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Anomalous tumbling of colloidal ellipsoids in Poiseuille flows
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Shear flows cause aspherical colloidal particles to tumble so that their orientations trace out complex trajecto-

ries known as Jeffery orbits. The Jeffery orbit of a prolate ellipsoid is predicted to align the particle’s principal

axis preferentially in the plane transverse to the axis of shear. Holographic microscopy measurements reveal

instead that colloidal ellipsoids’ trajectories in Poiseuille flows strongly favor an orientation inclined by roughly

π/8 relative to this plane. This anomalous observation is consistent with at least two previous reports of colloidal

rods and dimers of colloidal spheres in Poiseuille flow and therefore appears to be a generic, yet unexplained

feature of colloidal transport at low Reynolds numbers.
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I. INTRODUCTION

Dispersions of aspherical colloidal particles flow differ-

ently than dispersions of spheres because shear forces cause

aspherical particles to tumble [1,2] and tumbling influences

interparticle interactions [3]. How shear-mediated tumbling

affects colloidal transport has ramifications for such diverse

application areas as filtration [4], drug delivery [5], and food

processing [6]. Tumbling also influences the behavior of ac-

tive particles that propel themselves through shear flows,

including motile bacteria and artificial swimmers [7–10]. De-

spite more than a century of study, the kinematics of colloidal

tumbling are incompletely understood, even for comparatively

simple particle shapes and flow profiles, and even when iner-

tial and viscoelastic effects may be ignored.

The present study uses holographic video microscopy to

explore anomalous tumbling of axisymmetric ellipsoids in

simple shear flows. Such particles are predicted [1,2,11]

to align preferentially in the plane transverse to the shear

direction. Recent experimental studies, however, show that

colloidal rods [12] and bound pairs of colloidal spheres [13]

tend instead to be inclined at θ ≈ π/8 relative to the pre-

dicted plane when they are entrained in plane Poiseuille flows.

Here, we show that prolate colloidal ellipsoids also tend to be

anomalously inclined in steady Poiseuille flows, in quantita-

tive agreement with previous experimental studies [12,13] and

in qualitative disagreement with theoretical predictions.

II. JEFFERY ORBITS IN POISEUILLE FLOWS

Figure 1 schematically depicts the system used for this

study. A nonaqueous dispersion of colloidal ellipsoids is trans-

ported down a rectangular channel by a pressure-driven flow.

Particles in the stream pass through a collimated laser beam.

The light they scatter interferes with the rest of the beam in

the focal plane of a microscope that magnifies the interference

pattern and relays it to a camera. The image in Fig. 1 is a

region of interest from a typical video frame that captures the

hologram of one ellipsoidal particle. Such holograms can be

analyzed to estimate the inclination angle, θ , for each particle

passing through the observation volume [13].

In the absence of shear, a colloidal ellipsoid would undergo

free rotational diffusion, with its orientational unit vector trac-

ing out a random walk on the unit sphere. The associated

distribution of observed inclination angles is

P0(θ ) = cos(θ ) (1)

over the experimentally accessible domain, θ ∈ [0, π/2]. This

distribution is peaked at θ = 0, which means that the ellipsoid

is most likely to be observed with its major axis aligned with

the observation plane.

The Poiseuille flow profile in the channel has a height-

dependent shear rate, γ̇ (z) = −8v0z/H2, that causes the

ellipsoids to tumble as they travel downstream (along x̂). For

convenience, we define z = 0 to lie along the midplane of the

channel, where the flow speed is v0. The flow’s vorticity is

directed along ŷ. For simplicity, we assume that the height

of the channel, H , is large enough compared to particles’

dimensions that the shear may be treated as if it were uniform

across the volume of a particle.

When subjected to a uniform shear flow, an axisymmetric

ellipsoid traces out a Jeffery orbit that is most naturally ex-

pressed in terms of the polar angle, θ ′, relative to the axis of

vorticity, ŷ, and the azimuthal angle, φ′, around that axis. We

adopt the convention that φ′ = 0 is aligned with the gradient

direction, ẑ. The experimentally accessible angle of inclina-

tion, θ , is related to θ ′ and φ′ by

sin θ = sin θ ′ cos φ′. (2)

Neglecting both inertial effects and diffusion, the orienta-

tion of a tumbling ellipsoid is predicted [1,11] to trace out a

trajectory, [θ ′(t ), φ′(t )], that is described by

tan φ′(t ) = λ tan(�t ), (3a)

tan θ ′(t ) =
Cλ

(λ2 cos2 φ′ + sin2 φ′)1/2
, (3b)
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FIG. 1. Schematic representation of colloidal ellipsoids tumbling

as they are transported by the Poiseuille flow in a microfluidic

channel. The particles’ positions and orientations are recorded by

an in-line holographic microscope that illuminates them with a col-

limated laser beam. Light scattered by an ellipsoid interferes with

the remainder of the beam in the microscope’s focal plane. The mag-

nified intensity pattern is recorded by a video camera. A region of

interest from one such video frame captures the hologram of a typical

ellipsoid and can be analyzed using the Lorenz-Mie theory of light

scattering to measure the ellipsoid’s three-dimensional orientation.

where λ = a/b is the ratio of the major axis, a, to the mi-

nor axis, b. The orientational trajectory is periodic with a

frequency

� =
λ

1 + λ2
γ̇ (3c)

that depends on the shear rate and the ellipsoid’s aspect ra-

tio. Different orbits are distinguished by the orbital constant,

C. Values around C = 0 correspond to log-rolling motion in

which the ellipsoid’s major axis is oriented predominantly

along ŷ, so that θ ≈ 0. Large values of C correspond to a

cartwheeling motion in which the ellipsoid tumbles with its

major axis predominantly in the x-z plane. Even in this limit,

the ellipsoid is most likely to be observed near θ = 0 because

its orientation advances most slowly as the major axis passes

through the x-y plane. More generally, the distribution of

observed orientation angles, P(θ |C), is peaked at θ ≪ π/8

for all values of C.

Rotational diffusion causes a Brownian ellipsoid’s trajec-

tory to wander stochastically among orbits with different

values of C [14]. A slender ellipsoid in a simple shear flow,

for example, has values of C drawn from the probability

distribution [15,16],

p(C) =
4RC

(4RC2 + 1)3/2
, (4)

where R is the ratio of the ellipsoid’s rotational diffusion

coefficients and therefore depends on λ. Weak inertial effects

at nonvanishing rotational Reynolds numbers destabilize log-

rolling and stabilize cartwheeling, favoring larger values of C

than is predicted by Eq. (4) [17–19]. The thermally averaged

FIG. 2. Scanning electron microscope image of colloidal ellip-

soids deposited onto a graphite substrate and dried. Inset: typical

ellipsoid, illustrating ground-truth measurement of the major and

minor axes, a and b, respectively. Scale bars indicate 5 µm.

distribution of inclination angles follows as

P(θ ) =

∫ ∞

0

P(θ |C) p(C) dC (5)

and is peaked at θ = 0 because P(θ |C) is peaked near θ = 0

and p(C) > 0. We conclude from this that the observed dis-

tribution of orientation angles should be peaked at θ = 0,

regardless of the form of p(C) and independent of the shear

rate, γ̇ . Surprisingly, this does not appear to be consistent with

experimental observations [12,13], including those reported

here.

III. HOLOGRAPHIC TRACKING OF

COLLOIDAL ELLIPSOIDS

The monodisperse colloidal ellipsoids used for this

study are created by uniformly stretching [20,21] custom-

synthesized polymethyl methacrylate spheres (NYU Col-

loid Synthesis Facility, batch CSF02-139-C) [22,23]. Scan-

ning electron microscopy images such as the example in

Fig. 2 yield a population-averaged major axis of a =

(4.80 ± 0.21) µm and an aspect ratio λ = 3.96 ± 0.25. As

has been reported previously [24], stretched colloidal spheres

differ slightly in shape from ideal ellipsoids. They are closer

to ideal, however, than the right-circular rods [12] and bound

pairs of spheres [13] that have been studied previously.

Sterically stabilized colloidal ellipsoids are dis-

persed in dodecane (nm = 1.42) at a concentration of

106 particles mL−1. A 30 µL aliquot is transferred to the

input reservoir of a commercial microfluidic channel (xCell8,

Spheryx, Inc.) with a rectangular cross section that nominally

is H = 60µm high and and 500 µm wide. The 10:1 aspect

ratio allows us to neglect transverse shear. The microfluidic

channel is installed in a commercial holographic particle

characterization instrument (xSight, Spheryx, Inc.) that

creates a pressure-driven flow in the channel with a nominal

midplane speed of v0 = 3 mm s−1.

The instrument analyzes each single-particle holo-

gram [25] with the Lorenz-Mie theory of light scatter-

ing [26–28] to obtain the diameter, d∗
p , and refractive index,

n∗
p, that describes an effective sphere encompassing the parti-

cle [13,29–31]. These effective-sphere parameters are related
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FIG. 3. (a) Effective-sphere properties of 1712 colloidal ellipsoids, with each point representing the holographically measured diameter,

d∗
p , and refractive index, n∗

p, of a single particle. The dashed (red) curve is a fit to Eq. (6). Each data point is colored by the angle of inclination,

θ , associated with its position along the parametric curve. (b) Distribution of ellipsoid inclination angles, P(θ ), obtained from the data in (a),

compared with independent results for colloidal rods [12] and dimers [13]. The theoretical prediction for Brownian ellipsoids is obtained from

Eqs. (3) through (5).

to an ellipsoid’s angle of inclination through Maxwell Garnett

effective-medium theory [32]. An ellipsoid lying in the focal

plane, θ = 0, has an effective diameter somewhat smaller

than its major axis. Because the actual ellipse fills only a

fraction of this enclosing sphere, however, its effective re-

fractive index in this orientation is only slightly greater than

that of the medium [13]. An ellipsoid aligned with the optical

axis, θ = π/2, scatters light in much the same way as a

small dense sphere. The dependence of effective properties

on ellipsoid orientation is captured by the phenomenological

relationship [13]

d∗
p (θ ) = (dmin − dmax) sin θ + dmax, (6a)

n∗
p(θ ) = n0

[

1 +
L

d∗
p (θ ) − d0

]

, (6b)

where dmax = 3.27 µm and dmin = 1.57 µm are the maximum

and minimum observed values of d∗
p . Figure 3(a) presents

experimental results for 1712 colloidal ellipsoids obtained

from the sample in Fig. 2. Each data point reflects the effective

diameter and refractive index of a single ellipsoid captured

at a random point in its orientational trajectory. The (red)

dashed curve is a fit of those data points to Eq. (6b) for

L = (65 ± 2)nm, d0 = (1.24 ± 0.01) µm, and n0 = 1.40. The

points then are colored according to the inclination angle, θ ,

of the closest point along that curve.

The random sampling of inclination angles in Fig. 3(a) is

compiled into a probability distribution P(θ ) that is plotted

in Fig. 3(b). Whereas the theory summarized in Eqs. (3)

through (5) predicts that Brownian ellipsoids are most likely

to be aligned with the imaging plane, θ = 0, the measured

distribution is clearly peaked around θ = π/8. The same

anomalous inclination has been observed in measurements on

colloidal dimers [13] and colloidal rods [12], both of which

are reproduced in Fig. 3(b).

The qualitative discrepancy between the predicted and ob-

served distribution of inclination angles was noted in [12]

and was emphasized in [13]. This discrepancy is un-

likely to result from an experimental artifact because

the same result is obtained with orthogonal measurement

techniques [12,13].

Lacking a definitive explanation for the observed anoma-

lous inclination, we review factors that are not included in

the standard formulation of Jeffery orbits that might affect

tumbling transport of aspherical particles in Poiseuille flows.

Figure 4(a) reports the axial position, zp, and in-plane

flow speed, vp, for each particle from Fig. 3(a). The (yel-

low) dashed curve is a fit to the parabolic Poiseuille

flow profile. The resulting estimates for the channel

height, H = (63 ± 1) µm, and midplane flow speed, v0 =

(3.5 ± 0.2)mm s−1, are consistent with the instrument’s spec-

ifications. The shear rate experienced by the ellipsoids ranges

from γ̇ = 0 at the midplane to γ̇ � 100 s−1 near the walls.

The associated rotational Péclet number therefore varies from

zero on the midplane to roughly 200 near the walls. In this

regime, the ellipsoids’ orientational trajectories should be

dominated by kinematics rather than by rotational diffusion

throughout most of the height of the channel.

The channel’s height is sufficiently large compared with

the ellipsoids’ major axis (H > 10a) that gradients in the

shear rate should not influence the rotational kinematics of

individual ellipsoids beyond creating a distribution of orbital

periods [33,34]. Recently reported Brownian dynamics simu-

lations on colloidal rods in comparable Poiseuille flows [12]

confirm the prediction [16] that P(θ ) should be peaked at

θ = 0, rather than at θ = π/8 as is observed experimentally.

The ellipsoids’ shear Reynolds number in dodecane is

smaller than Res = 3 × 10−4. Although small, this may still

be large enough for weak inertial effects to have destabilized

log-rolling trajectories near θ = 0 [18]. The resulting increase

in relative probability at steeper inclinations would be appar-

ent in the random sampling of orientations that is captured by

our measurement technique. Because Res is small, however,

this effect seems unlikely to suppress P(θ ) near θ = 0 to the

extent that is observed experimentally in Fig. 3(b).
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FIG. 4. (a) Holographic tracking data obtained simultaneously

with characterization results from Fig. 3(a). Each point indicates

the axial position, zp, and the flow speed, vp, of a single particle

and is colored by the inclination angle from Fig. 3(a). The dashed

(yellow) curve is a fit to the parabolic Poiseuille flow profile with a

maximum speed of v0 = 3.5 mms−1 at the midplane. Dashed (gray)

lines represent estimates for the axial positions of the channel walls.

Their separation, H = (63 ± 1) µm, is obtained from the fit. (b) The

population-average inclination angle, 〈θ (zp)〉, does not depend sig-

nificantly on the ellipsoids’ height in the channel (blue curve) even

though the probability distribution for particle positions, ρ(zp) (red

curve), shows a clear tendency for ellipsoids to travel near the chan-

nel’s midplane.

Hydrodynamic coupling to the walls of the channel also

may have influenced the ellipsoids’ trajectories [35]. This

could explain the nonuniform distribution of axial posi-

tions, ρ(zp), that is plotted in Fig. 4(b). Redistribution of

particles away from the channel’s walls and toward the mid-

plane may be a manifestation of hydrodynamic lift [36,37].

Hydrodynamic coupling to the walls might also have a com-

plementary effect on the ellipsoids’ orientational trajectories.

Any coupling-induced orientational bias appears to depend

weakly on position within the channel, however, because the

mean inclination angle, plotted in Fig. 4(b), has no obvious

dependence on zp.

IV. DISCUSSION

The trajectories of axisymmetric colloidal particles in

simple shear flows continue to present conundrums de-

spite more than a century of study. Holographic particle

characterization offers a fast and effective way to amass

large statistical samples that hopefully will be useful for

resolving some of these outstanding mysteries. Analyzing

holographic particle-characterization data in the effective-

sphere approximation yields useful estimates for elliptical

particles’ out-of-plane orientations. The same measurement

also yields each particle’s position in the three-dimensional

flow over a comparatively large axial range, as well as the

drift speed at that position.

Holographic tracking of tumbling ellipsoids confirms pre-

vious reports that aspherical colloids do not behave as

expected in plane Poiseuille flows. Rather than spending most

of their time in the plane defined by the flow and vorticity di-

rections, these particles actually tend to be inclined away from

that plane. The same angle of inclination, θ = π/8, is adopted

by dimers with an aspect ratio of 2 [13], rods with an aspect

ratio as large as 10 [12], and ellipsoids with an aspect ratio

of 5. The angle of inclination appears not to depend strongly

on the particles’ distance from bounding walls, even when the

particles themselves experience significant hydrodynamic lift.

Interparticle collisions similarly are not likely to account for

these anomalous observations because the typical interparticle

separation exceeds the channel height in all available studies.
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