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Anomalous tumbling of colloidal ellipsoids in Poiseuille flows

Lauren E. Altman,"? Andrew D. Hollingsworth,' and David G. Grier ®'
' Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

® (Received 22 May 2023; accepted 6 September 2023; published 28 September 2023)

Shear flows cause aspherical colloidal particles to tumble so that their orientations trace out complex trajecto-
ries known as Jeffery orbits. The Jeffery orbit of a prolate ellipsoid is predicted to align the particle’s principal
axis preferentially in the plane transverse to the axis of shear. Holographic microscopy measurements reveal
instead that colloidal ellipsoids’ trajectories in Poiseuille flows strongly favor an orientation inclined by roughly
7 /8 relative to this plane. This anomalous observation is consistent with at least two previous reports of colloidal
rods and dimers of colloidal spheres in Poiseuille flow and therefore appears to be a generic, yet unexplained

feature of colloidal transport at low Reynolds numbers.
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I. INTRODUCTION

Dispersions of aspherical colloidal particles flow differ-
ently than dispersions of spheres because shear forces cause
aspherical particles to tumble [1,2] and tumbling influences
interparticle interactions [3]. How shear-mediated tumbling
affects colloidal transport has ramifications for such diverse
application areas as filtration [4], drug delivery [5], and food
processing [6]. Tumbling also influences the behavior of ac-
tive particles that propel themselves through shear flows,
including motile bacteria and artificial swimmers [7-10]. De-
spite more than a century of study, the kinematics of colloidal
tumbling are incompletely understood, even for comparatively
simple particle shapes and flow profiles, and even when iner-
tial and viscoelastic effects may be ignored.

The present study uses holographic video microscopy to
explore anomalous tumbling of axisymmetric ellipsoids in
simple shear flows. Such particles are predicted [1,2,11]
to align preferentially in the plane transverse to the shear
direction. Recent experimental studies, however, show that
colloidal rods [12] and bound pairs of colloidal spheres [13]
tend instead to be inclined at & ~ /8 relative to the pre-
dicted plane when they are entrained in plane Poiseuille flows.
Here, we show that prolate colloidal ellipsoids also tend to be
anomalously inclined in steady Poiseuille flows, in quantita-
tive agreement with previous experimental studies [12,13] and
in qualitative disagreement with theoretical predictions.

II. JEFFERY ORBITS IN POISEUILLE FLOWS

Figure 1 schematically depicts the system used for this
study. A nonaqueous dispersion of colloidal ellipsoids is trans-
ported down a rectangular channel by a pressure-driven flow.
Particles in the stream pass through a collimated laser beam.
The light they scatter interferes with the rest of the beam in
the focal plane of a microscope that magnifies the interference
pattern and relays it to a camera. The image in Fig. 1 is a
region of interest from a typical video frame that captures the
hologram of one ellipsoidal particle. Such holograms can be
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analyzed to estimate the inclination angle, 8, for each particle
passing through the observation volume [13].

In the absence of shear, a colloidal ellipsoid would undergo
free rotational diffusion, with its orientational unit vector trac-
ing out a random walk on the unit sphere. The associated
distribution of observed inclination angles is

Py(6) = cos(0) (1)

over the experimentally accessible domain, 6 € [0, 7 /2]. This
distribution is peaked at & = 0, which means that the ellipsoid
is most likely to be observed with its major axis aligned with
the observation plane.

The Poiseuille flow profile in the channel has a height-
dependent shear rate, y(z) = —8voz/H 2 that causes the
ellipsoids to tumble as they travel downstream (along ). For
convenience, we define z = 0 to lie along the midplane of the
channel, where the flow speed is vy. The flow’s vorticity is
directed along ¥. For simplicity, we assume that the height
of the channel, H, is large enough compared to particles’
dimensions that the shear may be treated as if it were uniform
across the volume of a particle.

When subjected to a uniform shear flow, an axisymmetric
ellipsoid traces out a Jeffery orbit that is most naturally ex-
pressed in terms of the polar angle, 6’, relative to the axis of
vorticity, $, and the azimuthal angle, ¢’, around that axis. We
adopt the convention that ¢’ = 0 is aligned with the gradient
direction, Z. The experimentally accessible angle of inclina-
tion, 0, is related to 6’ and ¢’ by

sind = sinf’ cos ¢’. 2)

Neglecting both inertial effects and diffusion, the orienta-
tion of a tumbling ellipsoid is predicted [1,11] to trace out a
trajectory, [0'(¢), ¢’(¢)], that is described by

tan ¢'(t) = A tan($2t), (3a)
CA

tan 9'(r) = ,
® (A2 cos? ¢’ + sin? ¢')!/2

(3b)
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FIG. 1. Schematic representation of colloidal ellipsoids tumbling
as they are transported by the Poiseuille flow in a microfluidic
channel. The particles’ positions and orientations are recorded by
an in-line holographic microscope that illuminates them with a col-
limated laser beam. Light scattered by an ellipsoid interferes with
the remainder of the beam in the microscope’s focal plane. The mag-
nified intensity pattern is recorded by a video camera. A region of
interest from one such video frame captures the hologram of a typical
ellipsoid and can be analyzed using the Lorenz-Mie theory of light
scattering to measure the ellipsoid’s three-dimensional orientation.

where A = a/b is the ratio of the major axis, a, to the mi-
nor axis, b. The orientational trajectory is periodic with a
frequency

A

“= Tt G
that depends on the shear rate and the ellipsoid’s aspect ra-
tio. Different orbits are distinguished by the orbital constant,
C. Values around C = 0 correspond to log-rolling motion in
which the ellipsoid’s major axis is oriented predominantly
along J, so that § ~ 0. Large values of C correspond to a
cartwheeling motion in which the ellipsoid tumbles with its
major axis predominantly in the x-z plane. Even in this limit,
the ellipsoid is most likely to be observed near & = 0 because
its orientation advances most slowly as the major axis passes
through the x-y plane. More generally, the distribution of
observed orientation angles, P(0|C), is peaked at 6 < 7 /8
for all values of C.

Rotational diffusion causes a Brownian ellipsoid’s trajec-
tory to wander stochastically among orbits with different
values of C [14]. A slender ellipsoid in a simple shear flow,
for example, has values of C drawn from the probability
distribution [15,16],

4RC

p(C) = GRCE T 7

“4)

where R is the ratio of the ellipsoid’s rotational diffusion
coefficients and therefore depends on A. Weak inertial effects
at nonvanishing rotational Reynolds numbers destabilize log-
rolling and stabilize cartwheeling, favoring larger values of C
than is predicted by Eq. (4) [17-19]. The thermally averaged

FIG. 2. Scanning electron microscope image of colloidal ellip-
soids deposited onto a graphite substrate and dried. Inset: typical
ellipsoid, illustrating ground-truth measurement of the major and
minor axes, a and b, respectively. Scale bars indicate 5 um.

distribution of inclination angles follows as

P(9)=/0 P(01C) p(C)dC &)

and is peaked at & = 0 because P(6|C) is peaked near 6 = 0
and p(C) > 0. We conclude from this that the observed dis-
tribution of orientation angles should be peaked at 6 =0,
regardless of the form of p(C) and independent of the shear
rate, y. Surprisingly, this does not appear to be consistent with
experimental observations [12,13], including those reported
here.

III. HOLOGRAPHIC TRACKING OF
COLLOIDAL ELLIPSOIDS

The monodisperse colloidal ellipsoids used for this
study are created by uniformly stretching [20,21] custom-
synthesized polymethyl methacrylate spheres (NYU Col-
loid Synthesis Facility, batch CSF02-139-C) [22,23]. Scan-
ning electron microscopy images such as the example in
Fig. 2 yield a population-averaged major axis of a =
(4.80 £0.21)um and an aspect ratio A = 3.96 +0.25. As
has been reported previously [24], stretched colloidal spheres
differ slightly in shape from ideal ellipsoids. They are closer
to ideal, however, than the right-circular rods [12] and bound
pairs of spheres [13] that have been studied previously.

Sterically stabilized colloidal ellipsoids are dis-
persed in dodecane (n,, = 1.42) at a concentration of
10° particlesmL~!. A 30uL aliquot is transferred to the
input reservoir of a commercial microfluidic channel (xCell8,
Spheryx, Inc.) with a rectangular cross section that nominally
is H = 60um high and and 500 um wide. The 10:1 aspect
ratio allows us to neglect transverse shear. The microfluidic
channel is installed in a commercial holographic particle
characterization instrument (xSight, Spheryx, Inc.) that
creates a pressure-driven flow in the channel with a nominal
midplane speed of vg = 3mms~!.

The instrument analyzes each single-particle holo-
gram [25] with the Lorenz-Mie theory of light scatter-
ing [26-28] to obtain the diameter, d;, and refractive index,
n*, that describes an effective sphere encompassing the parti-
cle [13,29-31]. These effective-sphere parameters are related
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FIG. 3. (a) Effective-sphere properties of 1712 colloidal ellipsoids, with each point representing the holographically measured diameter,

*
r’

d*

e and refractive index, n

of a single particle. The dashed (red) curve is a fit to Eq. (6). Each data point is colored by the angle of inclination,

0, associated with its position along the parametric curve. (b) Distribution of ellipsoid inclination angles, P(0), obtained from the data in (a),
compared with independent results for colloidal rods [12] and dimers [13]. The theoretical prediction for Brownian ellipsoids is obtained from

Egs. (3) through (5).

to an ellipsoid’s angle of inclination through Maxwell Garnett
effective-medium theory [32]. An ellipsoid lying in the focal
plane, 6 = 0, has an effective diameter somewhat smaller
than its major axis. Because the actual ellipse fills only a
fraction of this enclosing sphere, however, its effective re-
fractive index in this orientation is only slightly greater than
that of the medium [13]. An ellipsoid aligned with the optical
axis, 6 = /2, scatters light in much the same way as a
small dense sphere. The dependence of effective properties
on ellipsoid orientation is captured by the phenomenological
relationship [13]

- dmax) sin + dmax,

d; @) = (dmin (63-)

wonn L

where dmax = 3.27 um and dp,;, = 1.57 um are the maximum
and minimum observed values of d,. Figure 3(a) presents
experimental results for 1712 colloidal ellipsoids obtained
from the sample in Fig. 2. Each data point reflects the effective
diameter and refractive index of a single ellipsoid captured
at a random point in its orientational trajectory. The (red)
dashed curve is a fit of those data points to Eq. (6b) for
L = (65 +£2)nm, dy = (1.24 = 0.01) um, and ny = 1.40. The
points then are colored according to the inclination angle, 6,
of the closest point along that curve.

The random sampling of inclination angles in Fig. 3(a) is
compiled into a probability distribution P(6) that is plotted
in Fig. 3(b). Whereas the theory summarized in Egs. (3)
through (5) predicts that Brownian ellipsoids are most likely
to be aligned with the imaging plane, 6 = 0, the measured
distribution is clearly peaked around 6 = 7 /8. The same
anomalous inclination has been observed in measurements on
colloidal dimers [13] and colloidal rods [12], both of which
are reproduced in Fig. 3(b).

The qualitative discrepancy between the predicted and ob-
served distribution of inclination angles was noted in [12]

(6b)

and was emphasized in [13]. This discrepancy is un-
likely to result from an experimental artifact because
the same result is obtained with orthogonal measurement
techniques [12,13].

Lacking a definitive explanation for the observed anoma-
lous inclination, we review factors that are not included in
the standard formulation of Jeffery orbits that might affect
tumbling transport of aspherical particles in Poiseuille flows.
Figure 4(a) reports the axial position, z,, and in-plane
flow speed, v, for each particle from Fig. 3(a). The (yel-
low) dashed curve is a fit to the parabolic Poiseuille
flow profile. The resulting estimates for the channel
height, H = (63 & 1) um, and midplane flow speed, vy =
(3.540.2)mm s~!, are consistent with the instrument’s spec-
ifications. The shear rate experienced by the ellipsoids ranges
from = 0 at the midplane to > 100s~! near the walls.
The associated rotational Péclet number therefore varies from
zero on the midplane to roughly 200 near the walls. In this
regime, the ellipsoids’ orientational trajectories should be
dominated by kinematics rather than by rotational diffusion
throughout most of the height of the channel.

The channel’s height is sufficiently large compared with
the ellipsoids’ major axis (H > 10a) that gradients in the
shear rate should not influence the rotational kinematics of
individual ellipsoids beyond creating a distribution of orbital
periods [33,34]. Recently reported Brownian dynamics simu-
lations on colloidal rods in comparable Poiseuille flows [12]
confirm the prediction [16] that P(6) should be peaked at
0 = 0, rather than at & = 7 /8 as is observed experimentally.

The ellipsoids’ shear Reynolds number in dodecane is
smaller than Re; = 3 x 10~*. Although small, this may still
be large enough for weak inertial effects to have destabilized
log-rolling trajectories near & = 0 [18]. The resulting increase
in relative probability at steeper inclinations would be appar-
ent in the random sampling of orientations that is captured by
our measurement technique. Because Re; is small, however,
this effect seems unlikely to suppress P(0) near & = 0 to the
extent that is observed experimentally in Fig. 3(b).
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FIG. 4. (a) Holographic tracking data obtained simultaneously
with characterization results from Fig. 3(a). Each point indicates
the axial position, z,, and the flow speed, v,, of a single particle
and is colored by the inclination angle from Fig. 3(a). The dashed
(yellow) curve is a fit to the parabolic Poiseuille flow profile with a
maximum speed of vy = 3.5mms~! at the midplane. Dashed (gray)
lines represent estimates for the axial positions of the channel walls.
Their separation, H = (63 & 1) um, is obtained from the fit. (b) The
population-average inclination angle, (6(z,)), does not depend sig-
nificantly on the ellipsoids’ height in the channel (blue curve) even
though the probability distribution for particle positions, p(z,) (red
curve), shows a clear tendency for ellipsoids to travel near the chan-
nel’s midplane.

Hydrodynamic coupling to the walls of the channel also
may have influenced the ellipsoids’ trajectories [35]. This
could explain the nonuniform distribution of axial posi-
tions, p(z,), that is plotted in Fig. 4(b). Redistribution of
particles away from the channel’s walls and toward the mid-
plane may be a manifestation of hydrodynamic lift [36,37].
Hydrodynamic coupling to the walls might also have a com-
plementary effect on the ellipsoids’ orientational trajectories.
Any coupling-induced orientational bias appears to depend
weakly on position within the channel, however, because the
mean inclination angle, plotted in Fig. 4(b), has no obvious
dependence on z,,.

IV. DISCUSSION

The trajectories of axisymmetric colloidal particles in
simple shear flows continue to present conundrums de-
spite more than a century of study. Holographic particle
characterization offers a fast and effective way to amass
large statistical samples that hopefully will be useful for
resolving some of these outstanding mysteries. Analyzing
holographic particle-characterization data in the effective-
sphere approximation yields useful estimates for elliptical
particles’ out-of-plane orientations. The same measurement
also yields each particle’s position in the three-dimensional
flow over a comparatively large axial range, as well as the
drift speed at that position.

Holographic tracking of tumbling ellipsoids confirms pre-
vious reports that aspherical colloids do not behave as
expected in plane Poiseuille flows. Rather than spending most
of their time in the plane defined by the flow and vorticity di-
rections, these particles actually tend to be inclined away from
that plane. The same angle of inclination, § = /8, is adopted
by dimers with an aspect ratio of 2 [13], rods with an aspect
ratio as large as 10 [12], and ellipsoids with an aspect ratio
of 5. The angle of inclination appears not to depend strongly
on the particles’ distance from bounding walls, even when the
particles themselves experience significant hydrodynamic lift.
Interparticle collisions similarly are not likely to account for
these anomalous observations because the typical interparticle
separation exceeds the channel height in all available studies.
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