Applied and Computational Harmonic Analysis 70 (2024) 101635

Contents lists available at ScienceDirect

Computational
Harmonic Analysis

Applied and Computational Harmonic Analysis

journal homepage: www.elsevier.com/locate/acha

Full Length Article '.)

Check for

Geometric scattering on measure spaces i

Joyce Chew, Matthew Hirn, Smita Krishnaswamy *, Deanna Needell,
Michael Perlmutter *, Holly Steach, Siddharth Viswanath, Hau-Tieng Wu

ARTICLE INFO ABSTRACT

Communicated by Thomas Strohmer The scattering transform is a multilayered, wavelet-based transform initially introduced as a
mathematical model of convolutional neural networks (CNNs) that has played a foundational
. . role in our understanding of these networks’ stability and invariance properties. In subsequent
Geometric deep learning . . i . )
Manifold learning years, there has been widespread interest in extending the success of CNNs to data sets with non-
Scattering transforms Euclidean structure, such as graphs and manifolds, leading to the emerging field of geometric
Stability and invariance deep learning. In order to improve our understanding of the architectures used in this new field,
several papers have proposed generalizations of the scattering transform for non-Euclidean data
structures such as undirected graphs and compact Riemannian manifolds without boundary.
Analogous to the original scattering transform, these works prove that these variants of the
scattering transform have desirable stability and invariance properties and aim to improve our
understanding of the neural networks used in geometric deep learning.
In this paper, we introduce a general, unified model for geometric scattering on measure spaces.
Our proposed framework includes previous work on compact Riemannian manifolds without
boundary and undirected graphs as special cases but also applies to more general settings such as
directed graphs, signed graphs, and manifolds with boundary. We propose a new criterion that
identifies to which groups a useful representation should be invariant and show that this criterion
is sufficient to guarantee that the scattering transform has desirable stability and invariance
properties. Additionally, we consider finite measure spaces that are obtained from randomly
sampling an unknown manifold. We propose two methods for constructing a data-driven graph
on which the associated graph scattering transform approximates the scattering transform on the
underlying manifold. Moreover, we use a diffusion-maps based approach to prove quantitative
estimates on the rate of convergence of one of these approximations as the number of sample
points tends to infinity. Lastly, we showcase the utility of our method on spherical images, a
directed graph stochastic block model, and on high-dimensional single-cell data.

Keywords:

1. Introduction

Many popular machine learning algorithms and architectures either explicitly or implicitly rely on producing a hidden, or trans-
formed, representation of the input data. For example, popular algorithms such as word2vec [18], node2vec [37], and graph2vec [62]
explicitly associate each input in a text corpus, network, or collection of networks to a point in a high-dimensional vector space. This
transformed representation can then be used for a variety of tasks such as clustering or classification. Deep neural networks, on the
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other hand, use multilayered architectures to classify an input signal. In this case, the early layers of the network may be viewed as
producing a transformed representation of the input and the final layer may be viewed as a classifier acting on the transformed data.
In either case, there is a fundamental question. What properties should these hidden representations satisfy in order to be useful for
downstream tasks?

In order to help answer this question, Mallat introduced the scattering transform [57], a wavelet-based architecture which models
the hidden representation produced by the early layers of a convolutional neural network (CNN). Given a function f € L*(R™) and
a scale parameter J, the windowed scattering transform of [57] is a countable collection of functions

Sypf =ASsplf cp=Urssdm) i £J,m 20}, 1)

where the scattering coefficients S;[p]f are defined through an alternating sequence of m wavelet convolutions (at scales j;) and
nonlinear activations followed by a final convolution against a low-pass averaging filter at scale 2. If one is interested in classifying
many signals { f[}ilislig"als, they may first transform the input data by computing S, f; for each i and then use these transformed
representations as input to a classification model such as a support vector machine.

One of the key insights of [57] is that convolutional architectures naturally have desirable invariance and equivariance properties
with respect to the action of the translation group. Specifically, if 7. is the translation operator 7, f(x):=f(x — c¢), we have the

equivariance relationship

Syplz.f)=7.S;plf> )

where on the right-hand side 7, is applied term by term. Moreover, when the scale parameter J tends to infinity, we have the
approximate invariance relationship

S;p)z. )~ Sylplf. 3

Furthermore, Mallat also shows that the scattering transform is stable to the perturbations of the form f(x — c(x)) where is ¢(x) is a
function with bounded gradient and Hessian.

In addition to being a theoretical model, the scattering transform has also proven to be a practical object. A notable difference
between the scattering transform and other CNN-like architectures is that it uses predesigned wavelet filters, rather than filters
learned from training data. In settings where labeled data is abundant, this may be viewed as a limitation on the expressive power
of the scattering transform. However, in the context of unsupervised learning, or limited data environments, it may be difficult or
impossible to train a traditional neural network. In these settings, the lack of trainable filters increases the practical utility of the
scattering transform [49]. For instance, [68] applied the scattering transform to Sonar data to detect unexploded bombs on the ocean
floor despite there only being 14 objects in the data set. Additionally, the scattering transform can also be used for a variety of other
tasks in addition to classification. For example, [9] applied it to the texture synthesis problem and [75] combined the scattering
transform with nonnegative matrix factorization in order to achieve audio source separation.

While CNNs have had tremendous success for tasks related to images, audio signals, and other data with a Euclidean grid-like
structure, many modern data sets have an irregular structure and are naturally modeled as more complex structures such as graphs
and manifolds. This has led to the new field of geometric deep learning [8] which aims to extend the success of CNNs to these irregular
domains. In these more general settings, the concept of translation is not well defined. However, invariance and equivariance still play
a critical role. For example, nearly all popular graph neural networks are designed so that they are naturally invariant or equivariant
to the action of the permutation group, i.e., reordering of the vertices. More generally, one of the principal goals of geometric deep
learning is to design architectures that respect the intrinsic symmetries and invariances of the data, which are typically modeled by
group actions [7,11].

There are many possible ways to accomplish this goal, but here we will focus on spectral methods based on the eigendecompo-
sition of a suitable Laplace type operator such as the graph Laplacian or Laplace-Beltrami operator on a manifold. These methods,
which have been popularized through work such as [71], view the eigenvectors/eigenfunctions of the Laplace operator as generalized
Fourier modes and define convolution as multiplication in the Fourier basis analogous to well-known results in the Euclidean case.
This notion of convolution is used in popular graph neural networks such as [10], [26], [50], and [45] and has also been used in
manifold neural networks such as [81] and [82].

Following the rise of these spectral networks, several works have introduced versions of the scattering transform for (undirected,
unsigned) graphs [89,34,35,64] and smooth compact manifolds without boundary [63]. In these works, the authors assume that
one is given a signal f defined on the graph or manifold and use generalizations of the wavelet transform [39,21] to construct
scattering coefficients similar to (1) through an alternating sequence of generalized convolutions and nonlinearities. They then
provide detailed stability and invariance analysis of their respective versions of the scattering transform proving results analogous
to (2) and (3). Thereby, they help improve our understanding of spectral networks used in geometric deep learning, analogous to
how [57] helps us understand Euclidean CNNs. Moreover, there has also been work applying the graph scattering transform to
combinatorial optimization [60] problems and to graph synthesis [88,3], an important problem with potential applications to drug
discovery.
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1.1. Contributions and main results

In this work, we extend the scattering transform to a general class of measure spaces X := (X, F,u). Our framework applies
both to the settings considered in previous work on geometric scattering, i.e., compact Riemannian manifolds without boundary
and unweighted, unsigned graphs, and also to other interesting examples such as signed or directed graphs, which have not been
previously considered in the literature about the scattering transform. The generality of our construction is motivated in part by the
recent book [7] which laments “there is a veritable zoo of neural network architectures for various kinds of data, but few unifying
principles.” In the same spirit, we look for the general themes that unite spectral networks on different domains and formulate a
general theory of scattering networks on measure spaces.

Analogous to, e.g., [64] and [63], we will construct two versions of the scattering transform on X. For both of these transforms, we
will assume that we are given a signal f defined on X and analogous to (1) will represent f via a sequence of scattering coefficients
obtained through alternating sequences of convolutions and pointwise nonlinearities followed by a final aggregation. In the first
version, which we refer to as the windowed scattering transform, the aggregation step is given by convolution against a low-pass filter
that can be viewed as a local-averaging operator. We also define a non-windowed scattering transform where the final aggregation is
computed via a global integration. Importantly, we note that the windowed scattering transform outputs a sequence of vectors (i.e.,
functions) whereas the non-windowed scattering transform outputs a sequence of scalars.

We will examine the invariance and equivariance properties of these representations and establish results analogous to (2) and
(3). Towards this end, we let G be a group of bijections from X to X with proper structure. We let G act on L2(X) by composition
and on a Laplacian-type operator £ by conjugation. Specifically, for { € G we define

Vef():=f(¢7'(x) and Lg:=VoLoV .

In the case where X is a graph or a manifold, it is natural to take G to be the permutation group or the isometry group respectively.
However, on an arbitrary measure space, it is not obvious what groups our representation should be invariant to.

Perhaps the most natural idea would be the group of all bijections that preserves measures in the sense that u(¢~!(B)) = u(B)
for all { € G and B € F. Indeed, for the windowed scattering transform, our analysis will show that this condition is needed prove
a result analogous to (2) establishing invariance in the limit as the scale parameter tends to infinity. However, it will not be needed
in order to establish our other primary invariance and equivariance results. This is fortunate because conservation of measure is
actually a stronger condition than it appears at first glance. For example, it does not hold when X’ is a graph, G is the permutation
group, and different vertices are assigned different weights. Instead, our other invariance and equivariance results will only require
the weaker assumption that V, is an isometry on L2(X), i.e.,

Ve f1 Ve o = (s ol

One may verify that this condition holds for the permutation group on graphs for arbitrary choices of the measure.

In addition to significantly generalizing previous constructions of the geometric scattering transform, we also use the methods
based on diffusion maps [20] and Laplacian Eigenmaps [1,2] to show that the scattering transform on manifolds can be interpreted
as the limit of the scattering transform on data-driven graphs. In short, if we have a collection of points {x; }N 01 C RP that lie on
a d-dimensional manifold for some d < D, we will use a kernel to construct an affinity matrix W which can be interpreted as the
adjacency matrix of a weighted graph. We use this affinity matrix to construct a data-driven approximation of the Laplace-Beltrami
operator which we then use to construct an approximation of the windowed and non-windowed manifold scattering transforms. We
will then prove theorems guaranteeing the rates of convergence of these methods as the number of sample points tends to infinity.
To the best of our knowledge, this is the first attempt to prove such convergence guarantees for any neural-network-like architecture
constructed from the Laplace-Beltrami operator.

In summary, we provide a theoretically justified model for understanding spectral neural networks on measure spaces paralleling
the role of the original scattering transform [57] in understanding CNNs. Towards this end, we note that equivariance results similar
to ours can likely be obtained for other networks such as the ones considered in [81] or [87] constructed through the spectrum of
the appropriate Laplace operator. Similarly, our methods can likely be adapted to study the convergence of other spectral manifold
neural networks.

1.2. Notation and organization

Throughout, we will let X = (X, F, 1) be a measure space with set X, o-algebra 7, and measure y. We let H = L?(X) denote the
Hilbert space of functions which are square integrable on X and for f € H we will denote its norm by either || f||; or || f ||Lz( X"
Similarly, for f,g € H, we shall denote their inner product by (f,g);; or (f ,g)Lz( x) If T is an operator on H, we will let [|T']|;,
denote its operator norm. If x and y € RY are vectors, we shall use ||x||, and (x,y), to denote their #>-norm and inner product.
Similarly, if A is a matrix, we will let || A]|, denote its operator norm on #2. We shall let £ be a positive semidefinite, self-adjoint
operator on H and denote its eigenfunctions and eigenvalues by ¢, and A, for k in some at most countable indexing set . If { f;} ;¢ 7
is an at most countable collection of elements in H, we shall define ||{f;};c7 Il 27 by

107} jeg a0 = 2 115
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We shall let G denote a group of bijections X — X, and for { € G, we shall let V, denote the operator defined by V; f(x) = f({ “1x)).

Our construction of the scattering transform will be based on a collection of wavelets W:={W,} ,c; U{A} where J is an at most
countable indexing set. We will let p:=(j,, ..., j,,) denote a scattering path of length m, and for f € H let S[p]f and SIplf denote
corresponding windowed and non-windowed scattering coefficients. We shall let { H,},5, denote a semigroup of operators defined
on H defined in terms of a spectral function g : [0, 00) — [0, c0). When notationally convenient, we will write H' instead of H,. In
Section 6, we will consider finite subsets X, C X of cardinality N and let X be a corresponding measure space. In this setting, we
will denote objects corresponding to X with either a subscript or superscript N.

The rest of this paper is organized as follows. In Section 2, we will define convolution, the wavelet transform, and the scattering
transform on a measure space X. In Section 3, we will discuss examples of measure spaces included in our framework, some of
which have been considered in previous work on the scattering transform and some which have not. In Section 4, we will establish
fundamental continuity and invariance properties of the measure space scattering transform and in Section 5 we will consider stability
to perturbations. In Section 6, we will introduce numerical methods for implementing the scattering transform in the case where X
is a manifold, but one only has access to X' through a finite number of samples. We will also prove the convergence of these methods
as the number of sample points tends to infinity. In Section 7, we will present numerical experiments on both synthetic data and on
real-world biomedical data before providing a brief conclusion in Section 8.

2. Definitions

In this section, we first define convolution and wavelets on a measure space X and then use these wavelets to define the measure
space scattering transform.

Let X = (X, F, u) be a measure space with set X, o-algebra F, and measure y. Let vol(X) := u(X), and let H = L?(X) denote the
Hilbert space of measurable functions such that

15 =Sy = / |fPdp < co.
X

Let £ be a self-adjoint and positive semidefinite operator on H, and let 7 be an at most countable set of nonnegative integers.
Without loss of generality, we assume either 7 is the natural numbers NU {0} or that T = {0,..., N — 1} for some N € N. We assume
that there is a collection of functions {¢; },c; C H such that Lo, = A, ¢, with g =0< 4, and 1; < 4, for k > 1. We also assume
that { ¢, },c7 forms an orthonormal basis for .

2.1. Convolution and wavelet transforms

For f € H, we define its generalized Fourier coefficients f (k),ke I, by

F&) =, pr)n-
Since { @y };c7 is an orthonormal basis, we obtain the generalized Fourier series
=2 fwe,
kel

where the convergence is in the L2(X) sense if T is infinite. In the case when X is the unit circle, it is well known that convolution
corresponds to multiplication in the Fourier domain. Therefore, for any & € H, we define a convolution operator T}, by

Tof = f = 3 0 F K, @

kel

One may verify that for any n > 0 we have
(T)"f = Y k)" )@y ®)
kel
Therefore, if ?l(k) is nonnegative for all £ we may define, for t € R, T}’l by
Thf = ) hk) fk)gy. 6)
kel

In the case where t = 1/2, we note that we have T, ; / ZT; 22 T},. Therefore, we will refer to T; /2 as the square root of T,.
We will use this notion of spectral convolution to construct a diffusion operator H. To do this, we let g : [0,00) — [0,00) be a
nonnegative and nonincreasing function with

g(0)=1 and g(t)<1 forallz>0. (7

For t > 0, we define H' to be the operator corresponding to convolution against Y, o7 g(4,) ¢, i.e.,
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H'f:=Y g Fl)ey. ®)
kel

We note that by construction, {H'},,, forms a semigroup since H'H* = H'** and H 0 =1d is the identity operator. We also note
that H' = (H')’, where the exponents are interpreted as in (5) and (6). Motivated by the interpretation of ¢ as an exponent, we will
occasionally write H in place of H' when convenient.

As our primary example, we will take g(1) = e%, in which case, one may verify that, for sufficiently well-behaved functions,
up(x,t) :=H ! f(x) satisfies the heat equation

Oy =—Louy, }1—{% u(t,x) = f(x),
since we may compute

OH'f(x)=0, ) e [(k)py(x)

kel

=Y —he ™ Fk)gy(x)

kel
=—L H'f(x). C)

Therefore, in this case, { H'},5 is referred to as the heat semigroup and ¢ is referred to as the diffusion time.

Remark 1. The definition of H does not depend on the choice of eigenbasis, even when some eigenvalues have multiplicity greater
than one. To see this, let A be the set of distinct eigenvalues of £ and note that

Hf=Y g0fe =Y s Y Fle, =Y eMmf),
kel AEA k:Ag=4 AEA

where, for A € A, z, is the operator which projects a function onto the eigenspace corresponding to A.

Given this diffusion operator we define the wavelet transform
Wy f =W VLAY, (10)
where W, :=1d — H!, A; := H* ,and for 1 <j <J
w,:=H"" —H”.

The wavelets aim to capture the geometry of & at different scales. In particular, the W, track changes between the geometry at
different diffusion times. The operator A; performs a localized averaging operation and may be interpreted as a low-pass filter. Our
construction uses a minimal time scale of 1 for simplicity and notational convenience. However, if one wishes to obtain wavelets
which are sensitive to smaller time scales, they may simply change the spectral function g. For example, if g;(4) = e~ and g,(4) =
e~*/2 then the associated diffusion operators would satisfy H21 =H 1] 7,

The following result shows that W, is a nonexpansive frame on H. Its proof is identical to the proof of Proposition 2.2 of [64].
For completeness, we give full details in Appendix A.

Proposition 1. There exists a universal constant ¢ > 0 such that for all f € H

J
el S S UWs 1oy 1= 2 MWL + 1A A5, < A1,
j=0

Remark 2. If we instead define our wavelets by VVO’ =+\/Id-H, VVJ.’ =VHY"'—HY for1<j<J,and A’J =V H? , we can obtain
a similar result for W} f= {VVj’ }f=0 U {A’J f} but with ¢ = 1, so that the wavelet transform is norm-preserving, i.e.,

J
! 2 / 2 _
W Ay, + 1A N =1 Nl
j=0

The proof is identical to the proof of Proposition 2.1 of [64].
2.2. The scattering transform
In this section, we will construct the scattering transform as a multilayered architecture built off of a filter bank W. For the sake

of generality, we will not require our W to be the diffusion wavelets constructed in the previous subsection. Instead, we let 7 be an
arbitrary countable indexing set and assume
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W ={W;},e; UlA)

is any collection of operators such that
el 15 SIWAI 00 = 20 WL I, + AL, <A1, an
jeJ

for some ¢ > 0. This generality is motivated both by the fact that several different versions of the graph scattering transform [89,34,
35] have used different wavelet constructions and also by various works which have constructed versions of the Euclidean scattering
transform using generalized, non-wavelet filter banks [24,36,84,85]. Here, we note that the letter of A is chosen because we typically
interpret A as an averaging operator analogous to the low-pass operator A; considered in (10). However, we emphasize that this is
merely suggestive notation.

The scattering transform consists of an alternating sequence of linear filterings (typically wavelet transforms) and nonlinear
activations. Towards this end, we let ¢ be an nonlinear function defined on either R or C such that the real part of o(x) is nonnegative
and o is non-expansive in the sense that |o(x) — 6(»)| < |x — y|. In a slight abuse of notation let ¢ : H — H also denote the operator
defined by (o f)(x):=0(f(x)). We note that in the case where admissible choices of ¢ include the absolute value function which
is commonly used in papers concerning the scattering transform, the rectified linear unit (ReLU) which is commonly used in other
neural network architectures, and the complex version of ReLU considered in [87].

Given W; and o, we define the windowed scattering transform .S : H — #2(H) by

Sf:={Splf :m=0,p:=(jy,....J,) €T"},
where J™ is the m-fold Cartesian product of .7, and the windowed scattering coefficients S[p] corresponding to the path p =
Ut ---»Jm) € J™ are defined by

Splf:=AUlplf, Ulplf:=cW, ...oW, f

for m> 1, and when m =0 and p, is the “empty path”, we declare that

Slp1f :=Af. 12)

We also define an operator U by

Uf:={Ulplf :m=20,p=(j,....Jn) €T"} 13)

and a non-windowed scattering transform by

Sfi=(SpIf :m20,p=(seeeri) €T™

where the non-windowed scattering coefficients are given by

S[plf:= / Up1NH@odu| = (ULpLf . @0)n]-
X

In the case where J = {0,...,J} and S is constructed from the diffusion wavelets W, defined in (10), we will occasionally write
Sylplf in place of S[p]f if we want to emphasize the dependency of the parameter J. We note that the primary difference between
the windowed and non-windowed scattering transform is the use of the localized averaging operator A rather than a global integra-
tion against ¢,. Indeed, the term “windowed” refers to the idea that an average is computed within a neighborhood of each point.
In particular, the windowed scattering transform should not be confused with constructions, such as those appearing in [24], which
construct scattering transforms (on R™) using Gabor filters.

The following result relates the non-windowed scattering transform .S to the limit of the windowed scattering transform S 7 as
J — . In particular, if £ is either the Laplace-Beltrami operator on a manifold or the unnormalized Laplacian on a graph, then ¢ is
constant. Therefore, the following result shows that the windowed scattering coefficients .S;[p] f(x) converge to a constant multiple
of S[p]f. Please see Appendix B for a proof.

Proposition 2. Let .S; be the windowed scattering transform build on top of the diffusion wavelet frame W; defined in (10) and assume
A1 > 0. Then for all f € H, and every path p we have

Jim (115, [p1f1 = (STpLNl@ollly =0. (14)

Remark 3. In the case where £ =—V - V is the Laplace-Beltrami operator on a manifold or the unnormalized graph Laplacian, one
may take @, to be the constant function ¢,(x) = vol(X)!/2 and it is known that the associated heat semigroup {e~'f }is0 is positivity
preserving (see, e.g., [25,44]). Therefore .S;[p]f will be nonnegative, and (14) implies

Ly e
Vol(X)1/2 Jim S, [p1f = (S[p1f)-
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3. Examples and relationship to prior work

Several versions of the scattering transform for graphs [35,34,89] and smooth Riemannian manifolds without boundary [63,59]
have been introduced in previous work. In this section, we will discuss how these constructions relate to our framework. We also
discuss several other examples of measure spaces included in our theory that have not been previously considered in the scattering
transform literature. Most of the techniques used to prove our theoretical results in Sections 2, 4, and 5 are natural generalization of
the techniques used in these previous works on geometric (and even Euclidean) scattering. Indeed, our definitions were developed
by carefully examining these papers and designing our framework in such a way that these techniques could be extended to more
general settings. Additionally, we note that our convergence results (Theorems 10, 11, 12, 13, and 14 stated in Section 6), do not, to
the best of our knowledge, have direct analogs in any previous work on the scattering transform.

3.1. Undirected, unsigned graphs

Several works have introduced different definitions of the graph scattering transform. These works differ primarily in two respects,
i) the definition of the wavelets and ii) whether they use a windowed or unwindowed version of the graph scattering transform.
Below, we explain how these constructions are related to our framework. Throughout this subsection, we let G = (V, E,W) be a
weighted graph with weighted adjacency matrix A and weighted degree matrix D = diag(d), where d denotes the degree vector.
Notably, all of the work discussed in this subsection focuses on undirected, unsigned graphs, i.e., graphs for which A is symmetric
and has nonnegative entries.

In [34], the authors define wavelets of the form T2~ — T2, where T := %(l + D™'2AD"1/2), for 1 < j < J for some maximal
scale J.! In order to obtain these wavelets from our framework, we may choose y to be the uniform measure which gives weight 1
to each vertex, let £ be the symmetric normalized Laplacian Ly, = I — D~'/2AD~!/2 and choose

1-1/2 if0<A<L2
g = / . (15)
0 otherwise

in (8). The authors of [34] are primarily concerned with graph level tasks and therefore use a non-windowed version of the scattering
transform. . _
In [35], the authors use wavelets of the form P2~ — P? where

P:= %(I +AD™Y=D'?Tp~/?

is the lazy random walk matrix, i.e., the matrix whose entries describe the transition probabilities of a lazy random walk on the
graph. In order to incorporate these wavelets into our framework, we define y by the rule u({v;}) = %, where v; € V and d; is

the i-th entry of d, and choose L to be the random walk normalized Laplacian Lpy = I — AD™' = D!/ 2LsymD‘l/ 2. Using the fact
that Lgyy is similar to Ly, one may imitate the proof of Lemma 1.1 of [64] to verify that Lgyy is self adjoint for this choice of .
Therefore, one can recover the wavelets from [35] by again choosing g as in (15). Similar to [34], the authors of [35] are primarily
concerned with graph level tasks and therefore also use a non-windowed version of the scattering transform.

The wavelets used in [34] and [35] are based on [21]. By contrast, [89] uses a different wavelet construction based on [39].
Rather than using a single spectral function g, a family of wavelets {;};cz is constructed on the real line and used to define
wavelet convolution with respect to the spectral decomposition of the unnormalized Laplacian L, :=D — A. In our framework, this
corresponds to defining

N-1
W= w,00f ke,
k=0
where N is the number of vertices and {(4;, @;)} ]I:’: ‘01 are eigenpairs of L,,. We note that in Theorem 1 and in Section 5.2 we do
not assume that our wavelets are constructed as in (10) and therefore some of our results may be applied to the scattering transform
constructed from these wavelets as well. We also note that analogs of many of our other results were previously established in [89]
in this case.

3.2. Signed graphs, directed graphs, hypergraphs, and simplicial complexes

A directed graph is a graph where the adjacency matrix is not symmetric. This makes it non-obvious how to apply spectral
methods since naive extensions of the (unnormalized or normalized) graph Laplacian are in general not diagonalizable on the
standard unweighted inner product space. Nevertheless, directed graphs are a natural model for many phenomena such as email
networks or traffic networks, and so there have been several attempts to define directed graph Laplacians which are either real
symmetric or complex Hermitian.

1 [34] also uses a wavelet I — T for when j = 0.
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In [17], the author defines a directed Laplacian via a non-reversible Markov chain and provides an extensive analysis of these
matrices’ spectral properties. This matrix was later used as the basis for spectral directed graph neural networks in [56] and [78].
An alternative approach, dating back to at least [51], is to construct a complex Hermitian adjacency matrix known as the magnetic
Laplacian, which may be viewed as a special case of the graph connection Laplacian (see, e.g., [72,73]). This matrix represents the
undirected geometry of the graph in the magnitude of its entries and incorporates directional information in the phases. It has been
studied by the graph signal processing community [33] and also applied to numerous data science applications such as clustering
and community detection [30,19,28,29]. Recently, [87] showed that the Magnetic Laplacian could be effectively incorporated into
a graph neural network. Analogously, there has also been work [23] using spectral clustering methods on signed graphs, i.e., graphs
with both positive “friend” edges and negative “enemy” edges using methods based on signed Laplacians. Very recently, [32,40,74,
47] proposes various signed magnetic Laplacian and uses these matrices to construct a signed and directed graph neural network.
Similarly, [31] has proposed a neural network on hypergraphs (graphs where generalized edges may consist of more than two nodes)
based on a generalized Laplacian.

In this paper, we are agnostic to the question of which Laplacian is the best for signed and/or directed graphs. We merely
note that our theory applies to all of the Laplacians discussed here and any of these Laplacians can be used to define scattering
transforms on signed and/or directed graphs. Additionally, we note that there has been work developing spectral clustering methods
on hypergraphs using matrices which do not fit within our framework because they are not self-adjoint (see [16] and the references
within). Developing variants of our theory which utilize these operators would be an interesting direction of future work.

We also note the recent work [66], which uses the Hodge Laplacian to construct wavelets on simplicial complices. These wavelets
were then used as a basis for simplicial complex scattering transforms in the follow up work [67]. Furthermore, we also note several
papers which have applied Hodge Laplacians to directed graphs [52,69]. We remark that in some of these cases, the condition
that 0 = 4, < 4; may not hold. In these settings, both U and the windowed scattering transform are still well-defined and most
of our analysis carries through unchanged. The definition of the windowed scattering transform, however, should be modified to
either be projection onto the 0-eigenspace, in the case where 0 has multiplicity, or to be defined via a global summation, i.e.,
E[p] f = ZUEV Ulplf(v), in the case where 0 < 4,. However, it is important to note that in the latter case it is no longer true, in
general, that the non-windowed scattering transform is the limit of the windowed scattering transform. (It follows from the proof of
Proposition 2 that the windowed scattering transform converges to zero in this case.)

3.3. Manifolds

In [63], the authors constructed a scattering transform for smooth and compact manifolds without boundary via the spectral
decomposition of the Laplace-Beltrami operator. If we choose g(1) = e~%, the wavelets proposed in Section 2.1 are a minor variation
of those considered there. Indeed, if we add an additional square root term as discussed in Remark 2, then the wavelets from
Section 2.1 will exactly coincide with those considered in [63]. We also note [59] which replaced with wavelets used in [63] with
wavelets optimized for fast computation on the sphere. As with the wavelets considered in [89], these wavelets are not a special case
of the wavelets constructed in Section 2.1. However, it is likely that one could derive analogs of most of our results for this version
of the scattering transform as well.

Our framework can also be applied to other interesting setups not considered in previous work on the scattering transform. For
example, when the Laplace-Beltrami operator is equipped with suitable boundary conditions, our methods may also be applied to
manifolds with boundary. Moreover, it may also be applied to weighted Laplacians such as those considered in [41] or [42] or
anisotropic Laplacians such as those applied to two-dimensional surfaces in [6].

4. Continuity and invariance

In this section, we establish the fundamental continuity and invariance properties of the windowed and non-windowed scattering
transform. In Section 4.1, we show that both the windowed and non-windowed scattering transforms are Lipschitz continuous with
respect to additive noise, and then, in Section 4.2, we establish invariance and equivariance properties for the scattering transforms
under certain group actions.
4.1. Lipschitz continuity with respect to additive noise

The following two theorems show that the windowed and non-windowed scattering transforms are Lipschitz continuous on H.

Our first result, Theorem 1, shows that the windowed scattering is nonexpansive. Its proof is based on analogous theorems in works
such as [57], [63], [64], and [89] which consider specific measure spaces.

Theorem 1. Let S be the scattering transform built on top of the wavelet frame W. Then the scattering transform is a nonexpansive operator
from H = £>(M), ie., fordl f, f, €H,

IS fy = SFall ey < 171 = Fally-

Theorem 2 shows that the non-windowed scattering transform is Lipschitz continuous on H. Its proof is a generalization of
Theorem 3.2 of [64]. Notably, unlike Theorem 1, Theorem 2 requires that we use the wavelets defined in (10).
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Theorem 2. Let .S; be the scattering transform built on top of diffusion wavelets W; defined in (10). Assume that inf |@q(x)| > 0 and
A1 > 0. Then

1

SfH-SHkF<—m8
1573 hll; < min, |@g(x)|2vol(X)

If1 = Fallz-

For proofs of Theorems 1 and 2, please see Appendix C.

Remark 4. In many cases of interest such as when either i) X is a compact Remannian manifold without boundary and L is the
Laplace-Beltrami operator or ii) X is an unweighted and undirected graph and L is the unnormalized graph Laplacian, we have that

@o(x) is constant and therefore TGOl ) =1.

Remark 5. Inspecting the proof, we see that results analogous to Theorem 2 can be derived for the non-windowed scattering
transform built upon other frames as long as one is able to establish a result similar to Proposition 2.

4.2. Invariance and equivariance

Let G be a collection of bijections ¢ : X — X which form a group under composition. For { € G, let
Xy = (X, Fyo ) (16)

be the measure space with c-algebra F, and measure y, given by

F,:={'(B): BEF), ug(B) :=uC ' (B)).

We let G act on H by function composition and we let it act on the set of linear operators by conjugation. Let H© be the Hilbert
space of functions on X, which are square integrable with respect to .. Let V, : H — H® denote the operator Vef i=fof -1 and
let £, denote the operator on H© defined by

. -1
L=V, oﬁng .
The following lemma relates the eigenfunctions of £ and L.

Lemma 1. If ¢ is an eigenfunction of L with Lo = Ag, then V¢ is an eigenfunction of L, and L V@ = AV, .

Proof. The proof is immediate from the definition:
— -1 — — —
EVeo=V LV Veo=ViLo=Vihp=4V;o. [

In the case where X is a graph or a manifold, the standard choice of G is the permutation group or the isometry group. The
key desired property of this group is that the associated group action is an isometry from H to H®). This motivates the following
definition.

Definition 1. We say that G preserves inner products on H if for all { € § and all f,, f, € H we have
Ve 1 Ve Fdmo =1 )

Importantly, we note that Definition 1 is satisfied both when X is a compact Riemannian manifold, G is the isometry group, and u
is the Riemannian volume and also when X’ is a graph, G is the permutation group, and u is any measure, including both the uniform
measure and measures which assign different weights to vertices depending upon their degrees.

Lemma 2. Suppose G preserves inner products on 1. Then, for all { € G, L, is self-adjoint on H©O,

Proof. Using the definition of £, the fact that £ is self-adjoint on H, and the assumption that G preserves inner products implies
(Lefis e = VLV L VeV P = EV ALV fada
=WV LV S =V VeV
= <Vg_1f1, I/C_1£¢f2>7-1 ={f1.L: /o O

9
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Recall the operators H' : H - H

H'f = g Fe, =Y g (f.01)n s

kel kel

and define

HLf =Y g (f. 0 o o)
kel

©)
k

denote wavelets and averaging operators on H©, and let U©), S©, and S be the analogs of U, S, and S on H®. We observe
that by Remark 1, the definition of H Z* does not depend on the choice of eigenbasis. Therefore, by Lemma 1, we may assume without

to be the corresponding operator on H©), where {¢\"’},; is an orthonormal basis of eigenfunctions for L. Let VV/.(O and A©

loss of generality that (pf) =V, and therefore that
HLf = Y s Voo no Vi a7
kel

In light of (17), if G preserves inner products, we see that H' commutes with V,in the sense that

Hgngf=V¢H’f forallz>0 (18)

since we may compute

HLV,f = Y e Ve [ Veoduo Voo = Y, 8\ f- 0101 Ve s
kel kel

=V 2 g S o e =V H'f-
kel
This readily leads to the following theorem which shows that the condition that G preserves inner products on H is sufficient to
produce equivariance results for the wavelet transform and the windowed scattering transform analogous to (2) mentioned in the
introduction. For a proof, please see Appendix D.

Theorem 3. Let J = {0,...,J}, and let W = W, be the diffusion wavelets constructed in (10) and assume A; > 0. Then, if G preserves
inner products, then G commutes with both the wavelet transform, the operator U defined in (13) and the scattering transform. That is, for
al({eq feH and 0< j < J, we have

WOV =V W f, AV f=V,Af, UV, f=VUf and SOV, f=V,Sf.

Remark 6. Equations analogous to (18) hold for any spectral filter of the form (4), as long as ’ﬁ(k) is a function of 4, i.e., /ﬁ(k) = 71(/1k)
for some function 7. Therefore, results similar to Theorem 3 can be derived for any network constructed from such filters and
pointwise nonlinearities ¢. Additionally, analogous results can also be derived for the scattering transform built upon other geometric
wavelet constructions. For example, the conclusions of Proposition 4.1 of [89] are similar to those of Theorem 3 above.

Our next result shows that the non-windowed scattering transform S is fully invariant under the assumption that G preserves inner
products on H. Importantly, we note that the windowed scattering transform is not in general invariant. Intuitively, this distinction
arises from the fact that S is the composition of an equivariant operator U together with a final global aggregation operator whereas
S uses a localized averaging operator A.

Theorem 4. Let J = {0, ...,J}, and let W = W; be the diffusion wavelets constructed in (10). Assume L has a spectral gap, i.e., A; > 0.
Then, if G preserves inner products, the non-windowed scattering transform is invariant to the action of G, i.e.,

SOV, f=Sf forall{ €Gand dl f €H.

©

Proof. Since 4, >0, the eigenspace corresponding to 4 =0 has dimension one. Therefore, ¢

|| =1, and so

= cV; @y, for some constant ¢ with

SOV, f = KUOIpIV, £, eV 00) o |
=V UIplf . Ve 00) | = KUIpIf @o)3| = SIplf. O

Unlike the non-windowed scattering transform, §, the windowed scattering transform §; is not in general permutation invariant,
even in the limit as J — oo. If one wishes the windowed-scattering transform to be invariant to the action of G, then one must also
require that G preserves the measure y as defined below.

10
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Definition 2. We say that G preserves the measure y if 7, =F and u (B) = u(B) forall{ € Gand all BEF.

To better understand this definition, we note that if X’ is a Riemannian manifold, then the isometry group preserves y when y is
the Riemannian measure, but not if a general y is chosen. Similarly, if X is a graph, the permutation group will preserve y if it gives
equal weight to each vertex, but not if, for example, u gives different weights to vertices depending on their degrees.

Under the assumption that G preserves the measure y, we are able to show that the windowed scattering transform is invariant
to the action of G in the limit as J/ — oo at an exponential rate.

Theorem 5. Let J = {0, ..., J }, and let W = W), be the diffusion wavelets constructed in (10). Suppose that @,(x) is constant and assume
G preserves both measures and inner products. Then for all { € G, we have

J
1555 = SEVe Fl 2y < 208G U fll 2y

The proof of Theorem 5 is based on Lemma 3 as well as the observation that lim;_,, |4, V; — A,|l;; = 0. We note that while
Theorem 5 assumes that the W =W, are the diffusion wavelets constructed in (10), Lemma 3 does not. (Note that other geometric
wavelet constructions such as the one utilized in [89] also lead to versions of the scattering transform where the (19) condition is
satisfied.) For a proof of both Theorem 5 and Lemma 3, please see Appendix E.

Lemma 3. Assume G preserves both measures and inner products and that S is equivariant with respect to the action of G in the sense that

SOV f=V,Sf. (19)
Then for all ¢ € G, we have

IS f = SOV, fll 200 S WVe A= Al U £ 1l 234 -

Remark 7. One limitation of Theorem 5 is that the right-hand side is given in terms of ||U f || »23,, instead of || f|3,. This is a common
issue with many asymptotic invariance results for the windowed scattering transform. However, as first noted in [57], one may use
(11) and the fact that ¢ is nonexpansive to see

Y UpIAl < Y WIS,

peJm™ pEJ”“l

for any m > 1. Therefore,
X WIS < Y WUDIfIG, <. < YN0, <1115, (20)
pEIJ™ pegm-1 peJ

and so, if one only uses M scattering layers, the total energy of U f may be bounded by

> < D IIU[p]f||§{> <M +DIIFIE,

m<M \peJm

Therefore, if one only uses finitely many scattering layers, the right-hand side of Theorem 5 may be controlled in terms of || f/|4-
Moreover, in the case where X is a graph, for certain classes of wavelets we have

Y el < Y IUIRIAI, 1)

peJ™ pegm-1

for some r < 1 (see, e.g., Proposition 3.3 of [89] or Theorem 3.4 of [64]). Therefore, in this case, one has

01200 = 2 < D IIU[p]f||§,> <Y I = ﬁnfni

m=0 \peJm m=0

independent of the number of layers used.

The main results of this section, Theorems 3, 4, and 5, can be summarized as follows: If § preserves inner products, and the
scattering transform is constructed using the diffusion wavelets defined in Section 2.1, then the windowed scattering transform is
equivariant and the non-windowed scattering transform is invariant to the action of G. If we further assume that G preserves measure
and that @, is constant, then we also have that the windowed scattering transform is invariant in the limit as J — co.

As alluded to in the introduction, these invariance and equivariance results show that the scattering transform respects the
intrinsic structure of the data and therefore is well-suited for a variety of machine learning tasks. In particular, the equivariance
result, Theorem 3, shows that it is well-suited for point-level tasks such as the node classification task which we will consider in

11
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Section 7.3. Similarly, the invariance results Theorems 4 and 5, show that it is well-equipped to handle shape-level tasks such as the
manifold classification tasks considered in Sections 7.1 and 7.2.

We also note that the assumption that G preserves inner products is quite natural. It is satisfied both when u is the Riemannian
measure on a manifold and G is the isometry group and when X is a (possibly signed, possibly directed) graph, G is the permutation
group, and y is any measure. The conditions that G preserves volumes and ¢, is constant are a bit stronger. For example, when X is
a graph, permutations do not preserve measure if the y gives different vertices different weights. Moreover, if we take L to be the
symmetric normalized graph Laplacian (on an undirected, unsigned graph), then ¢, is given by @,(x) ~ degree(x)!/? and therefore
is not constant unless the graph is regular.

5. Stability

In this section, we show that the measure space scattering transform is robust to small perturbations to the measure y and the
diffusion operator H. In particular, we consider a measure space X = (X, F, u) and another measure space X’ = (X', F’, u") which
we interpret as a perturbed version of X'. We assume that these two spaces have the same underlying sets and c-algebras and that
measures are mutually absolutely continuous with bounded Radon-Nikodyn derivatives, i.e., we have X = X/, F = F’ and that there
exist Radon-Nikodyn derivatives such that

du

du'
du=——dy' and duy' =-—"—du.
H d M M dn H

To quantify the distortion between measures, we let H = L2(X) and H’ = L2(X”), and we introduce two quantities, R = R(H, H')

and k = k(H,H'), defined by
du }
= (22)
o “ dp' |l
du’

-2 )
o dp lleo

We note that these two quantities are closely related to their analogs in [64] which focused on the special case where X was an
undirected, unsigned graph. In the case where y = u’, we have R(H,H’) =1 and x(H, H') = 0. Therefore, we will consider u and y’
to be close to one another if R~ 1 and ¥ % 0.

To further understand these definitions, consider the case where X and X’ are two (possibly signed, possibly directed) graphs
with N vertices and identify both vertex sets with {0,1,..., N — 1}. If u and 4’ are both the uniform measure, then we automatically
have R(H,H') =1 and x(H,H') = 0. In this case, bounds produced in Theorem 6 will simplify considerably as discussed below.
Another natural choice of measure in the graph setting is to let u(i) = dl.‘1 = degree(i)~! since this is the measure needed in order to

d !
R := R(H,H') := max { H .
du

and

K(H,H') = max “1 _au
du’

o d
make the random-walk Laplacian I — AD~! self-adjoint. In this case, we have R(H,H') = max,;<y_; max { %, T } In particular,
if both d and d’ satisfy the entrywise bound 0 <m <d;,d} < M < o, we have R(H,H') < %
Observe that the assumption R(H,H') < oo implies that the sets with measure zero with respect to u are the same as those with
measure zero with respect to u’. Therefore, each function f € H can be uniquely identified with an element of H’ = LNZ(X’ ) (and
vice-versa) and so we may regard the Hilbert spaces H and H' as having the same elements. Therefore, if f € H and f € H’, the

subtraction f — f is well defined. We also note that

d ,
171 = [ 1rPan= [ 17755 < ROLHON I, (23)
X X

and similarly,

112, < RHHONL13,- (24)

We also observe that

d /
IS8 = (S8 | = /f§<1—ﬁ>du <kLHONS Nalgl- (25)
X

Let £ and £’ be self-adjoint positive semidefinite operators on H and H' respectively, and let {¢, }z"zo, {(p;c }20:0 be the associated

eigenbases. Let g be a spectral function satisfying the same assumptions as described in Section 2.1 and let H and H' be the
associated operators defined as in (8). Importantly, we note that we use the same function g when constructing both H and H’, so
we may interpret H and H' as being analogous operators on different spaces. For example, in the case where X and X’ are manifolds
and g(4) = e~*, one may check that { H' }1>0 is the heat semigroup on X and e 04 }i>0 is the heat semigroup on X',

Below, we prove a stability result for the wavelet transform. Our result will give bounds in terms of R(H,H') and x(H,H’),
which measure how much y differs from y’. However, these terms are not by themselves necessarily sufficient to characterize how

12
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different X is from X’. For example, consider the case where X is a complete graph with N vertices, X’ is a cycle graph of N
vertices, and £ and £’ are the unnormalized graph Laplacians on X and X”. In both of these cases, the natural choice of measure

is to assign equal mass to each vertex, and so we will have u({x}) = 4/({x}) for every vertex x € X = X’. It follows, that ‘Z—’:: =1
uniformly, and therefore, we have R(H,H’) =1 and x(H,H') = 0. However, a complete graph and a cycle graph are clearly very far
from being isomorphic as graphs in any reasonable sense. In particular, one way in which these graphs differ is that heat will diffuse
much more rapidly through a fully connected graph than through a directed cycle. This motivates us to follow the lead of [34] (see
also [20] and [61]) and consider the term

I1H = H [l (26)

We note that since we assume that R(H, H') is finite, the operator H’ is well-defined on H. We also note that unlike [34], (26) does
not take the infimum over the orbits of G. This is because the wavelet transform is not invariant to the action of G, but is merely
equivariant. Therefore, no infimum will appear in Theorem 6 stated below which establishes the stability of the wavelet transform.
The scattering transform, by contrast, is invariant to the action of G and therefore such infimums will emerge in Theorems 7 and 8
which establish stability for the windowed and non-windowed scattering transforms.

5.1. Stability of the wavelet transform

We will decompose H and H’ by
H=H+H, H=H+H (27)
where
Hf=f0)gy and Hf =) gi)fke,
k>1
and H' and ﬁ, are defined similarly.

IHA13, =1 ) s F )@l < g1 £11%, (28)
k>1

and similarly,

LH 71152 < gD 113,- (29)

Moreover, combining (29) with (23) and (24) implies

IH' £112, < RO H (P12, < ROLHY gD £ 11,

Therefore,

p <max{g(4y),g(ARH, H)}. (30)

In light of (30), in order for the requirement that # < 1 to hold it suffices for y and y’ to be well-aligned enough so that R(H,H’) <
g(/l’l)‘l. Therefore, Theorem 6 stated below can be interpreted as a local stability result where the radius of convergence depends on
the spectral gap 4].

Theorem 6. Let W; be the diffusion wavelets on X defined as in (10), and let W} be the analogous wavelets on X'. Let f =
max{ | H |l | H |l;,} and assume that § < 1. Then,

/2
Wy =W
<CB) [y — @i, RCH, H') + RCH, H'Y (M, H') + || H — H'|7,]

2
where C(f)=C % for some absolute constant C > 0.

For a Proof of Theorem 6, please see Appendix F. As noted above, in the case where X is a graph and u is the uniform measure, we
have R(H,H') =1 and x(H,H") = 0. Therefore, the result of Theorem 6 simplifies to

Wy = W) 125000, < CO oy = @13, + I1H = H'IB,].

Furthermore, if £ is the unnormalized graph Laplacian, we have ¢, = (p6, and the result further simplifies to |[W; — W}H
CHIH - H'|l5,.

2
<
M) T

13
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5.2. Stability of the scattering transform

In this section, we prove the stability of the windowed and non-windowed scattering transforms. As in Section 4.1, and follow-
ing the lead of [64], in this section, we will not assume that the scattering transform is constructed using the diffusion wavelets
constructed in Section 2.1. Instead, as in Section 2.2, we will let J be an arbitrary countable indexing set and assume that

W={W;, A} ey and W' = {Vle,Al}jeJ

are any frames on H and H’ such that (11) holds. We do this because, for any given measure space, there may be many possible
ways to construct wavelets, or more generally frames satisfying (11) and in the Euclidean setting there have been various works
defining the scattering transform using more general non-wavelet frames [24,36,84,85]. Therefore, we will show that the stability
of the underlying frame directly implies the stability of the resulting scattering transforms. Throughout this section, we will let S*
denote the set of all Z-th order scattering coefficients, on X, i.e.,

SO L =(SIplS 1 p= Uy sdie))s
and let (S%) denote the corresponding set of scattering coefficients on X’. We will also continue to assume that the sets X and X’
and the o-algebras F and F’ are the same and also that R(H,H’) and x(H,H') are finite. We recall that, as noted prior to (23), this

means that H and M’ can be regarded as having the same elements and so the subtraction of elements ' from elements of H is
well defined.

Theorem 7 (Stability for the windowed scattering transform). Let X = (X, F, u) and X' = (X', F’, u’) be measure spaces with X = X' and
F=F' Let H=L*X),H =L2(X’) and let J be a countable indexing set. Let W = (W, A} jeq and W' = {Wj’,A’}jEJ be frames on
H and H’ such that (11) holds. Let S* and (S?)' be the ¢-th layers of the windowed scattering transforms on X and X' constructed from
W and W'. Further assume that S is equivariant to the action of G and also invariant up to a factor of 1B in the sense that

V.S f =S5OV, f, and HVCSf’f—SffH <Bllfllz @D

21

forall f €H and ¢ € G. Then for all f € H and fe H'’, we have

|57 -7 (32)

2(H)

<inf [annH +R(HHOV VS = Tl

14
+ <\ﬁR (HHO) WO =W I3y <Z ||W’||;@>> : ||f||H] :
k=0

For a proof of Theorem 7, please see Appendix G. We note that if W are the diffusion wavelets constructed in Section 2.1, G

preserves measures, and ¢, is constant, then Theorem 5 and Remark 7 imply condition (31) holds with B =4/(¢ + 1)|g(/11)|2J
(which converges to zero as J — o0). In particular, these conditions are satisfied both when & is a Riemannian manifold, L is the
Laplace-Beltrami operator, and yu is the Riemannian volume form and when X is a graph, u is the uniform measure, and L is the
unnormalized graph Laplacian.

We also note that we can interpret each of the terms on the right-hand side of (32). We are looking for a bijection { € G which will
simultaneously align both the wavelets W (which are typically constructed from the operators L of X’), the Hilbert spaces H, and the
signal f. Therefore, the term R(H, H©)) measures how well aligned the Hilbert spaces are, the term |[W® — W' [l74¢) measures how
well aligned the wavelets are, and the term ||V, f — }7 l;; measures how well aligned the signals are. We also note that in the case
where W are the diffusion wavelets constructed in Section 2.1, we can control the term [|[W& — W’ lly«) by applying Theorem 6.

The next result is the analogue of Theorem 7 for the non-windowed scattering transform. We note that the terms on the right-hand
side of (34) have similar interpretations as those in Theorem 7. Additionally, by Theorems 2 and 4, we note that the condition (33)
is satisfied whenever inf , |p(x)| > 0, 4; > 0, G preserves inner products and W = W), are the diffusion wavelets constructed in (10).

Theorem 8 (Stability for the non-windowed scattering transform). Let X = (X, F, u) and X' = (X', F’, u') be measure spaces with X = X'
and F =F'. Let H = L*(X),H’ = L*(X") and let J be a countable indexing set. Let W = {W}, A},c; and W' = {I/Vj’,A’}jeJ be frames

on H and H' such that (11) holds. Let S and (F)’ be the £-th layers of the non-windowed scattering transforms on X and X' constructed
from W and W'. Assume that S is fully invariant to the action of G and also Lipschitz continuous on H with constant C; in the sense that

IS/, = SAHIZ<CLIf = follyy and SOV, f, =S, (33)
Then for all f € H and f € H’, we have
— — 2
7 -7

14
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<3inf [2CL||V¢f = FI2 0+ REHO 1 N0l = o) 13,1713,

£-1 2
+2WO W2 <2 ||w'||;;@> 1711 ¢ + < HON -
k=0

For a proof of Theorem 8, please see Appendix H.
6. Implementing the manifold scattering transform from point-cloud data

In [63], the authors showed that the manifold scattering transform was effective for classification tasks on known two-dimensional
surfaces with predefined meshes. However, in many applications of interest, one is not given a predefined manifold. Instead, one is
given a collection of points {x;} (’)\’: ’11 embedded in some high-dimensional Euclidean space R and one makes a modeling assumption
that these points lie on (or near) a comparatively low-dimensional manifold. Thus, in this section, we will assume that X’ is a smooth
d-dimensional Riemannian manifold without boundary which is embedded in R? for some D > d and that {x; }fi 61 is a discrete
subset randomly and independently sampled from X. We will use the x; to construct a weighted graph X'y, and present two methods
which use Xy to implement an approximation of the manifold scattering transform when one only has access to these sample points.

Both of these methods rely on an affinity kernel K, (-,-) to construct a data-driven graph X’y with weighted adjacency matrix

W™, In our first method, we simply define an approximate heat semigroup at time 7 = 1 by Hy _:=(D™)~'W ™), where D) =

W1 is the degree matrix associated to W®), One may then approximate H? by, e.g., matrix multiplication. We note that while
in principle, H ]lV,e is a dense matrix, most of its entries will typically be small and therefore one may apply a threshold operator
and use sparse matrix multiplications to implement an approximation of the wavelet transform. (Notably, if one imitates the method
used in [77], there is no need to ever form a dense matrix after the initial thresholding.) In our second method, we use w® to
construct a data-driven graph Laplacian Ly .. We then define a discrete approximation of the heat semigroup using the eigenvectors
and eigenvalues of Ly .

In either case, once we have our approximations of H', it is then straightforward to implement the wavelet transform and
therefore the scattering transform. The advantage of the second, eigenvector-based method is that we will be able to use results
from [27,15] to prove a quantitative rate of convergence for the scattering transform. The first method, on the other hand, is more
computationally efficient for large N (if one uses a thresholding operator to promote sparsity as discussed above) since it does not
require one to compute an eigendecomposition. We are not able to prove a convergence rate for the scattering transform computed
using this method, but we note that the approximation H! ~ H le,e = (D)~ W) was shown to converge pointwise [20], albeit
without a rate.

In order to avoid confusion, we will typically denote objects corresponding to Xy with a subscript or superscript N and objects
corresponding to X without such subscript or subscript. For example, we will let W denote a wavelet on X at scale 2/ and W N
denote the corresponding wavelet on X'y. Throughout the section, we will choose £ = —V - V to be the Laplace-Beltrami operator on
X, where V is the intrinsic gradient. We will also choose g(4) = e~*, in which case {H'} >0 is the heat semigroup (see Equation (9)).
We will let A,(x, y) denote the heat kernel so that H, f(x) = / v 7 (x,¥) f(y)d u(y), where du is the Riemannian measure, normalized
so that

uX)=1. (35)

It is well known that

/ h(x,y)du(y)=1 (36)
X
for all x € X and all r > 0, and

(o)

h(x.y) =) e Mg ()@ (), 37)
k=0
where in (37), and throughout this section, we will use y; to denote eigenvalues of the Laplace-Beltrami operator £ =—-V -V and
will reserve 4, (sometimes with additional superscripts) for eigenvalues of the data-driven graph Laplacian which we will define
below.
We now construct a weighted graph. We let K(-, ) be an affinity kernel such as

€

) llx = x'13
K(x,x") =K (x,x"):i=e"?exp[ ————2 ), e>0 (38)
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where in the above equation ||x — x’||, refers to the Euclidean distance between two points in RP and e is a bandwidth parameter.?
Given this kernel, we define an affinity matrix W) and a diagonal degree matrix DY) by
N-1

W'V :=K(x;,x;) and DY :=Y W,

(N)
ij ii .
Jj=0

o
Given W™ and DY), one may then approximate H! by

Hy, =(DN)"'w), (39)

While the primary motivation of this method is to avoid computing eigenvectors and eigenvalues, we do note that (39) may also
be equivalently obtained from (8) by choosing L to be the Markov normalized Graph Laplacian 1™ — (DN)=IW V) on Xy, and
choosing g(4)=1-A.

Our second method constructs approximations of H' based on (37). In our implementation, we may only use finitely many
eigenvalues. This motivates us to define the truncated heat semigroup by

K

Hff(X)1=/hf(x,y)f(y)dﬂ(y), where hf(x,y) 1= Ze_t”kfﬂk(X)(ﬂk(y),
e k=0

where « is chosen by the user. Our goal is to construct a good discrete approximation of L. This will require controlling the two
sources of error: (i) that we only use the first k¥ + 1 eigenvalues and (ii) that we do not know the eigenvalues or eigenfunctions of the
Laplace-Beltrami operator £ and must instead use the eigenvalues and the eigenvectors of the data-driven Laplacian defined below.
The following lemma addresses (i) by bounding the error induced by only using finitely many eigenvalues. For a proof please see
Appendix 1.

Lemma 4. For k >0 and f € L3(X), we have

||H;(f - Hrf”LZ(X) <e Ml ||f||L2(X) (40)

and also

I1Hff = H fllo < Cxllfllco (41)

where C is a constant which depends on the geometry of X but does not depend on «, t, or f.

Next, we construct an unnormalized data-driven graph Laplacian by

1
Ly i=—= (DN — ™),
Vo= )

We will interpret W) and Ly . as the adjacency matrix and Laplacian matrix of a data-driven graph Xy. We will denote the
eigenvectors and eigenvalues of Ly . by /lllcv € and ullcv ¢ so that

Ly ule = Vg (42)

When convenient, we make the dependence on N and e implicit and simply write u, and 4, in place of ukN *“ and ﬂ,](V *“. We define
the discrete truncated heat-kernel matrix by

K
N.e . .
Hy o= e w9 43)
k=0

To accomplish goal (ii), we will need discrete approximations of our eigenfunctions ¢, of the Laplace-Beltrami operator, which
motivates us to introduce the normalized evaluation operator p : C(X) — RN given by

1
VN

We then define

pfi=—=((xp)s ., f(XN_1))-

Vi ‘= PPk
We note these definitions differ slightly from [15]. There, the authors do not include the normalization term \/LN in the definition

of the evaluation operator p but instead include it in the definition of the vector v,. Importantly, we note that in either case the

2 Notably, our construction is sensitive to the choice of this bandwidth parameter. For more on this issue, we refer the reader to [53] which discusses some remedies
to this sensitivity.
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definition of v, is ultimately the same, i.e., (v);, =
chosen so that [E||pf||2 =7
that [|pf13~ IIf1I?

ﬁ(pk(xi) (although [15] uses the letter ¢ instead of v)). Our convention is
Ly Additionally, we may also use Hoeffding’s inequality to derive the following lemma which shows
2@ with high probability as N — 0. For a proof please see Appendix J.
Lemma 5. Assume that the points {x; }N
we have

18log N
Ko s 08)2 = (- Oraen| <\ —— 1l

Our goal is to show that for a large fixed «, in the limit as N — oo and ¢ — 0, we have Hy ., ,0f ~ pH,f in the sense that k is
large enough so that ||pH, f — pH[ f |, is negligible, which follows for large x from Lemmas 4 and 5, and

are drawn i.i.d. uniformly at random, and let f, g € C(X). Then, with probability at least 1 — =5

=0 N9’

I1Hy exipf —pH fllz =0 as N —co.

AN,G

In order to do this, we need the following result that shows that and ukN *“ are good approximations of y, and v,. It is a special

case of Theorem 5.4 from [15], which follows by setting ¢ ~ N ~2/(d+6),

Theorem 9 (Theorem 5.4 of [15]). Assume that the points {x; } ! are drawn i.i.d. uniformly at random and that the first  +2 eigenvalues

of L, py, ..., Uey1, all have single multiplicity. As in (42), let ukN s and Allcv *“ be the eigenvectors and eigenvalues of the data-driven Laplacian
constructed via the Gaussian affinity kernel K, defined as in (38), and let k > 0 be fixed. Assume that ¢ - 0 and N — oo at a rate where

€ ~ N~2/d+6)_ Then, with probability at least 1 — O ( o ) there exist scalars o with

|| = 1+ 0(1)

such that for all 0 < k <«

2 2
e = 4| =(9<N‘m), < = v ll, = O (N‘m \/1ogN>,

where the constants implied by the big-© notation depend on k and the geometry of X.

Remark 8. Inspecting the proofs of Theorem 5.4 of [15] and the related results in that paper shows that when e ~ N~2/@+6) we

have
log N log(N)
max{llakl—l —1‘}30( N >+O<W>

Please see Appendix K for details.

Given Theorem 9, we may use Lemma 5 to derive the following result which shows that Hy ., ,pf converges to pH/ f as
N — co. Moreover, the rate of the convergence for Hy . ,pf, is the same (up to logarithmic factors) as the convergence rate for the
eigenvectors and eigenvalues provided in Theorem 9.

Theorem 10. Let f € C(X). Then, under the assumptions of Theorem 9 we have

og N 2
~ ||f||m>

with probability at least 1 — O (ﬁ) if d > 2. In the case where d = 1, if the assumptions of Theorem 9 hold, then we have

og
IH ceipf = pH*f||2<max{z21}c9< )(nfanm
Nd+6

”HN,G,K,tpf - pHKfllg

log N log N
<max(r, 1) (o ( i ) 17122 + (%) ||f||§o> :

In both cases, the implied constants depend both on k and on the geometry of X.
If we combine Theorem 10 with Lemma 4, we may then obtain the following corollary.

Corollary 1. Let f € C(X). Then, under the assumptions of Theorem 9, we have
IHN exspf = pH, I3 (44)
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log N log N
Smax{tz,l}[((9< £ >+2e_2'”"+1>||f||i2(2€)+(9< ~ >||f||§o] (45)
N d+6

with probability at least 1 — O (% ), where the constants implied by the © notation depend both on k and the geometry of X.

For proofs of Theorem 10 and Corollary 1, please see Appendix L.
In our eigenvector based method, where we approximate the heat semigroup via (43), we next define a data-driven wavelet
transform
. J
Wy nx =W N Ay NXE o

where Wy yx=(y —Hy )X, Ay yXx=Hy . oyxandfor 1 <j<J,

I/Vj,NX = HN,E,K,2j_1 X—= HN,e,K,ZJX'

We note that these wavelets implicitly depend on both x and ¢ in addition to N, but we suppress these dependencies in order to
avoid cumbersome notation. Analogously to Section 2.2, for a path p = (jy, ..., j,,) we define
Unlplx:i=cW; x...cW; NX

and define data-driven scattering coefficients by

Sy nlplx:=A; yUylplx and  Sy[plx:=|(Uy[plx,up),].
In the case where we approximate the heat semigroup via (39) rather than (43), we define VVJ ~N>Unlpl, and S y similarly, but with

HJZ\;!G in place of Hy ., »; and we define the non-windowed scattering transform by S y[plx = |Uy[plx]l; in order to avoid needing
to compute any eigenvalues.
The following theorem uses Corollary 1 to bound the discretization error of the wavelets.

Theorem 11. Let f € C(X) and assume that the heat semigroup is approximated as in (43). Then, under the assumptions of Theorem 9, we
have that

W, nof = oW, fll3

log N j log N
<@<i) v (e )) . +@<\/ %) iz

N @6

<%

with probability at least 1 — O (% ), where the constants implied by the big-© notation depend both on k and on the geometry of X.

Proof. For j>1,

. )
Wi nof = oW F 15 SWHy e pim10f = Hy ccaipf) = 0H? ™ f = pH” D13
O )
S2Hy e pm1pf =pH? " [I5+20Hy ccninf = pH” fII3.
Therefore, the result follows from Corollary 1. For the case where j =0, we note that I pf = pId f. Therefore,
I’Vj,Nﬂf - PVij = HN,S,KJPf - PHlf
and we may again conclude by applying Corollary 1. []

Iteratively applying Theorem 11, one may obtain the following bound for the discretization error of Uy [plp f. For a proof, please
see Appendix M.

Theorem 12. Let f € C(X) and assume that the heat semigroup is approximated as in (43). Let p = (jy, ..., Jj,) be a path of length m for
some m > 1, and let j,, = max,;<,, j;- Then, under the assumptions of Theorem 9, we have that

IUxIplpf = pULPISII;

. log N log N
<2%max [((9( Og4 > +(‘)(e_””“)> ||f||i2(x) +(9<\/ %) ||f||i,],

N d+6
where the constants implied by the © notation depend on m, k, and the geometry of X.

18



J. Chew, M. Hirn, S. Krishnaswamy et al. Applied and Computational Harmonic Analysis 70 (2024) 101635

Inspecting the proof of Theorem 12, one may observe that the constants implied by the big-(@ notation increase exponentially
with respect to m. However, in practice, one typically only uses two or three scattering layers, so we do not view this as a major
limitation. We also note that a similar exponential dependence on the number of layers was observed for the generalization bounds
for message passing networks arising from the discretization of graphons in [58]. Additionally, we note that, by inspecting the proof,
it is clear that the implied constants in the term @ (e #~+1) do not depend on k. A similar remark holds for the analogous terms in
our subsequent results.

The next two results establish convergence of the windowed and non-windowed scattering coefficients as N — oo. For proofs,
please see Appendix N.

Theorem 13. Let f € C(X) and assume that the heat semigroup is approximated as in (43). Let p = (j|,....Jj,,) be a path of length m for
some m > 1. Then, under the assumptions of Theorem 9, we have

IS, nIplof — oS, P12

log N _ log N
S221[<0<g—4>+0(e mﬂ)) ||f||i2(x)+(9< ng )||f||§o],
N6

1
NO

with probability at least 1 — O ( ), where the constants implied by the big-© notation depend on m, k, and the geometry of X.

The following is the analog of Theorem 13 for the non-windowed scattering transform.

Theorem 14. Let f € C(X) and assume that the heat semigroup is approximated as in (43). Let p = (j|,....Jj,,) be a path of length m for
some m > 1. Then, under the assumptions of Theorem 9, we have

ISy (plof = Slplf]

oe N loc N 1/4
S2J |:<(9<—“0g2> +(9(e_ﬂk-+1/2)> ||f”L2(?\’) +(9<<%> ) ”f”oo:|
N a+6

with probability at least 1 — O (ﬁ ), where the constants implied by the big-© notation depend on m, k, and the geometry of X.

The convergence guarantees presented in this section may be summarized as follows. Theorem 9 is a result from [15] which
provides convergence rates for the eigenvectors and eigenvalues of Ly .. We then use this result to obtain convergence rates for our
discretization of the heat semigroup, the wavelet transform, and the scattering transform. In all of these results, both the assumptions
on the manifold and the convergence rate with respect to N are the same as in Theorem 9. Moreover, inspecting the proofs, one will
observe that any future work which builds upon Theorem 9 by, e.g., relaxing the assumption that the 4, have single multiplicity,
will readily lead to improved versions of our convergence results for the scattering transform. We also note that, given a point cloud,
there are many possible ways to construct a graph Laplacian which approximates the Laplace-Beltrami operator. For example, [12]
proves a result analogous to Theorem 9 for nearest neighbor graphs and e graphs. One could readily modify our method to define
approximations of the manifold scattering transform using these graphs, and it is likely that one could imitate the methods presented
here in order to obtain convergence results as N — co. Additionally, we note that under certain assumptions on the generation of
data points {x,-}[’i =1 for example, when the sampling is not uniform, the users could add additional terms which account for the
density of the data (see, e.g., the a-normalization approach [20,27,54]) when constructing W@ or to implement methods based on
other data-driven Laplacians such as the longest-leg path distance Laplacian considered in [55].

7. Numerical results

The numerical effectiveness of the graph scattering transform for tasks such as node classification, graph classification, and even
graph synthesis has been demonstrated in numerous works such as [35,34,89,83,88] and [3]. However, the numerical effectiveness
of the manifold scattering transform is much less well established. Indeed, the initial work [63] only provided numerical experiments
on two-dimensional surfaces with predefined meshes. Here, in Sections 7.1 and 7.2, we will show that the methods proposed in
Section 6 are effective for both synthetic and real-world data. As in Section 6, we assume that we may only access the manifold
though a finite collection of random samples {x; l’i 61 in both Sections 7.1 and 7.2. Additionally, in Section 7.3, we will show that
our proposed method is effective for node classifications on directed graphs.

First, in Section 7.1 we will show that the manifold scattering transform is effective for learning on two-dimensional surfaces,
even without a mesh. In particular, we will consider the same toy data sets that were analyzed with a mesh-based approach in [63].
These experiments aim to provide validation for our methods and show that the manifold scattering transform can still produce good
results in the more challenging setting where one does not have access to the entire manifold. Having established proof of concept
on toy data sets, in Section 7.2 we apply the manifold scattering transform to high-dimensional biomedical data where one models
the data as lying upon some unknown manifold. In both of these settings, we will follow the lead of [35] and [3] and augment the
expressive power of the scattering transform by considering higher g-th order scattering moments for 1 < g < Q defined by
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Fig. 1. The MNIST dataset projected onto the sphere.

Table 1
Classification accuracies for spherical MNIST averaged over
10 realizations.

DATA TYPE N K 0] ACCURACY (%)
POINT CLOUD 1200 200 4 79+0.9
POINT CLOUD 1200 400 4 88+0.2
POINT CLOUD 1200 642 4 84+0.7
MESH 642 642 1 91+0.2

Slp.alef = Uy bl 1.

Using these higher-order moments instead of the standard non-windowed scattering transform increases the expressive power of
our representation and helps compensate for the lack of global knowledge of the manifold. Notably, these scattering moments are
invariant to the ordering of the data points, since by Theorem 3 each Uy/[p] is equivariant to permutations (i.e., reorderings) and
each E[p, q] is defined via a global summation. Additionally, we note that if the kernel K(x;,x ;) isa function of the Euclidean

distance between x; and x ; then the EN [p, q] will be invariant to rigid motions in the embedded space. Throughout this section, we
shall report all accuracies as mean + standard deviation.

7.1. Two-dimensional surfaces without a mesh

When implementing convolutional networks on two-dimensional surfaces, it is standard, e.g., [5,6] to use triangular meshes. In
this section, we show that mesh-free methods can also work well in this setting. Importantly, note that we are not claiming that
mesh-free methods are better for two-dimensional surfaces. Instead, we aim to show that these methods can work relatively well
thereby justifying their use in higher-dimensional settings.

We conduct experiments using both mesh-based and mesh-free methods on a spherical version of MNIST and on the FAUST dataset
which were previously considered in [63]. In both methods, we use the wavelets defined in Section 2.1 with two scattering layers
and J = 8 and use a radial basis function (RBF) kernel support vector machine (SVM) see, for example, [22,14] with cross-validated
hyperparameters as our classifier. For the mesh-based methods, we use the same discretization scheme as in [63] and set O =1
which was the setting implicitly assumed there. For our mesh-free experiments, we use the eigenvector-based method discussed in
Section 6 and set Q = 4. We show that the information captured by the higher-order moments can help compensate for the structure
lost by not using a mesh. For all of our experiments on spherical MNIST and FAUST, we used an 80/20 train-test split with 10-fold
cross-validation.

We first study the MNIST dataset projected onto the sphere as visualized in Fig. 1. We uniformly sampled N points from the
unit two-dimensional sphere, and then applied random rotations to the MNIST dataset and projected each digit onto the spherical
point cloud to generate a collection of signals { f;} on the sphere. Table 1 shows that for properly chosen «, the mesh-free method
can achieve similar performance to the mesh-based method. As noted in Section 6, the implied constants in our theoretical results
depend on k. By inspecting the proof of Theorem 5.4 of [15] we see that for larger values of k, more sample points are needed to
ensure the convergence of the first k eigenvectors in Theorem 9. Thus, we want x to be large enough to get a good approximation of
H', but also not too large.

Next, we consider the FAUST dataset, a collection of surfaces corresponding to scans of ten people in ten different poses [4] as
shown in Fig. 2. As in [63], we use 352 SHOT descriptors [76] as our signals. We use the first k = 80 eigenvectors and eigenvalues of
the approximate Laplace-Beltrami operator of each point cloud to generate scattering moments. We achieved 94 + 3.7% classification
accuracy over 10 realizations for the task of classifying different poses. This is comparable with the 95% accuracy obtained with
meshes in [63].

7.2. Single-cell datasets
In this section, we present two experiments showing the utility of manifold scattering in analyzing single-cell data. We will
formulate these experiments as manifold classification tasks, where each patient will correspond to a different manifold and the goal

is to predict patient outcomes. In particular, each patient will correspond to a collection of cells, and each cell will correspond to a
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l' ' l'
Fig. 2. Wavelets on the FAUST dataset with g(4) = =005 j = 1,3, 5 from left to right. Positive values are red, while negative values are blue. (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)

point in high-dimensional space.®> Therefore, each patient will be described by a high-dimensional point cloud which we model as
lying upon a low-dimensional manifold. In order to classify the patients, we compute the scattering transform on each manifold with
signals corresponding to protein expression and then feed this representation into a classifier. For both of the experiments described
in this section, we used a 75/25 train-test split. Notably, in both of the data sets we consider, the number of patients in fairly small.
Therefore, the fact that the scattering transform uses predesigned filters is particularly advantageous in this setting.

On these datasets, we deviate slightly from our theory and demonstrate that our method can be effectively utilized with different
graph constructions. In our first data set, which focuses on data derived from melanoma patients, we use a k-NN graph with k =5.
On our second data set, which is derived from COVID-19 patients, we use a Gaussian kernel with an adaptive bandwidth which is
designed to account for non-uniform density of the data points. Specifically, we set

. o llx— |2 llx = x'I12 o
k_nn(x,x ) = z exp —W + exp —W N

where ¢, (x) is the distance from x to its k-th nearest neighbor (k = 3). We then approximate H ! via (39). For the COVID data, we
used three scattering layers with J =8 and Q =4, imitating the settings used in [35]. We then apply principal component analysis
(PCA) to the scattering features and train a decision tree classifier on the top 10 principal components. For the melanoma patients,
we used 2 scattering layers with J =4 and Q =4, followed by a multilayer perceptron with a single hidden layer. Additionally, with
the melanoma data, in order increased the effective size of our training data, we subsample point clouds of 400 points each and
repeat this procedure 10 times for each point cloud (so the data set consists of 540 graphs rather than 54). Importantly, we note that
we do this subsampling after splitting the data into train and test in order to ensure that no patient is in both the train and test set.
As a baseline comparison, we compare our scattering-based method against a method which first preprocesses the data by using a
k-means clustering based approach to extract features and then applies a decision tree classifier. For details on this baseline, please
see Appendix O.

We first consider data collected in [65] on patients with various stages of melanoma. All patients received checkpoint blockade
immunotherapy, a treatment that licenses patient T cells to kill tumor cells. (For details on this therapy, see [43].) In this dataset,
11,862 T lymphocytes from core tissue sections were taken from each of 54 patients diagnosed with melanoma, and 30 proteins
were measured per cell. Therefore, we model our data as consisting of 54 manifolds embedded in 30-dimensional space (with one
dimension corresponding to each of the proteins) with 11,862 points per manifold. We achieved 71% accuracy when using scattering
moments based on protein expression feature signals* with a decision tree classifier compared to 46% accuracy using our baseline
method.

We next consider data previously studied in [48] comprised of 209 blood samples from 148 people.®> Of the 209 samples, 61
were taken from healthy controls, 123 were taken from patients who were COVID+ but recovered, and 25 were taken from patients
who were COVID+ and died. Here, our goal is to predict whether the person corresponding to each blood sample died of COVID,
recovered from COVID, or was a control. This task is particularly challenging because COVID outcome depends on a wide variety of
known and unknown immunoregulatory pathways, unlike response to checkpoint blockade immunotherapy which targets a specific
known immunoregulatory axis (T-cell inhibition). We focus on innate immune (myeloid) cells, a population that has previously been
shown to be predictive of patient mortality [48]. Fourteen proteins were measured on 1,502,334 total cells, approximately 10,000
cells per patient. To accommodate the size of these data sets lying in R!“, we first aggregate data points for each patient into less
than 500 clusters via the diffusion condensation algorithm [48]. We treat the centroids (with respect to Euclidean distance) of each
cluster as single data points in the high-dimensional immune state space when implementing the manifold scattering transform. As

3 In order to turn the cells into points, we take single-cell protein measurements and apply a logarithmic transformation followed by #! normalization.

4 Proteins were selected on the basis of having a known functional role in T cell regulation and included CD4, CD8, CD45RO, CD56, FOXP3, Granzyme B, Ki-67,
LAG3, PD-1, and TIM-3.

5 In [48] the data was taken from 168 patients. However, here we focus on the 148 patients for whom sufficient monocyte data was available.
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Table 2
Classification accuracies for patient outcome prediction.

DATA SET T —— BASELINE SCATTERING
MELANOMA 54 46.0+7.1%  71.0+£9.0%
COVID 148 40.1+£22%  47.7+05%

with our melanoma experiments, we used signals related to protein expression, averaged across cells in each cluster. For the baseline
method, k-means clustering, we set k = 3 based on expected monocyte subtypes (classical, non-classical, intermediate). We achieved
48% accuracy with scattering and a decision tree classifier compared to 40% via the baseline method. See Table 2 for a summary of
the results for both of the data sets discussed in this subsection.

7.3. Directed graphs

Next, we apply our framework to weighted and directed graphs G = (V, E, W) with vertices V, edges E, and edge weights .
We turn G into a measure space X = (X, F, u) by setting X =V, letting F be the set of all subsets of V/, and letting u be the uniform
measure such that py({v}) =1 for all v € V. In our experiments in this section, we will take L to be the normalized magnetic Laplacian
described in detail below.

We let A denote the asymmetric, weighted adjacency matrix of G, and let A®) = %(A + AT) be its symmetric counterpart. Next, we
define the symmetric, diagonal degree matrix D by Df’l) = Zj\i 61 Afsl), where N = |V|, and D,(’J) =0ifi#j. Wethenlet ®=A— AT
and define the Hermitian adjacency matrix by

H@ = A® @ exp(27ig®),

where i = v/—1, ® denotes Hadamard product (componentwise multiplication), ¢ is a “charge” parameter,® and exponentiation is
defined componentwisely, i.e.,

eXp(Zﬁ'ﬁq@)i,j = exp(27r1'1q®,-,j).

Notably, H@ encodes the undirected geometry of the graph in the magnitude of its entries and directional information via its phases.
The charge parameter ¢ allows one to balance the relationship between directed and undirected information as desired.
Given H@, we define the unnormalized and normalized magnetic Laplacians by

@ _ p& _ g@
LU =D H

and

L(}g) — (D(s))—l/ZL(Ll/I)(D(S))—l/Z
=] - (D(S))—l/2H(q)(D(S))—l/z‘

By construction, both LE‘}) and LS:’,) are Hermitian and one may check (see, e.g., Theorem 1 of [87]) that they are positive semidefinite.
Therefore, both of these matrices fit within our framework as admissible choices of £ and can be used to define scattering transforms
on directed graphs.

In our experiments, we will choose £ = L(Aq,) and consider the task of node classification on the following directed stochastic block
model considered in [87]. We first divide the N vertices into n. equally-sized clusters Cy,...,C, for some n, which divides N. We
let {a;;} 1< j<n, to be a collection of probabilities, with a; ; = @;; and 0 < ; ; < 1. For an unordered pair of vertices, u,v €V, u#v
we create an undirected edge between u and v with probability «; ; if u € C;,v € C;. We then define {§;;},; j<, to be a collection
of probabilities such that f; j+hi=1 and 0 < §; ;<1 We then replace each undirected edge {u,v}, with a directed edge which
points from u to v with probability f; ; if u € C; and v € C;, and otherwise points from v to u. Notably, if «; ; is constant, then the
only way to determine the clusters will be from the directional information.

For our experiments, we set n, =5 and consider three meta-graphs: ordered, cyclic, and noisy cyclic. For all meta-graphs, we set
B;; = 0.5. For the ordered meta-graph (Fig. 3a), we set a; ; = 0.1 for all i, j and set f; ; = 0.95 for i < j. For the cyclic meta-graph
(Fig. 3b, but without the dashed gray edges), we set

01 i=j 05 i=j
R 095 i=(—1)mod5
%;=401 i=(x1)modS5 andf;; = 0.05 ;’:((Ji—lgrnodS )

0 otherwise .
0 otherwise

Finally, for the noisy cyclic meta-graph (Fig. 3b), we set a; ; = 0.1 for all i, j and set the edge direction probabilities as

© This term, as well as the name Magnetic Laplacian originates from the Magnetic Laplaican serving as the quantum mechanical Hamiltonian of a particle under
magnetic flux [51].
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<> Noise edges
= Majority flow = Majority flow

(a) Ordered (b) Noisy cyclic

Fig. 3. Meta-graphs for synthetic datasets (reproduced from [87]).

Table 3
Node classification accuracy on our directed stochastic block model with differ-
ent meta-graph structures (ordered, cyclic, or noisy cyclic) and different graph

methods.

METHOD/META-GRAPH ORDERED CycLIC Noisy cycLIC
MAGNET [87] 99.6+0.2 100.0 + 0.0 80.5+1.0
CHEBNET [26] 19.9+0.7 74.7+16.5 18.3+3.1
GCN [45] 68.6+2.2 78.87+30.0 242+638
APPNP [46] 974+ 1.8 19.6 0.5 174+1.8
SAGE [38] 202+1.2 88.6+8.3 26.4+7.7
GIN [86] 579+63 7534215 247+64
GAT [80] 42.0+438 983+22 274+69
DGCN [79] 81.4=x1.1 83.7+23.1 37.3+6.1
DIGRAPH [78] 825+1.4 39.1+33.6 18.0+1.8
DIGRAPHIB [78] 99.2+04 84.8+17.0 43.4+10.1
SCATTERING 97.8+1.2 99.8+0.2 88.5+4.0
PARAMETERS J=9,4=0.25 J=9,4q=0 J=10,4=0.2

095 i=(j—1)mod5
B ;j=4005 j=(@-1mod5 .
0.5 otherwise

Motivated by the so-called residual convolution operators used in [83], for improved numerical performance, we use a modified
version of the windowed scattering transform given by S7*[p] = H 'U[p] in our experiments. We chose our input signals to be i.i.d.
standard Gaussian random vectors and used paths of length m € {0, 1,2}. Following the settings used in [87], we set N = 2500 and
n, =500 for the ordered and cyclic meta-graphs and N =500 and 7, = 100 for the noisy meta-graph, and we used 2%, 10%, and
60% of the nodes in each cluster for training for the ordered, cyclic, and noisy cyclic meta-graphs, respectively. On all three data
sets, we used 20% of the nodes for validation and the remaining nodes were used for testing. Details on our validation procedure
are provided in Appendix P. After computing the scattering transform, we used an SVM with an RBF kernel for classification. In
Table 3, we report our results for each meta-graph along with the maximum scale J used to compute the scattering coefficients and
parameter g used to compute the magnetic Laplacian.” As we can see, scattering performs well on all three versions of the stochastic
block model and is the top-performing method on the noisy cyclic stochastic block model.®

8. Conclusion

In this work, we have extended the geometric scattering transform to a broad class of measure spaces. In particular, our con-
struction extends several previous works defining the scattering transform on undirected, unsigned graphs and smooth compact
Riemannian manifolds without boundary as special cases and also includes many other examples as discussed extensively in Sec-
tion 3. Our invariance and equivariance results help clarify the relationship between the invariance / equivariance of the scattering
transform and the group of bijections to which it is invariant or equivariant. Namely, they show that the critical property for G to
possess is that for every ¢ € G, the operator V,, defined by V; f(x) = f({ ~1(x)), is an isometry on L2(X). Additionally, we provide two
numerical schemes for implementing the manifold scattering transform when one only has access to finite point clouds and provide
quantitative convergence rates for one of these schemes as the number of sample points grows to infinity. The proof of this conver-
gence result utilizes previous work showing the convergence of the eigenvectors and eigenvalues of the Laplace-Beltrami operator.

7 All baseline results taken from [87].
8 For methods not designed for di-graphs, the reported accuracies are the maximum of those obtained by a) symmetrizing the adjacency matrix as a preprocessing
step and b) running the algorithm as is.

23



J. Chew, M. Hirn, S. Krishnaswamy et al. Applied and Computational Harmonic Analysis 70 (2024) 101635

While we do not know whether or not our convergence rate is optimal, we do note that both the assumptions of our convergence
theorems and our convergence rates are the same as for the previous work on the convergence of the eigenvectors and eigenvalues.
Therefore, our convergence results should be interpreted as showing that the number of sample points needed to apply scattering to
high-dimensional point cloud data is the same as other manifold learning based methods.

We believe our work opens up several new exciting avenues for future research. The framework presented here provides a
theoretical foundation for defining neural networks on manifolds from point-cloud data, a relatively unexplored topic except in the
setting of two-dimensional surfaces. Additionally, it would be interesting to extend our methods to higher-order operators such as
the connection Laplacian or to implement versions of our method that utilize anisotropic diffusions. Lastly, it would be interesting
to improve on our convergence results by relaxing the assumptions on the data generation or developing quantitative convergence
guarantees that do not require the explicit computation of eigenvectors or eigenvalues.

Data availability
Data will be made available on request.
Appendix A. The proof of Proposition 1

Proof. To prove the upper bound, we note,

J

AW, F13,+ 1A, £112,

j=0

J —_— —_—

=Y Y (W 7w0P + 4, 70R)

kel j=0

- 2i-1 2|? 212N fg2

=2 (11-g@ol + X [ea? - g [ + s [ ) 17001

kel j=1

7 2

<y (1 g+ Y (s —g)? ) + g(xk)2’> PP (“7)

kel j=1
=Y 1f )

kel
=171

where in (47), we used the fact that g is nonnegative and decreasing.
In order to prove the lower bound, we define py(¢) :=(1—1), p;(0) = (tzl—1 —2yif 1 <j<J,and p; () := 2’ and observe that
since g is positive and decreasing we have

J
Z W, 12, + 1A, 113,

Jj=0

J _ ~
-y <|1 gl + Y s 0 [+ |ean? )2> o
=1

kel

J
= <po<guk>)2 + ) pi(e(4)? +pJ+1(g<ﬂk)>2> | F o)

kel Jj=1
J+1
> min Z (1)? 2 s
2 guin, o, 0"

where in the final inequality we use Plancherel’s identity and the fact that 0 < g(4;) < g(0)=1.
Therefore it suffices to show that miny,; ZJJ:OI p j(t)2 >¢>0. To do so, we let 0 < <1 and consider three cases. First, if
0<tr<1/2, then

J+1

X p0 2 py =1 =17 2 (1 -

j=0

%)2=1/4.

Secondly, if 2’ >1/2,
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J+1

3 by 2 py (0 = (;2’)2 > (%)2 =1/4.
=0

. J . . . . j jo—1 . jo—1 -1 -1
In the final case where 2° < % < 1, there exists a unique jij, 1 < ji, < J, such that 12° < 1/2 <" . Since #*" > 1/2and /2 27 =

2 it follows that 1 /4 < 2 <1 /2 and thus 1/2 < 207 < / \/5 Therefore, in this case we have

J+1 . .
N 07 2 p, 0P = 20 > inf  (x=x)?=:¢>0. O
j=0 XE[- T]

Appendix B. The proof of Proposition 2

Proof. Using the definition on the scattering transform as well as the fact that g(0) = 1, one may compute

3 g(4)? Ul 1)1 0r(x)

k>0

155pf (0l = STp o 0)l| = ~ {UIPLS - @0}y loo(0)

<Y ) WIS o )uen )|

k>1

Therefore, Parseval’s identity implies that

15,191/ (] = < R
1551015001 = Stalrloo0o|, < X s | :
k>1

2J+1

<gG* " Y KU @)l

k>1

<g()* T IUTIfI,.

Since 4, >0, (7) implies g(4,) < 1, and so the right-hand side converges to zero as J — co. []

Appendix C. The proof of Theorems 1 and 2

The proof of Theorem 1 is based on the following lemma.

Lemma 6. For all f1, f, € H, we have

X UIpIf = Ul fally = Y, WUIpLf = Ulplfall + Y, ISTalfy = Siplfall3,- (48)

pEJ™ pegm+l pEJ™

Moreover, for all f e H

Y WUIfIE > Y WU+ Y, ISPIfI3,. (49)

peJ™ pegm+l peJ™
The Proof of Lemma 6. The assumption (11) implies that for all p € J™ we have that

WUl f = ULl fall2, > Y IW,,,, WULplf; = Ulpl N3, + IAUIPLS, = ULpI )1,

lm+1
jm+l€'~7
Therefore,
Y IUlplf; = Ulpl 2115,
peEJ™

< W, Wlplf; = Ulplf)ll3, + IAUIPLf, — U[p]fz)n;) (50)
pe]"‘ Jm+1€T

< W, . Ulplfi - W, Ulplfll5, + AU S, — U[pm)n%,)
peEJ™ Jm+1€J

< oW, ., Ulplf = oW, Ulplf iy, + IIAULpLf; U[pm)n;) (51)
pEJ Jm+1€T
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=) < > ||U[jm+11U[p]f1—U[ij]U[pszn;+||A<U[p]f1—U[p]fﬂﬂi)

PEI™ \im+1€T
= Y WUl UL+ Y, ISPl - SIPIf1,.
pegm+l peJM

This completes the proof of (48). (49) follows from setting f, = 0 and noting that in this case equality holds in (50) and (51). []

Proof of Theorem 1. Applying Lemma 6, and recalling that U[p,]f = f, we see

IS/1 = S 13125, = lim Z Y, IStplfy = Stelfal,

m=0 peJm
N
< lim X UIplf - Ul - Y, UL —Ulplfall,
—>oom:0 peJm p€]m+l
<llfy = foll3, —limsup Y UIpIf; - Ulpl L2115,
T pegN+
<lfi- £l O

The Proof of Theorem 2. Note that

1S, plfil 1 =
=S| < e S = S ol
el 7 = ming ool T SO
Therefore, by Proposition 2,
S | —
lim ‘ M —S[p]f,-” =
J—ooo [@ol M
which in turn implies that
S : —
[P —Sip1wotc'
J—ooo |§00| H

Thus, using Fatou’s lemma, we have

IS £, =Sf2l3= Y ISIplf; = Siplf 1
p

__ 1 Z lim ‘ |SJ[P]f1||| | |S; P11l
vol(X) &4 - l@ol lool i
i |SJ[P]f1|“ | |S;[p1f>]
< imin f
vol(X) J—oo l@o] lool
_ 2
< 1 limian' Sylplfi = S;plf>2
vol(X) J-o > () H
1
S f
~ min, |(P0(x)|2V01(X) imin Z”SJ P1f1 = Sj[p]f2”7"
1

= m”fl _f2”H7

where in the last line we applied Theorem 1. []

Appendix D. The proof of Theorem 3

Proof. Since A; = H> and W; = H”"' — H? it follows from (18) that

AOV f=V,Af, and WOV f=V.W,f. (52)
By definition, for all { € G, we have that V, commutes with ¢ since

Vo £)x) = (0NN x) =o(f ' ) =0V, f(x)) = (aV ().
Therefore, since by definition, Ulplf = oW, f...cW; f it follows that UV, f = V.U f. Lastly since S = AU, we have
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SOV f =AUV f = AV Uf =V, AUf =V Sf. [
Appendix E. The proof of Theorem 5
In this Section, we prove both Theorem 5 and Lemma 3.
Proof of Lemma 3. We first note that, under the assumption that G preserves the measure y, the Hilbert spaces H and H¢) have

the same elements and so the subtraction .S f — SV, f is well defined. Similarly, we may identify ¥, with an operator mapping H
into itself. Therefore, by the assumption (19), we have

1S = SOV, fll 20 = 1AU £ = VS fll 2y
=AU f =V, AU fll s34
<WWVeA=Ally U fllp2gey- O

Proof of Theorem 5. Let { € G. The assumption that ¢, is constant implies that V¢, — ¢, = 0. Therefore,

VoA f = Asfl= | Y 80 (Fodn Vo, — 0p)

ket H
= Zg(/lk)zl (frednuVeor — o)
k1 ”

0P (f o

k>1

< Zg(/lk)zl (fs 010 Ve Pk
k=1

H
The assumption that G preserves inner products together with the assumption that it preserves the measure implies that for f,g € H

H

Ve f Veg)y = / Ve fVegdu= / Ve fVegdu® = (Vo £ Vi) o ={f.8)n-
X X

Thus, {V; @, }rer forms an orthonormal basis for H, and so applying Parseval’s identity together with the assumption that g is
decreasing implies

IV AS = Ay fllz <20 11 -

Therefore, the result now follows from Lemma 3. []
Appendix F. The proof of Theorem 6

Proof. Recall, from (27) the decomposition
H=H+H H =-0+H.

The operator 7] projects a function onto the zero elgenspace span(g,) and the operator ‘H maps a function into its orthogonal
complement span((po)l Therefore, we have HH=HH= 0, and we also have H H? = H for all j > 0. Therefore,

—J

HY =H+H ,
which implies
g =7 —w

(with similar equations holding for H’ and ﬁl). Therefore,

W, =Wl

L))
J J = 1 1
+ j j+
<IH? = (O 2+ Y Y = (= ) 1 - 1
Jj=0
J-1 . , , .
~ o~ —o =0l —oo it —1 o == i+
=IH = H -+ @Y =@ 3+ YN - - (Y -3 )1,
j=0

~ ~ _— =
+||H-H'+H-H |

27



J. Chew, M. Hirn, S. Krishnaswamy et al. Applied and Computational Harmonic Analysis 70 (2024) 101635

~ ~ — aJ —! ~J
<4|H - H'|l5,+2I(H)* - (H * |3,
J-1 J-1

—_— g i g i+1 — hj+] —_ E—
+2 3 INCHDY = Y (13, +2 Y ICH )Y = (H 12, + 21 H - H |13,
j=0 Jj=0
J - R
54<IIH = H'|I2,+ Y I = (H ) ||;>. (53)
j=0

The following Lemma is a variant of Eq. (23) in [34] (see also Lemma L.1 of [64]).
Lemma 7. Let f = max { ||H||H, ||H,||H} and assume that f < 1. Then

>

Jj=0

—i 2 — 2
7 @Y <c@|H-T|,.

2
where Cy(f) := (lﬁ_;zl)3.

Proof. Letting A;()=(H +(1—H )*', we may check that

1
—J — ) A
|7 -] =140 4,000 < [ 1) 0l < sup 1470l
H 0<r<1
0
Since,
2o NG s \2—t-1
A;.(t):Z(tH+(l—t)H) (H—H)(tH+(1—t)H) ,
=0

and | H |l | H |l;, < p, this implies

lAjoll, <2/ [H-H,.

Therefore,
¥ [ 2P i g2 77 TP = 7 7P
,z::‘) H -(H) HS;)(Zﬁ 2=, = cop|a-H,

Lastly, one may compute

had had ad 2002 2
C :Z 2 P12 — g2 N (2) g2 < g2 2 gon _ L BB +1): pe+1 ’
- S ,Z:O( rrsr nzzonﬂ P amr T a-pr

22
: X“(x“+1) _ g0 2 2
where we used the Taylor expansion iy = Doox O

Returning to the proof of the theorem, we note that by the triangle inequality we have

— — ~ ~
IH = H ll3g <I1H = H'll + 1 H = H'll3,.

Therefore, combining (53) with Lemma 7, and using the fact that (a 4 b)? < 2(a? + b?) for all a,b € R, we have

Wy =Wy 12,,, < €O (I = B 13+ 11H = H'I, ). (54)

where C(f) = CCQ(ﬂ) for some absolute constant C.
To estimate ||H — H'||?,, we note that for all f € H we have

WHf = H' £l =S 00100 = {f- )30 Pl
SIS 00 = @) rPollz + XS 0) 3 (@0 = @llze + NS @ )2 = (f - @)z [0l

<ll@o = gl fllze + lleg = @l 1@l 1L £ 11z + 1< @030 = (f )30 g 14
By (23) and by (25)

l@yllze < ROLH)'? and  |(f, @)y = (f+ @) )] < k(HHORCH MDY £ 1y
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Therefore, we have

IH = H'l3; < llog — @)l (1 + RO HY) + RO H Yk (H, ).
Thus,

W) =W, < CB) [lleo = f 117, R H') + ROLH Pk(HH'Y + | H ~ H'[13]

as desired. [

Appendix G. The proof of Theorem 7

In order to prove Theorem 7, we will need the following Lemma.

Lemma 8. Under the assumptions of Theorem 7, we have

|77 -cs7ys

4
—_w ATLS
|KZ(H)S\/§||W Wiy <k§=0||w ||H>||f||H forall f € H. (55)

Before proving Lemma 8, we will show how it is used to prove Theorem 7.

Proof of Theorem 7. Let { € G, and let X, be defined as in (16). By (31), we have VCS’) =5 *(‘:)VC f. Therefore, the triangle
inequality implies

Cr_ooly <|lstr_ ¢ £.8) _ ¢l F O F _(SCY T
|77 =SV 7| oy < |77 = VeS" 1| gy H1S“EVeS =7 Fll gy + 17O F = (Y Tl (56)
The assumption (31) also implies that
IS f = VeS? fll 2oy < Bl - (57)
Similarly, by Theorem 1 and (23), we have that
~ 1/2 ~
IS7OV, 1 = 57O Fl 2y < R (H,HO) P 1STOV, £ = 57O Fll 200,
1/2 ~
<R(H,HO) W, f = Fllyeo
<R(HHO) WV, f = iy (58)

Applying Lemma 8 and (23) yields

1S7OF = (S7Y Fll 2o < R (H,HOY 2 IS7OF = (S7Y Tl pogaory

14
1/2 ~
< V2R (H.HO) 2 WO - W'l <Z|IW’II" >||f||H<;>
k=0

HO

4
< V2R(H.HO) WO =W [0 (Z ||W’||;m) /13-
k=0

Thus, infimizing over { completes the proof. []

The Proof of Lemma 8. Let A :=||W — W[l and C := ||W||4.
To prove (55), we need to show

2

4
> ISIpl/ — S'Tplf 12 32A2-<ch> 1712, (59)
k=0

peJ?
For £ =0, we recall from (12) that the zeroth-order windowed scattering coefficient of f is given by S[p,1f = Af, where p, is the
empty-index. Therefore, by the definition of .A we have
X ISIplf = S'If 15, = NAf = A'FI3, < UIWF =W 15, < A2 f 113,
peJO

and so (59) holds when # = 0. For the case where £ > 1, we note that for all p € J¢, we have
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IStp)s = S'1p)S llz¢ = | AU LS = A'U’1p1f Iy
<A~ AU lly + |1 A'UTpLf ~ A'U'1p1f Iy
< A=Al UL g+ IA 1 IV LS = U101 Nt
and so using the fact that (a + b)? < 24? +2b* and summing over p implies
D IStplf = S"IpIF 15, <204 = A5, D WULLAIG, +204°15, D) ULplf = U el 115,
peg? peJ? peJ’

Therefore, (59) and thus (55), follow from applying Lemma 9 stated below, noting that || A — A’||2, < A2 and || A’ IIi < C?, and using
the fact that a2 + b2 < (a + b)> when a,b>0. [

Lemma 9. Let A := ||W —W|ly; and C := || W'||y. Then, for all £ > 1,

2

-1
X UIfI5, < /15, and Y IUIplS = U'lp)S 1] sﬁ(ch) 17115,
k=0

peg? peJ?

Proof. When ¢ = 1, the first inequality follows immediately from (11) and the fact that ¢ is nonexpansive. Now, suppose by
induction that the first inequality holds for . Let f € H. Then

Y WUIAG = Y oW, oW, fl3

peJt+! pegi+l
:pgf <,MZ€J LUOWCLORS GVV,-lfm;)
< 3, oW oo,
peJ?
<I/15, N

with the last inequality following from the inductive assumption.

172
To prove the second inequality, let 7, := (Z peg? ULplf —U'lplf ||72L[> . Since o is nonexpansive, the definition of .4 implies
t; < Al fl- Now, by induction, suppose the result holds for #. Then, recalling that U[p] = ath) oW, we have

1/2
ey = 2 HUVVJﬂl "'O-I/lef_o-u/j,m GVVIllf”%‘l
pEJf+l
172
! 2
<| X W, —W) oW, oW, fII}
pEJf+l
1/2
+H DWW W, oW, f—oW] oW NI}
el Ji J1 Je J1 H
peJH
1/2
<Al X lloW,, oW 11,
pEJ/'H
1/2
! i 2
+C Z low,, oW, [ —oW] ...ijlf”H
peJ?

SAlS My + 1€ N3
by the definitions of .4 and C and by (60). By the inductive hypothesis, we have that

-1
tp <A CHliflly
k=0

Therefore,
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-1 3
trar S ANS N+ A Y Il =AY CEN f Iy
k=0 k=0

Squaring both sides completes the proof of the second inequality. []

Appendix H. The proof of Theorem 8

Proof. Let { € G, and let X, be as in (16). By (33), we have SOV, f = S f. Therefore, we may use the definitions of the non-
windowed scattering transform to see that for each path p we have

IS[plf — S'[p1f]

=ISO[pIV, f - 5[plf]

<UDV 1.0 00 = (U010 gt |

<KUOIVL S = U110 Yo |+ KU DI 0 = @)y | + KU D1 F @) yaer — (U [PIF - @300
=:I[pl+1I[pl+11I[p].

To bound I[p], we use the Cauchy Schwarz inequality to observe
KUQIV, £ = U' P10 0] < KUCIV, £ = UCDF. 08 ) ol + KUC = U0 f. 0 ) |
<1SO[PIV, £ = SOIPIF| + U CLpIF = U'[p1 Fllp00-

Therefore, applying (33) and Lemma 9 yields
2

-1
> PP <20V f = FIE ¢ + 21O =W <Z ||W’||;@> 1A - (61)
peJ? k=0

For II[p], we again use the Cauchy Schwarz inequality and (23) to see

(U'[D)f. 0F = oo | < RHE HO0E = o) 30 10" [p) f il

Therefore, again applying Lemma 9 implies

> 1P < RHO.HPNIE — o) 12,1712, (62)
peJ?

Lastly, to bound 111[p], we note that by (25) and the Cauchy Schwarz inequality, we have

KU p1f. @) 0 = (U2 @l aer | < 6 HONU [p) fllye 1o ll7er
<k(H',HONU[p1fl0r,

and so summing over p and once more applying Lemma 9 gives

> 1pP < k(' HO) fllygr-

peJ?

Therefore, combining this with (61) and (62) yields

> [Stplf - 5 1171

peJ?

sS(ZCLIIng = [+ RAHO 1 N6 = o) 13,1713,
¢-1 2
+2WO W2 (Z ||Wl”,;1<:>> 17113, + x(H’,H@))nan/)
k=0

The result follows by taking the infimum over { € G. []
Appendix I. The proof of Lemma 4

Proof. By definition, we have
H, f(x)— Hf f(x)
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= / he(x, ) f(y)du(y) - / hy G, p) f(n)d u(y)
X
= / 2 T () () S (M u(y) — / 2e"“kcpk(xm(y)f(y)du(y)
=0

= [ 3 e s oduw ©%

X k=xk+1

oo

= Z e Py 2y Px(X)-

k=x+1
Therefore, since the ¢, form an orthonormal basis, twice applying Plancherel’s theorem implies that

(oo}

1HS )= Hf Ol = 2 € Kok Nl

k=k+1
0
—2i 2
< e e 2 |<(ﬂksf>L2(x)|
k=x+1

—2t
<e e+l
”f ||L2(A’)

This completes the proof of (40). To prove (41), we note that (63) implies

IHSf = Hfllo < sup | Y e @ ()a0IIf lloo

XYEX fmct1

In [27], the proof of Theorem 3, it is shown that

—C’
sup | Z T ()P ()] < Cre” ¥ < Cy
x,yeX k=r+1

and so the result follows. []
Appendix J. The proof of Lemma 5

Proof. Let f,g € C(X), and define random variables X; = f(x;)g(x;). Since the x; are sampled i.i.d. uniformly at random, we have

N-1

1
== VY x
(pf.pg) N ;:O i

and (35) implies

N-1

E (% Z Xi) = <fag>L2(X)'

i=0

Therefore, by Hoeffding’s inequality, we have

<2ex —2N2112
=P\ AN

_Nn?
=2exp —’72 .
20178l

The result now follows by setting n = 181"%”

/el O
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Appendix K. The proof of Remark 8

To see this we note that the term «; in Theorem 5.4 of [15] is first introduced in Proposition 5.2. We observe, by Equation ((42)),
that

H(uk ) vk‘ - 1( = ‘ﬁ - 1‘ = O(|EXT o | + Err2,).

(Please see [15] for the definitions of Err and Errgt.) Since |a, | converges to 1, for sufficiently large N, we have %||ak| -1 <

norm

1
'Wl

<2||ay| — 1] and therefore, we also have that

llag| = 1] = OErT o | + Erry).

Immediately prior to Equation (42), the authors note

Effyorm 0<V logﬁ>’
N

and Equation (40) shows that

[ log(N)
Errpt=(9(€)+(9< %)

In particular, if we set € ~ N=2/(d+6) we have

_ [ log(N) [ log(N)
_ 2/(d+6) _
Erry = O(N )+0 < N4/(d+6) > =0 ( N4/(d+6)

Appendix L. The proof of Theorem 10 and Corollary 1

Proof of Theorem 10. To avoid cumbersome notation, within this proof we will drop explicit dependence on N and ¢ and simply
write 4, in place of /IkN “
Let @1, = sgn(a;)u, where sgn is the standard signum function. Then,

HNeszf_ﬂHKf

K

2 uku iof - IJZ TS, P12 0) Pk
k=0 k=0

K K

Z Aktuku pf— PZ S, P2 (%) Pk
k=0 k=0

K K

2 Ty, pf Yoty — Ze_”kt<fv§0k>Lz(X)vk
k=0
K

= Y (e M — TN iy p f )iy

K

+ Ze*ﬂk" ((ﬁk,pf)z - (f»¢k>L2(X)) uy

k=0

+ D e L Py g — V). (64)
k=0

Since [sgn(ay)| =1, {u, }Z:O is an orthonormal basis for the span of {u }Z:O' Therefore, to bound the first of the above terms, we

may apply Parseval’s theorem to see
K
1Y (e — e i)y, pf ) 3
k=0
K
=Y e — e 2 iy, pf ) I
k=0

K
< max |e M — e Hk|? Z (g, p.f oI
0<k<k =0
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— At —pgt)2 2
< max |e ' — e Hk .
max | Pliof 1
By Theorem 9, we have
max |e™ ! — e M| <t max |4 — g
0<k<k 0<k<k
— IO(N—Z/(dM))

with probability at least 1 — O(N ).
By Lemma 5 we have

18log N
2 2 2
1 I3 <1712y + | = 112

with probability at least 1 —2/N?. Therefore, combining (65) and (66), yields

K 2
N (et — &MY iy, pf ),
k=0

—Akt _ =gt 2 2
< max |e M —eHk
max | Plos 113

2

log N
<t <||f||i2(x) + gT ||f||§o) O(N~4/@+6)y

. . 1
with probability at least 1 — O (W )

To bound the second term from (64), we use Parseval’s Identity to see

2

M-

e~ Hi! ((ﬁk,pf>2 = (fKPk)LZ(X)) y

=
Il

0 2

< K pflo— <f7(Pk>L2(X)|2

M~

k

Il
x O

<2 (i p o = Vi )2 > + 1V 02 = (F - @12y 1D

k=0

K
<2 'y = Vel Bl 13 + Kp@so 01 )2 = (s i) |-
k=0
1 log N log(N)
—_— - < — ).
] 1'}‘0<V N >+0<N4/<d+6>
Therefore,
la | — 12 log N log(N)?
( R <O\~ )0\ s )

and so we may recall the definition of @i, and use Theorem 9 to see

By Remark 8,

max{llakl -1],

~ 2 2
[l — Vk||2 = [Isgn(a)uy — Vk||2

1 2
= — oy — o vill;

< (||(|ak|—l)uk||2+||uk—akvk||§)

2

lag | —1 2 2

2( +—2||“k—“k"k||2
a lay |

o(ENY L o (R8N | o -5 tog(n
_— ¥
N NS/@+6) ( 0g(N))

I\

IA

4
=O(N ™ d+6 log N).

As noted earlier, by Lemma 5, we have
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(65)

(66)

(67)

(68)

(69)
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1810gN
o3 <12y +\ = 115

with probability at least 1 — % and again applying Lemma 5 we have

18log N
K@i )2 = (f- @12 | <\ == I @il

. . 2
with probability at least 1 — R

It is known (see, e.g., [70]) that |lg;|l,, < Cxﬂid_l)/ 4. Weyl’s asymptotic formula (see, e.g., [13] Theorem 72) implies that
A < Cyk?/4. Therefore,

2 d-1
@illee < Ckd & =Crpk =024 = O(1),

where the final equality uses the fact that the implied constants depend on « and the geometry of X. Therefore, by (68),

1Y e (g, pf ) = (F» @i dr2ay) Wil

k=0

<2 Y (lig = v 3o 15+ Kpors 1 )2 = (- @iz D)

k=0

_4 18log N log N
K<<9(N 7+ logN)<||f||L2(X) V—— ||f||2> <g7>0rgggkllf<pklli>
_4 log N log N _
K<(9(N logN)<||f||L2(A,) ||f||2> (T)N “/dnfnio)
logN (10g1V)3/2 logN 2
<0 ||f||L2(X) o\ —/——— )+0 N /15 (70)
Nd+6 N@6T2

Finally, to bound the third term in (64), we use (69) to see

K
1Y e (f, @i dnzce @y = VoII3

k=0

K
PATE 2
<k W F @z Pl — vell3
k=0
<k rnax u, —v
max [l = Vi3I 17

SON™ T 10g(N IS - 71)

Combining (67), (70), and (71) with (64) implies that in the case d > 2 we have
VHy crcspf —pHFfI3

K
Ve — ~ ~
S Y e = e iy, pf )iy I3
k=0

+3 29_”"’ (g, pf Y2 = (f> Pi1200)) i1l

k=0

K
+301 Y e f L @i (B — VoI
k=0

log N
(ufanm 21 )0(N4/<d+6>)

log N (log N)3/2 log N
+0( >||f||m) <0<— +0(— 12
Nd+6 N@6T2

+O(N~ P log(N)II /117

L2(X)
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log N log N
Smax{zz,l}(c?(‘)g >||f||L2(X) <M)Ilf||2> 72
N @+6 Nd+6 "2

log N logN

— max {2 2

= max{? ,I}O(Nd46 > (”f”LZ(X) 1Al )
+

where in (72) we used the fact that d > 2. Repeating the final string of inequalities in the case where d = 1, we instead obtain

" log N log N
IHy cxapf = pHS fII3 < max{s, 1) <0< 7 ) 11550 + (T) ||f||§o>

as desired. [

Proof of Corollary 1. We first note that

WHy cxcupf = pH fII53 <20 Hy o cunf — pHS FI5+200H, f — pH £ 113

Lemma 5 implies that with probability at least 1 — @ (%)

. . « o2 | 18log N
lp(H,f = HEOI; < IIH, f ~ HfIILz(X)+IIH,f—H,f||°o —~

Therefore, applying Lemma 4 implies

_ log N
lp(H, f — HF I3 < e™ s+ ||f||L2m+(9<\/ T) 17113

Applying Theorem 10 thus completes the proof. []
Appendix M. The proof of Theorem 12

In order to prove Theorem 12, we will need two lemmas.

Lemma 10. Let f € L2(X), and let p = (j1s---»Jnm) be a path of length m, then
IUIP1f o <2711 fllco

Proof of Lemma 10. Young’s inequality and (36) implies that for all > 0 we have || H, f ||, < || f|lo- Therefore, the case where m =
1 follows from the triangle inequality and the fact that ¢ is non-expansive. The general case follows from the fact that ||U [, ..., j,,]1 =

Ulj,l...ULL] O
Lemma 11. For dll x,y € RN and all 0 < j < J we have

lA; nx— Ay Nyl <X =Y,

and
NUNLiIX = UnLilylly < IWj nx = W Nyl < IIx =yl
Proof. By construction we have, for 1 <j <J
WinX=Winy=Hy e it = Hy e 0)X=Y)
= i(e_/l,/(v,cz,-_l Y Juul (x—y).

Therefore, the fact that [|W; yx — W, y¥ll; < |Ix = y|l, follows from the fact that the vectors {u, };_, are an orthonormal basis for
their span and the fact that

_Nesj-1 _ 3Ny
A, 72 A 2|S].

|ek —e Tk

The bounds for W}, y and A, y follow similarly and the bound for U y /] follows from the fact that ¢ is nonexpansive. []

Proof of Theorem 12. We argue by induction on m. To establish the base case, we let p = (j;) and observe that ¢ commutes with p.
Therefore, we have
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WUNLilef = UL = loW), oS — poW, £l
=lloW;, nof —opW, I3
<IWW;, nof — oW, fli5,

where the final inequality follows from the fact that ¢ is non-expansive. Therefore, the case where m = 1 now follows from Theo-
rem 11.

Now suppose the theorem is true for m — 1. Let p = (jj,...,j,,) be a path of length m. Let p,,_; = (j;,...,j,—1) so that U[p] =
UljnlUpy-11 and Uy [p] = UnlimlUnpm-1]- Then,

|Ux[plpf = pUIPISII5
=NUNLimlUn[ppi1of = PULilULpm_1111I3
=NUNLimlUn ppi10f = UnUindpU D11 + UnLinpUppi1f = pULjlU P11/ 113
L2NUNLinlUNPm-110f = UnLinlpU i 1115 + 20U i) pU [Pyt 1 f = PU LU [Py 17115
L2NUN 1 12f = PU 115 + 20U 5 i) pU [P 1S = pU LU [p 1115,

where in the final inequality we used Lemma 11. The term ||Uyl[p,_lpf — pUlp,—11f ||% may be immediately bounded by the
inductive hypothesis. Moreover, we may also apply the inductive hypothesis with U[p,,_;]f in place of f to see

NUNUimlpU P11 = PULWU [Poi 11113

; log N log N
<2 ((0( o8 >+o<e-”~+l)> IIU[pm_l]flliQ(Xﬁ@(\/%) ||U[pm_11f||§,>

N6

Iteratively applying Proposition 1 implies that |U[p,_i1fllL2x) < I fllL2(x) and Lemma 10 implies||U[p,—1]1f I < 2" £l oo -
Therefore, the result follows. []

Appendix N. The proofs of Theorems 13 and 14

The Proof of Theorem 13.

IS, n P10 f = pSs1P11 13
=14, Uy nlplof = A, ULDIS13
<20 A; NUsNIPIOS = Ay npULPL N5 +201A45 5 pULRLS = pA;ULPI 113
<2 A; NI NU; N PP f = pULRLS 115+ 20145 5 pUPLS = pA; UL 113
<2||U; yIplof = pULpI/ I3+ 201 Ay npULPLf = pA;ULPIS 15,
where the last inequality uses Lemma 11. To bound ||U; y[jlpf — pULj1f |12, we may apply Theorem 12. To bound the second term,
we apply Corollary 1 with =27 to obtain

1A, npULPLf = pA;U LRI

log N odtl Toz N
<« <(0<Nﬁ > +0E" um)) 112 +(9< ~ > ||f||§o>.
+

Iteratively applying Proposition 1 implies that ||U[p,_1fllL2x) < /1l 2(x) and Lemma 10 implies||U[p,_1]1f |l < 2"’_1||f||oo.
Therefore, the result follows. []

The Proof of Theorem 14. Let ¢, be the scalar from Theorem 9 with k = 0. By Remark 1, and the definition of the non-windowed
scattering coefficients, we may assume without loss of generality that « is non-negative (since —g, is also an eigenfunction). Thus,
recalling that v = pg,, we see that by the definition of the non-windowed scattering coefficients, the triangle inequality, and the
Cauchy-Schwarz inequality we have

|SxIplof - SIplf] (73)
<KUyIplpf5ug); — (U[P]fs(P0>L2(X)|
<KUnIplof ug), = pUlplf,Vo)al + KpUlplf,vo)2 = (Ulpl S, @o)r2ca)|

=[UnIplof ug)s - (a—lopU[P]f,aoVo>2| + [(pUTp1f,¥o)s = (UL, @020 |
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1
SKUNIPIPSf 8o = ag¥o)al + KU [P)of = —pUlp1S . agVo)al + pULp1S Vo)s = (ULPLS . @o)rac)|
0
1
NUNnpS Nallug — agvolla + 1UNplof - a—PU[P]sz”aoVo"z + KpULp)f . p@0)2 = (ULPLS > @0)12(x)l- 74
0

Lemmas 5 and 11 together with the inequality Va2 + b2 < |a| + |b| imply

18log N\ /4
1UNpS N2 < oSNl < 17 l2ge + <T‘°’) 110

with probability at least 1 — O (%) and Theorem 9 implies that

2
llag — apvgll, = O (N_m y/log N) ,
again with probability at least 1 — O (# ) Therefore,
2 -2 1
IUn oS 2llup = ag¥olla <O (N d+6 VlOgN> I/ L2y +O (N a6 4 (IOgN)3/4> /1o (75)

Theorem 9 shows that |ay| =1+ o(1), and (35) implies that [|@gllp2x) = [l@oll = 1. Therefore, Lemma 5 implies

log N

||(x0v0||2S(1+o(1))||p(p0||2S(1+o(1))<||(ﬂo||L2(X) lleoll2, >=(9(1). (76)

Proposition 1 and a simple induction argument implies ||U[p] f ||Lz( 0 < If ||L2( X and Remark 8 implies

1 log N log(N)
- —1l< oy 7
L 1;_(9(\/ 3 >+@(N4/(d+6) .

Therefore, by Theorem 12, Lemma 5, and Lemma 10, we have

IUnlplof = a—lopU[P]f”z <IUNlplof = pUlplf N2 + ‘aLO - 1| leULp1f 12

Too N loa N\ /4
<2/ [<0<\/ 0og >+(9(e uK+1/2)> ||f||L2(A,)+(9<< ozgv > >”f”m:|
Nd+6
logN log(N)
+< < ) <N4/(d+6)>>”f”Lz(A;)
log N log™*(N)
+ < < > +O< N4/(d+6)+1/4 170

_ <(9 < \/log N > 2] 0( IOIgVN> 4 O(e_ﬂh’+l/2)2.,> ”f”LZ(./V)

N

log N 174 J
+(9<< N > 271/ Nleo- 77)

Lastly, we again apply Lemma 5 and Lemma 10 to see that

log N
N

_ log N
-0<\/—N >||f||m (78)

with probability at least 1 — © (% ) Combining (74) with (75), (76), (77), and (78) yields

KpULplLSf s p@o)2 — (ULPS . @0)L2a) | = (9( > IULp1f poll

ISnlplof ~ Splf]|
<WUnpSl2llug = agvolla + 1Un[ploS = aLOﬂU[P]f”z”“oVo”z + KoUlplf. p@o)2 — (ULP1S @o)L2 )|

2 2 1
<O (N‘m Vlog N) I l2ee) + O (N‘m‘mog N)”“) 1Nl
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\/@ log N _
o —= )2 +ol \/ = ) o227 ISl

N d+6

1/4
log N log N
+0 (T) 2Nl +0( 4/ 1/ lee

y/log N B log N\ /4
52.1 O — +(9(e ”K+1/2) ||f”L2(fY)+(9 (gT> ”f”ao . d
N d+6

Appendix O. Details on the baseline method

For both biomedical datasets, in our baseline classification method, we first performed k-means clustering on all cells from all
patients (modeled as points in either R3° or R'#). The value of k was based on expected subsets of immune cells: for the melanoma
data we set k =3 based on expected subsets of CD4+ T helper cells, CD8+ killer T cells, and FOXP3+ T regulatory cells, and in
COVID data we again set k =3 based on expected subsets of CD14+CD16++ non-classical monocytes, CD14++CD16 intermediate
monocytes, and CD14++CD16- classical monocytes. Then, for each patient, we identified the proportion of cells corresponding to
that patient lying within each cluster. We then used these features as input to a decision tree classifier.

Appendix P. Training details for Section 7.3

The results for baseline methods presented in Table 3 are taken directly from [87]. Therefore, for a fair comparison, we use the
same validation procedure when training our method as was used in [87]. For each of the three meta-graphs, we independently,
randomly generated 5 realizations of the DSBM. For each of these realizations, we randomly generated 10 training/test/validation
splits. To tune our hyperparameters, J, ¢, ¢ and y (the latter two of which are hyperparameters of the SVM), we picked a single
realization of each model and performed a grid search, choosing the parameters with the best average validation accuracy over the
10 splits. We then used these hyperparameters for all five realizations of each model (following the standard procedure of training
on the training set and testing on the test set, holding out the validation set). The results reported in Table 3 are the test accuracies
averaged over both the 5 realizations of each model and the 10 training/test/validation splits (i.e., over all 50 of the test sets). In our
search, we selected J from a pool of {2,3,...,12}, magnetic Laplacian charge parameter ¢ from a pool of {0,.05,.10,.15,.20,.25},
and SVM parameters from pools of ¢ € {25, 100,250,500, 1000} and y € {1075,10~%,1073,1072,1071}.
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