
Quantum Science and Technology      

PAPER • OPEN ACCESS

Near-term distributed quantum computation using
mean-field corrections and auxiliary qubits
To cite this article: Abigail McClain Gomez et al 2024 Quantum Sci. Technol. 9 035022

 

View the article online for updates and enhancements.

You may also like
Demonstration of a Bayesian quantum
game on an ion-trap quantum computer
Neal Solmeyer, Norbert M Linke, Caroline
Figgatt et al.

-

A universal quantum circuit design for
periodical functions
Junxu Li and Sabre Kais

-

Towards a scalable discrete quantum
generative adversarial neural network
Smit Chaudhary, Patrick Huembeli, Ian
MacCormack et al.

-

This content was downloaded from IP address 131.215.225.160 on 10/05/2024 at 20:57



Quantum Sci. Technol. 9 (2024) 035022 https://doi.org/10.1088/2058-9565/ad3f45

OPEN ACCESS

RECEIVED

24 September 2023

REVISED

26 March 2024

ACCEPTED FOR PUBLICATION

16 April 2024

PUBLISHED

3 May 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Near-term distributed quantum computation using mean-field
corrections and auxiliary qubits
Abigail McClain Gomez1,2,∗, Taylor L Patti2,∗, Anima Anandkumar2,3 and Susanne F Yelin1

1 Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
2 NVIDIA, Santa Clara, CA 95051, United States of America
3 Department of Computing+Mathematical Sciences (CMS), California Institute of Technology (Caltech), Pasadena, CA 91125,
United States of America

∗ Authors to whom any correspondence should be addressed.

E-mail: amcclain@g.harvard.edu and tpatti@nvidia.com

Keywords: distributed quantum computing, near-term quantum computing, quantum simulation, variational quantum algorithms

Abstract
Distributed quantum computation is often proposed to increase the scalability of quantum
hardware, as it reduces cooperative noise and requisite connectivity by sharing quantum
information between distant quantum devices. However, such exchange of quantum information
itself poses unique engineering challenges, requiring high gate fidelity and costly non-local
operations. To mitigate this, we propose near-term distributed quantum computing, focusing on
approximate approaches that involve limited information transfer and conservative entanglement
production. We first devise an approximate distributed computing scheme for the time evolution
of quantum systems split across any combination of classical and quantum devices. Our procedure
harnesses mean-field corrections and auxiliary qubits to link two or more devices classically,
optimally encoding the auxiliary qubits to both minimize short-time evolution error and extend
the approximate scheme’s performance to longer evolution times. We then expand the scheme to
include limited quantum information transfer through selective qubit shuffling or teleportation,
broadening our method’s applicability and boosting its performance. Finally, we build upon these
concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of
variational quantum algorithms. To characterize our technique, we introduce a non-linear
perturbation theory that discerns the critical role of our mean-field corrections in optimization
and may be suitable for analyzing other non-linear quantum techniques. This fragmented
pre-training is remarkably successful, reducing algorithmic error by orders of magnitude while
requiring fewer iterations.

1. Introduction

One prospective trajectory for quantum information hardware is distributed quantum computing [1–3], the
quantum analog of the celebrated classical field [4–7]. Distributed quantum computing seeks to eliminate
the need for large, monolithic quantum computers, which suffer from cooperative noise [8, 9]. Instead,
large-scale problems will be split among many smaller quantum computers that are in communication with
each other via a quantum interconnect, a standardized form of quantum communication between remote
quantum computing platforms [10, 11].

While the benefits of distributed quantum computing are abundant, many obstacles complicate its
realization. For instance, due to the no-cloning theorem [12], extensive quantum entanglement would be a
required component of quantum interconnects in order to enable non-local operations such as quantum
teleportation [1, 2, 9, 13]. Moreover, fault-tolerant quantum computing would be needed to compute and
transmit quantum information between distributed simulators reliably [11, 14]. Finally, long coherence
times or relatively local topology would be necessary to manage the time delays associated with
communication between remote locations [9, 15].

© 2024 The Author(s). Published by IOP Publishing Ltd
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Nevertheless, the promise of scalability continues to inspire research in various facets of distributed
quantum computing. Researchers have characterized the compilation of quantum circuits into cohesive
network instructions [16] and devised a language to communicate such instructions more efficiently than
conventional circuit diagrams [17]. Likewise, much work has been done to develop the non-local operations
integral to distributed quantum computing, which have been supported with experimental realizations [13,
18–20]. Other studies have developed algorithms tailored to quantum distributed architectures, including
Shor’s algorithm, quantum sensing, and combinatorial optimization [21–24], while additional research has
focused on the quantum advantage provided by quantum distributed computing [25–28]. Still other research
has addressed how to approach distributed algorithm design [24, 29], the effect of noise in distributed
quantum computing [30], architecture selection and scalability [14, 31,32], and resource allocation [33–35],
particularly to optimize teleportation cost [36–38].

Although the interest in its theoretical application continues to grow, a wide gap remains between much
distributed quantum computing research and its physical implementation. Research along a different vein
has instead concentrated on applications that are realizable using near-term hardware, stretching the limit of
noisy quantum simulators’ utility. Although not distributed in the sense of the works discussed above (which
assume that the distributed hardware forms a quantum network), these approaches involve small groups of
qubits simulated in parallel or in sequence to address a larger problem. Entanglement forging is one such
approach [39], which relies on shifting computation to classical post-processing in order to assemble
information from two smaller circuits, thereby halving the maximum circuit size required for the calculation.
Other more general circuit knitting techniques have been recently developed, such as the scheme presented
in [40], which pieces together the simulation of weakly entangled subsystems through classical resources and
explores the trade-off between sampling overhead and simulation accuracy. The quantum tensor network
approach uses the framework of tensor networks to identify weakly entangled subgroups and parallelize
quantum simulation [41]. Similarly, Quantum multi-programming (QMP) takes advantage of the increasing
size of available quantum simulators to execute multiple shallow quantum circuits concurrently [42, 43].

In order to bridge the distributed quantum computing paradigm with the capabilities of near and
moderate-term hardware, in this manuscript, we design two procedures that approximately link distributed
simulators while remaining amenable to small-scale, noisy devices. Our schemes of fragmented quantum
simulation explore what problems can be addressed without full information transfer between hardware.
First, focusing on the task of time evolution, we partition a system of qubits into subgroups (referred to as
fragments) that are treated separately. We harness mean-field measurements to inform mean-field
corrections [44] that link the distinct fragments. These simulations could be executed in parallel on a single
simulator (as in QMP [42, 43]), outsourced to different simulators (as in distributed computing [1, 2, 9,
13]), or even simulated using a mixture of classical and quantum resources (as in heterogeneous computing
[45, 46]). We further make use of a limited number of auxiliary qubits to mimic the presence of the qubits
located on distant simulators.

In our first approach to distributed time evolution, we rely on classical communication to transmit
partial state information between distant simulators through measurements, omitting a quantum link
between devices. Transmitting incomplete information reduces the generally exponential number of
measurements required to relay complete information of a quantum state via a classical channel. For locally
interacting systems, the classical fragmentation scheme closely approximates quantities local to each
fragment—including the fidelity of the fragment—for timescales up to several 1/J, where J weights the
system’s interactions. We present a second scheme that is supplemented by limited quantum information
transfer, consequently composing an interface of classical and partial quantum information transfer that
approximately connects quantum simulators. We show numerically that the limited use of quantum
communication significantly extends the scheme’s performance to longer evolution times, even for
long-range interacting systems. As non-local operations become more available, this technique could be
employed in moderate-term distributed applications before a fully connected quantum network is
achievable.

Using the same fragmentation framework, we devise a fragmented pre-training approach for variational
quantum algorithms, focusing on the variational quantum eigensolver algorithm (VQE) [47]. The
pre-training can be performed classically or using resource-limited hardware, as only portions of the full
circuit are considered. In this technique, gates between fragments are cut and ignored (that is, no gate
reconstruction through classical post-processing is employed); however, through mean-field corrections and
auxiliary qubits, the resultant error is kept small enough to still approach the space of optimal parameters
through the fragmented optimization. For classical MaxCut problem graphs, the pre-training method
reduces energy error by various orders of magnitude on average, and requires over an order of magnitude
fewer circuit preparations. For transverse field Ising-like models [48, 49] outside of the classical domain, our
pre-training scheme maintains a significant advantage in the regime of a small transverse field h.
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The remainder of the paper is organized as follows. In section 2, we first present a fragmented approach
to quantum simulation that only involves the classical transfer of partial state information. We further
consider an alternate scheme for the case of linking quantum simulators with reduced quantum information
transfer through selective qubit shuttling [50] or teleportation [51, 52], in addition to classical information
transfer. In section 3, the performance of each scheme is evaluated for the time evolution of quantum
Ising-like spin Hamiltonians [53], which are amenable to quantum simulation using trapped ions and
Rydberg platforms [54, 55]. Finally, in section 4 we expand the scheme to apply to the optimization of
quantum circuits. The use of our fragmentation scheme to assist VQE is evaluated in section 5 [47]. The role
of mean-field corrections in the optimization through the lens of perturbation theory [56] is explored in
sections 5.2.2 and 5.2.3. In section 5.2.3, we introduce a non-linear perturbation theory to study mean-field
corrected Hamiltonians, analytically formalizing the success of our pre-training approach.

2. Fragmented quantum simulation

In our method of fragmented quantum simulation, we divide a system of N qubits into two or more
sub-systems, here referred to as fragments (see figure 1(a)). Each fragment contains some number of qubits
Nf < N, such that

∑
fNf = N. The fragments are treated separately, but it is possible to approximate the

presence of a fragment’s environment, that is, the qubits outside of a given fragment, through corrective fields
and interactions [57]. We devise mean-field corrections (described in detail in section 2.1) [44], which are
informed by measurements of a fragment’s environment, to actively adjust the state of a fragment. Corrective
interactions are mediated by the inclusion of auxiliary qubits within each fragment’s simulation, such that∑

fNf+a > N, where Nf+a = Nf +Na and Na represents the number of auxiliary qubits included in fragment
f. Each auxiliary qubit mimics the behavior of one environment qubit, which we refer to as the target qubit
for that auxiliary. Each auxiliary qubit interacts with the fragment’s qubits according to the same interaction
terms as the corresponding target qubit, as prescribed by the original Hamiltonian, enabling entanglement to
grow beyond the Nf fragment qubits.

Figure 1(b) provides an overview of our classically-linked fragmentation scheme, and a detailed diagram
is provided in figure A1. We define a fragment’s interface I to be the collection of interactions existing in the
original Hamiltonian that act between fragment qubits and environment qubits. The combination of
auxiliary qubits and mean-field corrections collectively mimics the action of the interface on the fragment.
The growth and faithfulness of the entanglement within a fragment will be limited by the number of
auxiliary qubits included—an unavoidable limitation of the scheme—but the effects of this limitation can be
mitigated through judicious fragmentation of the system. Firstly, to mitigate fragmentation error (that is, the
error produced by the omission of some system interactions and the resultant reduction of Hilbert space),
one can choose to divide the system qubits such that the qubits interacting most influentially with each other
are confined to a single fragment. Secondly, it is possible to make an informed choice of target qubit for each
auxiliary. This is explored further in section 2.2.

Finally, we emphasize that this simulation technique is not exact. In fact, in the classically-linked case, the
fully quantum state is not reconstructed from the evolution of individual fragments, and thus, observables
that span more than one fragment are inaccessible. Nonetheless, observables local to one fragment can be
estimated; this is demonstrated section 3.

2.1. Mean-field corrections
Consider the class of spin models:

H=−
∑
⟨i,j⟩

∑
α,β

Jα,βij Ŝ(i)α Ŝ( j)β −
N∑

i=1

hiŜ
(i)
x . (1)

Here, Ŝ(i)α and Ŝ( j)β are spin-1/2 spin operators acting on sites i and j, where α,β ∈ {x,y,z}. The coefficient
Jα,βij gives the strength and sign of the interaction. For concreteness and without loss of generality, we have
selected transverse fields hi to point along the x-axis. The Hamiltonian acting strictly within some
sub-system f will neglect any operators acting outside of f, yielding

H( f) =−
∑
⟨i,j⟩∈f

∑
α,β

Jα,βij Ŝ(i)α Ŝ( j)β −
∑
i∈f

hiŜ
(i)
x , (2)

the bare Hamiltonian that acts within a fragment f when no corrections are included.
Clearly, the simple exclusion of interactions that span the interface between f and its environment

(i.e. the fragmented evolution of f under H( f )) will, in general, poorly approximate the evolution of the
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Figure 1. (a) Diagram illustrating how a 6-qubit system can be split into two fragments. Interactions Jαβ
ij are represented by lines

between qubits; one label is included for clarity. Interactions that span the two fragments form the interface I. (b) The case where

the two fragments are linked via a classical channel. Mean-field measurements ⟨Ŝ( j)β ⟩ are exchanged classically. One auxiliary

qubit a1,2 is included in each fragment’s simulation, interacting with the fragment qubits according to a target qubit in the
opposite fragment (identified in the figure by a blue / green circle). (c) The case where the two fragments are linked via a quantum

channel. While mean-field measurements ⟨Ŝ( j)β ⟩ are still exchanged classically, the auxiliary qubits are physically shared between

fragments using some form of quantum communication.

sub-system under the full Hamiltonian. The fragment qubits will behave as a closed system without external
interactions. Although generally these interactions cannot be exactly simulated without modeling all of the
system’s spins on a single fragment, we introduce a mean-field to partially capture the action of each missing
interaction. Mean-field methods have frequently been used to simplify the simulation and study of quantum
systems, and statistical physics [44, 58, 59]. Here, the strength and sign of the introduced mean-field
correction is informed by the measurement of the corresponding environment spin, while the correction’s
axis is determined by that of the corresponding interaction’s spin operator that would act within fragment f.
The resulting mean-field corrected Hamiltonian is given by:

H( f)
MF =−

∑
⟨i,j⟩∈I,
i∈f

∑
α,β

Jα,βij Ŝ(i)α ⟨Ŝ( j)β ⟩−
∑
⟨i,j⟩∈f

∑
α,β

Jα,βij Ŝ(i)α Ŝ( j)β −
∑
i∈f

hiŜ
(i)
x . (3)

The strength and direction of the mean-fields appearing in H( f )
MF should be updated regularly to reflect the

current state of the environment spins. Physically, this requires regular mean-field measurements of the
fragments. Evolution must therefore be reset to the initial state in order to proceed by one time step dt, with
each new mean-field measurement being stored to progress the evolution. The process of incrementing the
time evolution by one time step per simulation is commonly implemented in order to track the time
dynamics of an observable [60], resulting in a complexity that scales asO(N2

t ) in the number of time stepsNt.

2.2. Auxiliary target spin selection
For nearest-neighbor spin models (e.g. the transverse field Ising model [49]), the selection of a target spin for
each auxiliary is somewhat trivial, as at most two qubits interact with a fragmented section of the chain. The
choice of auxiliary qubit encoding may be unclear for more general systems. Here, we present a method for
auxiliary target qubit selection that yields, on average, the optimal auxiliary qubit encoding. Specifically, we
consider how auxiliary target selection affects the simulation error to the first non-vanishing order in dt. This
simulation error arises from the omission of interactions forming the interface of some particular fragment f
and the remaining environment spins E. The full derivation of the leading error is provided in appendix A.2;
here, we sketch the derivation and build on the result.

To derive the leading error, we define the fidelity between the evolved state of a fragmented system and
that of the full system to be:

F(t) = |⟨Ψ|U† (t)U( f)
I (t) |Ψ⟩|2. (4)

4
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The unitary operator U(t) = exp(−iHt) evolves the system exactly under the full Hamiltonian H, while

U( f )
I (t) = exp(−iH( f )

I t) evolves the system under a fragmented Hamiltonian. Notably, the Hamiltonian H( f )
I

around which this discussion revolves is not the Hamiltonian that acts only within fragment f ; rather, H( f )
I

additionally includes all interactions between qubits that are external fragment f. Thus, H( f )
I lives in the

Hilbert space of the full system, neglecting only the interactions crossing the interface of fragment f in order
to isolate the fragmentation error associated with f. In appendix A.2, equation (4) is expanded for short times
t to understand how the evolution error ϵ(t) = 1− F(t) depends on the strength of the neglected
interactions. Through the use of Taylor expansion and the Baker–Campbell–Hausdorff (BCH) formula [61],
we arrive at the first non-vanishing correction to the fidelity:

F(t)≈ 1− var
(
H−H( f)

I

)
t2, (5)

where var(O) is the quantum variance of operatorO. The error ϵ(t) = 1− F(t) is thus given by

var(H−H( f )
I )t2 for short times t.

The form of the short-time error provides a simple rule for choosing the target auxiliary qubits for
fragment f to minimize error; namely, select the environment qubit(s) whose interactions contribute most

significantly to the variance var(H−H( f )
I ). This choice will minimize the short-time error of evolving the

state by the fragmented Hamiltonian, which will lead to higher fidelity performance, on average (see
section 3.3). Moreover, if the auxiliary selection is updated sufficiently often, the selection becomes exact as
the short-time error dominates from the time of one auxiliary encoding to the next.

2.3. Practical implementation of the optimal auxiliary encoding
Although the final form of the short-time evolution error provides insight into optimal auxiliary selection,
the procedure for estimating a particular qubit’s contribution to the error within the distributed framework
is less straightforward. For a general spin Hamiltonian, this variance is given by:

var
(
H−H( f)

I

)
= var

−
∑
⟨i,j⟩∈I

∑
α,β

Jα,βij Ŝ(i)α Ŝ( j)β


=
∑
⟨i,j⟩∈I

∑
⟨i ′,j ′⟩∈I

∑
α,β

∑
α ′,β ′

Jα,βij Jα
′,β ′

i ′j ′

(〈
Ŝ(i)α Ŝ( j)β Ŝ

(i ′)
α ′ Ŝ

( j ′)
β ′

〉
−
〈
Ŝ(i)α Ŝ( j)β

〉〈
Ŝ
(i ′)
α ′ Ŝ

( j ′)
β ′

〉)
.

(6)

Estimating the full variance of equation (6) requires 4-point correlation measurements. If the distributed
simulators are linked solely via classical channels, correlation measurements are only accessible when all
relevant qubits are local to a single fragment. This implies that two auxiliary qubits—one targeting j and one
targeting j′—must already be placed within the fragment in order to access the required 4-point correlator
measurements. For NE environment qubits, there areO(N2

E) combinations, requiringO(N2
E) copies of the

system in order to estimate all required 4-point correlators, undermining (although not necessarily
precluding) the motivations for fragmented quantum simulation with such a technique.

The correlator calculation simplifies significantly when the variance is calculated with respect to a known
product state, but a new issue arises: for many spin model Hamiltonians, the variance will vanish for certain
initial product states. In fact, for the case of the transverse field Ising model [49], this quantity vanishes for all
computational basis states, providing no insight into the proper auxiliary choice.

We propose a two-part solution that addresses these issues. First, we propose a proxy v(a) that estimates
the contribution of one potential auxiliary a to the variance:

v(a) =
∑
⟨i,j⟩∈I

∑
⟨i ′,j ′⟩∈I

∑
α,β

∑
α ′,β ′

Jα,βij Jα
′,β ′

i ′j ′ δj,aδj ′,a

(〈
Ŝ(i)α Ŝ( j)β Ŝ

(i ′)
α ′ Ŝ

( j ′)
β ′

〉
−
〈
Ŝ(i)α Ŝ( j)β

〉〈
Ŝ
(i ′)
α ′ Ŝ

( j ′)
β ′

〉)
. (7)

Inserting the two Dirac delta functions δj,aδj ′,a eliminates the cross-terms in equation (6) that depend on
multiple environment qubits. Thus, a single auxiliary is required to estimate v(a), and in totalO(NE)
partitions are required to acquire v(a) for all potential auxiliary targets. In addition to requiring fewer
measurements, this proxy focuses on a’s contribution to the variance while neglecting the cross-terms that
involve contributions from other potential auxiliary qubits. Secondly, to avoid scenarios where the variance
vanishes for initial product states, we suggest first evolving the system for one time step dt for a particular
choice of a before estimating v(a). Although this procedure is more involved than calculating v(a) for the
initial product state directly, the overhead remains linear in the number of potential auxiliary qubits.

5
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Figure 2. Nearest neighbor TFIM with constant J= 1.0. To produce (a), N= 12 qubits are split into two fragments, and the
fidelity between the fragment qubits’ state and the exactly evolved system is plotted for various numbers of auxiliary qubits, with
(dashed lines) and without (solid lines) mean-field corrections. The fidelity is averaged over non-zero h values ranging between
±1. Performance progressively increases with increasing Na and the addition of mean-field corrections. (b) displays the local
expectation of Ŝz and Ŝx for a system of N= 12 qubits for the specific case of h= 1.0, with the corner label indicating site index.
Here, we fragment the system into four fragments, each containing three qubits, and contrast the case of no communication (in
red) to that of including Na = 2 auxiliary qubits and mean-field corrections, which match the exact expectation values for longer
simulation times.

3. Application 1: fragmented time evolution

3.1. Simulators linked via classical information
We first focus on the scheme that involves no quantum information transfer. In this scheme, the auxiliary
qubits are selected at the beginning of the simulation and fixed to target a single environment qubit
throughout the evolution. We refer the reader to figure 1 and appendix A.1 for an in-depth look at how a
system is fragmented for time evolution. As a representative example, consider the transverse field Ising
model (TFIM) [48, 49] with a uniform transverse field:

HTFIM =−J
∑
⟨i,j⟩

Ŝ(i)z Ŝ( j)z − h
N∑
i

Ŝ(i)x . (8)

This system has been studied in depth to better understand the physics of quantum phase transitions
[62–64]. We consider the evolution of a quantum system initialized in the computational basis state |0⟩
under HTFIM, implementing exact unitary evolution numerically using PennyLane [65] with mean-field
measurements updated every dt= 0.1/J. Figure 2 displays the scheme’s performance for a 12-qubit model
with nearest neighbor interactions of J= 1.0. The results presented in figure 2(a) are averaged over non-zero
transverse fields h ranging from±1, while figure 2(b) features the specific case of h= 1.0. In figure 2(a), the
system is split into two fragments, each simulating six of the system qubits and some number of auxiliary
qubits. The average of the quantity Ff is plotted, which we define as the fidelity between the reduced density
operator of the system qubits within the fragment (tracing out any auxiliary qubits a) and the reduced
density of the same system qubits for the exact evolution of the full system (tracing out all environment
qubits forming E). We use the generalization of fidelity for density matrices [66] to enable the focused
evaluation of the fragment sub-system:

Ff =
(
Tr
√√

ρfρ
ex
f
√
ρf

)2
, (9)

ρf = Tra ρf+a, (10)

ρexf = TrE ρ
ex. (11)

For a short evolution time, the scheme captures the correct state of the system qubits within the fragment.
This time can be extended by the inclusion of additional auxiliary qubits.

In figure 2(b), we consider a specific instance of the TFIM with J= 1.0 and h= 1.0. To test the scheme,
we split the system into smaller partitions with Nf = 3. When we make use of two auxiliary qubits and
mean-field corrections, the local expectation values exhibit little error for several units of Jt, as expected from
the fidelity results.

In figure 3, we examine the scaling performance for the nearest neighbor model, increasing the number
of fragments simulated with increasing N (keeping Nf constant) with Na = 2. In the left panel, the first

6
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Figure 3. Scaling performance of the classical scheme for the nearest neighbor TFIM with J= 1.0, averaged over h values ranging
from±1. For each simulation, the number of system qubits within a fragment is fixed to be Nf = 3 as N is increased, with Na

fixed to be zero (no communication in black / gray) or two (in blue). The left panel plots ⟨Ff⟩ for the first fragment (which
includes the boundary qubit and thus only involves one interaction crossing the interface), while the right panel plots ⟨Ff⟩ for the
second fragment (which, for N= 9 and N= 12, is an interior fragment with two interactions crossing the interface).

fragment is considered. This fragment contains the boundary of the chain, and consequently, the fragment’s
interface consists of only one missing interaction. The right panel considers the second fragment, which is on
the interior of the chain for N > 6 and consequently neglects two interactions, leading to reduced
performance. This is manifested in the reduced fragment fidelity going from N = 6 to N = 9 for fragment 2.
However, there is no such visible drop going from N = 9 to N = 12 due to the monogamy of entanglement
[67]—that is, although the number of qubits in the system grows, the qubits that are most strongly entangled
with each other remain local to one fragment, and thus the amount of lost information shrinks as N is
further increased. We therefore expect our classical scheme to scale well with N for systems that are locally
interacting, and to serve as a strong approximation for moderate evolution times.

3.2. The addition of quantum information transfer
Next, we examine the case of selective quantum information transfer between quantum simulators,
applicable when non-local operations are available, even if only in a limited capacity. In this case, the
fragmentation scheme can be modified to include limited quantum information transfer (a quantum channel
[9]). The role of the auxiliary qubits shifts from being bystanders confined to a single fragment to qubits that
are physically shared between simulators through selective non-local interactions, accomplished through
qubit shuttling [50] or teleportation [51, 52] (see figure 1(c)). If the simulations are being executed in
parallel on a single quantum simulator [42, 43], this would only require a few additional SWAP gates to
include a limited number of cross-simulation interactions. In addition to providing more complete
information transfer, a quantum channel further enables the active correction of auxiliary encoding as the
system evolves. The selected number of auxiliary qubits places a limit on the number of qubits that are
physically teleported / shuttled to a fragment; however, which environment qubits play this role can be
changed from one time step to the next depending on which potential auxiliary qubit(s) have the largest
contribution to the most recent estimate of the short-time error. When quantum channels and synchronized
measurements are available, all correlation measurements are accessible. The quantity v(a) can thus be
estimated for any a at any time. As the potential auxiliary qubits’ contribution to the variance shift, new
auxiliary qubits can be selected—that is, we can make a new selection for which qubit(s) physically interact
with a fragment native to a different simulator. If the time steps are sufficiently small such that the first
non-vanishing order in the error dominates, then this becomes optimal even for long simulation times.

To evaluate this scheme numerically, we abstract away the details of information transport; this topic has
been investigated by other research in the context of distributed time evolution [68]. In our actively updated
simulation, the quantity v(a) is calculated for each potential auxiliary qubit at each time step to determine its
contribution to the short-time error. This requires the estimation of correlators between each potential
auxiliary and each fragment system qubit (requiringO(NfNEN2

αβ) per fragment, where Nαβ is the number
of αβ interaction types), but if there is only one kind of interaction (as is the case for the TFIM and other
Ising-like models, with α= β = z), all relevant correlators can be estimated from a set of full system snapshot
measurements. The largest contributors are selected to be auxiliaries—numerically, this amounts to keeping
the interactions between these qubits and the fragment qubits, while zeroing the Jαβij coefficients of all other
environment-fragment interactions (see appendix A.3). Any zeroed interactions can be approximately

7
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Figure 4. Comparison between scheme involving only classical information transfer (dark teal) to that involving limited quantum
and classical information transfer (light green). For reference, the independent case (no information transfer) is included in red.
The results are averaged over 100 Ising-like Hamiltonians with constant h= 1.0 and randomly generated graphs J ij (see
section 3.2). The N qubits are split into groups such that Nf = 3, with an additional Na = 2 auxiliary qubits employed in the
simulation.

included via mean-field corrections. At the next time step, the selection of zeroed interactions might change
due to a change in the selected auxiliaries for each fragment, as dictated by the short-time error.

Figure 4 compares this scheme (labeled ‘Q. Channel’ to indicate the addition of quantum information
transfer) to the previous scheme in section 3.1, which involves only classical information transfer (‘C.
Channel’). The graph plots the fragment fidelity Ff averaged over 100 transverse field Ising-like models with
h= 1.0 and randomly generated graphs J ij. Each edge ij exists with probability 0.5, and edge weights J ij are
sampled from a Gaussian distribution with mean µ= 0.0 and width σ= 1.0. Furthermore, we randomly
select a computational basis state to initialize the fragmented system. Although both schemes outperform the
case of no information transfer (in red), the complicated long-range nature of the Hamiltonians considered
challenges the previous scheme, which only employs classical information transfer. In contrast, the quantum
scheme preserves a large fragment fidelity, even at late simulation times.

3.3. Short-time error auxiliary selection
The benefit of using short-time error to inform auxiliary selection can be isolated by evaluating the
performance of each auxiliary choice independently. Consider a system of N = 12 qubits, fragmented into
two groups of Nf = 6. This leaves six environment qubits from the perspective of each fragment that could be
targeted by an auxiliary qubit. Selecting two auxiliary qubits (Na = 2), we rank the six potential choices for
target auxiliary encoding according to the size of v(a). In figure 5, the six target encoding choices are divided
into three groups of two based on v(a), and each option is explored for randomly generated transverse field
Ising-like Hamiltonians with h= 1.0, as considered in the previous section. A total of 100 such Hamiltonians
are generated and simulated; the averaged results are presented in figure 5, where v0 corresponds to encoding
the two environment qubits with the largest value for v(a). On the left, the results are plotted for the case of
classical information transfer. Any separation between the fidelity curves corresponding to different auxiliary
choices indicates that the v(a) metric meaningfully separates the potential auxiliary choices according to
fidelity performance. The fact that the ordering corresponds to the ranked choice is evidence that using
short-time error to select auxiliary encoding propagates to better performance at later times. In red, we
consider random auxiliary encoding. The random performance roughly converges to the middle-ranked
choice v1 and can be thought of as the performance averaged over auxiliary encoding. In the center, the
results are plotted for the case of additional quantum information transfer, without actively updating the
auxiliary encoding. The results qualitatively match those of the classical case, with slightly better
performance overall, consistent with figure 4. In the right panel, we consider the quantum channel with
actively updated auxiliary encoding. In this case, v0 (v2) corresponds to selecting the two auxiliary targets
with the largest (smallest) values for v(a) at each decision. The performance of v0 marginally increases with
the introduction of active updates, while the performance of v2 marginally decreases. However, the random
performance increases most markedly. Here, the rapid shuffling of auxiliary qubit encoding allows the
fragments to quickly share information, leading to performance comparable to the optimal variance choice,
v0. The random, actively updated case has the added advantage of being measurement-efficient as it forgoes
any variance estimation, but the highly frequent change of auxiliary encoding may lead to an overhead in
qubit routing / swapping in order to be realized.
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Figure 5. The effect of auxiliary selection on simulation performance. The curves are the averaged results for 100 different
transverse field Ising-like Hamiltonians with h= 1.0 and the randomly generated graphs J ij described in section 3.2). Here,
N= 12 with Nf = 6 and Na = 2. The auxiliary target choices are ranked according to the size of v(a), such that the two
environment qubits with the largest v(a) are used in simulation v0, the two with the smallest v(a) are used in simulation v2, and
the remaining two auxiliary choices are used in simulation v1. Additionally, in red, we consider the case of randomly selecting two
auxiliary target qubits with no variance calculation. In the left panel (classical communication) and center panel (quantum
communication), the selection is made after one time step, and the choice remains fixed throughout evolution. In the right panel
(quantum communication), the selection is re-evaluated at each time step.

Finally, we note that in the averaged results presented in figure 5, the mean-field corrected simulation
(plotted with a dashed line) outperforms the corresponding simulation that fully neglects these interface
interactions for every case considered. Appendix B investigates the use of mean-field corrections to reduce
simulation error through a numerical study.

4. Fragmented quantum circuits

We now investigate the use of fragmentation in quantum circuit evolution. Specifically, we focus on the
fragmentation of a parameterized quantum circuit (PQC), the basic model architecture of variational
quantum algorithms with applications ranging from ground state preparation to classification and
recognition tasks [69–71]. Consider the fragmentation of a PQC of size N into multiple smaller PQCs. To
fragment a circuit, multi-qubit unitaries that act on qubits outside the Nf+a qubits devoted to a single
sub-system’s PQC are neglected. Although this resembles the first step of circuit-cutting techniques [40, 72],
no data processing is required to reconstruct the cut gates; they are simply ignored. Crucially, some auxiliary
qubits are included in each sub-system PQC, such that the full set of sub-system PQCs overlap with one
another and

∑
fNf+a > N (see figure 6). Including extra registers each fragmented circuit helps reduce the

error of the fragmentation scheme, just as the auxiliary qubits were shown to extend the accurate time
evolution of fragmented systems in the previous sections. We stress that the ensemble of fragmented circuits
is not equivalent to the full circuit; nonetheless, for finding the ground state of certain classes of models, the
linked optimization of the fragmented circuit ensemble can approach the optimal parameters of the full
circuit. In particular, we optimize the collection of fragmented circuits prior to optimizing the full circuit as a
new approach to pre-training, commonly employed to boost variational quantum algorithms [73–79].
Pre-training generally uses classical resources and can greatly increase the accuracy of a variational
algorithm’s solution, which is crucial for many applications such as reaching chemical accuracy for quantum
chemistry problems [80–82]. Our pre-training approach is motivated by the fact that the parameter
solutions of the smaller circuits are expected to be smoothly connected to the parameter solutions of the full
quantum circuit, as explored by [83]. We constrain the pre-training to use small circuits that are cheap to
simulate classically. Furthermore, employing smaller circuits limits entanglement growth, which has been
shown to improve training and avoid barren plateaus [83–88].

5. Application 2: fragment-initialized VQE

Our method of fragmenting a quantum circuit can be applied to classically pre-train quantum circuit
parameters for the VQE [47]. For this application, a PQC of size N is divided into smaller PQCs, each having
size Nf+a < N. To optimize each sub-system PQC, the mean-field-corrected Hamiltonian given in
equation (3) is minimized. In addition to facilitating the study of quantum systems and statistical physics,
mean-field methods have been introduced for data analysis and loss function modification [89–92]. In our
pre-training technique, employing mean-field terms serves to link the optimization of the separate circuits
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Figure 6. Diagram depicting how a circuit can be fragmented into a number of smaller circuits with overlapping registers,
analogous to the inclusion of auxiliary qubits. The N= 6 qubits are partitioned into three groups of two—that is, Nf = 2 for each
circuit, with q1, q2 addressed by the top PQC, q3, q4 addressed by the middle PQC, and q5, q6 addressed by the bottom PQC. Two
additional auxiliary registers are included in each small PQC, such that some of the parameterized two-qubit gates appear in
multiple PQCs. Gates that address qubits beyond the scope of one PQC are neglected by that particular circuit.

by their current mean-field measurements. Overlapping parameters (that is, parameters shared by two
fragmented PQCs) are initialized for one PQC using the most recent values from the other, further uniting
the separate circuit optimizations. The mean-field measurements are updated regularly, and optimization
halts when the steady state (up to some set precision) is reached for all parameters—those shared and those
unique to one PQC—or the maximum number of iterations is reached. The algorithm is outlined in
algorithm 1.

Algorithm 1. Fragment pre-training with mean-field corrections.

(Randomly) initialize {θi} for the brickwork section of the full PQC.
Divide {θi} into a set {θf,i} for each fragment f.

Initialize ⟨Ŝ( j)β ⟩(0) = 0.
repeat
for f in system do

θf,i=a(k)← θi=a(k) for auxiliary spins a in f.

θf,i(k+ 1)← θf,i(k)− η∇θf,i⟨H
( f )
MF⟩f.

⟨Ŝ( j)β ⟩(k+ 1)← ⟨Ŝ( j)β ⟩f(k+ 1) for system spins j ∈ f.
θj(k+ 1)← θf,j(k+ 1) for system spins j ∈ f.

end for
until Parameters {θi} converge.

5.1. Details of ansatz
We focus on pre-training brickwork circuits with a limited number of layers to constrain entanglement
growth between fragments. We note that this is analogous to restricting ourselves to short evolution times to
ensure more accurate results from a fragmented scheme. By utilizing a shallow circuit for pre-training, the
error in the output of the ensemble of fragmented circuits is kept manageable. Although a circuit ansatz with
high complexity is often necessary for interesting VQE applications in order to provide enough expressivity
to reach the ground state [93, 94], fragmentation-based pre-training is still beneficial through the use of a
layer-wise approach [95]. If a shallow brickwork circuit is placed ahead of a more expressive PQC ansatz, the
brickwork layers can first be optimized using the fragmented approach. These layers serve to bring the state
of the system to have some ground state overlap. The full circuit VQE can then be performed, initializing the
leading brickwork layers of the circuit with the pre-trained parameter values and initializing the remaining
gates of the ansatz to approximately act as identity—specifically, we choose to randomly initialize these
parameters to be small values bounded by±ε (with ε= 10−5 for our results), to balance maintaining the
optimized action of the initial layers after pre-training while avoiding training issues associated with a true
identity initialization [73, 96]. The overall circuit layout is outlined in figure 7. Although we employ a
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Figure 7. The circuit ansatz is built from Ls layers l(θ) with linear entangling gates, which are amenable to fragmentation. These
are followed by a set of LC layers l(ϕ) with an all-to-all entangling architecture. Only the brickwork layers parameterized by θi are
pre-trained using the fragmented scheme, while the layers parameterized by ϕj are employed only in the final training process.

fully-entangling architecture in the latter portion of the circuit to increase expressibility, we note that one
might limit the number of gates connecting fragments, as is explored in [97], to efficiently create a fully
distributed architecture.

5.2. Performance and analysis of fragmented pre-training
To evaluate our pre-training method, we focus on random Ising-like models. In section 5.2.1, we present the
numerical performance of the scheme for the classical case of zero transverse field (h= 0). Having
established the advantage of the approach, in section 5.2.2 we derive its success as stemming from the
mean-field corrective terms included in the loss function, which shift the global minimum of the collective
fragmented circuit to coincide with that of the full optimization problem. Finally, in section 5.2.3, we use
perturbation theory and numerical simulation to demonstrate that our approach remains beneficial for
|h|> 0, in the regime of a weak transverse field.

5.2.1. VQE results for MaxCut
We first benchmark the scheme using randomly generated classical Ising Hamiltonians, where the all-to-all
J ij interactions are sampled from a Gaussian distribution (mean µ= 0.0, width σ= 1.0) and the transverse
field h is fixed to be zero. Finding the ground state of such models can be mapped to weighted MaxCut
problems with positive and negative weights that are randomly generated [87]. The MaxCut problem is a
graph partitioning problem that is known to be NP-hard, with applications ranging from network
optimization to circuit design [98]. For the circuit ansatz, a fixed number of brickwork layers is used (Ls = 4)
to keep this portion of the circuit shallow, while the all-to-all entangling portion of the circuit is made up of
Lc = N layers. The parameterized single qubit rotations within each layer are selected to be one rotation
about x followed by one rotation about y, and the entangled gates are selected to be controlled z (CZ)
rotations. All simulations are performed numerically using PennyLane [65], using the Adam optimizer built
into PyTorch for all optimization [99, 100]. Lastly, note that parameter convergence (evaluated every 100
iterations) is used as the stopping criterion for both the fragmented circuit and full circuit optimization, with
a maximum of 5000 iterations permitted.

To assess the performance of pre-training using circuit fragmentation, the same circuit is optimized using
random initial values (referred to as ‘vanilla VQE’). In this scenario, the parameters that correspond to the
shallow, brickwork portion of the circuit are drawn from a uniform distribution ranging between [0,1). The
all-to-all entangling portion of the gate is initialized near identity, as is done for the pre-training scheme.
Figure 8 provides a case-by-case comparison between fragment-initialized VQE and vanilla VQE for 500 such
models, for circuits of up to 15 qubits. In the top panels, the final percent error ϵ= (E− E0)/|E0| (where E0
is the true ground state energy) is plotted for both approaches, along with the geometric mean of the results.
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Figure 8. Comparison between fragment pre-trained VQE and vanilla VQE for 500 different J ij matrices (graphs). The full PQC is
split into fragments with Na = 2 and at most Nf = 3 during pre-training. A total of T= 10 different partitionings are considered,
and the best pre-trained solution is used to initialize the final optimization. The final percent error ϵ is provided in the top panel,
while the required number of iterations Niter to reach convergence is provided in the bottom panel. For the fragment initialized
case, these metrics refer to the full circuit training that occurs after pre-training. Fragment pre-training reduces the geometric
mean of ϵ by orders of magnitude, even as the system size increases. Likewise, the mean number of required iterations is reduced
by nearly an order of magnitude.

The geometric mean of the fragment-initialized final error lies roughly three orders of magnitude below that
of the vanilla VQE, with this gap growing even larger with increasing system size. For the larger system sizes,
the vanilla VQE struggles to find a solution having ϵ < 10−2, while the fragment-initialized approach reaches
ϵ∼ 10−7 for the same problem Hamiltonian. Moreover, using the same stopping criterion, the
fragment-initialized VQE reaches this solution in fewer iterations (Niter), decreasing the average number by
nearly an order of magnitude, as illustrated by the bottom panels of figure 8. After successful pre-training,
the parameters of the stitched-together circuit produce a loss that is already in the neighborhood of the
minimum, so fewer iterations are required to reach convergence. We note that this corresponds to a
significant reduction in the required execution time on quantum hardware, which can be prohibitively long
to fully train a VQA [101]. For this simulation, we employ a batched optimization of T different fragmented
circuits performed in parallel. In this approach, T different circuit partitions are randomly generated, and
the resulting ensembles of fragmented circuits are optimized in parallel. The trained ensemble with lowest
error is then used to initialize the full circuit. See appendix D.1 for an in-depth description of this approach
and discussion of performance with batch size T.

5.2.2. Solving maxcut with mean-field terms
Our modification of fragmented loss functions to replace missing (that is, inaccessible) interactions with
mean-field terms is critical to the success of pre-training. We here demonstrate that when there is no
transverse field (as is the case for Ising-like Hamiltonians that map to classical graph problems), mean-field
replacement of interactions results in a ground state and ground state energy that coincide with that of the
exact Hamiltonian. This can be shown using a simple logical argument. First, it is well-established that the
ground state of a classical Ising Hamiltonian will be a computational basis state—indeed, this is why the
ground state can be mapped to the solution of a classical problem. We denote the ground state by |x∗⟩. The
ground state energy is simply a sum of the expected values of weighted ZZ interactions, taken with respect to

the computational basis state |x∗⟩: Eg =−
∑

⟨i,j⟩ Jij⟨x∗|Ŝ
(i)
z Ŝ( j)z |x∗⟩. Notice that for any computational basis

state |x⟩, the value of the expectation of a ZZ interaction exactly equals the value of the product of the

expectation of the individual Z operators; that is, ⟨x|Ŝ(i)z Ŝ( j)z |x⟩= ⟨x|Ŝ(i)z |x⟩⟨x|Ŝ( j)z |x⟩. Thus, if any weighted
interaction Jij⟨Ŝ(i)z Ŝ( j)z ⟩ is replaced by its mean-field counterpart Jij⟨Ŝ(i)z ⟩⟨Ŝ( j)z ⟩, the resultant energy is
unchanged: Eg = ⟨x∗|H|x∗⟩= ⟨x∗|HMF(|x∗⟩)|x∗⟩, where HMF is the union of the fragmented, mean-field

corrected Hamiltonians {H( f )
MF} and we have explicitly included the state dependence due to the presence of

mean-field terms. Having established this fact, we must now show that |x∗⟩ is the ground state of HMF, such

that ⟨x∗|HMF(|x∗⟩)|x∗⟩⩽ ⟨ψ |HMF(|ψ⟩)|ψ ⟩ ∀ |ψ⟩. Observe that the quantity ⟨Ŝ(i)z Ŝ( j)z ⟩ is bounded by±1/4
and equals one of these extremum values for any computational basis state. The mean-field counterpart
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⟨Ŝ(i)z ⟩⟨Ŝ( j)z ⟩ shares the same bounds; therefore, we cannot expect any state |ψ⟩ to produce a smaller energy
⟨ψ |HMF(|ψ⟩)|ψ ⟩ than |x∗⟩, the ground state of the full Hamiltonian.

The above is a central reason for the success of our fragmented training: for Ising-like models with zero
transverse field, optimizing a Hamiltonian with mean-field corrections will solve the original problem
mapped to the full Hamiltonian. Two potential error sources can arise: (1) the state produced by stitching the
optimized circuits together can differ from the output of the individual circuits, and (2) the fragmented
optimization may have limited success, e.g. by landing in a local minimum or stalling in a barren plateau. A
balance should be struck between these complications: the first error source can be mitigated by considering
larger fragments with a larger number of auxiliary qubits or possibly by limiting the number of
inter-fragment unitaries, as done in [102], while the second can be mitigated by considering smaller
fragments with fewer circuit parameters.

5.2.3. Mean-field terms as first-order perturbation corrections
We now use perturbation theory to elucidate our technique of replacing multi-qubit interactions with mean
fields when h ̸= 0. In the previous section, it is established that the ground state and ground state energy of an
Ising-like Hamiltonian with zero transverse fields remain unchanged when one or more of the interactions
are replaced by the corresponding mean-field approximation term. Following a similar argument, one can
further establish that the computational basis states are stationary states of the mean-field corrected
Hamiltonian HMF(|ψ⟩), and therefore HMF(|ψ⟩) and the unaltered Hamiltonian H share the same spectrum
and set of eigenstates (although this term is used loosely for HMF(|ψ⟩), as the dependence on |ψ⟩ causes the
stationary Schrödinger equation to deviate from a linear eigenvalue problem).

In this section, we consider adding a small transverse field to the classical Ising-like model, propelling the
problem into the quantum domain. The first-order corrections to the ground state |x∗⟩ and ground state
energy Eg are computed using perturbation theory. The case of the mean-field corrected Hamiltonian
HMF(|ψ⟩) is treated with a version of perturbation theory modified to accommodate mean-field terms, and
notably, the same first-order corrections to |x∗⟩ and Eg are recovered. For a full derivation, please refer to
appendix C.

Adding a transverse field, the unaltered Hamiltonian containing all interactions is given by:

H=H0 +HI +λV, (12)

where H0 contains the intra-fragment interactions:

H0 =−
∑
⟨i,j⟩/∈I

JijŜ
(i)
z Ŝ( j)z , (13)

HI contains the inter-fragment interactions:

HI =−
∑
⟨i,j⟩∈I

JijŜ
(i)
z Ŝ( j)z , (14)

V contains the perturbing transverse field:

V=−h
∑
i

Ŝ(i)x , (15)

and λ is a perturbation parameter. We remind the reader that the inter-fragment interactions HI are those
that will be replaced by mean-field corrections.

In contrast, the mean-field corrected Hamiltonian denoted HMF is given by:

HMF (|ψ⟩) = H0 +HI, MF (|ψ⟩)+λV, (16)

where the form of the Hamiltonian now depends on the state of the system due to the mean-field corrections:

HI, MF (|ψ⟩) =−
∑
⟨i,j⟩∈I

JijŜ
(i)
z ⟨ψ |Ŝ( j)z |ψ ⟩. (17)

Before any corrections can be computed, it is imperative to establish the correct zeroth order energies and
eigenstates for each Hamiltonian. Following perturbation theory, the zeroth order eigenstates of H and HMF

generally equal those of the unperturbed counterparts (that is, taking h= 0); these coincide with the set of
computational basis states {|x⟩}—including the unperturbed ground state, |x∗⟩. However, there are
degeneracies in the unperturbed Hamiltonians, and thus, degenerate perturbation theory is required.
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When the unperturbed spectrum contains degeneracies, the proper linear combinations of the
unperturbed eigenstates forming the degenerate subspace must be determined; these are the states that the
perturbed eigenstates approach as h→ 0. The unperturbed Ising-like model possesses Z2 symmetry.
Practically, this means that for each eigenstate |x⟩, the ‘flipped’ eigenstate |x̄⟩ :=

⊗
i Xi |xi⟩ is degenerate. For

the unaltered Ising-like model H, the proper zeroth order eigenstates for the degenerate subspace containing
the ground state are given by |±x∗⟩= 1√

2
(|x∗⟩± |x̄∗⟩). The transverse field will break the ground state

degeneracy of H, and the positive superposition |+x∗⟩ is preferred by the ground state.
Shifting attention to the mean-field corrected Hamiltonian HMF, the stationary Schrödinger equation is

no longer linear in |ψ⟩, and the linearity that characterizes quantum mechanics no longer applies. The
notion of finding proper linear combinations is not an appropriate procedure due to the problem’s
nonlinearity. In particular, superpositions of degenerate eigenstates can yield different energies for HMF and
thus effectively exist outside the degenerate subspace.

To illustrate this, consider a single mean-field factor, ⟨Ŝ(i)z ⟩, such as those within HMF. While the
expectation value of this quantity with respect to a computational basis state |x∗⟩ yields

⟨x∗|Ŝ(i)z |x∗⟩= 1

2
(−1)x

∗
i , (18)

evaluating the same term with respect to |+x∗⟩ leads to the term vanishing as

⟨+x∗ |Ŝ(i)z |+x∗⟩=
1

2

(
⟨x∗|Ŝ(i)z |x∗⟩+ ⟨x∗|Ŝ(i)z |x̄∗⟩+ ⟨x̄∗|Ŝ(i)z |x∗⟩+ ⟨x̄∗|Ŝ(i)z |x̄∗⟩

)
=

1

4

(
(−1)x

∗
i +(−1)x̄

∗
i

)
= 0.

(19)

Notably for the ground state of the unperturbed Hamiltonian |x∗⟩, this means that the pure computational
basis states |x∗⟩, |x̄∗⟩ are energetically preferred over any linear combination of them. Thus, for HMF, the
computational basis states remain the proper zeroth order eigenstates with a perturbative transverse field.

After establishing the zeroth order eigenstates and eigenenergies (|k(0)⟩ and E(0)k , respectively) of
conventional Hamiltonians such as equation (12), perturbation theory proceeds by expanding |k⟩ and E in λ
in the stationary Schrödinger equation and equating orders of λ:

(H0 +HI +λV)
(
|k(0)⟩+λ|k(1)⟩+λ2|k(2)⟩+ · · ·

)
=
(
E(0)k +λE(1)k +λ2E(2)k + · · ·

)(
|k(0)⟩+λ|k(1)⟩+λ2|k(2)⟩+ · · ·

)
.

(20)

Following this procedure for H and carefully treating the degeneracy, the first-order energy correction E(1)k

vanishes and the first-order eigenstate correction takes the form:

|k(1)⟩=
∑
m/∈Dk

⟨m(0)|V|k(0)⟩
E(0)k − E(0)m

|m(0)⟩, (21)

where Dk represents the degenerate subspace that |k(0)⟩ occupies.
To derive the analogous correction to HMF, we employ a modified approach to perturbation theory that

can accommodate the nonlinearity of the stationary Schrödinger equation. In particular, the expanded form
of |kMF⟩ is explicitly inserted into the state-dependant terms of HMF prior to equating orders of λ to compute

the corrections. Following this procedure, the first order energy correction E(1)k,MF again vanishes, and the first
order eigenstate correction takes on an identical form to that of H:

|k(1)MF⟩=
∑
m/∈Dk

⟨m(0)
MF|V|k

(0)
MF⟩

E(0)k,MF − E(0)m,MF

|m(0)
MF⟩. (22)

There is one crucial difference between equations (21) and (22): the zeroth order eigenstates |m(0)⟩ and
|m(0)

MF⟩. For the full Hamiltonian, each |m(0)⟩ has the form |±y⟩ ∝ (|y⟩± |ȳ⟩), while each |m(0)
MF⟩ is a single

computational basis state, |y⟩. This leads to the fidelity between the first order ground state

|ψg,MF⟩ ∝ |x∗⟩+ |x∗(1)MF ⟩ and that of the full Hamiltonian |ψg⟩ ∝ |+x∗⟩+ |+(1)
x∗ ⟩ to be F= 0.5 rather than

perfect unity (see appendix C.3). Nonetheless, half overlap provides significant information about the true
ground state for pre-training.
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Figure 9. Comparison between fragment pre-trained VQE (with and without mean-field corrections) and vanilla VQE
performance as a function of the transverse field strength h. Each point is the mean (geometric or arithmetic) performance of 500
different J ij matrices (graphs). The full PQC is split into fragments with Na = 2 and at most Nf = 3 during pre-training. A total of
T= 10 different partitionings are considered, and the best pre-trained solution is used to initialize the final optimization. The
mean final percent error ϵ is provided in the top panel, while the mean required number of iterations N iter to reach convergence is
provided in the bottom panel.

In figure 9, we examine the mean performance of the pre-training scheme as a function of the transverse
field strength h. The case of neglecting mean-field terms during pre-training is also considered to highlight
the vital role these corrections play at small values of h. When h= 0, the model is classical, and the global
fragmented Hamiltonian with mean-field corrections shares the same ground state and ground state energy
of the full model, as discussed in section 5.2.2. This leads to remarkable pre-training performance, even as N
is increased. The fragment initialization that neglects mean-field terms is not guaranteed to share the ground
state of the full model—in fact, the two are likely to be orthogonal. The pre-training will still feature low
entanglement, which likely explains why the mean-field free initialization scheme outperforms random
initialization, but overall, the average error exceeds that of the mean-field corrected case by orders of
magnitude, particularly as N is increased. When a small transverse field is added to the model, the half
overlap between the fragmented and full Hamiltonian ground states provided by including mean-field
corrections leads to error orders of magnitude smaller than the other approaches. Only as h is further
increased—entering the regime where first-order perturbation theory is inadequate to describe the ground
state—do the approaches begin to perform comparably, with increasing error and required iterations.

6. Conclusion

We have presented two near-term approaches to the distributed Hamiltonian evolution of a quantum system
and a pre-training technique for variational quantum circuits. Our time evolution schemes are built upon
the idea that the relative importance of interactions spanning a sub-system and its environment can be
ascertained using the principle of minimizing the short-time evolution error, which is derived to be
proportional to the quantum variance of the difference between the full and fragmented Hamiltonians. The
first scheme employs only classical information transfer in the form of mean-field measurements to update
mean-field corrections, as well as a limited number of auxiliary qubits anchored to each fragment, enabling
limited entanglement growth. Although our method is lossy, metrics local to the system qubits addressed by
a single fragment can closely mimic the true values from exact evolution, including the gold standard
comparison of state fidelity. Moreover, this scheme is flexible, as it is amenable to any mixture of classical and
quantum hardware and can process the fragments in series or parallel. In our second scheme, the
information stored by qubits designated to be auxiliaries is physically shared between fragments, either
through qubit shuttling or quantum teleportation. This approach is appropriate when quantum hardware is
available and limited quantum communication is feasible. If desired, the choice of which qubits act as
auxiliaries can be updated from one time step to the next, as dictated by the minimum error rule, to extend
the performance of the approximate scheme.

Finally, we examine how our fragmented simulation scheme can be modified to apply to quantum
circuits. Here, a single circuit is fractured into several smaller overlapping circuits, which are more
manageable (requiring lower connectivity and less prone to suffer from noise and barren plateaus) and, if
sufficiently small, even classically treatable. We devise a scheme that employs fragmented circuits to pre-train
the parameters of the full PQC. Crucially, the use of overlapping registers coupled with the mean-field
corrective terms in the loss function links the optimization of the individual circuits. The inclusion of

15



Quantum Sci. Technol. 9 (2024) 035022 A McClain Gomez et al

mean-field corrections shifts the solution of the collective circuit optimization to have a large overlap with
the solution of the full problem. We demonstrate that the pre-training scheme reduces the final percent error
by orders of magnitude as well as the number of iterations required when compared to randomly initialized
full circuit optimizations of VQE. Although the scheme’s performance is particularly strong for classical Ising
Hamiltonians, we develop a non-linear perturbation theory to analytically show that the mean-field terms
included in optimization act as first-order perturbation corrections when a small transverse field added,
extending the success of the scheme into the quantum realm.

This manuscript motivates and facilitates numerous future research directions. Although we emphasized
limited quantum information transfer, subsequent studies might explore how the number of auxiliary qubits
and the frequency of re-encoding affect distributed simulation, or devise the details of physically
implementing a limited quantum channel. Likewise, higher-order moments beyond mean-field terms may
be explored as higher-order corrections. Moreover, rather than using auxiliary qubits to target specific
environment qubits, a method of mapping salient environment states to auxiliary qubits (as employed by
some classical fragmentation methods such as DMET [57]) may further improve the method, although the
measurement-efficiency of such a technique may prove challenging in a quantum setting. Regarding
fragment pre-training for variational algorithms, future works might develop efficient circuit fragmentations
that are tailored to specific problem Hamiltonians and/or symmetries, rather than our more general, batched
approach. Finally, alternative partitioning schemes might be considered to enable pre-training of
non-brickwork circuits.

This work represents a pivotal stepping stone on the path to large-scale distributed quantum computing.
In the near term, our distributed computing method with classical channels can be implemented by a single
small simulator in sequence, or by a collection of small simulators that are either quantum or classical in
nature. This permits the simulation of large system quantum dynamics without the noise and connectivity
concerns of a large-scale quantum device [8], allowing experimentalists to address challenging problems in
quantum chemistry and condensed matter physics [103, 104]. As non-local operations on quantum
hardware improve, our proposal for limited quantum information transfer can be implemented, enabling
cross-simulator measurements and higher accuracy. Lastly, our fragmented pre-training method can reduce
the error of large-scale variational quantum algorithms by orders of magnitude while reducing the number
of training epochs. Such improvements are vital to this field, which seeks to address problems ranging
from drug discovery to NP-hard optimization on quantum hardware despite persistent training
difficulties [47, 69, 80, 105, 106].
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Appendix A. Fragmentation for time evolution

A.1. A toy model
For added clarification, here we consider a toy model of N = 6 qubits fragmented into two groups such that
Nf = 3 (see figure A1, a more explicitly labeled version of figure 1(b)). One auxiliary qubit is included for
each fragment (Na = 1). The auxiliary qubit of Fragment 1, a1, targets qubit 5 in Fragment 2. Similarly, the
auxiliary qubit of Fragment 2, a2, targets qubit 1 in Fragment 1. In the figure, the interactions mediated by
the auxiliary qubits are explicitly labeled to illustrate how each auxiliary qubit plays the role of one qubit
from the environment. Which environment qubit is selected for this role will depend on the quantum

variance var(H−H( f )
I ) (see section 2.2). The mean-field corrections applied to a1 are included in the figure

to account for the missing interactions with qubits 4 and 6 that the target qubit (qubit 5) would participate in
if all qubits were present. Although only one such arrow appears in the figure, these corrections exist for each
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Figure A1. A schematic illustrating how a system of N= 6 qubits can be split into two fragments. Lines connecting the qubits

(illustrated as atoms) indicate general spin interactions Ŝ
(i)
α Ŝ

( j)
β acting on qubits i and j, weighted by Jα,β

ij . The interactions

highlighted in red are omitted due to fragmentation; these form the ‘interface’ of the two fragments. An auxiliary qubit a interacts
with the qubits within a fragment, according to the prescribed interactions of the circled target qubit in the opposite fragment.
While, for visual clarity, this diagram only displays the mean-field corrections applied to auxiliary a1, in reality, such corrections
are applied to each qubit that participates in one or more interactions beyond the fragment boundary.

qubit participating in fewer interactions than it would in the full system, regardless of whether the qubit is
categorized as a fragment qubit or an auxiliary targeting an environment qubit.

A.2. Fragmentation error
Consider the error caused by the omission of interactions that form the interface of some particular fragment

f and the remaining environment spins E. This Hamiltonian which we denote H( f )
I is subtly different than

the previously introduced H( f ), as it includes operators acting in the space of E in order to isolate the error
caused by the section of the interaction interface produced by a particular fragment f :

H( f)
I =H( f) +H(E)

=−
∑

⟨i,j⟩/∈I

∑
α,β

Jα,βij Ŝ(i)α Ŝ( j)β −
N∑
i

hiŜ
(i)
x .

(A.1)

The fidelity of the state evolved under H( f )
I with that evolved under H is given by:

F(t) = |⟨Ψ|U† (t)U( f)
I (t) |Ψ⟩|2, (A.2)

where U(t) = exp(−iHt), U( f )
I (t) = exp(−iH( f )

I t), and |Ψ0⟩ is the current state of the system [66].

To analyze the fidelity metric, we can combine the product U†(t)U( f )
I (t) into a single exponential exp(Z).

This final exponential argument is obtained using the BCH formula [61], which provides an expression for Z

in terms of the nested commutators of the individual exponential arguments of U†(t) and U( f )
I (t):

Z= it
(
H−H( f)

I

)
+

1

2
t2
[
H,H( f)

I

]
+

1

12
t3
(
i
[
H,
[
H,H( f)

I

]]
+(−i)

[
H( f)

I ,
[
H( f)

I ,H
]])

− 1

24
t4
[
H( f)

I ,
[
H,
[
H,H( f)

I

]]]
+ · · ·

(A.3)

Notice that each subsequent term in the BCH formula has a higher order in t. To approximate the error, we
keep the terms up to small orders in t—specifically, we can write Z=

∑∞
n=1 znt

n, where the coefficients zn do
not depend on t and generally do not commute with each other, and truncate the sum after some n. We note
that the first and second order zn are given by:

z1 = i
(
H−H( f)

I

)
, (A.4)

z2 =
1

2

[
H,H( f)

I

]
. (A.5)

17



Quantum Sci. Technol. 9 (2024) 035022 A McClain Gomez et al

Taylor expanding the exponential exp(Z) to second order in t:

U† (t)U( f)
I (t) = exp

( ∞∑
n=1

znt
n

)

= 1+
∞∑
n=1

znt
n +

1

2

( ∞∑
n=1

znt
n

)2

+ · · ·

= 1+ z1t+ t2
(
z2 +

1

2
z21

)
+O

(
t3
)
.

(A.6)

The fidelity is then the modulus square of the expectation of the above expression, taken with respect to
the initial state of the full system:

F(t)≈
∣∣1+ ⟨z1⟩t+ t2

(
⟨z2⟩+

1

2
⟨z21⟩
)∣∣2

= 1+ t(⟨z1⟩+ ⟨z1⟩∗)+ t2
(
|⟨z1⟩|2 + ⟨z2⟩+ ⟨z2⟩∗ +

1

2
⟨z21⟩+

1

2
⟨z21⟩∗

)
+O

(
t3
)
.

(A.7)

Plugging in the expressions for z1 and z2:

F(t)≈ 1+ t
(
i
〈
H−H( f)

I

〉
− i
〈
H−H( f)

I

〉∗)
+ t2

(
|
〈
H−H( f)

I

〉
|2 + 1

2

〈[
H,H( f)

I

]〉
+

1

2

〈[
H,H( f)

I

]〉∗
+ (i)2

1

2

〈(
H−H( f)

I

)2〉
+(−i)2

1

2

〈(
H−H( f)

I

)2〉∗)
. (A.8)

Notice that, as both H and H( f )
I are Hermitian, ⟨H−H( f )

I ⟩∗ = ⟨H⟩∗ −⟨H( f )
I ⟩∗ = ⟨H⟩− ⟨H( f )

I ⟩. Thus, the
terms first order in t cancel with one another. The second-order terms can be simplified by expanding them:

F(t)≈ 1+ t2
(
|
〈
H−H( f)

I

〉
|2 + 1

2

(〈
HH( f)

I

〉
−
〈
H( f)

I H
〉)

+
1

2

(〈
HH( f)

I

〉∗
−
〈
H( f)

I H
〉∗)

−1

2

(
⟨H2⟩−

〈
HH( f)

I

〉
−⟨HIfH⟩+

〈(
H( f)

I

)2〉)
− 1

2

(
⟨H2⟩∗ −

〈
HH( f)

I

〉∗
−
〈
H( f)

I H
〉∗

+

〈(
H( f)

I

)2〉∗))
.

(A.9)

Using the fact that ⟨AB⟩∗ = ⟨B†A†⟩ to simplify, we arrive at a compact expression for the fidelity to second
order in t:

F(t) = 1+ t2
(
|
〈
H−H( f)

I

〉
|2 −

〈(
H−H( f)

I

)2〉)
+O

(
t3
)

≈ 1− var
(
H−H( f)

I

)
t2.

(A.10)

The error ϵ(t) = 1− F(t) is thus given by var(H−H( f )
I )t2 for short times t.

A.3. Numerical simulation of a quantum channel
When simulators are linked via a quantum channel, the states of the fragments no longer live in separate
Hilbert spaces; they comprise the state of the collective system, which lives in the larger Hilbert space of size
2N . To simulate this numerically, we evolve a modified Hamiltonian that lives in the full Hilbert space. This
Hamiltonian involves adjusted connectivity matrices Jαβij to match the connectivity provided by the current
auxiliary encoding. That is, defining a set Sf for each fragment containing the list of fragment qubits and
target qubits for auxiliaries of fragment f :

Sf = {i ∈ f}∪
{
af
}
, (A.11)

we implement the union of connectivity matrices ∪fJ
αβ,( f )
ij for each αβ interaction type, defined by:

Jαβ,( f)ij =

{
Jαβij if i, j ∈ Sf

0 otherwise.
(A.12)
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Figure A2. Nearest neighbor Heisenberg model with constant J= 1.0. N= 12 qubits are split into two fragments, and the fidelity
between the fragment qubits’ state and the exactly evolved system is plotted for various numbers of auxiliary qubits, with (dashed
lines) and without (solid lines) mean-field corrections. The fidelity is averaged over 100 random computational basis initial states.
Performance progressively increases with increasing Na and the addition of mean-field corrections.

Any interactions still zeroed in the union ∪fJ
αβ,( f )
ij are approximately included via mean-field corrections. If

the auxiliary encoding is updated, the union ∪fJ
αβ,( f )
ij will change due to the change in selected auxiliaries

{af} of each fragment.

A.4. Fragmented simulation of a Heisenberg model
In this section, we report results for the time simulation of the Heisenberg model. We consider a 1D
Heisenberg model with uniform coupling J, governed by the following Hamiltonian:

HHeis =−J
∑

⟨i,j⟩∈n.n.

(
Ŝ(i)x Ŝ( j)x + Ŝ(i)y Ŝ( j)y + Ŝ(i)z Ŝ( j)z

)
. (A.13)

Note that this model features significantly larger interaction as compared to the Ising model previously
considered. To adjust for this increased interaction, we modify the effective simulation time to be

√
3J2t.

Figure A2, presents the fragment fidelity for the fragmented evolution of the Heisenberg model. Repeating
the setup of figure 2(a), we split a system of 12 qubits into 2 fragments and evolve the system with different
numbers of auxiliary qubits, both with and without mean-field corrections. The results provided are averaged
over 100 different initial states, sampled from computational basis states. The general trend again matches
that of figure 2(a), with progressively better performance for larger Na. However, we note that the mean-field
corrections provide less benefit due to the increased interaction likely leading to a more entangled structure
that cannot be mimicked by mean-field corrections. This concept is explored further in appendix B.

Appendix B.Whenmean-field corrections are beneficial to time evolution

In this appendix, we numerically investigate the role of mean-field corrections in time evolution, showing
that for the majority of distributed states, mean-field corrections reduce the fragmentation error. The second

order fragmentation error is derived in the main text to be the variance of the difference between H and H( f )
I

(see equation (6)). In this appendix, we will denote this quantity by V. If we include mean-field corrections
in the fragmented Hamiltonian, the second order fragmentation error can be amended to include additional
terms:

VMF := var
(
H−H( f)

I, MF

)
= var

−
∑
⟨i,j⟩∈I

∑
α,β

Jα,βij Ŝ(i)α

(
Ŝ( j)β −⟨Ŝ( j)β ⟩

) . (B.1)

The improved performance due to mean-field corrections present in the results of the main text can be
attributed to the fact that in those scenarios, VMF < V on average, such that the error is decreased. However,
situations can arise where VMF > V. In what follows, we show that these situations generally occur when the
qubits spanning the interface are significantly entangled with one another.
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To gain insight into when mean-field corrections are beneficial, consider two fragments each containing a
single qubit. The qubits interact according to a quantum Ising-like Hamiltonian, with J12 = 4 such that

J12Ŝ
(1)
z Ŝ(2)z reduces to Pauli operators σ̂(1)

z σ̂
(2)
z . The interface of the fragments is comprised of the single J12

linking the two qubits of the system. To explore the possible values of V−VMF, we randomly 10 000
two-qubit states |ψ⟩ from the Haar measure. A general two-qubit state can be written as:

|ψ⟩= c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩, (B.2)

where the complex coefficients cij are properly normalized. For each |ψ⟩, the variance difference V−VMF is
computed (recall that a positive V−VMF implies that mean-field corrections have reduced the simulation
error). We additionally compute the concurrence to measure the entanglement between qubit 1 and qubit 2.
The concurrence is defined to be [107]:

C(|ψ⟩) = 2|c00c11 − c01c10|, (B.3)

where C(|ψ⟩) = 0 for any pure state |ψ⟩, and C(|ψ⟩)monotonically increases with entanglement to a
maximum value of C(|ψ⟩) = 1 (e.g. for a maximally entangled Bell pair). The results are plotted in light
green in figure B1. The scattered data falls within a closed area, with V−VMF dropping below zero for
concurrence 0< C(|ψ⟩)< 1. The difference V−VMF is also bounded between−0.25 and 1, reaching its
maximum positive value for product states (where C(|ψ⟩)).

To understand the features of a state that extremizes V−VMF, we probe the boundaries of the envelope of
possible states by examining parameterized two-qubit states. The specific parameterized states discussed in
the following paragraphs are meant to be representative of the form of the states that lie on the edge of the
closed area in figure B1, but generally, many possible two-qubit states will produce identical values of
(C(|ψ⟩),V−VMF).

First, we consider a parameterized state |ψ(α)⟩ that smoothly approaches the Bell state
|Φ+⟩= 1/

√
2(|00⟩+ |11⟩):

|ψ (α)⟩ :=
√
α|00⟩+

√
1−α|11⟩. (B.4)

When α= 0, the resulting state |11⟩ is a product state with zero concurrence. Furthermore, |11⟩ is
computational basis state with V= VMF = 0. As α approaches 1/2, the concurrence increases, reaching a
maximum value. The variance difference, on the other hand, decreases to take on negative values—see the
left panel of figure B2. Thus, it is states with structured entanglement such as |ψ(α)⟩ which will not benefit
from mean-field corrections. Plotting V−VMF versus the concurrence of |ψ(α)⟩ in figure B1, we see that this
set of states lies on the lower boundary of the envelope of possible values.

Secondly, we consider the two-qubit state produced by rotating qubit 1 of the state |00⟩ about x by an
angle θ:

|ψ (θ)⟩ := cos(θ/2)|00⟩− i sin(θ/2)|10⟩. (B.5)

The resulting state will always be a product state with zero concurrence; however, the variance difference will
depend on θ. Sweeping across θ (see the middle panel of figure B2), we see that V−VMF grows as θ is
increased. A state of this kind lies on the left boundary of the envelope (see figure B1).

Finally, we consider a state that lies on the top boundary of the envelope, with positive values for both the
variance difference and the concurrence. We parameterize this by interpolating between a product state with
maximum V−VMF and a state with maximum concurrence while avoiding a Bell state, which is known to lie
on the lower boundary:

|ψ (β)⟩ := 1√
2+ 2β2

(|00⟩+β|01⟩− |10⟩+β|11⟩) . (B.6)

The right panel of figure B2 reveals that V−VMF and C(|ψ(β)⟩) remain non-negative as β is varied. Again,
plotting V−VMF versus the concurrence of |ψ(β)⟩ in figure B1 reveals that such a state indeed lies at the top
boundary of the envelope.

In the time evolution applications considered in the main text, all initial states are computational basis
states. It is thus unlikely that the state evolves into one with large entanglement across the interface with the
particular structure required to produce a negative value of V−VMF. This is why, on average, including
mean-field corrections enhances the performance of the scheme. More generally, we expect that in practical
situations where fragmentation is employed, it is unlikely that highly structured entanglement will form
across a fragment interface through evolution. Therefore, it is reasonable to expect that mean-field
corrections will still improve performance in general applications.
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Figure B1. Variance difference V−VMF versus concurrence C(|ψ⟩) for 10 000 two-qubit states |ψ⟩ randomly generated from the
Haar measure. These quantities for specific parameterized states |ψ(α)⟩, |ψ(θ)⟩, and |ψ(β)⟩ (defined in equations (B.4)–(B.6))

are plotted in separate colors. To calculate the variance difference, a single interaction σ̂
(1)
z σ̂

(2)
z is considered.

Figure B2. Variance difference V−VMF (left axis) and concurrence C(|ψ⟩) (right axis) plotted versus a state parameter for specific
parameterized two-qubit states, specified by the subplot title. The parameterized states are defined in equations (B.4)–(B.6).

Appendix C. Adding a perturbative transverse field to the ising model

Consider perturbing an Ising-like Hamiltonian with a small transverse field h. We will first derive how the
perturbation shifts the ground state energy and the corresponding eigenstate for the case of an unperturbed
Hamiltonian containing all Ising-like interactions. Then, we will derive the shifts for the unconventional
situation where certain interactions within the Hamiltonian are replaced by mean-field corrective terms.
Understanding how these cases differ from each other will illuminate how the ground state solution of a
mean-field corrected Hamiltonian strays from that of the full Hamiltonian as h grows, rendering the
Ising-like model increasingly quantum.

We write down the Hamiltonian containing all interactions as:

H=H0 +HI +λV, (C.1)

where H0 contains the intra-fragment interactions:

H0 =−
∑
⟨i,j⟩/∈I

JijŜ
(i)
z Ŝ( j)z , (C.2)

HI contains the inter-fragment interactions:

HI =−
∑
⟨i,j⟩∈I

JijŜ
(i)
z Ŝ( j)z , (C.3)

V contains the perturbing transverse field:

V=−h
∑
i

Ŝ(i)x , (C.4)
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and λ is a perturbation parameter. We explicitly separate the interactions that will be replaced by mean-field
corrections; these terms comprise HI.

In contrast, the mean-field corrected Hamiltonian denoted HMF is given by:

HMF (|ψ⟩) = H0 +HI, MF (|ψ⟩)+λV, (C.5)

where the form of the Hamiltonian now depends on the state of the system due to the mean-field corrections:

HI, MF (|ψ⟩) =−
∑
⟨i,j⟩∈I

Jijσ
(i)
z ⟨ψ |σ( j)

z |ψ ⟩. (C.6)

This state-dependence must be taken into account when applying perturbation theory.

C.1. Perturbing the full Hamiltonian
In this section, we follow the degenerate perturbation theory procedure outlined in [56]. When all
interactions are included, the unperturbed Hamiltonian is given by the sum of H0 and HI. The
eigendecomposition of this operator defines the zeroth order eigenenergies and eigenstates:

H0 +HI =
∑
k

E(0)k |k(0)⟩⟨k(0)|. (C.7)

The unperturbed Hamiltonian is classical, with computational basis states for eigenstates. It also possesses Z2

symmetry, such that each eigenstate |x⟩ and its ‘flipped’ version |x̄⟩ are degenerate, including the ground state
|x∗⟩. It is necessary to find the correct linear combinations of the degenerate states to properly calculate the
higher order corrections. Typically, this is accomplished by diagonalizing the perturbing Hamiltonian V in
the subspace of degenerate eigenstates, which yields the proper zeroth order eigenstates as well as the first

order energy corrections, {E(1)k }. The particular V of this problem—a global transverse field—vanishes in

the subspace of |x⟩, |x̄⟩, requiring the first order energy corrections {E(1)k } to vanish but providing no insight
into the correct zeroth order eigenstates.

To calculate the first order eigenstate corrections, the correction is split into one within the degenerate
space Dk and one in the space outside Dk, which we define as D̄k. For the latter correction, we have:

PD̄k
|k(1)⟩=

∑
m/∈Dk

⟨m(0)|V|k(0)⟩
E(0)k − E(0)m

|m(0)⟩, (C.8)

where PD̄k
is the projects out the degenerate subspace. Following [56], the correction within the degenerate

subspace is given by:

PDk |k(1)⟩=
∑

k ′∈Dk,
k ′ ̸=k

PDk |k ′(0)⟩
E(1)k − E(1)k ′

⟨k ′(0)|VPD̄k

1

E(0)k −H0 −HI

PD̄k
V|k(0)⟩. (C.9)

The first order energy difference in the denominator of the first fraction of this expression is singular,
because the degeneracy within Dk has not been lifted by the first order energy correction. However, this
apparent issue provides us with the correct zeroth order eigenstates required to cancel the singular

denominator: {|k(0)⟩}must be selected to diagonalize the objectW := VPD̄k
(E(0)k −H0 −HI)

−1PD̄k
V within

the subspace of degenerate states, such that the quantity ⟨k ′(0)|W|k(0)⟩ vanishes for all k ′ ̸= k within Dk.
With this choice for {|k(0)⟩}, the first order eigenstate correction within the degenerate space vanishes, and
the full first order eigenstate correction takes the form:

|k(1)⟩=
∑
m/∈Dk

⟨m(0)|V|k(0)⟩
E(0)k − E(0)m

|m(0)⟩. (C.10)

One can show that ⟨x|W|x⟩= ⟨x|W|x̄⟩= ⟨x̄|W|x⟩= ⟨x̄|W|x̄⟩ using the Z2 symmetry of the unperturbed
Hamiltonian. Thus, the correct zeroth order eigenstates are the symmetric and antisymmetric superpositions
of |x⟩ and |x̄⟩, given by |±x⟩= (1/

√
2)(|x⟩± |x̄⟩).
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C.2. Perturbing the mean-field corrected Hamiltonian
Throughout this derivation, we will take advantage of the particular form of HI, MF(|ψ⟩) to make
simplifications.

Consider a modified Schrödinger equation that takes into account the state-dependence of HMF(|ψ⟩):

(H0 +HI, MF (|kMF⟩)+λV) |kMF⟩= Ek,MF|kMF⟩. (C.11)

In conventional perturbation theory, the eigenstates and eigenvalues (|kMF⟩ and Ek,MF, respectively) are

expanded about their unperturbed counterparts, |k(0)MF⟩ and E(0)k,MF. However, the modified Schrödinger
equation written above is no longer an eigenvalue problem; the dependence on |kMF⟩ is non-linear. In the
spirit of conventional perturbation theory, we will proceed in the usual manner, taking special care to include
the non-linearity. Expanding |kMF⟩ and Ek,MF in orders of λ:

|kMF⟩= |k(0)MF⟩+λ|k(1)MF⟩+λ2|k(2)MF⟩+ · · · , (C.12)

Ek,MF = E(0)k,MF +λE(1)k,MF +λ2E(2)k,MF + · · · . (C.13)

Replacing |kMF⟩ and Ek,MF in the modified Schrödinger equation:(
H0 +HI, MF

(
|k(0)MF⟩+λ|k(1)MF⟩+λ2|k(2)MF⟩+ · · ·

)
+λV

)(
|k(0)MF⟩+λ|k(1)MF⟩+λ2|k(2)MF⟩+ · · ·

)
=
(
E(0)k,MF +λE(1)k,MF +λ2E(2)k,MF + · · ·

)(
|k(0)MF⟩+λ|k(1)MF⟩+λ2|k(2)MF⟩+ · · ·

)
.

Now, we can isolate and equate the various orders of λ to calculate the perturbations. If we first consider the
zeroth order, we recover the unperturbed spectrum:(

H0 +HI, MF

(
|k(0)MF⟩

))
|k(0)MF⟩= E(0)k,MF|k

(0)
MF⟩. (C.14)

Moving to higher orders, it is helpful to write the explicit form of HI, MF(|ψ⟩) to properly count the orders of
λ. The first order terms take the form:

H0|k(1)MF⟩+V|k(0)MF⟩−
∑
⟨i,j⟩∈I

Jij
(
σ(i)
z ⟨k(0)MF|σ

( j)
z |k(0)MF⟩

)
|k(1)MF⟩

−
∑
⟨i,j⟩∈I

Jij
(
σ(i)
z ⟨k(1)MF|σ

( j)
z |k(0)MF⟩+σ(i)

z ⟨k(0)MF|σ
( j)
z |k(1)MF⟩

)
|k(0)MF⟩

= E(0)k,MF|k
(1)
MF⟩+ E(1)k,MF|k

(0)
MF⟩.

(C.15)

The operators σ( j)
z are diagonal in the computational basis {|k(0)MF⟩}. By definition, corrections to |k

(0)
MF⟩ such

as |k(1)MF⟩ will be orthogonal to |k
(0)
MF⟩; therefore, terms of the form ⟨k(1)MF|σ

( j)
z |k(0)MF⟩ will vanish. The first order

equation thus simplifies to:

H0|k(1)MF⟩+V|k(0)MF⟩−
∑
⟨i,j⟩∈I

Jij
(
σ(i)
z ⟨k(0)MF|σ

( j)
z |k(0)MF⟩

)
|k(1)MF⟩= E(0)k,MF|k

(1)
MF⟩+ E(1)k,MF|k

(0)
MF⟩. (C.16)

To determine the first order energy shift, we project the above equation with the unperturbed eigenstate

⟨k(0)MF|:

⟨k(0)MF|H0|k(1)MF⟩+ ⟨k(0)MF|V|k
(0)
MF⟩−

∑
⟨i,j⟩∈I

Jij⟨k(0)MF|σ
(i)
z |k(1)MF⟩⟨k

(0)
MF|σ

( j)
z |k(0)MF⟩

= E(0)k,MF⟨k
(0)
MF|k

(1)
MF⟩+ E(1)k,MF⟨k

(0)
MF|k

(0)
MF⟩.

(C.17)

The terms originating from HI, MF(|ψ⟩) as well as the first term on the right-hand side of the equation will

vanish due to the previously discussed fact that |k(1)MF⟩ will be orthogonal to |k
(0)
MF⟩. Let us examine the first

term on the left-hand side, making use of the definition of the unperturbed spectrum:

⟨k(0)MF|H0|k(1)MF⟩= ⟨k(0)MF|E
(0)
k,MF −HI, MF

(
|k0MF⟩

)
|k(1)MF⟩

= E(0)k,MF⟨k
(0)
MF|k

(1)
MF⟩+

∑
⟨i,j⟩∈I

Jij⟨k(0)MF|σ
(i)
z |k(1)MF⟩⟨k

(0)
MF|σ

( j)
z |k(0)MF⟩

= 0.
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Thus, this term vanishes for the same reason, and the first order energy shift from conventional perturbation
theory is recovered:

E(1)k,MF = ⟨k(0)MF|V|k
(0)
MF⟩. (C.18)

Of course, this energy correction vanishes for all k, in the same way that the first order energy shift of the full
Hamiltonian vanishes.

To determine the first order eigenstate shift |k(1)MF⟩, we project the first order equation given in

equation (C.15) with the unperturbed eigenstate ⟨m(0)
MF|, wherem ̸= k:

⟨m(0)
MF|H0|k(1)MF⟩+ ⟨m(0)

MF|V|k
(0)
MF⟩−

∑
⟨i,j⟩∈I

Jij⟨m(0)
MF|σ

(i)
z |k(1)MF⟩⟨k

(0)
MF|σ

( j)
z |k(0)MF⟩

= E(0)k,MF⟨m
(0)
MF|k

(1)
MF⟩+ E(1)k,MF⟨m

(0)
MF|k

(0)
MF⟩.

(C.19)

The only term guaranteed to vanish is the second term on the right-hand side, as ⟨m(0)
MF|k

(0)
MF⟩= 0 form ̸= k.

The term ⟨m(0)
MF|H0|k(1)MF⟩ can also be simplified, with careful attention to the definition of the zeroth order

energy E(0)m,MF:

⟨m(0)
MF|H0|k(1)MF⟩= ⟨m(0)

MF|E
(0)
m,MF −HI, MF

(
|k0MF⟩

)
|k(1)MF⟩

= E(0)m,MF⟨m
(0)
MF|k

(1)
MF⟩+

∑
⟨i,j⟩∈I

Jij⟨m(0)
MF|σ

(i)
z |k(1)MF⟩⟨k

(0)
MF|σ

( j)
z |k(0)MF⟩.

(C.20)

Notice that the mean-field terms in the expression above precisely cancel with the mean-field terms
remaining in equation (C.19). Simplifying:

⟨m(0)
MF|V|k

(0)
MF⟩=

(
E(0)k,MF − E(0)m,MF

)
⟨m(0)|k(1)⟩. (C.21)

Therefore, the first order correction to the eigenstate is identical to that of the full Hamiltonian with no
mean-field corrections:

|k(1)MF⟩=
∑
m

|m(0)
MF⟩⟨m

(0)
MF|k

(1)
MF⟩

=
∑
m/∈Dk

|m(0)
MF⟩

⟨m(0)
MF|V|k

(0)
MF⟩

E(0)k,MF − E(0)m,MF

.
(C.22)

C.3. First order eigenstate overlap
In this section, we derive the overlap between an eigenstate of an Ising-like Hamiltonian H with a small
transverse field and the corresponding eigenstate of a mean-field corrected version of the Hamiltonian, HMF,
to leading order in perturbation theory. This overlap is approximately correct as long as the strength of the
transverse field |h| is small enough that first order perturbation theory is a good description of the
eigenstates.

To first order, an eigenstate of each Hamiltonian is given by:

|ψk⟩=N
(
|k(0)⟩+ |k(1)⟩

)
, (C.23)

|ψk,MF⟩=NMF

(
|k(0)MF⟩+ |k(1)MF⟩

)
, (C.24)

whereN ,NMF are normalization factors. The zeroth order eigenstates are normalized by definition, so
re-normalization is required when any higher order corrections are included.

The overlap between the two states is given by their inner product:

⟨ψk|ψk,MF⟩=N ∗NMF

(
⟨k(0)|k(0)MF⟩+ ⟨k(1)|k(1)MF⟩

)
, (C.25)

where the cross-terms ⟨k(1)|k(0)MF⟩, ⟨k(0)|k
(1)
MF⟩ have been dropped due to the fact that the first order corrections

|k(1)⟩, |k(1)MF⟩ lie outside the degenerate subspace of their corresponding zeroth order states |k(0)⟩ and |k(0)MF⟩,
which both live in the same degenerate subspace Dk.

24



Quantum Sci. Technol. 9 (2024) 035022 A McClain Gomez et al

As argued in previous sections, the zeroth order eigenstates |k(0)MF⟩ are computational basis states |x⟩, while
the zeroth order eigenstates |k(0)⟩ are superpositions of two computational basis states related by Z2

symmetry, |±x⟩= (1/
√
2)(|x⟩± |x̄⟩). Without loss of generality, we will assume |k(0)⟩ is the positive

superposition |+x⟩, as is the case for the ground state given our conventions. The overlap between zeroth

order eigenstates follows directly from these definitions: ⟨k(0)|k(0)MF⟩= 1√
2
.

To find the overlap between first order corrections, we rewrite these corrections as a sum over degenerate
subspaces Dm rather than over zeroth order eigenstates. This is possible because of the Z2 symmetry of each
Hamiltonian, allowing the full set of eigenstates to be split into degenerate pairs.

First, we consider |k(1)⟩. The correction can be expressed abstractly as a weighted sum over states within
each degenerate subspace Dm:

|k(1)⟩=
∑

Dm ̸=Dk

c(m,k) |Dm⟩

=
∑

Dy ̸=Dx

c(y,x) |Dy⟩.
(C.26)

In the second line, the labels are changed to explicitly highlight the relationship to computational basis states
x,y. Using the previous definition in equation (21):

c(y,x) |Dy⟩=
1

∆Ex,y

(
⟨+y|V|+x⟩|+y⟩+ ⟨−y|V|+x⟩|−y⟩

)
=

1

∆Ex,y

[
1

2

(
Vyx +Vyx̄ +Vȳx +Vȳx̄

)
|+y⟩+

1

2

(
Vyx +Vyx̄ −Vȳx −Vȳx̄

)
|−y⟩

]
=

1

∆Ex,y

(
Vyx +Vyx̄

)
|+y⟩,

(C.27)

where∆Ex,y is the energy difference between Dx and Dy, and Vxy = ⟨x|V|y⟩ is an element of the matrix V in
the computational basis. We have made use of properties of V (namely, Vyx = Vȳx̄ and Vyx̄ = Vȳx) to simplify.

Rewriting |k(1)MF⟩:

|k(1)MF⟩=
∑

Dm ̸=Dk

cMF (m,k) |Dm,MF⟩

=
∑

Dy ̸=Dx

cMF (y,x) |Dy,MF⟩.
(C.28)

The differing zeroth order states leads to a different expression for the weighted sum:

cMF (y,x) |Dy,MF⟩=
1

∆Ex,y
(⟨y|V|x⟩|y⟩+ ⟨ȳ|V|x⟩|ȳ⟩)

=
1

∆Ex,y

(
Vyx|y⟩+Vȳx|ȳ⟩

)
.

(C.29)

The inner product between first order corrections is now straightforward:

⟨k(1)|k(1)MF⟩=
∑

Dy ̸=Dx

c∗ (y,x) cMF (y,x)⟨Dy|Dy,MF⟩

=
∑

Dy ̸=Dx

1(
∆Ex,y

)2 ⟨+y|
(
Vyx +Vyx̄

)(
Vyx|y⟩+Vȳx|ȳ⟩

)
=

1√
2

∑
Dy ̸=Dx

1(
∆Ex,y

)2 (Vyx +Vyx̄

)2
=

1√
2
⟨k(1)|k(1)⟩.

(C.30)

Finally, the overlap between eigenstates to first order is given by:

⟨ψk|ψk,MF⟩=
1√
2
N ∗NMF

(
⟨k(0)|k(0)⟩+ ⟨k(1)|k(1)⟩

)
=

1√
2

NMF

N
.

(C.31)
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Figure C1. Ising-like model of N= 6 with all-to-all J ij sampled from a Gaussian distribution centered at zero with width 1.0.
Sweeping across transverse field strength h, the ground state |ψg⟩ is computed using exact diagonalization of H. Fidelity is plotted

between |ψg⟩ and the minimum energy state of H( f ) (light green), the minimum energy state of H
( f )
MF (dark teal), ground state

first order perturbation theory for H (black), and ground state first order perturbation theory for H
( f )
MF (red).

Consider the form of the normalization coefficientN andNMF:

N =

√
1

1+ ⟨k(1)|k(1)⟩

=

√
1

1+
∑

Dy ̸=Dx

(
Vyx +Vyx̄

)2
/
(
∆Ex,y

)2 (C.32)

NMF =

√
1

1+ ⟨k(1)MF|k
(1)
MF⟩

=

√
1

1+
∑

Dy ̸=Dx

(
|Vyx|2 + |Vyx̄|2

)
/
(
∆Ex,y

)2 . (C.33)

In the computational basis, the matrix elements of the perturbing transverse field V are real and all have the
same sign (with the sign depending on the sign of h). Thus, any product of two matrix elements will be a
positive number or zero. Likewise, the squared energy difference (∆Ex,y)2 is positive. The denominator ofN
contains two additional factors from the cross-terms of

(
Vyx +Vyx̄

)2
that do not appear inNMF; however,

these cross-terms vanish as only Vyx or Vyx̄ can be nonzero for the same y. It follows thatNMF =N , and:

⟨ψk|ψk,MF⟩=
1√
2
. (C.34)

These results are evaluated numerically for a small system in figure C1. Here, we consider N = 6 qubits
split into two fragments with Nf = 3. The qubits interact all-to-all, with J ij drawn from a Gaussian
distribution centered at zero with width 1.0. Three Hamiltonians are considered: the full Hamiltonian H, the
fragmented Hamiltonian H( f ) which neglects all interactions crossing the fragment interface, and finally the

mean-field corrected Hamiltonian H( f )
MF , which replaces interface interactions by mean-field terms. Sweeping

across the transverse field strength h, the minimum energy state is calculated and compared to the ground

state of H, |ψg⟩. To calculate the minimum energy state of H( f )
MF (which is state dependent and thus cannot be

computed by solving a linear eigenvalue problem), we perform gradient descent directly on the state vector,

minimizing the energy cost. Additionally, the ground states ofH andH( f )
MF are approximately computed using

first order perturbation theory.

As predicted, the minimum energy state of H( f )
MF has fidelity equal to 0.5 with |ψg⟩ for small h. As h is

increased beyond 0.25, the system enters a regime where first order perturbation theory is no longer
sufficient to describe the state. Finally, we note that for small h, the minimum energy state of H( f ) has
negligible overlap with |ψg⟩: when J ij interactions are totally neglected, it is unlikely that the same |x∗⟩ will
minimize the energy.
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Figure D1. The geometric average of the final error as a function of batch size T. The results are presented for batch sizes T
ranging from 1 to 20, with color indicating the number of qubitsN in the full system. As a comparison, the results for vanilla VQE
are plotted as dashed lines. The data for T< 10 is fit to a power law (with fitting parameters A and n), and the fit for each system
size N given by a dotted line. Increasing T reduces the geometric mean of the final percent error, but even a single, fragmented
pre-trained solution (T= 1) provides an order of magnitude reduction in averaged error or more.

Appendix D. Batched pre-training

We employ a batched approach to increase the probability of successful pre-training a PQC. To set up a single
pre-training attempt, the full PQC is randomly split into fragments with at most Nf = 3 and two auxiliary
registers, producing fragmented circuits of size Nf+a = 5 or smaller, which can comfortably be optimized
using classical resources. To produce the pre-trained results presented in figures 8 and 9, a number T= 10 of
such partitioned circuits are generated for the same problem Hamiltonian and optimized in parallel
according to algorithm 1. After their initial optimization, the loss associated with each of the T sets of
pre-trained parameters is estimated for the full circuit. This requires T additional loss measurements, a
modest overhead when the value T is kept small relative to the required number of iterations. The set of
pre-trained parameters producing the smallest loss is selected as the initial starting point for the full circuit
optimization.

It is worth mentioning that for large problem Hamiltonians treated using quantum resources, the
batched optimization of fragmented circuits can be done classically in parallel prior to using the quantum
hardware. Only after pre-training would it be necessary to use the quantum hardware in order to estimate the
loss of the pre-trained parameters. The role of batch size T in optimization success is explored numerically in
appendix D.1.

D.1. The dependence of VQE performance on batch size
The role of batch size T is explored in figure D1. Here, we consider the geometric average of the final error
after fragmented pre-training, contrasting the results to those of vanilla VQE (which utilizes a combination
of random and near identity initialization for brickwork and all-to-all layers, respectively) plotted as dashed
lines. On average, even pre-training a single set of fragmented circuits reduces the final error by an order of
magnitude or more. The performance gain due to fragmented pre-training grows even larger as T is
increased, and notably, the amount of error reduction grows with system size. These results indicate that
increasing the batch size T will continue to reduce the error on average. In general, larger batch sizes are
necessary to produce the same average error as the system size is increased. This can be understood by the
fact that the number of possible ways to partition the system can increase with N, although exact scaling
depends heavily on how the fragmentation is constrained. Empirically, the scaling of averaged final error is
piece-wise. For small T, the scaling decays according to a power law; the data for T< 10 is fit to a power law
and the resulting fit is provided by the dotted lines in figure D1. At roughly T= 10, the averaged error begins
to plateau, and increasing T beyond 10 provides diminishing returns.
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