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Acoustic traps use forces exerted by sound waves to confine and transport small objects. The dynamics of

an object moving in the force landscape of an acoustic trap can be significantly influenced by the inertia of the

surrounding fluid medium. These inertial effects can be observed by setting a trapped object in oscillation and

tracking it as it relaxes back to mechanical equilibrium in its trap. Large deviations from Stokesian dynamics

during this process can be explained quantitatively by accounting for boundary-layer effects in the fluid. The

measured oscillations of a perturbed particle then can be used not only to calibrate the trap but also to characterize

the particle.
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I. INTRODUCTION

Acoustic manipulation of granular media was first demon-

strated by Kundt in 1866 as a means to visualize the nodes

and antinodes of sound waves [1]. After a century and a half

of gestation, acoustic trapping is emerging as a focal area for

soft-matter physics [2–5] and a practical platform for noncon-

tact materials processing [6,7] thanks to recent advances in the

theory of wave-matter interactions [8,9] and to innovations in

techniques for projecting acoustic force landscapes [10,11].

An object’s trajectory through such a landscape encodes in-

formation about the wave-matter interaction and therefore

can be used to characterize the object as well as to calibrate

the trap. The present study demonstrates how to extract that

information through machine-vision measurements of trapped

objects’ oscillations under the combined influences of gravity,

the trap’s restoring force, and drag due to displacement of the

surrounding fluid medium.

Correctly interpreting the measured trajectory of an acous-

tically trapped particle can be challenging because the drag

force deviates substantially from the standard Stokes form,

as has been noted in previous studies [12–16]. We incorpo-

rate non-Stokesian drag into a self-consistent measurement

framework by invoking the Prandtl-Schlichting hydrodynamic

boundary-layer approximation [17–20] to account for the

fluid’s inertia. This approach appears not to have been demon-

strated previously and provides a fast and accurate way to

measure physical properties of the trapped object without

requiring separate calibration of the acoustic trap. The same

measurement also yields an absolute calibration of the trap’s

stiffness for that specific object.

II. DYNAMICS OF AN ACOUSTICALLY

TRAPPED PARTICLE

A. Imaging measurements of damped oscillations

Figure 1(a) schematically represents the acoustic trapping

system used for this study. Based on the standard TinyLev

design [10], this acoustic levitator consists of two banks of

piezoelectric ultrasonic transducers (MA40S4S, Murata, Inc.)

with a resonance frequency around 40 kHz. Each bank of

36 transducers is driven sinusoidally by a function generator

(DS345, Stanford Research Systems) and projects a traveling

wave into a spherical volume of air. Interference between the

two waves creates an array of acoustic traps along the instru-

ment’s vertical axis. Figure 1(b) presents a video image of a

millimeter-scale sphere of expanded polystyrene localized in

air within one of the acoustic traps. The camera (Blackfly S

USB3, FLIR) records the particle’s motions at 170 framess−1

with an exposure time of 2 ms and an effective magnification

of 61 µm/pixel. Under these imaging conditions, the height of

the particle in the trap, zp(t ), can be measured in the imaging

plane to within ǫz = 15 µm by fitting for the image’s least

bounding circle [21]. This method has the advantage over

light-scattering techniques [16] that it also yields an estimate

for the particle’s radius, ap. For the particle in Fig. 1(b),

ap = 1.346(7) mm.

The particle can be made to oscillate in its trap by rapidly

displacing it from its equilibrium position. This can be ac-

complished by abruptly changing the amplitude, frequency,

or relative phase [15] of the signals driving the two banks

of transducers. The discrete symbols in Fig. 1(c) show the

trapped particle’s displacement from its equilibrium position,

zp(t ) − z0, after an abrupt change of drive amplitude causes a

displacement of �z = −0.31(1) mm. The (red) curve is a fit

to the standard result for a damped harmonic oscillator,

zp(t ) = z0 + �z e− 1
2
γ t cos(�t ), (1)

for the oscillation frequency, � = 122.1(2) rads−1 =
19.43(3) Hz, and the damping rate γ = 6.3(3) s−1, in addition

to �z and the equilibrium position, z0. Although this fit

appears to be satisfactory, the estimated parameters must be

interpreted with care.

To illustrate the challenge, consider the standard Stokes

result,

γ0 =
6πηm ap

m0

, (2)

2470-0045/2023/108(6)/064903(6) 064903-1 ©2023 American Physical Society



MIA MORRELL AND DAVID G. GRIER PHYSICAL REVIEW E 108, 064903 (2023)

FIG. 1. (a) Schematic diagram of the reference acoustic trap.

(b) Typical video frame of a millimeter-scale styrofoam sphere lev-

itated in the acoustic trap together with a schematic diagram of the

forces acting on the particle. (c) Measured trajectory (black symbols)

of a styrofoam bead returning to mechanical equilibrium in an acous-

tic trap compared with predictions of the damped oscillator model

(red curve).

for the drag rate experienced by a sphere of radius ap and mass

m0 as it moves through a fluid with dynamic viscosity ηm. An

expanded polystyrene sphere has a density of roughly ρp =
30 kg m−3 [22], so that

m0 = 4
3
πa3

p ρp = 0.3 mg. (3)

The viscosity of air under standard conditions is ηm =
(1.825 ± 0.005) × 10−5 Pa s [23]. Equation (2) therefore pre-

dicts γ0 = 1.4 s−1, which is a factor of four smaller than the

measured value. Previous studies on similar systems have

reported comparably large discrepancies between predicted

and observed drag rates [16] and have addressed them phe-

nomenologically with nonlinear drag models [12,14,16], if at

all [13,15].

Here, we demonstrate that the linear drag model underlying

Eq. (1) indeed is appropriate for analyzing the oscillations

of acoustically trapped objects, provided that the parameters

are suitably modified to account for the inertia of the dis-

placed fluid [18,20]. The enhanced model provides a basis

for precisely measuring the density and mass of trapped ob-

jects without requiring the acoustic trap to be independently

calibrated. The same approach can be used to calibrate the

trap’s stiffness while accounting naturally for the influence of

external forces such as gravity.

B. Acoustic forces

The force landscape experienced by an acoustically

trapped object is dictated by the structure of the sound field.

The counterpropagating waves in our instrument interfere to

create a standing pressure wave along the central axis whose

spatial dependence is approximately sinusoidal,

p(z) = 2p0 sin(kz), (4)

near the midplane at z = 0. Here, p0 is the pressure amplitude

due to a single bank of transducers, and k = ω/cm is the wave

number of sound at frequency ω in a medium whose speed of

sound is cm. For acoustic levitation in air, cm = 343.5(5) ms−1

under standard conditions [23].

The time-averaged acoustic force experienced by an object

at height zp in the standing wave has the form [8,9]

Fa(zp) = −F0 sin(2kzp), (5)

with an overall scale,

F0 = χ kp2
0, (6)

that depends on the frequency and amplitude of the sound

wave, and on properties of the object and the medium through

χ . For a small spherical particle (kap < 1), the acoustic re-

sponse function is [8,9]

χ =
4

3
πa3

p κm

(

1 −
κp

κm

+ 3
ρp − ρm

2ρp + ρm

)

, (7)

where ρp and ρm are the densities of the particle and medium,

respectively, and κp and κm are their respective isentropic

compressibilities. Dense incompressible particles have χ > 0

and therefore tend to be trapped at nodes of the pressure field.

External forces can displace the particle from the center of

the acoustic trap, as depicted in Fig. 1(b). Gravity, in particu-

lar, acts on the particle’s buoyant mass,

�m = m0

(

1 −
ρm

ρp

)

, (8)

and displaces it from the pressure node at z = 0 into mechan-

ical equilibrium at

z0 = −
1

2k
sin−1

(

�mg

F0

)

, (9)

where g = 9.81 m s−2 is the acceleration due to gravity.

As long as the particle does not move too far from the nodal

plane, the acoustic trap exerts an approximately Hookean

restoring force on the particle,

Fa(zp) ≈ −κ (zp − z0), (10)

with a stiffness,

κ = 2kF0 cos(2kz0), (11)

that depends on properties of the sound wave, properties of the

particle, and the strength of the external force. Calibrating the

trap generally involves determining κ . Equation (11) clarifies

that the trap cannot be calibrated with a reference object,

as has been proposed [15], but instead requires a separate

calibration for every set of experimental conditions.

C. Inertial corrections

An object moving in the trap’s potential energy well

displaces the surrounding fluid medium and therefore experi-

ences viscous drag. The standard Stokes result from Eq. (2)

neglects the inertia of the fluid. For the special case of a
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FIG. 2. (a) Frequency dependence of the damping rate γ (�). Plot symbols present results from fits to measured trajectories, such as the

example in Fig. 1(c). The solid curve is a fit to the boundary-layer model in Eq. (14) that yields ρp = 28.9(3) kg m−3. The horizontal dashed

line reflects the standard Stokes result, γ0 = 1.50(3) s−1. (b) Correlation of the axial offset z0 with the observed oscillation frequency �. The

horizontal dashed line represents the nodal plane of the acoustic trap.

sphere undergoing harmonic oscillations, inertial effects can

be incorporated into a linear drag model,

Fd (żp) = −m(�) γ (�) żp, (12)

by defining a dynamical mass,

m(�) = m0

(

1 +
1

2

ρm

ρp

[

1 +
9

2

δ(�)

ap

])

, (13)

and a renormalized drag rate,

γ (�) =
6πηmap

m(�)

(

1 +
ap

δ(�)

)

, (14)

that both depend on the oscillation frequency, �, through the

thickness of the Prandtl-Schlichting boundary layer surround-

ing the sphere [17,18],

δ(�) =

√

2ηm

ρm

1

�
. (15)

This model is derived from the Basset-Boussinesq-Ossen ap-

proximation for drag by nonsteady flows in Appendix A.

The inertia-corrected equation of motion for an acous-

tically levitated sphere is then analogous to the standard

equation of motion for the damped harmonic oscillator,

z̈p + γ (�) żp + �2
0 (zp − z0) = 0, (16)

with a natural frequency,

�0(�) =
√

κ

m(�)
, (17)

that is related to the measured frequency by

�2
0(�) = �2 + 1

4
γ 2(�). (18)

Unlike the standard harmonic oscillator, whose drag and

restoring forces are independent of frequency, the natural fre-

quency of an acoustically trapped object must be found by

solving Eq. (18) self-consistently.

The derivation of Eq. (16) from boundary-layer theory

establishes that Eq. (1) suitably models the dynamics of an

object oscillating in an acoustic trap. Unlike dynamical mod-

els with nonlinear drag [12,16], the damping rate predicted

by Eq. (14) does not depend on the amplitude of the motion.

This is consistent with the observation in Fig. 1(c) that a

single constant value for γ successfully accounts for viscous

damping over the oscillating particle’s entire trajectory.

III. ACOUSTODYNAMIC MASS DETERMINATION

Measurements of γ (�) can be interpreted with Eq. (14) to

estimate the mass density of the particle. The discrete points

in Fig. 2(a) are measured by fitting recorded trajectories of

the expanded polystyrene bead in Fig. 1. Different oscillation

frequencies are obtained by adjusting the amplitude V0 of

the sinusoidal voltage powering the trap. It is not necessary

to know how the trap strength F0 depends on V0 to per-

form this measurement, because γ and � are both obtained

directly from each measured trajectory. Taking the density

of air to be ρm = 1.220(5) kg m−3 [23] leaves the particle’s

density ρp as the only undetermined parameter in the model.

The solid curve in Fig. 2(a) is a fit to Eq. (14) that yields

ρp = 28.9(3) kg m−3, which is consistent with expectations

for expanded polystyrene beads [22]. Inertial corrections quite

convincingly account for the previously unexplained enhance-

ment of the oscillating particle’s drag rate. In so doing, they

also provide the basis for a precise and robust way to measure

the mass density of millimeter-scale objects. Combining ρp

with the optically measured radius yields the levitated ob-

ject’s mass, m0 = 0.31(1) mg. Repeating this measurement

on ten different beads from the same batch yields an aver-

age density of ρp = 30.5(2) kg m−3 and an average mass of

m0 = 0.295(3) mg.

The precision of acoustodynamic mass determination is

limited by run-to-run variability in the measured values of

γ (�), which in turn can be ascribed to spurious transverse

motions of the particle in its trap and to environmental fac-

tors such as vibrations and drafts. Even with these practical

limitations, the 3 µg precision achieved in this representative

realization is comparable to the performance of a conventional

ultra-micro balance.
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Previous acoustic trapping studies have attempted to mea-

sure the masses of levitated objects by interpreting their static

displacements [24] with Eq. (9) or by interpreting their os-

cillation frequencies directly [15] without inertial corrections.

Like conventional scales and balances, these approaches rely

on independent calibration of the trap’s stiffness, κ . The

present acoustodynamic approach avoids the need for such

calibrations by comparing two independent timescales repre-

sented by � and γ , rather than two independent force scales.

Increasing the acoustic trap strength increases the oscilla-

tion frequency and lifts the particle toward the trap’s center.

This correlation is reflected in the dependence of z0 on � that

is plotted in Fig. 2(b). These measurements can be interpreted

within the boundary-layer model by combining Eq. (9) with

Eq. (11) to obtain

z0(�) = −
1

2k
tan−1

(

2kg

�2
0(�)

�m

m(�)

)

+ ztrap, (19)

where ztrap is the height of the trap’s nodal plane in the cam-

era’s field of view. The solid curve in Fig. 2(b) shows this

model’s prediction using the value of ρp obtained from γ (�).

The data in Fig. 2(b) have been offset so that ztrap = 0(5) µm.

The excellent agreement between measurement and theory

in this comparison serves to validate the acoustodynamically

determined values of ρp and ap. Accurately identifying ztrap

also is valuable for force-extension measurements once the

trap’s stiffness is calibrated.

IV. DYNAMIC TRAP CALIBRATION

The trap’s stiffness at each value of V0 can be inferred from

the particle’s damped oscillations through

κ (�) = m(�) �2
0(�). (20a)

Assuming that the pressure amplitude p0 is proportional to the

driving voltage V0, Eq. (6) and Eq. (11) lead to an independent

expression,

κ (V0) ≈ αV 2
0

[

1 −
1

2

(

k�mg

αV 2
0

)2
]

, (20b)

that can be compared with measurements based on

Eq. (20a) to obtain α, the required calibration constant for this

specific particle in the levitator. This result is valid when the

particle is stably trapped against gravity, F0 > �mg. Figure 3

shows the calibration obtained from the data set in Fig. 2 and

yields α = (6.02 ± 0.15) × 10−4 N m−1 V−2. Ignoring iner-

tial corrections by using m0 in Eq. (20a) would have yielded

a significant underestimate for the calibration constant, α0 =
(5.77 ± 0.14) × 10−4 N m−1 V−2. Adding to the challenge, an

accurate value for m0 generally would not be known a priori

for a millimeter-scale object. The analytical framework de-

scribed here solves this problem by providing self-consistent

measurements of ρp, m0, and m(�). The estimated calibration

constant α therefore should yield reliable predictions for the

trap stiffness κ .

V. DISCUSSION

Abruptly changing the trapping characteristics of an acous-

tic levitator sets a trapped object into a free oscillation

FIG. 3. Dependence of the measured trap stiffness κ on the

peak-to-peak voltage V0, used to power the acoustic trap’s trans-

ducer banks. The solid curve is a fit to Eq. (20b) for the calibration

constant α.

that is damped by viscous drag in the surrounding medium.

The resulting trajectory can be described with the standard

model for a damped harmonic oscillator, provided that in-

ertial effects in the displaced fluid are taken into account

self-consistently with hydrodynamic boundary-layer theory

[17,18,20,25]. These inertial corrections quantitatively re-

solve the large discrepancy between the measured drag rate

and the Stokes prediction that has been noted in previous

studies but previously has been unexplained. The boundary-

layer model is applicable for particle speeds substantially

smaller than the speed of sound and Reynolds numbers, Re =
ρpapvp/ηm, well below the threshold for turbulence. For the

present study, vp < 0.25 m s−1 and Re � 23, so that both

conditions are satisfied. The observation that Re > 1 explains

why the standard Stokes result substantially underestimates

the drag rate.

Fitting measured trajectories to predictions of the

boundary-layer model yields precise estimates for the trapped

particle’s mass density and mass. Dynamic acoustic trapping

therefore can be used to weigh millimeter-scale objects with-

out requiring direct contact, including submilligram objects

that can be challenging to weigh individually [26–28]. Gen-

eralizing this approach to accommodate aspherical objects,

powders, and fluids will be addressed in future studies.

Using the acoustic force field itself to set an object into

oscillation provides a simple and effective method to cali-

brate the stiffness of an acoustic trap. This approach does

not require the external intervention used in complementary

calibration techniques, such as mechanically moving the sam-

ple relative to the levitator [29,30]. The techniques discussed

in this work therefore should facilitate fundamental research

on the dynamics of granular materials in acoustic force land-

scapes.

Acoustodynamic mass determination should have near-

term applications in the pharmaceutical industry for weighing

individual pills and capsules, in the jewelry industry for

weighing gemstones and precious metals, and in the nuclear

power industry for massing individual fuel pellets. Many

such applications currently rely on ultra-micro balances to

cover the relevant mass range with good precision. Acous-

todynamic mass determination offers several advantages. The
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measurement is inherently self-calibrated and is robust against

environmental perturbations. Levitated samples never come

in contact with surfaces, which is inherently beneficial for

sensitive and hazardous materials, minimizes the likelihood of

cross-contamination, and simplifies integration with robotic

sample handlers. Unlike conventional techniques, further-

more, acoustodynamic mass determination can operate freely

in challenging environments such as microgravity. Reaping

these benefits will require extensions to the tracking method

and the dynamical model to accommodate the shapes of such

general granular materials.
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APPENDIX: INERTIA-CORRECTED EQUATION

OF MOTION

The trajectory of an acoustically trapped particle may be

modeled by the equation of motion for a damped harmonic

oscillator:

m0z̈p + Fd (ż, z̈) + κ (zp − z0) = 0. (A1)

This differs from the canonical expression because the drag

force experienced by a sphere of radius ap accelerating along

ẑ through a fluid of viscosity ηm and mass density ρm is

enhanced by the inertia of the displaced fluid [17–19,25],

Fd (żp, z̈p)

b
= żp + τ z̈p +

√

9τ

π

∫ t

−∞

z̈p(t ′)
√

t − t ′
dt ′, (A2a)

where

b = 6πηmap (A2b)

is the Stokes drag coefficient and

τ =
ρm

9ηm

a2
p (A2c)

is the viscous relaxation time for nonsteady flows.

Equation (A2) represents an average over the period of

the acoustic pressure field, which is appropriate because the

sphere’s period of oscillation is very much longer. Substituting

Eq. (A2) into Eq. (A1) yields the Basset-Boussinesq-Oseen

equation for this system [25].

The inertia-corrected equation of motion is satisfied by the

trajectory for a linearly damped harmonic oscillator,

zp(t ) = A exp
(

− 1
2
γ t ± i�t

)

. (A3)

The resulting expressions for the oscillation frequency � and

damping rate γ are greatly simplified by invoking the weak-

damping approximation,

zp(t ) ≈ A exp(i�t ), (A4)

in Eq. (A2), which reduces the expression for the drag force

to

Fd (żp, z̈p)

b
≈

(

τ +
√

9τ

2�

)

z̈p +

(

1 +
√

9τ�

2

)

żp. (A5)

Substituting this expression for Fd (żp, z̈p) into Eq. (A1)

yields the canonical harmonic oscillator equation of motion,

Eq. (16), with expressions for the effective mass m(�), drag

rate γ (�), and natural frequency �0(�) that are given in

Eqs. (13), (14), and (17), respectively. The approximation

implicit in Eq. (A5) is valid when � ≫ γ (�)/2, which is the

case for the data in the present study.
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