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Time-crystalline behavior has been predicted and observed in quantum central-spin systems with
periodic driving and Ising interactions. Here, we theoretically show that it can also arise in central-
spin systems with Heisenberg interactions. We present two methods to achieve this: application of
a sufficiently large Zeeman splitting on the central spin compared to the satellite spins, or else by
applying additional pulses to the central spin every Floquet period. In both cases, we show that
the system exhibits a subharmonic response in spin magnetizations in the presence of disorder for
both pure Heisenberg and XXZ interactions. Our results pertain to any XXZ central-spin system,
including hyperfine-coupled electron-nuclear systems in quantum dots or color centers.

I. INTRODUCTION

Spontaneous symmetry breaking has a long history in
condensed matter and high-energy physics [1, 2]. In
the past decade, time crystals have attracted particu-
lar attention, both theoretically and in experiments. On
the theoretical side, time crystals enrich the class of
nonequilibrium phases of matter, and have close ties to
questions about many-body localization and thermaliza-
tion in quantum systems [3–7]. In a discrete time crys-
tal, the time translation symmetry of a periodic Hamil-
tonian H(t + T ) = H(t) is broken, and expectation
values of certain observables exhibit a subharmonic re-
sponse [8–10]. Several different routes leading to discrete
time translation symmetry breaking have been exten-
sively studied, including many-body localization in the
presence of strong disorder [10–14] and prethermaliza-
tion, which does not rely on disorder [15–20]. The initial
theoretical investigations led to many experimental real-
izations in different physical platforms such as trapped
ions [21, 22], solid-state spin ensembles [23–27], ultra-
cold atoms [28, 29], superconducting qubits [30–33], and
magnons [34–36]. Apart from closed systems, there also
exist studies of open, dissipative time crystals [37–42].

Most of the theoretical and experimental work on time
crystals has focused on Ising spin chain models simi-
lar to those studied in the original theoretical propos-
als [9, 10, 12], leaving open the question of what other
types of many-body systems are capable of realizing
these physics. Recent theoretical works have shown that
Heisenberg spin chains can also exhibit time-crystalline
behavior [43–47], although experimental demonstrations
of interaction-driven subharmonic responses in such sys-
tems have been limited to small arrays of gate-defined
semiconductor spin qubits [48]. Realizing substantially
longer chains of highly coherent and controllable semi-
conductor spins will require significant technological ad-
vances which, though expected, may take some time to

achieve. An alternative approach is to consider other
types of many-body spin models that are realized nat-
urally. Recently, Pal et al. [49] proposed and observed
time-crystalline behavior in an NMR experiment using
star-shaped molecules of various sizes, containing up to
37 spins. This system is a realization of the central-spin
model, in which the satellite spins are coupled to the
central spin through Ising interactions. This discovery,
together with the recent results on time-crystalline be-
havior in Heisenberg spin chains [43–45], begs the ques-
tion of whether time crystal-like phases can also exist in
Heisenberg central-spin systems with either isotropic or
anisotropic interactions.

This question is important for several physical sys-
tems in which central-spin systems with non-Ising in-
teractions naturally arise. One example is color cen-
ters coupled to nuclear spin registers, which are a lead-
ing platform for quantum networks thanks to their spin-
photon interfaces and long-lived nuclear spin quantum
memories [50–53]. Here, the electronic spin at the de-
fect site serves as the central spin, which couples to
the satellite nuclear spins via anisotropic dipolar hyper-
fine interactions [51, 54, 55]. A second example is spins
in self-assembled quantum dots, which also offer high-
quality spin-photon interfaces and nuclear spin memo-
ries, making them attractive for quantum network and
measurement-based quantum computing applications as
well [56–62]. Here, the central spin is a single electron or
hole spin confined to the dot, while the satellite spins
are surrounding nuclear spins that couple to the cen-
tral electron (hole) spin via isotropic contact (anisotropic
dipolar) hyperfine interactions [63–67]. Similar types
of central-spin systems are also realized in gate-defined
quantum dot spin qubit platforms, although the control
schemes and envisioned applications differ because such
dots are not optically active; these systems are being
developed predominantly as building blocks of quantum
computers and simulators [68–70]. In all these examples,
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the interactions between central and satellite spins are
intrinsic and unavoidable. This leads to the question of
whether time crystal-like phases naturally arise in these
systems when dynamical decoupling techniques based on
periodic π pulses are applied, as is commonly done to im-
prove the coherence time of the electronic spin [52, 71–
76]. It is also interesting to ask whether one can one
use such non-equilibrium phases to improve the perfor-
mance of quantum operations, as was recently shown for
quantum dot spin chains [45, 48].

In this paper, we show that time-crystalline behav-
ior can indeed arise in Heisenberg central-spin systems,
with both isotropic and anisotropic (XXZ) interactions.
Here, we define time-crystalline behavior as a subhar-
monic response in spin magnetizations that arises as a
consequence of many-body interactions and driving, and
which is robust to pulse errors and disorder. Through
numerical simulations, we show that the standard Flo-
quet pulse protocol used for Ising-coupled systems does
not by itself give rise to a subharmonic response. How-
ever, we show that time-crystalline order can be induced
by supplementing the Floquet driving with one of two
options: either by creating a large Zeeman energy mis-
match between the central and satellite spins or by ap-
plying additional pulses to the central spin every Flo-
quet period [43]. Both approaches dynamically convert
Heisenberg or XXZ interactions into effective Ising in-
teractions, which can then preserve computational basis
states [10, 49]. We show that pure multi-spin quantum
states exhibit stable period doubling in the presence of
isotropic or anisotropic interactions between the central
and satellite spins when either method is used.

The remainder of this paper is organized as follows.
In Sec. II, we define the central-spin model Hamiltonian
and discuss the parameter regimes relevant to electron-
nuclear systems with hyperfine interactions. In Sec. III,
we study the stroboscopic dynamics of the spin expecta-
tion values using the two approaches. Firstly, we apply a
large magnetic Zeeman splitting on the central spin com-
pared to the satellite spins. Secondly, we apply additional
pulses on the central spin during each Floquet period.
Furthermore, we map out an effective time crystal-like
phase diagram that shows when regions of stable period
doubling arise as a function of interaction strength and
driving errors. We conclude in Sec. IV.

II. MODEL

We begin by defining the Hamiltonian for the XXZ-
coupled central-spin model:

H =
N−1∑
i=1

Jxy,iSx,0Sx,i +
N−1∑
i=1

Jxy,iSy,0Sy,i+

N−1∑
i=1

Jz,iSz,0Sz,i +BcSz,0 +
N−1∑
i=1

BsatSz,i.

(1)
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FIG. 1. (a) Schematic of a central-spin system, with the cen-
tral spin (blue) coupled to multiple satellite spins (red). (b)
Driving sequence that is applied to each spin in the central-
spin system. The driving has period T , and each pulse imple-
ments an imperfect π rotation about the x axis with an error
in the angle equal to ec for the central spin and esat for each
satellite spin. (c) Schematic of the system’s spin magnetiza-
tion (of either the central or a satellite spin) as a function of
time. Stable period doubling arises in time crystal-like phases
as a consequence of periodic driving and many-body interac-
tions despite rotation errors.

This model describes spin-1/2 spins such that Sα,i =
σα,i/2, where σα,i is a Pauli operator (α = {x, y, z})
acting on the ith spin. The central spin corresponds to
i = 0, while the satellite spins are labeled by i > 0. A
schematic of the model is shown in Fig. 1.

The central spin is coupled to each satellite spin i with
interaction strengths Jxy,i and Jz,i in the transverse and
longitudinal directions, respectively, whereas the satellite
spins do not interact with each other. We assume that
both the transverse and longitudinal interactions Jxy,i,
Jz,i for each satellite spin i are sampled from a Gaus-
sian distribution with mean values Jxy, Jz and variance
δJ . We refer to δJ as the disorder strength, and we take
it to be equal for both transverse and longitudinal cou-
plings. Throughout the paper, we use the terms isotropic
or anisotropic to characterize the mean values Jxy or Jz
of the couplings.

In the case of electron-nuclear central-spin systems
such as NV centers in diamond coupled to surrounding
13C spins, the dipolar hyperfine interactions vary across
nuclei because of the variation in distances between the
electron and each nucleus and because of the different ori-
entations of the displacement vector separating the two
spins. Variations in hyperfine interaction strengths also
arise in quantum dots because the electronic probability
density can vary across nuclei. In both types of systems,
the variations in interaction strengths can be modeled
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as disorder. Bc and Bsat are the Zeeman energies of the
central and satellite spins. A difference between these en-
ergies could be due to external magnetic field gradients
or due to different g-factors for the central and satellite
spins, depending on the particular physical platform. In
the main text, we neglect Zeeman splittings on satellite
spins under the assumption that they are very small com-
pared to that of the central spin; however, we examine
how the subharmonic response is affected by the pres-
ence of small to moderate Zeeman splittings on satellite
spins in Appendix A. There, we show that the response
is non-monotonic in Bsat, such that the time-crystalline
behavior is either enhanced or diminished depending on
its precise value.

Discrete-time crystals and related nonequilibrium
phases can arise when many-body interacting systems are
subject to periodic driving. Here, as in much of the pre-
vious literature [9, 10, 12], we consider periodic π pulses
applied to each spin:

Hd =

∞∑
k=1

δ(t−kT )

(
π(1−ec)Sx,0 +

N−1∑
i=1

π(1−esat)Sx,i

)
,

(2)
where T is the driving period. We include indepen-
dent pulse rotation errors, ec and esat, under which a
time crystal-like phase should be robust [12]. Such er-
rors inevitably arise from imperfect experimental control
fields. The errors can in general differ between central
and satellite spins since the physical mechanism used
to control these spins can be distinct depending on the
platform. For example, in color centers or quantum dot
systems, the central electron spin and satellite nuclear
spins could be driven via separate ESR and NMR control
lines [51, 77–83]. However, throughout the main text, we
assume the same π pulse driving error for both types of
spins for simplicity: ec = esat = ec,sat. The case of un-
equal pulse errors is considered in Appendix B, where the
same qualitative behavior is found to emerge. In the main
text, we focus on driving with instantaneous pulses as in
Eq. (2); in Appendix C we consider pulses of finite ampli-
tude and duration, finding that time-crystalline behavior
is still evident in this case, provided the pulse durations
remain a small fraction of the driving period T .
We focus our study on parameter values informed by

experimental implementations in quantum dots and color
centers. In both cases, typical electron Zeeman splittings
range from several MHz to several GHz, while hyper-
fine interactions range from a few hundred kHz to a few
MHz. In addition to hyperfine interactions, inter-nuclear
dipolar couplings are also present in these systems, with
values ranging from a few Hz to a few kHz [84, 85]. We
find that dipolar interactions (modeled as nuclear-nuclear
Ising interactions) induce only small quantitative effects,
so we ignore them throughout this work.

The number of nuclear spins that critically affect the
central spin may vary depending on the physical system,
ranging from a few 10s in color centers up to 105 in op-
tically active quantum dots. In the numerical simula-

tions described in subsequent sections, we consider N = 6
spins (including the central spin) unless otherwise stated.
We stress that in this work, we are not concerned with
demonstrating that a time crystal phase arises in the
thermodynamic limit. Rather, we aim to provide evi-
dence that residual time-crystalline effects are evident in
finite-sized systems which are relevant to quantum in-
formation technologies. In Appendix D, we show that
the subharmonic response becomes more stable as N is
increased.
In the following results, all the simulations were per-

formed using the QuSpin Python package for exact diag-
onalization of quantum many-body systems [86].

III. INDUCING TIME-CRYSTALLINE
BEHAVIOR IN XXZ CENTRAL-SPIN MODELS

In this section, we present two different ways of realiz-
ing time-crystalline behavior in Heisenberg, or more gen-
erally XXZ, central-spin models. The first approach is to
create a large Zeeman splitting on the central spin while
applying periodic π pulses on all the spins. In this ap-
proach, the disorder in the interaction strength between
central and satellite spins is crucial for producing stable
period doubling in spin magnetizations. In the second
approach, we apply additional pulses to only the cen-
tral spin during each driving period. These additional
pulses dynamically convert the Heisenberg or XXZ in-
teractions into effective Ising interactions, giving rise to
time-crystalline behavior.

A. Zeeman-mismatched time crystal

We first show that time-crystalline behavior can be
induced by a sufficiently large Zeeman energy difference
between the central and satellite spins, provided there is
enough disorder in the interactions. Here, we start with
an initial pure state in the z-basis: |Ψ(0)⟩ = |↑↑↓↑↓↑⟩.
This choice is arbitrary; we have also tried other pure
states in the computational (z) basis and observed no
significant difference in the results. In Appendix E, we
show that similar findings occur for any product state in
the z-basis. Moreover, we show in Appendix F that even
if the satellite spins start out in a mixed state, a clear
subharmonic response can still emerge. In this section, all
of our results are averaged over 100 independent coupling
disorder realizations.
The system evolves via repeated application of the

Floquet operator UF = UπUH , where UH = e−iHT

corresponds to free evolution under the central-spin
model, Eq. (1), for interaction time T , and Uπ =∏

i e
−iπ(1−esat)Sx,ie−iπ(1−ec)Sx,0 is the evolution operator

corresponding to a single round of pulses applied to all
spins. We look for a subharmonic response in the ex-
pectation values of the components of the central and
satellite spins along the magnetic field direction z (i.e.,
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FIG. 2. Emergence of period doubling with increasing central-
spin Zeeman splitting Bc in a periodically driven central-
spin model with isotropic Heisenberg interactions Jxy/2π =
Jz/2π = 1 MHz in the presence of π pulse driving error
ec,sat = 0.05 and with Bsat = 0. (a) Central-spin and (b)
satellite-spin magnetizations are shown. Here, δJ/2π = 0.2
MHz and T = 1 µs.

spin magnetizations). To make this response more trans-
parent, we compute these expectation values stroboscop-
ically (i.e., after every Floquet period T ), and we include
a minus sign after every other period in anticipation of
period doubling. In particular, we compute |⟨(−1)nSz,0⟩|
for the central spin and Savg = 1

N−1

∑
i>0 |⟨(−1)nSz,i⟩|

for the satellite spins, where the latter is averaged over
all N − 1 satellite spins, and n is the number of Floquet
periods. Here, we choose to calculate the mean value of
the absolute magnetization of the satellite spins for ease
of presentation. We focus on absolute values of magneti-
zation to keep the figures simple, avoiding negative values
in the thermalization region. We are particularly inter-
ested in how these quantities depend on the central-spin
Zeeman splitting and the average interaction strengths
since the subharmonic response should only emerge when
these are sufficiently large.

We first examine how the central- and satellite-spin
magnetizations depend on the strength of the central-
spin Zeeman splitting Bc, which is shown in Fig. 2. We
observe that as we increase the central-spin Zeeman split-
ting, a period-doubling effect emerges and persists out to
a time scale that grows rapidly with Bc. This indicates
that applying a sufficiently strong magnetic field on the

central spin is enough to induce time-crystalline behavior
in Heisenberg-coupled central-spin systems. Here, we set
Bsat = 0, because, in electron-nuclear spin systems, the
nuclei have g-factors that are orders of magnitude smaller
than electronic g-factors. However, in systems where Bsat

is comparable to the central-satellite spin coupling, it can
still have an effect on the time-crystalline behavior. This
is analyzed in Appendix A, where we show that Bsat can
effectively enhance or diminish the longitudinal coupling,
and thus modify the subharmonic response in these cases.

A defining feature of time-crystalline physics is that
the subharmonic response should only arise in the pres-
ence of sufficiently strong many-body interactions. To
confirm that this is indeed the case here, we sweep the
average interaction strengths Jxy, Jz while keeping con-
stant the interaction time T = 1 µs. In Fig. 3(a,b), we
observe that for isotropic interactions, the initial state is
not preserved in the absence of central-satellite spin inter-
actions as expected. However, in the parameter regime
considered here, when the interactions are switched on
with strength J/2π = Jz/2π = Jxy/2π = 1 MHz, the
subharmonic response in both the central- and satellite-
spin magnetizations persists out to thousands of Floquet
periods. Moreover, we see from the figure that as the in-
teraction strength is increased further beyond this point,
the time-crystalline behavior is destabilized, indicating
that there is a finite range of interaction strengths over
which a robust period doubling emerges. This can also
be seen from a spectral analysis of the Floquet operator
(Appendix G). In the time crystal phase region, the Flo-
quet eigenvalues come in diametrically opposite pairs [6].
When the interaction strength is made too large or too
small, the eigenvalues deviate from this simple pattern,
destroying the period doubling. Below, we construct a
phase diagram that delineates this region of stability (see,
e.g., Fig. 4).

While isotropic Heisenberg interactions naturally arise
in the context of electron-nuclear contact hyperfine in-
teractions or electron-electron exchange couplings, other
types of spin-spin interactions such as dipolar couplings
are anistropic [50, 51, 67, 68]. In Fig. 3(c,d), we show that
the temporal order is evident regardless of the amount of
anisotropy. The figure shows spin expectation values for
various degrees of anisotropy in the central-satellite spin
couplings. In particular, we fix the total magnitude J of
the interactions to J/2π = 2Jxy/2π + Jz/2π = 3 MHz,
and we vary Jz to study the effects of anisotropy. We
set Bc/2π = 300 MHz which, as shown above, is large
enough to induce time-crystalline behavior. We observe
that for all values of Jz in this range, the system ex-
hibits a fairly stable subharmonic response. Here, we see
that the greatest stability occurs in the extreme cases of
purely isotropic (Heisenberg) or fully anisotropic (Ising)
interactions, while for more generic types of XXZ inter-
actions in between these extremes, the temporal order
decays more rapidly. This is not generic behavior or con-
sequence of the symmetries of the interaction, but rather
occurs because of the particular parameters we have cho-
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FIG. 3. Emergence of period doubling with increasing interaction strength in a periodically driven, Zeeman-mismatched central-
spin model with (a,b) isotropic Heisenberg interactions and (c,d) anisotropic XXZ interactions. (a,b) Central- and satellite-spin
magnetization as a function of the number n of Floquet pulses for several values of the interaction strength J = Jxy = Jz.
(c,d) Central- and satellite-spin magnetization as a function of the number n of Floquet pulses for several values of Jz with the
total interaction strength fixed to J/2π = 2Jxy/2π + Jz/2π = 3 MHz. The π pulse driving error is ec,sat = 0.05, the Zeeman
energies are Bc/2π = 300 MHz and Bsat = 0, the disorder strength is δJ/2π = 0.2 MHz, and the driving period is T = 1 µs.

sen. This is clarified further below, where we construct
effective phase diagrams and show that two phase regions
emerge around JzT = 2π and JzT = 6π. For T = 1 µs,
these correspond to Jz/2π = 1, 3 MHz, which correspond
to Heisenberg and Ising interactions, respectively, when
we fix the total interaction strength to J/2π = 3 MHz
as we have done here. The value of JzT is what is cru-
cial to the time-crystalline behavior, not the form of the
XXZ interaction. Importantly, we can always tune the
system into the centers of these phase regions by tuning
the pulse period T , regardless of what the actual cou-
pling strengths are in a specific system. In Appendix D,
we give an approximate analysis of our quantum many-
body system after two Floquet periods. We find that
specific values of JzT , such that the periodic driving is
commensurate with the interaction strength, are needed
to suppress the π pulse driving error.

To better understand the range of interaction strengths
in which temporal order arises, and to also demonstrate
the stability of this order against pulse errors, we con-
struct phase diagrams. Since we are particularly inter-
ested in the time scales over which this order persists, we
define these diagrams in terms of the return probability
P (t) = | ⟨Ψ(0)|Ψ(t)⟩ |2, where |Ψ(0)⟩ is the initial state,

and |Ψ(t)⟩ is the time-evolved state of the entire system.
We construct the phase diagram by counting the (even)
number of Floquet cycles n for which P (2kT ) ≥ 0.95 for
all k ≤ n/2 , and such that P ((2ℓ + 1)T ) ≤0.05 for all
ℓ < n/2 − 1. In simpler terms, we calculate the number
of periods over which the system evolves stroboscopically
to within a 5% error. This threshold is of course arbi-
trary, and other values could be considered, although the
results would change negligibly as will become evident
from the results shown below.

Figure 4(a) shows the resulting phase diagram in the
case of isotropic central-satellite spin interactions. It is
clear from the figure that the largest degree of stability
is achieved near J/2π = Jxy/2π = Jz/2π = 1 MHz for
the parameters considered, where the system can tolerate
pulse errors up to nearly ec,sat = 0.06 (i.e., 6%). Inter-
estingly, we also see that a second region of robust period
doubling also emerges around J/2π = 3 MHz, although
it is not quite as insensitive to pulse errors as the first
region. We also note that as either J or ec,sat is tuned
away from these robust regions, the time scale over which
the subharmonic response persists changes abruptly by
orders of magnitude, from >104 Floquet periods down
to <10 periods, indicating that these phase regions are
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(a)

(b)

J/2π

Jz /2π

FIG. 4. Phase diagrams for Zeeman-mismatched time crys-
tals. The number of Floquet cycles (color bar) over which the
return probability of the full central-spin system evolves stro-
boscopically (see main text for precise definition) as a func-
tion of the pulse error ec,sat and (a) the interaction strength
J = Jxy = Jz of the isotropic system or (b) the longitu-
dinal interaction strength Jz of the anisotropic system with
J/2π = 2Jxy/2π + Jz/2π = 3 MHz held fixed. The Zee-
man energies are Bc/2π = 300 MHz and Bsat = 0, the disor-
der strength is δJ/2π = 0.2 MHz, and the driving period is
T = 1 µs.

sharply defined, despite the fact that the system consists
of only N = 6 spins. We further notice that for J = 0,
J/2π = 2 MHz, or J/2π ≥ 4 MHz, there is virtually
no robustness to pulse errors, showing that not only are
many-body interactions critical to the emergence of this
phenomenon, but also their precise strength. The ab-
sence of a subharmonic response at J/2π=2 and 4 MHz
can be understood from the structure of the spectrum
of the Floquet operator, as we show in Appendix G. We
can also notice that in the absence of transverse couplings
and disorder, the evolution operator generated by H is
periodic in JzT with period 4π, and so the behavior of
the system for Jz/2π = 2 MHz and 4 MHz should be
the same as when Jz = 0. This periodicity is approxi-
mately preserved when the transverse couplings and dis-
order are restored and the driving is switched on. As
discussed above, it is important to stress that our choice
of T = 1 µs for the pulse period is arbitrary, and more
generally, the centers of the phase regions are located at
JzT = 2π and 6π. This in turn allows us to tune the
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FIG. 5. Role of coupling disorder in the emergence of time
crystalline behavior in a central-spin model with isotropic
Heisenberg interactions Jxy/2π = Jz/2π = 1 MHz. (a)
Central-spin and (b) satellite-spin magnetizations are shown
as a function of the number of Floquet periods n for sev-
eral different values of the disorder strength δJ . The π
pulse driving error is ec,sat = 0.05, the Zeeman energies are
Bc/2π = 300 MHz and Bsat = 0, and the driving period is
T = 1 µs.

driving period into “resonance” with the many-body in-
teractions to induce a subharmonic response for any value
of Jz. In Appendix B, we show that the same qualita-
tive features emerge when the pulse errors are unequal,
esat ̸= ec, albeit with small quantitative differences.

Figure 4(b) shows a phase diagram in which the one
axis is the degree of coupling anisotropy rather than the
total interaction strength. More specifically, we now cal-
culate the number of stroboscopic cycles of the return
probability as a function of Jz, with J/2π = 2Jxy/2π +
Jz/2π = 3 MHz held fixed. As Jz/2π sweeps from 0
to 3 MHz, the form of the coupling varies from an XY
model with purely transversal interactions to an Ising
model with only longitudinal interactions. The largest
robust phase region now occurs at Jz/2π = 3 MHz, cor-
responding to the Ising system, with insensitivity to pulse
errors up to ec,sat = 0.07 or more. A second phase region
around J/2π = 1 MHz is also evident which corresponds
to isotropic Heisenberg interactions. This confirms what
was evident from Fig. 3, namely that these two extreme
cases exhibit the most robustness for our chosen parame-
ters. In both cases, the time crystalline behavior extends
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FIG. 6. Emergence of period doubling with increasing interaction strength in an H2I-driven central-spin model with (a,b)
isotropic Heisenberg interactions and (c,d) anisotropic XXZ interactions. (a,b) Central- and satellite-spin magnetization as a
function of the number n of Floquet pulses for several values of the interaction strength J = Jxy = Jz. (c,d) Central- and
satellite-spin magnetization as a function of the number n of Floquet pulses for several values of Jz with the total interaction
strength fixed to J/2π = 2Jxy/2π + Jz/2π = 3 MHz. In all cases, 40 H2I pulses per Floquet period are applied to the central
spin. The Floquet driving error is ec,sat = 0.05, the Zeeman energies are Bc = Bsat = 0, the disorder strength is δJ/2π = 0.2
MHz, and the driving period is T = 1 µs.

out to more than 104 Floquet periods.

In all of the above results, we assumed there is an ap-
preciable amount of disorder in the central-satellite spin
couplings (δJ/2π = 0.2 MHz). How important is this
disorder to the emergence of a subharmonic response?
This is addressed in Fig. 5, which shows the spin mag-
netizations as a function of the number of Floquet pe-
riods for amounts of disorder ranging from δJ = 0 to
δJ/2π = 0.2 MHz. We see that the disorder has a
significant effect. In particular, period doubling dissi-
pates after only ∼ 100 periods in a disorder-free sys-
tem with δJ = 0. On the other hand, as the disorder
increases, the time scale on which the subharmonic re-
sponse remains stable quickly increases to >104 periods
for δJ/2π ≥0.05 MHz. Thus, modest levels of disorder
are necessary for the time crystalline behavior to sur-
vive on long time scales. This is consistent with time-
crystalline order associated with many-body localization,
in which non-ergodicity is caused by the emergence of lo-
cal integrals of motion [87, 88].

B. Heisenberg to Ising pulses on central spin

In this section, we show that there is an alternative
way to create a time crystal-like phase where, instead
of using a large Zeeman energy mismatch between cen-
tral and satellite spins, we apply additional π pulses to
the central spin every Floquet period. These additional
pulses act as a dynamical decoupling sequence that dy-
namically suppresses two of the three interaction terms
in the XXZ Hamiltonian, Eq. (1), resulting in an effec-
tive Ising interaction. We refer to these additional pulses
as ‘H2I’ pulses following Ref. [43], which introduced a
similar technique for spin chains. In the spin chain case,
this echoing out of interaction terms works provided the
H2I pulses are applied to every other spin, such that the
pulses act on only one spin in each interacting pair. In
the central-spin model, the same effect can be achieved
by applying H2I pulses to only the central spin since each
interacting pair of spins in this model includes the cen-
tral one. Applying enough H2I pulses should then reduce
the system to an effective Ising central-spin model, which
was shown in Ref. [49] to exhibit time crystal-like signa-
tures. As in the spin chain case, the larger the number
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FIG. 7. (a,b) Emergence of period doubling in a periodically driven central-spin model in which the central spin is subject to
additional H2I pulses every Floquet period. (a) Central-spin and (b) satellite-spin magnetizations are shown as a function of
the number n of Floquet periods for various numbers of H2I pulses ranging from 2 to 100 every Floquet period. (c,d) Stability
of the H2I-induced temporal order with increasing H2I pulse error ez. (c) Central-spin and (d) satellite-spin magnetizations
are shown as a function of the number n of Floquet periods for four different values of ez in the case of 40 H2I pulses per
Floquet period. In all panels, the interactions are isotropic with strength Jxy/2π = Jz/2π = 1 MHz, the Floquet driving error
is ec,sat = 0.05, the Zeeman energies are Bc = Bsat = 0, the disorder strength is δJ/2π = 0.2 MHz, and the driving period is
T = 1 µs.

of H2I pulses per Floquet period, the more the effective
interaction resembles an Ising form, and the rotation axis
of the H2I pulses determines the orientation of the Ising
interaction. Here, we choose the H2I rotation axis to be
the z axis, implying that the effective Ising interaction
is of Sz,0Sz,i type. The Floquet operator is then given
by UF = UπUH2I(T ), where Uπ is the same as in the
previous section, while

UH2I(T ) = [eiπSz,0(1−ez)UH(T/m)]m, (3)

where UH(t) = e−iHt with H defined in Eq. (1), m is the
number of H2I pulses, and ez is the H2I rotation error.
Throughout this section, we set the Zeeman energies to
zero, Bc = 0, Bsat = 0, since they are no longer needed
to induce temporal order. We continue to sample the
couplings from Gaussian distributions with means Jxy,
Jz and standard deviations δJ .

To confirm that the H2I technique can generate time-
crystalline behavior in the central-spin model, we first
compute the spin magnetizations as a function of the
number of Floquet periods using 40 H2I pulses per pe-
riod. The results for isotropic interactions are shown in

Fig. 6(a,b). Here, we initialize the system in the com-
putational basis pure state |Ψ(0)⟩ = |↑↑↓↑↓↑⟩, which has
no underlying symmetry, thus avoiding any sort of fine-
tuning or bias in the results. We see from the figure that
as we increase the interaction strength, a subharmonic
response gradually emerges. As long as the interaction
strength is sufficiently close to J/2π = 1 MHz, this sub-
harmonic response is long-lived, similarly to what we saw
in the case of the Zeeman-mismatch-induced temporal or-
der (c.f., Fig. 3). As discussed in the previous section,
the subharmonic response is generally most stable when
JzT = 2π, allowing one to tune the system into this
regime for any Jz by adjusting the pulse period T ap-
propriately. However, unlike in the Zeeman-mismatched
case, here we do not see a revival near J/2π = 3 MHz,
suggesting the absence of a second region of robustness
in the corresponding phase diagram. Below, we confirm
that this is indeed the case. In Fig. 6(c,d), we examine
the effect of interaction anisotropy by tuning the interac-
tions from Ising to Heisenberg form. We again find that
these two extremal cases exhibit the most robustness,
although Ising interactions are clearly more effective in



9

achieving a long-lived period doubling. We also see from
the figure that the stability is much weaker for generic
XXZ interactions compared to the Zeeman-mismatch-
induced phase.

Because the effective many-body interactions only con-
verge to Ising form in the limit of infinitely many H2I
pulses, it is important to investigate how the temporal
order depends on the number of pulses. This is also
an important experimental consideration since there is
a limit to how many pulses can be applied in the labo-
ratory. Figure 7(a,b) shows that as we apply more and
more H2I pulses to the central spin, the subharmonic
response is preserved for increasingly longer times. We
see that for 40 H2I pulses per period the temporal or-
der survives for 100s of Floquet periods, while for >80
pulses, this time scale increases by an order of magnitude
or more. In Appendix H, we provide some analytical in-
tuition behind the H2I mechanism, and we show that
the time scale on which the central spin magnetization
is stabilized increases superlinearly with the number of
H2I pulses. We also see from the figure that the satel-
lite spins stabilize much more quickly compared to the
central spin. Note that for T = 1 µs (the Floquet pe-
riod considered here), 100 H2I pulses correspond to a
pulse spacing of 10 ns, which while experimentally fea-
sible, likely approaches the limits of current arbitrary
waveform generators. Another important experimental
consideration is the role of errors in the H2I pulses. This
is investigated in Fig. 7(c,d), which shows the central-
and satellite spin magnetizations for errors ranging from
ez = 0 up to 0.05. We see that while errors at the level
of 1% or less (ez ≤ 0.01) do not have a significant effect,
larger errors quickly destroy the temporal order. Thus,
the H2I pulses must be accurate to within 1% to be ef-
fective at inducing time crystalline behavior.

Next, we turn to constructing a phase diagram for
the H2I-driven central-spin system. As in the Zeeman-
mismatched case above, we define the phase diagram by
counting the number of Floquet cycles over which the re-
turn probability P exhibits 2T periodicity to within 5%
accuracy (P ≥ 0.95 after every second period). Due to
computational costs, here we restrict attention to N = 4
spins. We initialize the system in a z-basis pure state
|Ψ(0)⟩ = |↑↑↓↑⟩ and apply Floquet pulses to all spins
with period T = 1 µs, interspersed with 80 H2I pulses
applied to only the central spin. Figure 8(a) shows the
resulting phase diagram in the case of isotropic interac-
tions, where it is evident that a phase region centered
around J/2π = 1 MHz emerges, in which the time crys-
talline behavior is preserved out to 104 Floquet periods or
more. As in the case of the Zeeman-mismatched system
(c.f., Fig. 4), this temporal order persists up to Floquet
pulse errors of order ec,sat ∼ 0.06. On the other hand,
the second phase region near J/2π = 3 MHz is no longer
evident in the H2I case. In Fig. 8(b), we present a dif-
ferent phase diagram that shows how the robustness of
the temporal order depends on the coupling anisotropy.
The results are similar to what we found for the Zeeman-

(a)

(b)

J/2π

Jz /2π

FIG. 8. Phase diagrams for H2I-induced time crystals with
N = 4 spins. The number of Floquet cycles (color bar) over
which the return probability of the full central-spin system
evolves stroboscopically (see main text for precise definition)
as a function of the pulse error ec,sat and (a) the interaction
strength J = Jxy = Jz of the isotropic system or (b) the
longitudinal interaction strength Jz of the anisotropic system
with J/2π = 2Jxy/2π + Jz/2π = 3 MHz held fixed. In both
panels, the central spin is subject to 80 H2I pulses per Floquet
period, the Zeeman energies are Bc = Bsat = 0, the disorder
strength is δJ/2π = 0.2 MHz, and the driving period is T =
1 µs.

mismatched case above in Fig. 4, namely the temporal
order is most robust near Jz/2π = 1 MHz and 3 MHz,
corresponding to purely Heisenberg or Ising interactions,
while it quickly dissipates away from these values when
the Floquet pulse errors exceed 0.5% (ec,sat ≥ 0.005).

IV. CONCLUSIONS

In conclusion, we showed that time-crystalline behav-
ior can arise in periodically driven central-spin models
with any type of XXZ interactions. We found that, un-
like in the case of Ising interactions, simple periodic driv-
ing and many-body interactions alone are insufficient to
realize his behavior. For general XXZ interactions, we
showed two ways to induce a stable subharmonic re-
sponse in spin magnetizations: (i) creating a large Zee-
man energy mismatch between central and satellite spins,
or (ii) applying additional π pulses every period to only
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the central spin. We found that both approaches lead
to stable period doubling that survives for thousands of
Floquet periods, provided the interaction strength (or
equivalently the pulse period) and disorder are tuned ap-
propriately. We found that the greatest stability arises
when the pulse period is given by the inverse of the in-
teraction strength. Our results are of direct relevance
to systems in which a central electronic spin couples to
surrounding nuclear spins via hyperfine interactions, as
occurs in color centers or semiconductor quantum dots.
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Appendix A: Effect of satellite-spin Zeeman
splittings

In this appendix, we examine the role of satellite-spin
Zeeman splittings in the stability of the emergent time-
crystalline order. To do this, we bring the system into
a parameter regime in which time-crystalline behavior is
evident by setting Bc/2π = 300 MHz and then study how
this behavior changes as we increase the satellite-spin
Zeeman splitting. The results are shown in Fig. 9, where
it is evident that the robustness of the time-crystalline
behavior is non-monotonic as a function of Bsat. In the
case of isotropic interactions, we observe time-crystal-like
behavior for specific values of Bsat. For example, in the
case where Bsat/2π is an integer (0,1,2,3 MHz), a strong
subharmonic response is evident. We also observe simi-
lar behavior in the case of anisotropic Heisenberg inter-
actions with Jz/2π = 3 MHz, Jxy/2π = 1 MHz. How-
ever, for other values of Bsat, the stroboscopic dynamics
decays much more quickly. This can be understood as
follows. Due to the high on-site magnetic field, we can
neglect electron-nuclear flip-flop terms and approximate
our Hamiltonian as

H ≈ Jz,i Sz,0

N−1∑
i=1

Sz,i +BcSz,0 +Bsat

N−1∑
i=1

Sz,i. (A1)

We observe from this approximate Hamiltonian that the
inclusion of satellite-spin Zeeman splittings can effec-
tively enhance or diminish the longitudinal coupling de-
pending on the state of the central spin. Specifically, the
effective longitudinal coupling is

Jeff
z,i = Jz,i + 2Bsat if central spin is in |↑⟩ state

Jeff
z,i = Jz,i − 2Bsat if central spin is in |↓⟩ state

(A2)
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FIG. 9. Effect of satellite-spin Zeeman energy on time-
crystalline order in a periodically driven central-spin system
with isotropic interactions. Central-spin and satellite-spin
magnetizations are shown as a function of the number n of
Floquet periods for several different values of the satellite-spin
Zeeman energy Bsat/2π ranging from 0 to 3 MHz. Here, the
interaction strength is Jxy/2π = Jz/2π = 1 MHz, the Floquet
driving error is ec,sat=0.05, the central-spin Zeeeman energy
is Bc/2π = 300 MHz, the disorder strength is δJ/2π = 0.2
MHz, satellite magnetic Zeeman splitting disorder strength
δBsat/2π = 0.05 MHz, and the driving period is T = 1 µs.

Thus, for initial states in which the central spin is |↑⟩,
as Bsat increases, the effective coupling increases, bring-
ing the system into and out of time crystal-like phase
regions. This is why we see a subharmonic response in
the presence of specific values of Bsat in Fig. 9.

Appendix B: Effect of differing pulse errors on
central and satellite spins

In experimental realizations, the π pulse errors may
differ between the central and satellite spins. To investi-
gate the impact of such differences, we consider a phase
diagram for isotropic Heisenberg interactions in which
only esat is allowed to vary, while ec remains fixed. The
result is shown in Fig. 10(a), where the pulse error on
the central spin is held constant at ec = 0.01. This
value is consistent with recent demonstrations of single-
qubit gates in central spin qubits [51, 89, 90] and satellite
spin qubits [91, 92]. As in the case of equal pulse er-
rors, we see a subharmonic response persist over a large
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FIG. 10. Phase diagrams for Zeeman-mismatched time crys-
tals with fixed central spin pulse error. The number of Floquet
cycles (color bar) over which the return probability of the full
central-spin system evolves stroboscopically (see main text for
precise definition) as a function of the pulse error esat with a
fixed central spin pulse error ec = 0.01 and (a) the interac-
tion strength J = Jxy = Jz of the isotropic system or (b) the
longitudinal interaction strength Jz of the anisotropic system
with J/2π = 2Jxy/2π + Jz/2π = 3 MHz held fixed. The
Zeeman energies are Bc/2π = 300 MHz and Bsat = 0, the
disorder strength is δJ/2π = 0.2 MHz, and the driving period
is T = 1 µs.

number of Floquet periods for interaction strengths near
J/2π = 1, 3 MHz. However, in this case, due to the rela-
tively small central spin error ec = 0.01, the subharmonic
response lasts for 104 Floquet periods up to satellite pulse
errors of up to esat = 0.08. We further notice again that
for J = 0, J/2π = 2 MHz, or J/2π ≥ 4 MHz, there is
no preservation of the initial state, and so we have the
same dependence on the interaction strength as we found
for equal pulse errors. In the case of anisotropic Heisen-
berg interactions, we again find that the phase diagram
bears a qualitative resemblance to the equal-error case,
as shown in Fig. 10(b).

We can also consider the impact of unequal pulse errors
on time crystals induced by H2I driving. Specifically,
we map out the phase diagram for isotropic Heisenberg
interactions in Fig. 11(a), finding similar behavior as in
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FIG. 11. Phase diagrams for H2I-induced time crystals with
fixed central spin pulse error for N = 4 spins. The number of
Floquet cycles (color bar) over which the return probability of
the full central-spin system evolves stroboscopically (see main
text for precise definition) as a function of the pulse error esat
with a fixed central spin pulse error ec = ez = 0.01 and (a) the
interaction strength J = Jxy = Jz of the isotropic system or
(b) the longitudinal interaction strength Jz of the anisotropic
system with J/2π = 2Jxy/2π+Jz/2π = 3 MHz held fixed. In
both panels, the central spin is subject to 60 H2I pulses per
Floquet period, the Zeeman energies are Bc = Bsat = 0, the
disorder strength is δJ/2π = 0.2 MHz, and the driving period
is T = 1 µs.

the previous Fig. 10(a), even with errors on both the
Floquet and H2I pulses. The subharmonic response is
preserved for more than 104 Floquet periods, especially
in the vicinity of J/2π = 1, 3 MHz.

In the case of anisotropic Heisenberg interactions, we
sweep the Jz interaction strength with the total inter-
action strength fixed to J/2π = 2Jxy/2π + Jz/2π = 3
MHz, mapping out a phase diagram for a fixed central
spin error ec = ez = 0.01. In Fig. 11(b) we observe simi-
lar results as in the case of the large Zeeman-mismatched
time crystal, with the most robust region in the case of
pure Heisenberg or pure Ising interactions up to 8% π
pulse driving error on the satellite spins.
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Appendix C: π pulses with finite duration and
amplitude
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FIG. 12. Effect of using finite-amplitude pulses as in Eq. (C1).
(a) Central-spin and (b) satellite-spin magnetizations for a
time-dependent periodically driven central-spin model with
isotropic interactions. We consider isotropic Heisenberg inter-
actions Jx,y/2π = Jz/2π = J/2π = 1 MHz, the Floquet driv-
ing error is ec,sat = 0.05, and the driving period is T = 1 µs.
The pulse time is ηT= 0.1 ns.

In this section, we investigate the robustness of time-
crystalline behavior when we replace the idealized, in-
stantaneous pulses with pulses of finite amplitude and
duration. Here, we focus on time-crystalline order that
is induced by a large central-spin Zeeman energy with
time-dependent driving. A high magnetic field affects
the application of single-qubit gates in terms of time and
fidelity.

We consider the case in which finite π-pulses are imple-
mented via separate AC drives on the central and satellite
spins. These drives are chosen to have frequency Bc for
the central spin and Bsat for the satellite spins in order
to be on resonance. The central-satellite spin interac-
tions, Eq. (1), are present during the application of these
pulses, as is of course consistent with experimental imple-
mentations. We incorporate this finite driving by adding
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FIG. 13. Effect of finite pulse durations on the time-
crystalline bahvior. The satellite spin magnetization is shown
for a periodically driven central-spin model with isotropic
Heisenberg interactions with Jx,y/2π = Jz/2π = J/2π = 1
MHz. We set Bc/2π=300 MHz, Bsat/2π=3 MHz with uni-
form disorder δBsat/2π=0.05 MHz. The Floquet driving er-
ror is ec,sat = 0.05, and the driving period is T = 1 µs.

the following terms to the Hamiltonian:

V0(t) =
π(1− ec)

ηT
cos(Bct)Sx,0,

Vi(t) =
π(1− esat)

ηT
cos(Bsatt)

N−1∑
i=1

Sx,i,

for sT − ηT < t < sT, s ∈ Z+.

(C1)

With these driving terms included, we study how the
subharmonic response is affected by the finite pulse time.
The results are shown in Fig. 12. In this figure, we sweep
the central-spin Zeeman energy Bc/2π with the satel-
lite Zeeman energy set to Bsat = 0.01Bc, starting from
50 MHz until 300 MHz. Interestingly, we see that the
subharmonic response is strongest for different values of
Bc betweeen the central and satellite spins. While the
satellite spins are most stable for Bc/2π = 300 MHz, the
central spin exhibits the strongest harmonic response at
Bsat/2π = 100 MHz among the values considered. This
is due to the non-monotonic behavior as a function of
Bsat observed in Fig. 9.
We also examine the effect of different pulse durations

starting from 0.1 ns up to 2 ns, as shown in Fig. 13.
We fix the Zeeman energies at Bc/2π = 300 MHz and
Bsat/2π = 0.01Bc/2π = 3 MHz in the presence of ro-
tation error ec,sat = 0.05. Due to the high central spin
magnetic field, the dynamics of the central spin are com-
plicated. That is why we keep our analysis focused on the
satellite spins. The figure shows that if the pulses are fast
enough, the subharmonic response is achieved even with
imperfect time-dependent driving, as in the case of delta-
function driving. However, the response quickly decays
as the pulse time is increased. It is important to note,
though, that the nanosecond timescales considered here
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FIG. 14. (a) Central-spin and (b) satellite-spin magne-
tizations for a periodically driven central-spin model with
isotropic interactions. Results are shown for a varying num-
ber N of spins. In each case, the number of satellite spins is
N − 1. The interaction strength is Jz/2π = Jxy/2π =1 MHz,
the disorder strength is δJ/2π = 0.2 MHz, the Zeeman ener-
gies are Bc/2π = 300 MHz and Bsat = 0, the Floquet driving
error is ec,sat = 0.05, and the driving period is T = 1 µs.

are specific to the arbitrary choice of T = 1 µs as the pe-
riod. The pulse times for which a subharmonic response
is visible can be increased by increasing T .

Appendix D: Dependence on number of spins

In the main text, we report results for the dynamics
of spin expectation values focusing mostly on the case
of N = 6 spins (where there are N − 1 satellite spins).
In this appendix, we study how the time-crystalline be-
havior depends on the number of spins. We focus on
isotropic Heisenberg interactions; we observe similar re-
sults when we have anisotropic interactions. In the pres-
ence of strong enough disorder, we can see that the mean
magnetization of satellite spins stays close to 0.5 for
longer times as we increase the number of satellite spins
(Fig. 14).
It is also evident from the figure that the central-spin

magnetization exhibits different behavior depending on
whether the total number of spins N is even or odd. We
can shed light on this using an effective Hamiltonian that

is valid in the limit of large central-spin Zeeman energy,
as we now explain.

In the limit where Bc is very large, we can neglect
the flip-flop terms in the Hamiltonian so that it becomes
effectively Ising-like:

Heff = Jz,i Sz,0

N−1∑
i=1

Sz,i +BcSz,0. (D1)

In what follows, we use this effective Hamiltonian to sim-
ulate the dynamics after two periods to see why there is
a decrease in the central-spin magnetization for an odd
number of spins compared to an even number. First,
we focus on the presence of central-spin π pulse driv-
ing error ec, and we set esat = 0. The system evolves

under the Floquet operator U =
∏N

n=1(UπUHeff
) where

Uπ =
∏

i e
−iπ(1−0)Sx,ie−iπ(1−ec)Sx,0 . We simulate our

system for an even number of periods ( N=2,4,6....). We
calculate the time-evolved state after N number of peri-
ods for N =3 and 4 spins:

|Ψ(t)N=3⟩ ∝



α1 cos
(N

2 ec
)
+ iα5 sin

(N
2 ec
)

α2 cos
(N

2 ec
)
+ iα6 sin

(N
2 ec
)

α3 cos
(N

2 ec
)
+ iα7 sin

(N
2 ec
)

α4 cos
(N

2 ec
)
+ iα8 sin

(N
2 ec
)

α5 cos
(N

2 ec
)
+ iα1 sin

(N
2 ec
)

α6 cos
(N

2 ec
)
+ iα2 sin

(N
2 ec
)

α7 cos
(N

2 ec
)
+ iα3 sin

(N
2 ec
)

α8 cos
(N

2 ec
)
+ iα4 sin

(N
2 ec
)


(D2)

starting from an initial state |Ψ(0)N=3⟩ =
(α1, α2, α3, α4, α5, α6, α7, α8). On the other hand,
in the case of an even number of spins (N = 4),
we can see the period doubling effect in the pres-
ence of a π pulse driving error on the central
spin. If we start with an initial state |Ψ(0)N=4⟩ =
(β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β11, β12, β13, β14, β15,
β16), we perfectly recover the initial state after an even
number N of periods: |Ψ(t)N=4⟩ ∝ |Ψ(0)N=4⟩. The
emergence of perfect period doubling is due to a specific
many-body interaction strength (Jz,i/2π = J/2π=1
MHz) and a specific value of the on-site central-spin
Zeeman splitting (Bc/2π=300 MHz).

If we vary the Zeeman energy while keeping constant
the many-body interaction strength (J/2π = 1 MHz)
and the interaction time (T = 1 µs), we will observe the
following state after N = 2 periods. (We focus on the
first period doubling period (N=2) because it is easier
to identify why we have a perfect period doubling ef-
fect in the presence of central-spin π pulse driving error.)
Starting with the same initial states for N = 3, 4 spins,
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respectively, the resulting states are

∣∣Ψ(t)N=3,N=2,J/2π=1 MHz

〉
=

α1

2 ((−1 + e−iBc)− (1 + e−iBc) cos(ec))− iα5

2 (1 + eiBc) sin(ec))
α2

2 ((−1 + e−iBc)− (1 + e−iBc) cos(ec))− iα6

2 (1 + eiBc) sin(ec))
α3

2 ((−1 + e−iBc)− (1 + e−iBc) cos(ec))− iα7

2 (1 + eiBc) sin(ec))
α4

2 ((−1 + e−iBc)− (1 + e−iBc) cos(ec))− iα8

2 (1 + eiBc) sin(ec))
α5

2 ((−1 + eiBc)− (1 + eiBc) cos(ec))− iα1

2 (1 + e−iBc) sin(ec))
α6

2 ((−1 + eiBc)− (1 + eiBc) cos(ec))− iα2

2 (1 + e−iBc) sin(ec))
α7

2 ((−1 + eiBc)− (1 + eiBc) cos(ec))− iα3

2 (1 + e−iBc) sin(ec))
α8

2 ((−1 + eiBc)− (1 + eiBc) cos(ec))− iα4

2 (1 + e−iBc) sin(ec))


,

(D3)

and

∣∣Ψ(t)N=4,N=2,J/2π=1 MHz

〉
=

β1

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ9

2 (−1 + eiBc) sin ec)
β2

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ10

2 (−1 + eiBc) sin ec)
β3

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ11

2 (−1 + eiBc) sin ec)
β4

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ12

2 (−1 + eiBc) sin ec)
β5

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ13

2 (−1 + eiBc) sin ec)
β6

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ14

2 (−1 + eiBc) sin ec)
β7

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ15

2 (−1 + eiBc) sin ec)
β8

2 ((1 + e−iBc)− (−1 + e−iBc) cos ec)− iβ16

2 (−1 + eiBc) sin ec)
β9

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ1

2 (−1 + e−iBc) sin ec)
β10

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ2

2 (−1 + e−iBc) sin ec)
β11

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ3

2 (−1 + e−iBc) sin ec)
β12

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ4

2 (−1 + e−iBc) sin ec)
β13

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ5

2 (−1 + e−iBc) sin ec)
β14

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ6

2 (−1 + e−iBc) sin ec)
β15

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ7

2 (−1 + e−iBc) sin ec)
β16

2 ((1 + eiBc)− (−1 + eiBc) cos ec)− iβ8

2 (−1 + e−iBc) sin ec)



.

(D4)

If we instead vary the interaction strength J and
while keeping constant the central-spin Zeeman energy
(Bc/2π = 300 MHz), we obtain the following results:

∣∣Ψ(t)N=3,N=2,Bc/2π=300 MHz

〉
=

α1

2 (1− e−iJ − cos(ec)− e−iJ cos(ec))− iα5

2 (1 + eiJ) sin(ec))
−α2 cos(ec)− iα6 sin(ec)
−α3 cos(ec)− iα7 sin(ec)

α4

2 (1− eiJ − cos(ec)− eiJ cos(ec))− iα8

2 (1 + e−iJ ) sin(ec))
α5

2 (1− eiJ − cos(ec)− eiJ cos(ec))− iα1

2 (1 + e−iJ ) sin(ec))
−α6 cos(ec)− iα2 sin(ec)
−α7 cos(ec)− iα3 sin(ec)

α8

2 (1− e−iJ − cos(ec)− e−iJ cos(ec))− iα4

2 (1 + eiJ) sin(ec))


,

(D5)

and

∣∣Ψ(t)N=4,N=2,Bc/2π=300 MHz

〉
=

β1

2 (−1 + e−
3iJ
2 + cos ec + e−

3iJ
2 cos ec) + iβ9

2 (1 + e
3iJ
2 ) sin ec)

β2

2 (−1 + e−
iJ
2 + cos ec + e−

iJ
2 cos ec) + iβ10

2 (1 + e
iJ
2 ) sin ec)

β3

2 (−1 + e−
iJ
2 + cos ec + e−

iJ
2 cos ec) + iβ11

2 (1 + e
iJ
2 ) sin ec)

β4

2 (−1 + e+
iJ
2 + cos ec + e+

iJ
2 cos ec) + iβ12

2 (1 + e−
iJ
2 ) sin ec)

β5

2 (−1 + e−
iJ
2 + cos ec + e−

iJ
2 cos ec) + iβ13

2 (1 + e
iJ
2 ) sin ec)

β6

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + iβ14

2 (1 + e−
iJ
2 ) sin ec)

β7

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + iβ15

2 (1 + e−
iJ
2 ) sin ec)

β8

2 (−1 + e
3iJ
2 + cos ec + e

3iJ
2 cos ec) + iβ16

2 (1 + e−
3iJ
2 ) sin ec)

β9

2 (−1 + e
3iJ
2 + cos ec + e

3iJ
2 cos ec) + iβ1

2 (1 + e−
3iJ
2 ) sin ec)

β10

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + iβ2

2 (1 + e−
iJ
2 ) sin ec)

β11

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + iβ3

2 (1 + e−
iJ
2 ) sin ec)

β12

2 (−1 + e−
iJ
2 + cos ec + e−

iJ
2 cos ec) + iβ4

2 (1 + e
iJ
2 ) sin ec)

β13

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + iβ5

2 (1 + e−
iJ
2 ) sin ec)

β14

2 (−1 + e−
iJ
2 + cos ec + e−

iJ
2 cos ec) + iβ6

2 (1 + e
iJ
2 ) sin ec)

β15

2 (−1 + e−
iJ
2 + cos ec + e−

iJ
2 cos ec) + iβ7

2 (1 + e
iJ
2 ) sin ec)

β16

2 (−1 + e−
3iJ
2 + cos ec + e−

3iJ
2 cos ec) + iβ8

2 (1 + e
3iJ
2 ) sin ec)



.

(D6)

What is needed to make the return probability equal
to one after an even number of periods is different in each
case. As we can see from the coefficients of the N = 3
case, if we assume that (1+ e±iBc) = 0, we can observe a
perfect period doubling effect. On the other hand, in the
case of an even number of spins (N = 4), if we eliminate
the term (1 − e±iBc), we achieve unit probability every
two periods:

N = 3 : (1 + e±iBc) = 0 −→ e±iBc = ei(2xπ+π) −→
|Bc/2π| = (x+ 1/2) MHz

N = 4 : (1− e±iBc) = 0 −→ e±iBc = ei2xπ −→
|Bc/2π| = x MHz

(D7)

where x ∈ Z. This is why we observe a stronger sub-
harmonic response for an even number of spins. In our
simulations, we assumed a central-spin Zeeman energy
of Bc/2π = 300 MHz. However, if we change this to
Bc/2π = 300.5 MHz, we effectively swap the even-odd
behavior. In this case, an odd number of spins will ex-
hibit a stronger subharmonic response compared to an
even number of spins.

In addition to the central-spin Zeeman energy, the in-
teraction strength J also plays an important role. In
this case, we fix the central-spin Zeeman energy to
Bc/2π = 300 MHz. To eliminate unwanted coefficients
in the final state, we have to choose specific values of
J to perfectly retrieve the state after every two periods.
In particular, we have to eliminate the factors involving
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FIG. 15. The number of Floquet cycles (color bar) over which
the return probability of the full central-spin system evolves
stroboscopically (see main text for precise definition) as a
function of the pulse error ec,sat and for 64 different initial
states, corresponding to the 26 distinct basis states. We as-
sume isotropic interactions of strength Jz/2π = Jxy/2π = 1
MHz. Here, Bc/2π = 300 MHz, Bsat = 0, δJ/2π = 0.2 MHz,
ec,sat = 0.05, T = 1 µs.

cos ec and sin ec in the many-body time-evolved state:

N = 3 : (1 + e±iJ ) = 0 −→ ei±J = ei(2xπ+π) −→
|J |/2π = (x+ 1/2) MHz

N = 4 : (1 + ei±
J
2 ) = 0 −→ ei±

J
2 = ei(2xπ+π)

−→ |J/2π| = (2x+ 1) MHz

And

N = 4 : (1 + ei±
3J
2 ) = 0 −→ ei±

3J
2 = ei(2xπ+π)

−→ |J/2π| = 2x+ 1

3
MHz

(D8)

Appendix E: Insensitivity to the initial state

Here, we examine how the decay of the return prob-
ability depends on the initial state. Fixing the number
of spins to N = 6, we compute the number of Floquet
cycles over which the return probability remains above
0.95 when each of the 26 basis states is taken as the
initial state. The results for isotropic interactions are
shown in Fig. 15 as a function of the π pulse error. We
calculate the final Floquet cycle in the presence of in-
teraction disorder δJ/2π = 0.2 MHz and with central-
and satellite-spin Zeeman splittings of Bc/2π = 300 MHz
and Bsat = 0, respectively. We see that the time crystal
phase region exhibits a weak dependence on the initial
state. The behavior is not significantly different for the
case of anisotropic interactions where Jz ≫ Jxy.

Appendix F: Mixed states in satellite spins

Here, we consider the impact on the subharmonic re-
sponse when the initial state is not pure. Specifically, we
will assume that the satellite spins undergo a depolariza-
tion channel.

E(ρ) = (1− p)ρ+
p

2
I , (F1)

Even in the case of a mixed state, our initial state is
stabilized. As we show in the following figures, even in
the presence of a high depolarization rate, the state is
stabilized in presence of imperfect π-pulse driving. We
give a simple example assuming that the initial state is
prepared by applying the above depolarization channel
on each satellite spin of the state |Ψ(0)⟩ = |↑↑↓↑↓↑⟩. Due
to the presence of the depolarization error in the satellite
spins, the updated initial state becomes:

ρinitial =

|↑⟩ ⟨↑| E(|↑⟩ ⟨↑|)E(|↓⟩ ⟨↓|)E(|↑⟩ ⟨↑|)E(|↓⟩ ⟨↓|)E(|↑⟩ ⟨↑|),
(F2)

where the same depolarization rate p is used for all satel-
lite spins. In the following figures, we examine how the
stabilization of the mixed state is preserved. We inves-
tigate both methods for inducing time-crystalline behav-
ior: using a large Zeeman splitting mismatch, and using
30 H2I pulses. We show that the satellite’s average mag-
netization is stabilized. However, in the case of the cen-
tral spin, even if it starts in a pure state, its interaction
with satellitespins prepared in a mixed state leads to a
destabilization of the subharmonic response.
Figure 16 shows that a clear submharmonic response

remains evident in the satellite spins even when they are
initialized in a mixed state. As the depolarization rate
increases, the satellite spin magnetization has a dimin-
ished amplitude, but it continues to exhibit period dou-
bling. In Fig. 16(b), we also see that the subharmonic
response becomes unstable on long timescales due to the
relatively small number of H2I pulses used in this case
(m=30). Here, we do not include the central-spin mag-
netization, because it does not exhibit any subharmonic
response in the presence of a nonzero depolarization of
the nuclear spins.

Appendix G: Resonances of central-spin model

As we saw from the phase diagrams, when we swept the
interaction strength, we observed regions with no sub-
harmonic response. For example, whereas J/2π = 1
MHz produces the strongest subharmonic response in
our system, in the case of J/2π = 2 MHz, the time
crystal-like phase is destroyed. We know from theo-
retical investigations [6] that to achieve a subharmonic
response, the many-body Floquet spectrum must ex-
hibit particular properties. Specifically, for period dou-
bling it has been shown that the eigenvalues of the
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FIG. 16. Effect of starting from a mixed satellite spin state
obtained by subjecting each satellite spin to a depolarizing
channel characterized by rate p. The satellite spin magnetiza-
tion in a periodically driven central-spin model with isotropic
Heisenberg interactions with Jx,y/2π = Jz/2π = J/2π = 1
MHz is shown. The time-crystalline behavior is induced with
(a) a large Zeeman splitting mismatch with Bc/2π=300 MHz
and Bsat=0 MHz, and (b) 30 additional perfect H2I pulses ap-
plied to the central spin every Floquet period. In both panels,
the π-pulse driving error is ec,sat = 0.05.

Floquet operator come in antipodal pairs. Here, the
Floquet operator is UF (T ) = Uπe

−iHT , where Uπ =∏
i e

−iπ(1−esat)Sx,ie−iπ(1−ec)Sx,0 . Using the Hamiltonian
in Eq. (1) with Bc/2π=300 MHz, Bsat=0, we compute
the eigenvalues of UF (T ) for several values of Jz = Jxy =
J . The results are shown in Fig. 17, where it is evident
that the eigenvalues for J/2π = 1, 3 MHz (black and
green circles in the figure) come in antipodal pairs, while
those for J/2π = 2, 4 MHz (red and blue circles) do not.

In the figure, we show results for N = 6 spins. The
behavior for an odd number of spins is similar to the even
number case provided we take Bodd

c /2π = Beven
c /2π+0.5

MHz. We again have antipodal pairs of eigenvalues in the
case of J/2π = 1, 3 MHz and no antipodal pairs in the
case of J/2π = 2, 4 MHz. To keep the perfect initial
state after an even number of periods, we have to apply
a specific type of condition to the many-body interaction
strength J . In the case of even many-body interaction
J/2π (2, 4 MHz), this means that:

(−1 + e−
iJ
2 ) = 0 −→ ei±

J
2 = ei(2xπ+2π) −→

|J/2π| = 2(x+ 1) MHz
(G1)

As we can see from Eq. (D6), in the case J/2π = 2, 4

MHz where there is no factor (−1 + e−
iJ
2 ), there is no
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315°
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J = 4

FIG. 17. Eigenvalues of the Floquet operator UF (T ) for four
different values of the total interaction strength Jz = Jxy = J
in the case of isotropic interactions in a central-spin sys-
tem with N = 6 spins. Here, Bc/2π=300 MHz, Bsat=0,
ec,sat=0.05, and T = 1 µs.

absorption of the imperfect driving due to the presence
of the factors with cos ec and sin ec. However, in the

case of J/2π = 1, 3 MHz, the factors of (1 + e−
iJ
2 ) are

eliminated, absorbing the π pulse driving with the many-
body interaction.

Appendix H: H2I pulse analysis

In this appendix, we provide further analysis of the
effect of H2I pulses, and we calculate the dependence
of the central spin magnetization on the number of H2I
pulses. In the H2I approach, the evolution operator after
m H2I pulses can be written as follows:

UH2I(T ) = [eiπSz,0(1−ez)UH(T/m)]m. (H1)

Using the Baker–Campbell–Hausdorff formula we can ap-
proximate the application of the two operators by merg-
ing them with their commutator. We just keep the first
three terms of the series, so we have:

eAeB ≈ eA+B+ 1
2 [A,B], (H2)

where

A = iπSz,0(1− ez),

B = −iJ
t

m

(
N−1∑
i=1

Sx,0Sx,i + Sy,0Sy,i + Sz,0Sz,i

)
.

(H3)
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The commutator [A,B] is readily computed:

[A,B] =

[
αSz,0, β

(
N−1∑
i=1

Sx,0Sx,i + Sy,0Sy,i + Sz,0Sz,i

)]

=

[
αSz,0, βSx,0

N−1∑
i=1

Sx,i

]
+

[
αSz,0, βSy,0

N−1∑
i=1

Sy,i

]

= αβ[Sz,0, Sx,0]
N−1∑
i=1

Sx,i + αβ[Sz,0, Sy,0]
N−1∑
i=1

Sy,i

= αβiSy,0

N−1∑
i=1

Sx,i + αβ(−i)Sx,0

N−1∑
i=1

Sy,i

= αβ

(
S+,0 − S−,0

2

N−1∑
i=1

Sx,i − i
S+,0 + S−,0

2

N−1∑
i=1

Sy,i

)

= αβ

(
S+,0

2

N−1∑
i=1

(Sx,i − iSy,i)−
S−,0

2

N−1∑
i=1

(Sx,i + iSy,i)

)

= αβ

(
S+,0

2

N−1∑
i=1

S−,i −
S−,0

2

N−1∑
i=1

S+,i

)
,

(H4)
where α = iπ(1− ez), β = −iJ t

m , S±,i = Sx,i ± iSy,i

So the exponent of the evolution operator after the
application of m H2I pulses can be written as

− iH̃t = iπmSz,0(1− ez)

− iJt

(
N−1∑
i=1

Sx,0Sx,i + Sy,0Sy,i + Sz,0Sz,i

)

+ π(1− ez)J
t

2

(
S+,0

2

N−1∑
i=1

S−,i −
S−,0

2

N−1∑
i=1

S+,i

)

= iπmSz,0(1− ez)− iJt
N−1∑
i=1

Sz,0Sz,i

+

(
π(1− ez)J

t

2
− iJt

)
S+,0

2

N−1∑
i=1

S−,i

−
(
π(1− ez)J

t

2
+ iJt

)
S−,0

2

N−1∑
i=1

S+,i

(H5)

We see that the application of m H2I pulses is roughly
equivalent to an effective magnetic field on the central
spin that is proportional to m. The remaining terms in
the effective Hamiltonian H̃ include a longitudinal cou-
pling J and transverse couplings that depend on the error
of the H2I pulse. Similarly to having a large Zeeman en-
ergy Bc on the central spin, the application of sufficiently
many H2I pulses stabilizes z-basis product states by sup-
pressing in-plane interactions.

Next, we investigate numerically how the time scale
on which the central spin magnetization remains sta-
ble depends on m. In Fig. 18, we show that the mag-
netization increases nonlinearly and polynomially as we
increase the number of H2I pulses per driving period.
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FIG. 18. The number of Floquet cycles (or driving periods)
where the stroboscopic central spin magnetization remains
≥0.46 versus the number of H2I pulses. We assume isotropic
interactions of strength Jz/2π = Jxy/2π = 1 MHz. Here,
δJ/2π = 0.2 MHz, ec,sat = 0.05, ez = 0.01, T = 1 µs.

Specifically, the figure shows the number of Floquet cy-
cles over which the stroboscopic central spin magnetiza-
tion remains ≥ 0.46. We fit the data to the function ( xα )

β

and find that β = 1.41761895.
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G. Schütz, M. Krawczyk, and J. Gräfe, Real-space ob-
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and M. Atatüre, Optical spin locking of a solid-state
qubit, npj Quantum Information 5, 1 (2019).

[60] D. Gangloff, G. Ethier-Majcher, C. Lang, E. Denning,
J. Bodey, D. Jackson, E. Clarke, M. Hugues, C. Le Gall,
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