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Acoustodynamic mass determination: Accounting for inertial effects
in acoustic levitation of granular materials
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Acoustic traps use forces exerted by sound waves to confine and transport small objects. The dynamics of
an object moving in the force landscape of an acoustic trap can be significantly influenced by the inertia of the
surrounding fluid medium. These inertial effects can be observed by setting a trapped object in oscillation and
tracking it as it relaxes back to mechanical equilibrium in its trap. Large deviations from Stokesian dynamics
during this process can be explained quantitatively by accounting for boundary-layer effects in the fluid. The
measured oscillations of a perturbed particle then can be used not only to calibrate the trap but also to characterize

the particle.
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I. INTRODUCTION

Acoustic manipulation of granular media was first demon-
strated by Kundt in 1866 as a means to visualize the nodes
and antinodes of sound waves [1]. After a century and a half
of gestation, acoustic trapping is emerging as a focal area for
soft-matter physics [2-5] and a practical platform for noncon-
tact materials processing [6,7] thanks to recent advances in the
theory of wave-matter interactions [8,9] and to innovations in
techniques for projecting acoustic force landscapes [10,11].
An object’s trajectory through such a landscape encodes in-
formation about the wave-matter interaction and therefore
can be used to characterize the object as well as to calibrate
the trap. The present study demonstrates how to extract that
information through machine-vision measurements of trapped
objects’ oscillations under the combined influences of gravity,
the trap’s restoring force, and drag due to displacement of the
surrounding fluid medium.

Correctly interpreting the measured trajectory of an acous-
tically trapped particle can be challenging because the drag
force deviates substantially from the standard Stokes form,
as has been noted in previous studies [12-16]. We incorpo-
rate non-Stokesian drag into a self-consistent measurement
framework by invoking the Prandtl-Schlichting hydrodynamic
boundary-layer approximation [17-20] to account for the
fluid’s inertia. This approach appears not to have been demon-
strated previously and provides a fast and accurate way to
measure physical properties of the trapped object without
requiring separate calibration of the acoustic trap. The same
measurement also yields an absolute calibration of the trap’s
stiffness for that specific object.

II. DYNAMICS OF AN ACOUSTICALLY
TRAPPED PARTICLE

A. Imaging measurements of damped oscillations

Figure 1(a) schematically represents the acoustic trapping
system used for this study. Based on the standard TinyLev
design [10], this acoustic levitator consists of two banks of
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piezoelectric ultrasonic transducers (MA40S4S, Murata, Inc.)
with a resonance frequency around 40kHz. Each bank of
36 transducers is driven sinusoidally by a function generator
(DS345, Stanford Research Systems) and projects a traveling
wave into a spherical volume of air. Interference between the
two waves creates an array of acoustic traps along the instru-
ment’s vertical axis. Figure 1(b) presents a video image of a
millimeter-scale sphere of expanded polystyrene localized in
air within one of the acoustic traps. The camera (Blackfly S
USB3, FLIR) records the particle’s motions at 170 framess ™!
with an exposure time of 2 ms and an effective magnification
of 61 um/pixel. Under these imaging conditions, the height of
the particle in the trap, z,(¢), can be measured in the imaging
plane to within €, = 15um by fitting for the image’s least
bounding circle [21]. This method has the advantage over
light-scattering techniques [16] that it also yields an estimate
for the particle’s radius, a,. For the particle in Fig. 1(b),
ap = 1.346(7) mm.

The particle can be made to oscillate in its trap by rapidly
displacing it from its equilibrium position. This can be ac-
complished by abruptly changing the amplitude, frequency,
or relative phase [15] of the signals driving the two banks
of transducers. The discrete symbols in Fig. 1(c) show the
trapped particle’s displacement from its equilibrium position,
Zp(t) — 2o, after an abrupt change of drive amplitude causes a
displacement of Az = —0.31(1) mm. The (red) curve is a fit
to the standard result for a damped harmonic oscillator,

2p(t) = 20 + Aze” 27 cos(Q1), (1)

for the oscillation frequency, € = 122.1(2)rads™! =
19.43(3) Hz, and the damping rate y = 6.3(3)s~', in addition
to Az and the equilibrium position, zo. Although this fit
appears to be satisfactory, the estimated parameters must be
interpreted with care.

To illustrate the challenge, consider the standard Stokes
result,
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FIG. 1. (a) Schematic diagram of the reference acoustic trap.
(b) Typical video frame of a millimeter-scale styrofoam sphere lev-
itated in the acoustic trap together with a schematic diagram of the
forces acting on the particle. (c) Measured trajectory (black symbols)
of a styrofoam bead returning to mechanical equilibrium in an acous-
tic trap compared with predictions of the damped oscillator model
(red curve).

for the drag rate experienced by a sphere of radius @, and mass
my as it moves through a fluid with dynamic viscosity 7,,. An
expanded polystyrene sphere has a density of roughly p, =
30kg m~3 [22], so that

my = %nai pp =0.3mg. 3)

The viscosity of air under standard conditions is 7, =
(1.825 4 0.005) x 1073 Pa's [23]. Equation (2) therefore pre-
dicts ¥ = 1.4s~!, which is a factor of four smaller than the
measured value. Previous studies on similar systems have
reported comparably large discrepancies between predicted
and observed drag rates [16] and have addressed them phe-
nomenologically with nonlinear drag models [12,14,16], if at
all [13,15].

Here, we demonstrate that the linear drag model underlying
Eq. (1) indeed is appropriate for analyzing the oscillations
of acoustically trapped objects, provided that the parameters
are suitably modified to account for the inertia of the dis-
placed fluid [18,20]. The enhanced model provides a basis
for precisely measuring the density and mass of trapped ob-
jects without requiring the acoustic trap to be independently
calibrated. The same approach can be used to calibrate the
trap’s stiffness while accounting naturally for the influence of
external forces such as gravity.

B. Acoustic forces

The force landscape experienced by an acoustically
trapped object is dictated by the structure of the sound field.
The counterpropagating waves in our instrument interfere to
create a standing pressure wave along the central axis whose

spatial dependence is approximately sinusoidal,
p(z) = 2po sin(kz), “)

near the midplane at z = 0. Here, py is the pressure amplitude
due to a single bank of transducers, and k = w/c,, is the wave
number of sound at frequency w in a medium whose speed of
sound is ¢,,. For acoustic levitation in air, ¢,, = 343.5(5) ms™!
under standard conditions [23].

The time-averaged acoustic force experienced by an object
at height z,, in the standing wave has the form [8,9]

Fa(Zp) = _FO Sin(szp)s (5)
with an overall scale,
Fo = x kps, (6)

that depends on the frequency and amplitude of the sound
wave, and on properties of the object and the medium through
x . For a small spherical particle (ka, < 1), the acoustic re-
sponse function is [8,9]

Kp Pp — Pm
— +3—-, 7
Km 2pp+pm) @

where p,, and p,, are the densities of the particle and medium,
respectively, and «, and «,, are their respective isentropic
compressibilities. Dense incompressible particles have y > 0
and therefore tend to be trapped at nodes of the pressure field.

External forces can displace the particle from the center of
the acoustic trap, as depicted in Fig. 1(b). Gravity, in particu-
lar, acts on the particle’s buoyant mass,

Am=m0<1 _ p—> ®)
Pp

and displaces it from the pressure node at z = 0 into mechan-
ical equilibrium at

1 ., (Amg ©)
0 = —— sin —,
Y R

4 5
ngnap/cm 1—

where g = 9.81 ms~? is the acceleration due to gravity.

As long as the particle does not move too far from the nodal
plane, the acoustic trap exerts an approximately Hookean
restoring force on the particle,

Fu(zp) = —k (25 — 20), (10
with a stiffness,
k = 2kFy cos(2kzp), (an

that depends on properties of the sound wave, properties of the
particle, and the strength of the external force. Calibrating the
trap generally involves determining «. Equation (11) clarifies
that the trap cannot be calibrated with a reference object,
as has been proposed [15], but instead requires a separate
calibration for every set of experimental conditions.

C. Inertial corrections

An object moving in the trap’s potential energy well
displaces the surrounding fluid medium and therefore experi-
ences viscous drag. The standard Stokes result from Eq. (2)
neglects the inertia of the fluid. For the special case of a
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FIG. 2. (a) Frequency dependence of the damping rate y (£2). Plot symbols present results from fits to measured trajectories, such as the
example in Fig. 1(c). The solid curve is a fit to the boundary-layer model in Eq. (14) that yields p, = 28.9(3) kg m~>. The horizontal dashed
line reflects the standard Stokes result, y, = 1.50(3) s~ (b) Correlation of the axial offset z, with the observed oscillation frequency 2. The

horizontal dashed line represents the nodal plane of the acoustic trap.

sphere undergoing harmonic oscillations, inertial effects can
be incorporated into a linear drag model,

Fa(zp) = —m(82) y (£2) 2, (12)
by defining a dynamical mass,
1 pm 94(£2)
m(Q)=mo|1+-—|1+ = ) (13)
2 p, 2 ap
and a renormalized drag rate,
67 Nma, ap
Q) = 1 , 14
y(£2) ) < +8(Q) (14)

that both depend on the oscillation frequency, €2, through the
thickness of the Prandtl-Schlichting boundary layer surround-
ing the sphere [17,18],

20m 1

8(Q) =
= Pm 2

15)

This model is derived from the Basset-Boussinesq-Ossen ap-
proximation for drag by nonsteady flows in Appendix A.

The inertia-corrected equation of motion for an acous-
tically levitated sphere is then analogous to the standard
equation of motion for the damped harmonic oscillator,

i+ 7 ()2 + Q2 — 20) =0, (16)
with a natural frequency,
Q(Q2) = \/I ; a7)
m(£2)
that is related to the measured frequency by
Q) = Q> + LyA(Q). (18)

Unlike the standard harmonic oscillator, whose drag and
restoring forces are independent of frequency, the natural fre-
quency of an acoustically trapped object must be found by
solving Eq. (18) self-consistently.

The derivation of Eq. (16) from boundary-layer theory
establishes that Eq. (1) suitably models the dynamics of an

object oscillating in an acoustic trap. Unlike dynamical mod-
els with nonlinear drag [12,16], the damping rate predicted
by Eq. (14) does not depend on the amplitude of the motion.
This is consistent with the observation in Fig. 1(c) that a
single constant value for y successfully accounts for viscous
damping over the oscillating particle’s entire trajectory.

III. ACOUSTODYNAMIC MASS DETERMINATION

Measurements of y (£2) can be interpreted with Eq. (14) to
estimate the mass density of the particle. The discrete points
in Fig. 2(a) are measured by fitting recorded trajectories of
the expanded polystyrene bead in Fig. 1. Different oscillation
frequencies are obtained by adjusting the amplitude V, of
the sinusoidal voltage powering the trap. It is not necessary
to know how the trap strength Fy depends on V, to per-
form this measurement, because y and 2 are both obtained
directly from each measured trajectory. Taking the density
of air to be p,, = 1.220(5) kg m~3 [23] leaves the particle’s
density p, as the only undetermined parameter in the model.
The solid curve in Fig. 2(a) is a fit to Eq. (14) that yields
pp =28.93) kg m~3, which is consistent with expectations
for expanded polystyrene beads [22]. Inertial corrections quite
convincingly account for the previously unexplained enhance-
ment of the oscillating particle’s drag rate. In so doing, they
also provide the basis for a precise and robust way to measure
the mass density of millimeter-scale objects. Combining o,
with the optically measured radius yields the levitated ob-
ject’s mass, my = 0.31(1) mg. Repeating this measurement
on ten different beads from the same batch yields an aver-
age density of p, = 30.5(2)kg m~> and an average mass of
mp = 0.295(3) mg.

The precision of acoustodynamic mass determination is
limited by run-to-run variability in the measured values of
y(£2), which in turn can be ascribed to spurious transverse
motions of the particle in its trap and to environmental fac-
tors such as vibrations and drafts. Even with these practical
limitations, the 3 ug precision achieved in this representative
realization is comparable to the performance of a conventional
ultra-micro balance.
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Previous acoustic trapping studies have attempted to mea-
sure the masses of levitated objects by interpreting their static
displacements [24] with Eq. (9) or by interpreting their os-
cillation frequencies directly [15] without inertial corrections.
Like conventional scales and balances, these approaches rely
on independent calibration of the trap’s stiffness, «. The
present acoustodynamic approach avoids the need for such
calibrations by comparing two independent timescales repre-
sented by €2 and y, rather than two independent force scales.

Increasing the acoustic trap strength increases the oscilla-
tion frequency and lifts the particle toward the trap’s center.
This correlation is reflected in the dependence of zp on €2 that
is plotted in Fig. 2(b). These measurements can be interpreted
within the boundary-layer model by combining Eq. (9) with
Eq. (11) to obtain

@) 1 tan-! 2kg Am
= ——tan —
“ 2% Q2(Q) m(Q)

where zip is the height of the trap’s nodal plane in the cam-
era’s field of view. The solid curve in Fig. 2(b) shows this
model’s prediction using the value of p, obtained from y (£2).
The data in Fig. 2(b) have been offset so that zy,, = 0(5) um.
The excellent agreement between measurement and theory
in this comparison serves to validate the acoustodynamically
determined values of p, and a,. Accurately identifying Zzip
also is valuable for force-extension measurements once the
trap’s stiffness is calibrated.

) ~+ Ztraps (19)

IV. DYNAMIC TRAP CALIBRATION

The trap’s stiffness at each value of V; can be inferred from
the particle’s damped oscillations through

K(Q) = m(Q) Q%R). (20a)

Assuming that the pressure amplitude p is proportional to the
driving voltage Vj, Eq. (6) and Eq. (11) lead to an independent

expression,

1/ kAmg 2

2 ( aVy ) '

that can be compared with measurements based on

Eq. (20a) to obtain «, the required calibration constant for this
specific particle in the levitator. This result is valid when the
particle is stably trapped against gravity, Fy > Amg. Figure 3
shows the calibration obtained from the data set in Fig. 2 and
yields o = (6.02 £ 0.15) x 107*Nm~' V=2, Ignoring iner-
tial corrections by using my in Eq. (20a) would have yielded
a significant underestimate for the calibration constant, oy =
(5.77 £0.14) x 107N m~' V2. Adding to the challenge, an
accurate value for m generally would not be known a priori
for a millimeter-scale object. The analytical framework de-
scribed here solves this problem by providing self-consistent
measurements of p,, mg, and m(£2). The estimated calibration
constant « therefore should yield reliable predictions for the
trap stiffness «.

Kk (Vo) ~ aV§ [1 - (20b)

V. DISCUSSION

Abruptly changing the trapping characteristics of an acous-
tic levitator sets a trapped object into a free oscillation

0.051
£
> 0.041
<> 0.03]
<
0.021
5 6 7 8 9
Vo [V]

FIG. 3. Dependence of the measured trap stiffness « on the
peak-to-peak voltage Vj, used to power the acoustic trap’s trans-
ducer banks. The solid curve is a fit to Eq. (20b) for the calibration
constant «.

that is damped by viscous drag in the surrounding medium.
The resulting trajectory can be described with the standard
model for a damped harmonic oscillator, provided that in-
ertial effects in the displaced fluid are taken into account
self-consistently with hydrodynamic boundary-layer theory
[17,18,20,25]. These inertial corrections quantitatively re-
solve the large discrepancy between the measured drag rate
and the Stokes prediction that has been noted in previous
studies but previously has been unexplained. The boundary-
layer model is applicable for particle speeds substantially
smaller than the speed of sound and Reynolds numbers, Re =
PpapVp/Nm, Well below the threshold for turbulence. For the
present study, v, < 0.25m s™! and Re < 23, so that both
conditions are satisfied. The observation that Re > 1 explains
why the standard Stokes result substantially underestimates
the drag rate.

Fitting measured trajectories to predictions of the
boundary-layer model yields precise estimates for the trapped
particle’s mass density and mass. Dynamic acoustic trapping
therefore can be used to weigh millimeter-scale objects with-
out requiring direct contact, including submilligram objects
that can be challenging to weigh individually [26-28]. Gen-
eralizing this approach to accommodate aspherical objects,
powders, and fluids will be addressed in future studies.

Using the acoustic force field itself to set an object into
oscillation provides a simple and effective method to cali-
brate the stiffness of an acoustic trap. This approach does
not require the external intervention used in complementary
calibration techniques, such as mechanically moving the sam-
ple relative to the levitator [29,30]. The techniques discussed
in this work therefore should facilitate fundamental research
on the dynamics of granular materials in acoustic force land-
scapes.

Acoustodynamic mass determination should have near-
term applications in the pharmaceutical industry for weighing
individual pills and capsules, in the jewelry industry for
weighing gemstones and precious metals, and in the nuclear
power industry for massing individual fuel pellets. Many
such applications currently rely on ultra-micro balances to
cover the relevant mass range with good precision. Acous-
todynamic mass determination offers several advantages. The

064903-4



ACOUSTODYNAMIC MASS DETERMINATION: ACCOUNTING ...

PHYSICAL REVIEW E 108, 064903 (2023)

measurement is inherently self-calibrated and is robust against
environmental perturbations. Levitated samples never come
in contact with surfaces, which is inherently beneficial for
sensitive and hazardous materials, minimizes the likelihood of
cross-contamination, and simplifies integration with robotic
sample handlers. Unlike conventional techniques, further-
more, acoustodynamic mass determination can operate freely
in challenging environments such as microgravity. Reaping
these benefits will require extensions to the tracking method
and the dynamical model to accommodate the shapes of such
general granular materials.
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APPENDIX: INERTIA-CORRECTED EQUATION
OF MOTION

The trajectory of an acoustically trapped particle may be
modeled by the equation of motion for a damped harmonic
oscillator:

moZp + Fu(z, 2) + «(zp — 20) = 0. (A1)
This differs from the canonical expression because the drag
force experienced by a sphere of radius a, accelerating along

Z through a fluid of viscosity 7, and mass density p,, is
enhanced by the inertia of the displaced fluid [17-19,25],

Fi(s 5 ' 5
—d(zp9 Zp) = Zp + TZ]) + 9_7: f ZP( ) dt/,
b Vor Jowvi—t

(A2a)

where
b = 6mnya, (A2b)
is the Stokes drag coefficient and
Pm o
T=— A2c
o a, (A2c)

is the viscous relaxation time for nonsteady flows.

Equation (A2) represents an average over the period of
the acoustic pressure field, which is appropriate because the
sphere’s period of oscillation is very much longer. Substituting
Eq. (A2) into Eq. (A1) yields the Basset-Boussinesq-Oseen
equation for this system [25].

The inertia-corrected equation of motion is satisfied by the
trajectory for a linearly damped harmonic oscillator,

2p(1) = Aexp (—yyt +iQ1). (A3)

The resulting expressions for the oscillation frequency €2 and
damping rate y are greatly simplified by invoking the weak-
damping approximation,

2,(t) ~ Aexp(iQ), (A4)

in Eq. (A2), which reduces the expression for the drag force

to
Fd(zpa Zp) 97: . 9'[9 .
i Al SV — 1 — |z,. A
5 Tty 5g T +4/ 5 e (A5)

Substituting this expression for F;(z,,Z7,) into Eq. (Al)
yields the canonical harmonic oscillator equation of motion,
Eq. (16), with expressions for the effective mass m(2), drag
rate y(£2), and natural frequency 2,(€2) that are given in
Egs. (13), (14), and (17), respectively. The approximation
implicit in Eq. (A5) is valid when € > y(£2)/2, which is the
case for the data in the present study.
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