.06 542 MB 120
Simplified Mesh + Hash Table 946,962 1,572,959 1,778,283 1,750,341 1,893,695 3,147,635 3,557,514 3,501,683 27.41 139 MB 0.4



Table 3. Adjusting the model structure of Instant-NGP’s hash ta-
ble [24]. FPS was measured on a Macbook M1 Pro laptop at a res-
olution of 1280 ⇥ 720, and the fragment shader was set to query
the hash table for color once per pixel. “Hash table size” and “#
of levels” denote the maximum entries per level and the number of
multi-resolution levels in Instant-NGP’s hash table, respectively.
The “MLP architecture” outlines the structure of the MLP respon-
sible for transforming the embedding retrieved from the hash table
into RGB color.

# of Levels Hash Table Size MLP Architecture FPS
8 217 2 Layers, 8 Hidden Neurons 27
8 217 Removed 30

� Observation: MLP is not the runtime bottleneck

8 217 Removed 30
1 217 Removed 120

� Observation: # of levels is the runtime bottleneck

8 217 Removed 30
8 25 Removed 35
8 222 Removed 25

� Observation: Hash table size is not the bottleneck

Given the coordinate p 2 R3 of an intersection point, its
texture coordinates pt 2 R2, and the corresponding view
direction d 2 R3, the calibrated coordinate pcali 2 R3 can
be computed as:

pcali = p+ S(mSH(pt),d)⇥ms(pt), (2)

where S denotes the SH functions as used in [7].
mSH(pt) 2 R(DSH+1)2 and ms(pt) 2 R represent the
feature interpolated from mSH and ms with coordinate pt,
respectively. As such, the calibrated coordinate pcali can be
determined by the coordinate and view directions of the ray-
mesh intersection point. The view-dependant displacement
map is quantized into 8 bits after training for both higher
rendering speeds and memory or storage efficiency.

4.3.3 Hash Table

For the hash table in the proposed MixRT, similar to the set-
tings in Instant-NGP [24], it consists of (1) multiple levels
of 1D hash tables with different corresponding 3D resolu-
tions and (2) small MLP networks to convert the fetched

Table 4. Optimizing Instant-NGP’s hash table configurations
based on runtime profiling insights. FPS measurements were taken
on a Macbook M1 Pro laptop at a resolution of 1280 ⇥ 720, while
PSNR evaluations were conducted on the indoor scenes of the
Unbounded-360 dataset.

Mesh # of Levels Hash Table Size "Avg. PSNR #Storage " FPS
[38] - - 27.06 542 MB 120

Simplified 16 220 27.41 139 MB 0.4
Simplified 4 221 26.63 74 MB 35

embeddings from the hash table to density or color. How-
ever, as illustrated in Sec. 4.2 we modify its model structure,
i.e., shrinking the number of levels and enlarging the hash
table size, to improve its rendering speed. To be compatible
with the 2D texture mapping units that can be accessed by
WebGL, we reshape the hash tables stored in 1D format to
2D image format for exporting it to the WebGL rendering
framework.

5. Experiments
5.1. Experiments Settings
5.1.1 Baselines, Datasets, and Metrics

We benchmark the proposed MixRT on challenging large-
scale indoor scenes of the Unbounded-360 dataset [4] and
compare with the following three SotA real-time NeRF ren-
dering works: (1) BakedSDF [38]: it leverages high-quality
mesh with massive triangles, and gets the rendering results
by mesh rasterization with appearance parameters stored in
each vertex, (2) NeRFMeshing [27]: it also leverages high-
quality mesh that is distilled from pre-trained NeRF model
but store the appearance parameters as texture maps, and (3)
MeRF [28], which adopts tri-planes as the representations
to store density and color information of the scene and gets
the rendering results by volumetric ray casting like vanilla
NeRF [23]. The rendering quality is measured by PSNR,
and the FPS is measured on a Macbook M1 Pro laptop at
the resolution of 1280 ⇥ 720, following the settings used
in [28]. The memory or storage efficiency is measured by
the total file sizes of meshes in glTF format, textures in PNG
format, and scene configurations in JSON format.

5.1.2 Implementation Details

We implement our real-time rendering pipeline with We-
bGL framework. Specifically, in the GLSL vertex shader,
we compute the coordinates of the ray-mesh intersection
points and their corresponding texture coordinates. In the
GLSL fragment shader, we first calibrate the coordinate of
the intersection points with the texture coordinates and view
directions, following Eq. 2. Then, following the standard
pipeline of Instant-NGP [24], we loop over the hash tables’
number of levels to get the trilinear interpolated embed-
dings from each level. The interpolated embeddings from
different levels are concatenated together to be the input of
a small MLP model that is implemented as matrix-vector
multiplication, following the implementation in [8]. In all
our experiments, the hash table is configured to have four
levels with a minimum level resolution of 256 and a max-
imum of 4096, and the hash map size is set as 221, with
each entry holding a four-dimensional vector. For the view-
dependant displacement map, the map resolution Rm is set
as 1536 for all scenes. For the low-quality meshes, they



Table 5. Comparison between our MixRT and SotA real-time
NeRF rendering techniques on the four indoor scenes from the
Unbounded-360 Dataset [4]. PSNR values were measured using
Mip-NeRF-360’s settings [4], while FPS was measured on a Mac-
book M1 Pro at a resolution of 1280 ⇥ 720, consistent with the
experiment settings in [28].

Method " PSNR on " FPS # StorageRoom Counter Kitchen Bonsai Avg.

NeRFMeshing [27] 26.13 20.00 23.59 25.58 23.83 - -
BakedSDF [38] - - - - 27.06 120 542 MB

MeRF [28] - - - - 27.80 30 124 MB
MixRT (Ours) 29.88 26.60 27.46 28.10 28.01 31 98 MB

are simplified from the SotA BakedSDF [38]’s mesh by
the classical vertex cluster [41] algorithm in the space con-
tracted by Mip-NeRF-360 [4]’s contraction function with
the voxel size hyperparameter set as 0.01 for all scenes. The
simplified meshes, along with randomly initialized view-
dependent displacement maps and hash tables, are jointly
trained using the loss function based on the differences be-
tween the rendered images and the ground truth images.

5.2. Comparing with SotA
We first compare our proposed MixRT with SotA real-time
NeRF rendering works. As summarized in Tab. 5, the pro-
posed MixRT achieves the highest PSNR and storage ef-
ficiency among all the methods in the benchmark, while
maintaining the real-time (> 30 FPS) rendering speed.
Specifically, as compared to MeRF [28], our proposed
MixRT achieves 0.2 higher PSNR than it with only 80%
storage cost under the same rendering speed. Please refer to
Appendix B for the corresponding qualitative comparison.

5.3. Ablation Study
As highlighted in Sec. 4.1, incorporating hash tables into
our MixRT framework is critical for maintaining high mem-
ory and storage efficiency without sacrificing rendering
quality. Following this, we further conduct an ablation
study to verify the significance of the view-dependent dis-
placement map, another integral component of MixRT. As
shown in Tab. 6, removing the view-dependent displace-
ment map from our proposed MixRT reduces storage by
approximately 24% but results in a 1.37 decrease in PSNR.
Meanwhile, the rendering speed remains relatively stable,

Table 6. Comparison MixRT w/ and w/o the proposed view-
dependent displacement (VDD) map, in terms of PSNR, FPS,
and storage size on the indoor scenes of the Unbounded-360
dataset [4].

Method " PSNR on " FPS # StorageRoom Counter Kitchen Bonsai Avg.

MixRT w/ VDD Map 29.88 26.60 27.46 28.10 28.01 31 98 MB
MixRT w/o VDD Map 29.10 25.26 25.64 26.54 26.64 35 74 MB

Table 7. Comparison between our MixRT and SotA real-time
NeRF rendering techniques on the three publicly available outdoor
scenes from the Unbounded-360 Dataset [4].

Method " PSNR on
Bicycle Garden Stump Avg.

Volumetric-Rendering-Based Methods

MeRF [28] 22.82 25.32 25.06 24.40
Rasterization-Based Methods

MobileNeRF [8] 21.70 23.53 23.95 21.06
NeRFMeshing [27] 21.15 22.91 22.66 22.24

MixRT (Ours) 21.81 24.55 23.76 23.37

shifting from 31 FPS to 35 FPS. Considering that MixRT al-
ready achieved higher storage efficiency than all baselines,
as demonstrated in Sec. 5.2, integrating view-dependent
displacement maps in our MixRT is a better option to
achieve higher PSNR vs. rendering speed trade-offs.

6. Limitation
As illustrated in Tab. 5, our proposed MixRT demonstrates
better rendering quality vs. rendering speeds and storage ef-
ficiency than SotA methods in indoor scenes. However, its
rendering quality is still constrained by rasterization-based
rendering methods, a common limitation in rasterization-
based real-time NeRF methods [8, 38]. In particular, for
the more complex outdoor scenes from the Unbounded-360
dataset [4], as shown in Tab. 7, MixRT’s rendering qual-
ity is 1 PSNR lower than the volumetric-rendering-based
MeRF [28]. Despite this, it still achieves comparable or bet-
ter quality than other rasterization-based baselines [8, 27].

7. Conclusion
We present MixRT, a NeRF representation that combines a
low-quality mesh, a view-dependent displacement map, and
a compressed NeRF in a hash table structure. This design
emerges from our observation that achieving high render-
ing quality does not require high-complexity geometry rep-
resented by meshes with a vast number of triangles. This
realization suggests the potential to streamline the baked
mesh and incorporate diverse neural representations for ren-
dering, memory, and storage efficiency. Through detailed
runtime profiling analysis and an optimized WebGLbased
rendering framework, MixRT offers state-of-the-art balance
between rendering quality and efficiency.
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MixRT: Mixed Neural Representations For Real-Time NeRF Rendering

Supplementary Material

A. Real-Time Interactive Demonstration
To experience the real-time interactive demonstration of
the proposed MixRT, please visit https://licj15.
github.io/MixRT/index.html#demos. Our demo
offers real-time online interaction with static scenes, as well
as collision animations.

B. Visual Comparison with SotA
In addition to the quantitative comparison of our proposed
MixRT and the SotA real-time NeRF rendering shown in
Tab 5, we offer additional rendered image comparisons in
Fig. 3 below. Consistent with the observations in Sec. 5.2,
our proposed MixRT excels in two main areas: (1) accu-
rately rendering regions with specular highlights or fine-
grained geometry structures, e.g., the bowl in “Scene:
Counter” and the bulldozer bucket in “Scene: Lego”, and
(2) eliminating ghostly effects such as the ”floaters” ob-
served on the floor of “Scene: Room” and the wall of
“Scene: Bonsai”.

https://licj15.github.io/MixRT/index.html#demos
https://licj15.github.io/MixRT/index.html#demos


Scene: Room

Scene: Counter

Scene: Kitchen

Scene: Bonsai
Ground Truth MeRF Ours

Figure 3. Visual comparison between our proposed MixRT and MeRF [28], a real-time NeRF rendering work with SotA rendering quality
vs. efficiency trade-offs. The rendered images are randomly selected from the test set.
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