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The scattering transform is a multilayered, wavelet-based transform initially introduced as a 
mathematical model of convolutional neural networks (CNNs) that has played a foundational 
role in our understanding of these networks’ stability and invariance properties. In subsequent 
years, there has been widespread interest in extending the success of CNNs to data sets with non-
Euclidean structure, such as graphs and manifolds, leading to the emerging field of geometric 
deep learning. In order to improve our understanding of the architectures used in this new field, 
several papers have proposed generalizations of the scattering transform for non-Euclidean data 
structures such as undirected graphs and compact Riemannian manifolds without boundary. 
Analogous to the original scattering transform, these works prove that these variants of the 
scattering transform have desirable stability and invariance properties and aim to improve our 
understanding of the neural networks used in geometric deep learning.
In this paper, we introduce a general, unified model for geometric scattering on measure spaces. 
Our proposed framework includes previous work on compact Riemannian manifolds without 
boundary and undirected graphs as special cases but also applies to more general settings such as 
directed graphs, signed graphs, and manifolds with boundary. We propose a new criterion that 
identifies to which groups a useful representation should be invariant and show that this criterion 
is sufficient to guarantee that the scattering transform has desirable stability and invariance 
properties. Additionally, we consider finite measure spaces that are obtained from randomly 
sampling an unknown manifold. We propose two methods for constructing a data-driven graph 
on which the associated graph scattering transform approximates the scattering transform on the 
underlying manifold. Moreover, we use a diffusion-maps based approach to prove quantitative 
estimates on the rate of convergence of one of these approximations as the number of sample 
points tends to infinity. Lastly, we showcase the utility of our method on spherical images, a 
directed graph stochastic block model, and on high-dimensional single-cell data.

 Introduction

Many popular machine learning algorithms and architectures either explicitly or implicitly rely on producing a hidden, or trans-
rmed, representation of the input data. For example, popular algorithms such as word2vec [18], node2vec [37], and graph2vec [62]
plicitly associate each input in a text corpus, network, or collection of networks to a point in a high-dimensional vector space. This 
nsformed representation can then be used for a variety of tasks such as clustering or classification. Deep neural networks, on the 
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her hand, use multilayered architectures to classify an input signal. In this case, the early layers of the network may be viewed as 
oducing a transformed representation of the input and the final layer may be viewed as a classifier acting on the transformed data. 
 either case, there is a fundamental question. What properties should these hidden representations satisfy in order to be useful for 
wnstream tasks?
In order to help answer this question, Mallat introduced the scattering transform [57], a wavelet-based architecture which models 
e hidden representation produced by the early layers of a convolutional neural network (CNN). Given a function 𝑓 ∈ 𝐋2(ℝ𝑁 ) and 
scale parameter 𝐽 , the windowed scattering transform of [57] is a countable collection of functions

𝑆𝐽𝑓 ∶= {𝑆𝐽 [𝑝]𝑓 ∶ 𝑝 = (𝑗1,… , 𝑗𝑚), 𝑗𝑖 ≤ 𝐽,𝑚 ≥ 0}, (1)

here the scattering coefficients 𝑆𝐽 [𝑝]𝑓 are defined through an alternating sequence of 𝑚 wavelet convolutions (at scales 𝑗𝑖) and 
nlinear activations followed by a final convolution against a low-pass averaging filter at scale 2𝐽 . If one is interested in classifying 
any signals {𝑓𝑖}

𝑁signals

𝑖=1 , they may first transform the input data by computing 𝑆𝐽𝑓𝑖 for each 𝑖 and then use these transformed 
presentations as input to a classification model such as a support vector machine.
One of the key insights of [57] is that convolutional architectures naturally have desirable invariance and equivariance properties 

ith respect to the action of the translation group. Specifically, if 𝜏𝑐 is the translation operator 𝜏𝑐𝑓 (𝑥)∶=𝑓 (𝑥 − 𝑐), we have the 
uivariance relationship

𝑆𝐽 [𝑝](𝜏𝑐𝑓 ) = 𝜏𝑐𝑆𝐽 [𝑝]𝑓, (2)

here on the right-hand side 𝜏𝑐 is applied term by term. Moreover, when the scale parameter 𝐽 tends to infinity, we have the 
proximate invariance relationship

𝑆𝐽 [𝑝](𝜏𝑐𝑓 ) ≈ 𝑆𝐽 [𝑝]𝑓. (3)

rthermore, Mallat also shows that the scattering transform is stable to the perturbations of the form 𝑓 (𝑥 − 𝑐(𝑥)) where is 𝑐(𝑥) is a 
nction with bounded gradient and Hessian.
In addition to being a theoretical model, the scattering transform has also proven to be a practical object. A notable difference 
tween the scattering transform and other CNN-like architectures is that it uses predesigned wavelet filters, rather than filters 
arned from training data. In settings where labeled data is abundant, this may be viewed as a limitation on the expressive power 
 the scattering transform. However, in the context of unsupervised learning, or limited data environments, it may be difficult or 
possible to train a traditional neural network. In these settings, the lack of trainable filters increases the practical utility of the 
attering transform [49]. For instance, [68] applied the scattering transform to Sonar data to detect unexploded bombs on the ocean 
or despite there only being 14 objects in the data set. Additionally, the scattering transform can also be used for a variety of other 
sks in addition to classification. For example, [9] applied it to the texture synthesis problem and [75] combined the scattering 
nsform with nonnegative matrix factorization in order to achieve audio source separation.
While CNNs have had tremendous success for tasks related to images, audio signals, and other data with a Euclidean grid-like 
ucture, many modern data sets have an irregular structure and are naturally modeled as more complex structures such as graphs 
d manifolds. This has led to the new field of geometric deep learning [8] which aims to extend the success of CNNs to these irregular 
mains. In these more general settings, the concept of translation is not well defined. However, invariance and equivariance still play 
critical role. For example, nearly all popular graph neural networks are designed so that they are naturally invariant or equivariant 
 the action of the permutation group, i.e., reordering of the vertices. More generally, one of the principal goals of geometric deep 
arning is to design architectures that respect the intrinsic symmetries and invariances of the data, which are typically modeled by 
oup actions [7,11].
There are many possible ways to accomplish this goal, but here we will focus on spectral methods based on the eigendecompo-
ion of a suitable Laplace type operator such as the graph Laplacian or Laplace-Beltrami operator on a manifold. These methods, 
hich have been popularized through work such as [71], view the eigenvectors/eigenfunctions of the Laplace operator as generalized 
urier modes and define convolution as multiplication in the Fourier basis analogous to well-known results in the Euclidean case. 
is notion of convolution is used in popular graph neural networks such as [10], [26], [50], and [45] and has also been used in 
anifold neural networks such as [81] and [82].
Following the rise of these spectral networks, several works have introduced versions of the scattering transform for (undirected, 
signed) graphs [89,34,35,64] and smooth compact manifolds without boundary [63]. In these works, the authors assume that 
e is given a signal 𝑓 defined on the graph or manifold and use generalizations of the wavelet transform [39,21] to construct 
attering coefficients similar to (1) through an alternating sequence of generalized convolutions and nonlinearities. They then 
ovide detailed stability and invariance analysis of their respective versions of the scattering transform proving results analogous 
 (2) and (3). Thereby, they help improve our understanding of spectral networks used in geometric deep learning, analogous to 
w [57] helps us understand Euclidean CNNs. Moreover, there has also been work applying the graph scattering transform to 
mbinatorial optimization [60] problems and to graph synthesis [88,3], an important problem with potential applications to drug 
2

scovery.



J.

1.

bo
an
pr
re
pr
ge

w
ob
ve
th
co
fu

(3
an

In
Ho

fo
a 
in
ac
gr
th

On

ba
as
a 
ad
op
w
To
co

th
to
th
ne

1.

Hi
Si

de
Si
op
is 
Applied and Computational Harmonic Analysis 70 (2024) 101635Chew, M. Hirn, S. Krishnaswamy et al.

1. Contributions and main results

In this work, we extend the scattering transform to a general class of measure spaces  ∶= (𝑋,  , 𝜇). Our framework applies 
th to the settings considered in previous work on geometric scattering, i.e., compact Riemannian manifolds without boundary 
d unweighted, unsigned graphs, and also to other interesting examples such as signed or directed graphs, which have not been 
eviously considered in the literature about the scattering transform. The generality of our construction is motivated in part by the 
cent book [7] which laments “there is a veritable zoo of neural network architectures for various kinds of data, but few unifying 
inciples.” In the same spirit, we look for the general themes that unite spectral networks on different domains and formulate a 
neral theory of scattering networks on measure spaces.
Analogous to, e.g., [64] and [63], we will construct two versions of the scattering transform on  . For both of these transforms, we 

ill assume that we are given a signal 𝑓 defined on  and analogous to (1) will represent 𝑓 via a sequence of scattering coefficients 
tained through alternating sequences of convolutions and pointwise nonlinearities followed by a final aggregation. In the first 
rsion, which we refer to as the windowed scattering transform, the aggregation step is given by convolution against a low-pass filter 
at can be viewed as a local-averaging operator. We also define a non-windowed scattering transform where the final aggregation is 
mputed via a global integration. Importantly, we note that the windowed scattering transform outputs a sequence of vectors (i.e., 
nctions) whereas the non-windowed scattering transform outputs a sequence of scalars.
We will examine the invariance and equivariance properties of these representations and establish results analogous to (2) and 
). Towards this end, we let  be a group of bijections from 𝑋 to 𝑋 with proper structure. We let  act on 𝐋2() by composition 
d on a Laplacian-type operator  by conjugation. Specifically, for 𝜁 ∈  we define

𝑉𝜁𝑓 (𝑥)∶=𝑓 (𝜁−1(𝑥)) and 𝜁∶=𝑉𝜁◦◦𝑉 −1
𝜁 .

 the case where  is a graph or a manifold, it is natural to take  to be the permutation group or the isometry group respectively. 
wever, on an arbitrary measure space, it is not obvious what groups our representation should be invariant to.
Perhaps the most natural idea would be the group of all bijections that preserves measures in the sense that 𝜇(𝜁−1(𝐵)) = 𝜇(𝐵)
r all 𝜁 ∈  and 𝐵 ∈  . Indeed, for the windowed scattering transform, our analysis will show that this condition is needed prove 
result analogous to (2) establishing invariance in the limit as the scale parameter tends to infinity. However, it will not be needed 
 order to establish our other primary invariance and equivariance results. This is fortunate because conservation of measure is 
tually a stronger condition than it appears at first glance. For example, it does not hold when  is a graph,  is the permutation 
oup, and different vertices are assigned different weights. Instead, our other invariance and equivariance results will only require 
e weaker assumption that 𝑉𝜁 is an isometry on 𝐋2(), i.e.,

⟨𝑉𝜁𝑓1, 𝑉𝜁𝑓2⟩𝐋2() = ⟨𝑓1, 𝑓2⟩𝐋2().

e may verify that this condition holds for the permutation group on graphs for arbitrary choices of the measure.
In addition to significantly generalizing previous constructions of the geometric scattering transform, we also use the methods 
sed on diffusion maps [20] and Laplacian Eigenmaps [1,2] to show that the scattering transform on manifolds can be interpreted 
 the limit of the scattering transform on data-driven graphs. In short, if we have a collection of points {𝑥𝑖}𝑁−1

𝑖=0 ⊆ ℝ𝐷 that lie on 
𝑑-dimensional manifold for some 𝑑 ≪𝐷, we will use a kernel to construct an affinity matrix 𝑊 which can be interpreted as the 
jacency matrix of a weighted graph. We use this affinity matrix to construct a data-driven approximation of the Laplace-Beltrami 
erator which we then use to construct an approximation of the windowed and non-windowed manifold scattering transforms. We 
ill then prove theorems guaranteeing the rates of convergence of these methods as the number of sample points tends to infinity. 
 the best of our knowledge, this is the first attempt to prove such convergence guarantees for any neural-network-like architecture 
nstructed from the Laplace-Beltrami operator.
In summary, we provide a theoretically justified model for understanding spectral neural networks on measure spaces paralleling 
e role of the original scattering transform [57] in understanding CNNs. Towards this end, we note that equivariance results similar 
 ours can likely be obtained for other networks such as the ones considered in [81] or [87] constructed through the spectrum of 
e appropriate Laplace operator. Similarly, our methods can likely be adapted to study the convergence of other spectral manifold 
ural networks.

2. Notation and organization

Throughout, we will let  = (𝑋,  , 𝜇) be a measure space with set 𝑋, 𝜎-algebra  , and measure 𝜇. We let  = 𝐋2() denote the 
lbert space of functions which are square integrable on  and for 𝑓 ∈ we will denote its norm by either ‖𝑓‖ or ‖𝑓‖𝐋2(). 
milarly, for 𝑓, 𝑔 ∈, we shall denote their inner product by ⟨𝑓, 𝑔⟩ or ⟨𝑓, 𝑔⟩𝐋2(). If 𝑇 is an operator on , we will let ‖𝑇 ‖
note its operator norm. If 𝐱 and 𝐲 ∈ ℝ𝑁 are vectors, we shall use ‖𝐱‖2 and ⟨𝐱, 𝐲⟩2 to denote their 𝓁2-norm and inner product. 
milarly, if 𝐴 is a matrix, we will let ‖𝐴‖2 denote its operator norm on 𝓁2. We shall let  be a positive semidefinite, self-adjoint 
erator on  and denote its eigenfunctions and eigenvalues by 𝜑𝑘 and 𝜆𝑘 for 𝑘 in some at most countable indexing set . If {𝑓𝑗}𝑗∈
an at most countable collection of elements in , we shall define ‖{𝑓𝑗}𝑗∈ ‖𝓁2() by

‖{𝑓 } ‖2 ∶=
∑‖𝑓‖2 .
3

𝑗 𝑗∈ 𝓁2()
𝑗∈ 
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e shall let  denote a group of bijections 𝑋→𝑋, and for 𝜁 ∈ , we shall let 𝑉𝜁 denote the operator defined by 𝑉𝜁𝑓 (𝑥) = 𝑓 (𝜁−1(𝑥)).
Our construction of the scattering transform will be based on a collection of wavelets ∶={𝑊𝑗}𝑗∈ ∪ {𝐴} where  is an at most 
untable indexing set. We will let 𝑝∶=(𝑗1, … , 𝑗𝑚) denote a scattering path of length 𝑚, and for 𝑓 ∈ let 𝑆[𝑝]𝑓 and 𝑆[𝑝]𝑓 denote 
rresponding windowed and non-windowed scattering coefficients. We shall let {𝐻𝑡}𝑡≥0 denote a semigroup of operators defined 
  defined in terms of a spectral function 𝑔 ∶ [0, ∞) → [0, ∞). When notationally convenient, we will write 𝐻𝑡 instead of 𝐻𝑡. In 
ction 6, we will consider finite subsets 𝑋𝑁 ⊆𝑋 of cardinality 𝑁 and let 𝑁 be a corresponding measure space. In this setting, we 
ill denote objects corresponding to 𝑁 with either a subscript or superscript 𝑁 .
The rest of this paper is organized as follows. In Section 2, we will define convolution, the wavelet transform, and the scattering 
nsform on a measure space  . In Section 3, we will discuss examples of measure spaces included in our framework, some of 
hich have been considered in previous work on the scattering transform and some which have not. In Section 4, we will establish 
ndamental continuity and invariance properties of the measure space scattering transform and in Section 5 we will consider stability 
 perturbations. In Section 6, we will introduce numerical methods for implementing the scattering transform in the case where 
a manifold, but one only has access to  through a finite number of samples. We will also prove the convergence of these methods 
 the number of sample points tends to infinity. In Section 7, we will present numerical experiments on both synthetic data and on 
al-world biomedical data before providing a brief conclusion in Section 8.

 Definitions

In this section, we first define convolution and wavelets on a measure space  and then use these wavelets to define the measure 
ace scattering transform.
Let  = (𝑋,  , 𝜇) be a measure space with set 𝑋, 𝜎-algebra  , and measure 𝜇. Let vol() ∶= 𝜇(𝑋), and let  = 𝐋2() denote the 
lbert space of measurable functions such that

‖𝑓‖2 ∶= ‖𝑓‖2𝐋2() ∶= ∫
𝑋

|𝑓 |2𝑑𝜇 <∞.

t  be a self-adjoint and positive semidefinite operator on , and let  be an at most countable set of nonnegative integers. 
ithout loss of generality, we assume either  is the natural numbers ℕ ∪{0} or that  = {0, … , 𝑁 −1} for some 𝑁 ∈ ℕ. We assume 
at there is a collection of functions {𝜑𝑘}𝑘∈ ⊂ such that 𝜑𝑘 = 𝜆𝑘𝜑𝑘, with 𝜆0 = 0 < 𝜆1 and 𝜆𝑘 ≤ 𝜆𝑘+1 for 𝑘 ≥ 1. We also assume 
at {𝜑𝑘}𝑘∈ forms an orthonormal basis for .
1. Convolution and wavelet transforms

For 𝑓 ∈, we define its generalized Fourier coefficients 𝑓 (𝑘), 𝑘 ∈ , by
𝑓 (𝑘) ∶= ⟨𝑓,𝜑𝑘⟩ .

nce {𝜑𝑘}𝑘∈ is an orthonormal basis, we obtain the generalized Fourier series

𝑓 =
∑
𝑘∈

𝑓 (𝑘)𝜑𝑘,

here the convergence is in the 𝐋2() sense if  is infinite. In the case when  is the unit circle, it is well known that convolution 
rresponds to multiplication in the Fourier domain. Therefore, for any ℎ ∈, we define a convolution operator 𝑇ℎ by

𝑇ℎ𝑓 ∶= ℎ ⋆ 𝑓 ∶=
∑
𝑘∈

ℎ̂(𝑘)𝑓 (𝑘)𝜑𝑘. (4)

e may verify that for any 𝑛 ≥ 0 we have

(𝑇ℎ)𝑛𝑓 =
∑
𝑘∈

ℎ̂(𝑘)𝑛𝑓 (𝑘)𝜑𝑘. (5)

erefore, if ̂ℎ(𝑘) is nonnegative for all 𝑘 we may define, for 𝑡 ∈ℝ, 𝑇 𝑡
ℎ
by

𝑇 𝑡
ℎ
𝑓 ∶=

∑
𝑘∈

ℎ̂(𝑘)𝑡𝑓 (𝑘)𝜑𝑘. (6)

 the case where 𝑡 = 1∕2, we note that we have 𝑇 1∕2
ℎ
𝑇
1∕2
ℎ

= 𝑇ℎ. Therefore, we will refer to 𝑇
1∕2
ℎ

as the square root of 𝑇ℎ.
We will use this notion of spectral convolution to construct a diffusion operator 𝐻 . To do this, we let 𝑔 ∶ [0, ∞) → [0, ∞) be a 
nnegative and nonincreasing function with

𝑔(0) = 1 and 𝑔(𝑡) < 1 for all 𝑡 > 0. (7)
4

r 𝑡 ≥ 0, we define 𝐻𝑡 to be the operator corresponding to convolution against 
∑
𝑘∈ 𝑔(𝜆𝑘)𝑡𝜑𝑘, i.e.,
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𝐻𝑡𝑓∶=
∑
𝑘∈

𝑔(𝜆𝑘)𝑡𝑓 (𝑘)𝜑𝑘. (8)

e note that by construction, {𝐻𝑡}𝑡≥0 forms a semigroup since 𝐻𝑡𝐻𝑠 =𝐻𝑡+𝑠 and 𝐻0 = Id is the identity operator. We also note 
at 𝐻𝑡 = (𝐻1)𝑡, where the exponents are interpreted as in (5) and (6). Motivated by the interpretation of 𝑡 as an exponent, we will 
casionally write 𝐻 in place of 𝐻1 when convenient.
As our primary example, we will take 𝑔(𝜆) = 𝑒−𝜆, in which case, one may verify that, for sufficiently well-behaved functions, 
(𝑥, 𝑡) ∶=𝐻𝑡𝑓 (𝑥) satisfies the heat equation

𝜕𝑡𝑢𝑓 = −𝑥𝑢𝑓 , lim
𝑡→0

𝑢(𝑡, 𝑥) = 𝑓 (𝑥),

ce we may compute

𝜕𝑡𝐻
𝑡𝑓 (𝑥) = 𝜕𝑡

∑
𝑘∈

𝑒−𝜆𝑘𝑡𝑓 (𝑘)𝜑𝑘(𝑥)

=
∑
𝑘∈

−𝜆𝑘𝑒−𝜆𝑘𝑡𝑓 (𝑘)𝜑𝑘(𝑥)

= −𝑥𝐻𝑡𝑓 (𝑥). (9)

erefore, in this case, {𝐻𝑡}𝑡≥0 is referred to as the heat semigroup and 𝑡 is referred to as the diffusion time.

mark 1. The definition of 𝐻 does not depend on the choice of eigenbasis, even when some eigenvalues have multiplicity greater 
an one. To see this, let Λ be the set of distinct eigenvalues of  and note that

𝐻𝑓 =
∑
𝑘∈

𝑔(𝜆𝑘)𝑓 (𝑘)𝜑𝑘 =
∑
𝜆∈Λ

𝑔(𝜆)
∑

𝑘∶𝜆𝑘=𝜆
𝑓 (𝑘)𝜑𝑘 =

∑
𝜆∈Λ

𝑔(𝜆)𝜋𝜆(𝑓 ),

here, for 𝜆 ∈ Λ, 𝜋𝜆 is the operator which projects a function onto the eigenspace corresponding to 𝜆.

Given this diffusion operator we define the wavelet transform

𝐽 𝑓 ∶= {𝑊𝑗𝑓}𝐽𝑗=0 ∪ {𝐴𝐽𝑓}, (10)

here 𝑊0 ∶= Id−𝐻1, 𝐴𝐽 ∶=𝐻2𝐽 , and for 1 ≤ 𝑗 ≤ 𝐽
𝑊𝑗 ∶=𝐻2𝑗−1 −𝐻2𝑗 .

e wavelets aim to capture the geometry of  at different scales. In particular, the 𝑊𝑗 track changes between the geometry at 
fferent diffusion times. The operator 𝐴𝐽 performs a localized averaging operation and may be interpreted as a low-pass filter. Our 
nstruction uses a minimal time scale of 1 for simplicity and notational convenience. However, if one wishes to obtain wavelets 
hich are sensitive to smaller time scales, they may simply change the spectral function 𝑔. For example, if 𝑔1(𝜆) = 𝑒−𝜆 and 𝑔2(𝜆) =
𝜆∕2 then the associated diffusion operators would satisfy 𝐻1

2 =𝐻1∕2
1 .

The following result shows that 𝐽 is a nonexpansive frame on . Its proof is identical to the proof of Proposition 2.2 of [64]. 
r completeness, we give full details in Appendix A.

oposition 1. There exists a universal constant 𝑐 > 0 such that for all 𝑓 ∈

𝑐‖𝑓‖2 ≤ ‖𝐽 𝑓‖2𝓁2() ∶=
𝐽∑
𝑗=0

‖𝑊𝑗𝑓‖2 + ‖𝐴𝐽𝑓‖2 ≤ ‖𝑓‖2 .
mark 2. If we instead define our wavelets by 𝑊 ′

0 =
√
𝐼𝑑 −𝐻 , 𝑊 ′

𝑗 =
√
𝐻2𝑗−1 −𝐻2𝑗 for 1 ≤ 𝑗 ≤ 𝐽 , and 𝐴′

𝐽
=
√
𝐻2𝐽 , we can obtain 

similar result for  ′
𝐽
𝑓 = {𝑊 ′

𝑗 }
𝐽
𝑗=0 ∪ {𝐴′

𝐽
𝑓} but with 𝑐 = 1, so that the wavelet transform is norm-preserving, i.e.,

𝐽∑
𝑗=0

‖𝑊 ′
𝑗 𝑓‖2 + ‖𝐴′

𝐽 𝑓‖2 = ‖𝑓‖ .
e proof is identical to the proof of Proposition 2.1 of [64].

2. The scattering transform

In this section, we will construct the scattering transform as a multilayered architecture built off of a filter bank  . For the sake 
 generality, we will not require our  to be the diffusion wavelets constructed in the previous subsection. Instead, we let  be an 
5

bitrary countable indexing set and assume
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 = {𝑊𝑗}𝑗∈ ∪ {𝐴}

any collection of operators such that

𝑐‖𝑓‖2 ≤ ‖𝑓‖2
𝓁2() =

∑
𝑗∈

‖𝑊𝑗𝑓‖2 + ‖𝐴𝑓‖2 ≤ ‖𝑓‖2 (11)

r some 𝑐 > 0. This generality is motivated both by the fact that several different versions of the graph scattering transform [89,34,
] have used different wavelet constructions and also by various works which have constructed versions of the Euclidean scattering 
nsform using generalized, non-wavelet filter banks [24,36,84,85]. Here, we note that the letter of 𝐴 is chosen because we typically 
terpret 𝐴 as an averaging operator analogous to the low-pass operator 𝐴𝐽 considered in (10). However, we emphasize that this is 
erely suggestive notation.
The scattering transform consists of an alternating sequence of linear filterings (typically wavelet transforms) and nonlinear 
tivations. Towards this end, we let 𝜎 be an nonlinear function defined on either ℝ or ℂ such that the real part of 𝜎(𝑥) is nonnegative 
d 𝜎 is non-expansive in the sense that |𝜎(𝑥) − 𝜎(𝑦)| ≤ |𝑥 − 𝑦|. In a slight abuse of notation let 𝜎 ∶ → also denote the operator 
fined by (𝜎𝑓 )(𝑥)∶=𝜎(𝑓 (𝑥)). We note that in the case where admissible choices of 𝜎 include the absolute value function which 
commonly used in papers concerning the scattering transform, the rectified linear unit (ReLU) which is commonly used in other 
ural network architectures, and the complex version of ReLU considered in [87].
Given 𝐽 and 𝜎, we define the windowed scattering transform 𝑆 ∶ → 𝓁2() by

𝑆𝑓∶={𝑆[𝑝]𝑓 ∶𝑚 ≥ 0, 𝑝∶=(𝑗1,… , 𝑗𝑚) ∈  𝑚},

here  𝑚 is the 𝑚-fold Cartesian product of  , and the windowed scattering coefficients 𝑆[𝑝] corresponding to the path 𝑝 =
1, … , 𝑗𝑚) ∈  𝑚 are defined by

𝑆[𝑝]𝑓∶=𝐴𝑈 [𝑝]𝑓, 𝑈 [𝑝]𝑓∶=𝜎𝑊𝑗𝑚
…𝜎𝑊𝑗1

𝑓

r 𝑚 ≥ 1, and when 𝑚 = 0 and 𝑝𝑒 is the “empty path”, we declare that

𝑆[𝑝𝑒]𝑓∶=𝐴𝑓. (12)

e also define an operator 𝑈 by

𝑈𝑓∶={𝑈 [𝑝]𝑓 ∶𝑚 ≥ 0, 𝑝 = (𝑗1,… , 𝑗𝑚) ∈  𝑚} (13)

d a non-windowed scattering transform by

𝑆𝑓∶={𝑆[𝑝]𝑓 ∶𝑚 ≥ 0, 𝑝 = (𝑗1,… , 𝑗𝑚) ∈  𝑚},

here the non-windowed scattering coefficients are given by

𝑆[𝑝]𝑓∶=
|||||||∫𝑋 (𝑈 [𝑝]𝑓 )𝜑̄0𝑑𝜇

||||||| = ||⟨𝑈 [𝑝]𝑓,𝜑0⟩ || .
 the case where  = {0, … , 𝐽} and 𝑆 is constructed from the diffusion wavelets 𝐽 defined in (10), we will occasionally write 
[𝑝]𝑓 in place of 𝑆[𝑝]𝑓 if we want to emphasize the dependency of the parameter 𝐽 . We note that the primary difference between 
e windowed and non-windowed scattering transform is the use of the localized averaging operator 𝐴 rather than a global integra-
n against 𝜑0. Indeed, the term “windowed” refers to the idea that an average is computed within a neighborhood of each point. 
 particular, the windowed scattering transform should not be confused with constructions, such as those appearing in [24], which 
nstruct scattering transforms (on ℝ𝑁 ) using Gabor filters.
The following result relates the non-windowed scattering transform 𝑆 to the limit of the windowed scattering transform 𝑆𝐽 as 

→∞. In particular, if  is either the Laplace-Beltrami operator on a manifold or the unnormalized Laplacian on a graph, then 𝜑0 is 
nstant. Therefore, the following result shows that the windowed scattering coefficients 𝑆𝐽 [𝑝]𝑓 (𝑥) converge to a constant multiple 
 𝑆[𝑝]𝑓 . Please see Appendix B for a proof.

oposition 2. Let 𝑆𝐽 be the windowed scattering transform build on top of the diffusion wavelet frame 𝐽 defined in (10) and assume 
> 0. Then for all 𝑓 ∈, and every path 𝑝 we have

lim
𝐽→∞

‖|𝑆𝐽 [𝑝]𝑓 |− (𝑆[𝑝]𝑓 )|𝜑0|‖ = 0. (14)

mark 3. In the case where  = −∇ ⋅∇ is the Laplace-Beltrami operator on a manifold or the unnormalized graph Laplacian, one 
ay take 𝜑0 to be the constant function 𝜑0(𝑥) = vol()1∕2 and it is known that the associated heat semigroup {𝑒−𝑡}𝑡≥0 is positivity 
eserving (see, e.g., [25,44]). Therefore 𝑆𝐽 [𝑝]𝑓 will be nonnegative, and (14) implies

1

6

vol()1∕2
lim
𝐽→∞

𝑆𝐽 [𝑝]𝑓 = (𝑆[𝑝]𝑓 ).
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 Examples and relationship to prior work

Several versions of the scattering transform for graphs [35,34,89] and smooth Riemannian manifolds without boundary [63,59]
ve been introduced in previous work. In this section, we will discuss how these constructions relate to our framework. We also 
scuss several other examples of measure spaces included in our theory that have not been previously considered in the scattering 
nsform literature. Most of the techniques used to prove our theoretical results in Sections 2, 4, and 5 are natural generalization of 
e techniques used in these previous works on geometric (and even Euclidean) scattering. Indeed, our definitions were developed 
 carefully examining these papers and designing our framework in such a way that these techniques could be extended to more 
neral settings. Additionally, we note that our convergence results (Theorems 10, 11, 12, 13, and 14 stated in Section 6), do not, to 
e best of our knowledge, have direct analogs in any previous work on the scattering transform.

1. Undirected, unsigned graphs

Several works have introduced different definitions of the graph scattering transform. These works differ primarily in two respects, 
the definition of the wavelets and ii) whether they use a windowed or unwindowed version of the graph scattering transform. 
low, we explain how these constructions are related to our framework. Throughout this subsection, we let 𝐺 = (𝑉 , 𝐸, 𝑊 ) be a 
eighted graph with weighted adjacency matrix 𝐴 and weighted degree matrix 𝐷 = diag(𝐝), where 𝐝 denotes the degree vector. 
tably, all of the work discussed in this subsection focuses on undirected, unsigned graphs, i.e., graphs for which 𝐴 is symmetric 
d has nonnegative entries.
In [34], the authors define wavelets of the form 𝑇 2𝑗−1 − 𝑇 2𝑗 , where 𝑇 ∶= 1

2 (𝐼 +𝐷
−1∕2𝐴𝐷−1∕2), for 1 ≤ 𝑗 ≤ 𝐽 for some maximal 

ale 𝐽 .1 In order to obtain these wavelets from our framework, we may choose 𝜇 to be the uniform measure which gives weight 1
 each vertex, let  be the symmetric normalized Laplacian 𝐿sym = 𝐼 −𝐷−1∕2𝐴𝐷−1∕2 and choose

𝑔(𝜆) =

{
1 − 𝜆∕2 if 0 ≤ 𝜆 ≤ 2
0 otherwise

(15)

 (8). The authors of [34] are primarily concerned with graph level tasks and therefore use a non-windowed version of the scattering 
nsform.
In [35], the authors use wavelets of the form 𝑃 2𝑗−1 − 𝑃 2𝑗 where

𝑃 ∶= 1
2
(𝐼 +𝐴𝐷−1) =𝐷1∕2𝑇𝐷−1∕2

the lazy random walk matrix, i.e., the matrix whose entries describe the transition probabilities of a lazy random walk on the 
aph. In order to incorporate these wavelets into our framework, we define 𝜇 by the rule 𝜇({𝑣𝑖}) =

1
𝐝𝑖
, where 𝑣𝑖 ∈ 𝑉 and 𝐝𝑖 is 

e 𝑖-th entry of 𝐝, and choose  to be the random walk normalized Laplacian 𝐿RW = 𝐼 − 𝐴𝐷−1 =𝐷1∕2𝐿sym𝐷
−1∕2. Using the fact 

at 𝐿RW is similar to 𝐿sym, one may imitate the proof of Lemma 1.1 of [64] to verify that 𝐿RW is self adjoint for this choice of 𝜇. 
erefore, one can recover the wavelets from [35] by again choosing 𝑔 as in (15). Similar to [34], the authors of [35] are primarily 
ncerned with graph level tasks and therefore also use a non-windowed version of the scattering transform.
The wavelets used in [34] and [35] are based on [21]. By contrast, [89] uses a different wavelet construction based on [39]. 
ther than using a single spectral function 𝑔, a family of wavelets {𝜓𝑗}𝑗∈ℤ is constructed on the real line and used to define 
avelet convolution with respect to the spectral decomposition of the unnormalized Laplacian 𝐿un∶=𝐷 −𝐴. In our framework, this 
rresponds to defining

𝑊𝑗𝑓 =
𝑁−1∑
𝑘=0

𝜓𝑗 (𝜆𝑘)𝑓 (𝑘)𝜑𝑘,

here 𝑁 is the number of vertices and {(𝜆𝑘, 𝜑𝑘)}𝑁−1
𝑘=0 are eigenpairs of 𝐿un. We note that in Theorem 1 and in Section 5.2 we do 

t assume that our wavelets are constructed as in (10) and therefore some of our results may be applied to the scattering transform 
nstructed from these wavelets as well. We also note that analogs of many of our other results were previously established in [89]
 this case.

2. Signed graphs, directed graphs, hypergraphs, and simplicial complexes

A directed graph is a graph where the adjacency matrix is not symmetric. This makes it non-obvious how to apply spectral 
ethods since naive extensions of the (unnormalized or normalized) graph Laplacian are in general not diagonalizable on the 
ndard unweighted inner product space. Nevertheless, directed graphs are a natural model for many phenomena such as email 
tworks or traffic networks, and so there have been several attempts to define directed graph Laplacians which are either real 
mmetric or complex Hermitian.
7

[34] also uses a wavelet 𝐼 − 𝑇 for when 𝑗 = 0.
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In [17], the author defines a directed Laplacian via a non-reversible Markov chain and provides an extensive analysis of these 
atrices’ spectral properties. This matrix was later used as the basis for spectral directed graph neural networks in [56] and [78]. 
 alternative approach, dating back to at least [51], is to construct a complex Hermitian adjacency matrix known as the magnetic 
placian, which may be viewed as a special case of the graph connection Laplacian (see, e.g., [72,73]). This matrix represents the 
directed geometry of the graph in the magnitude of its entries and incorporates directional information in the phases. It has been 
died by the graph signal processing community [33] and also applied to numerous data science applications such as clustering 
d community detection [30,19,28,29]. Recently, [87] showed that the Magnetic Laplacian could be effectively incorporated into 
graph neural network. Analogously, there has also been work [23] using spectral clustering methods on signed graphs, i.e., graphs 
ith both positive “friend” edges and negative “enemy” edges using methods based on signed Laplacians. Very recently, [32,40,74,
] proposes various signed magnetic Laplacian and uses these matrices to construct a signed and directed graph neural network. 
milarly, [31] has proposed a neural network on hypergraphs (graphs where generalized edges may consist of more than two nodes) 
sed on a generalized Laplacian.
In this paper, we are agnostic to the question of which Laplacian is the best for signed and/or directed graphs. We merely 
te that our theory applies to all of the Laplacians discussed here and any of these Laplacians can be used to define scattering 
nsforms on signed and/or directed graphs. Additionally, we note that there has been work developing spectral clustering methods 
 hypergraphs using matrices which do not fit within our framework because they are not self-adjoint (see [16] and the references 
ithin). Developing variants of our theory which utilize these operators would be an interesting direction of future work.
We also note the recent work [66], which uses the Hodge Laplacian to construct wavelets on simplicial complices. These wavelets 

ere then used as a basis for simplicial complex scattering transforms in the follow up work [67]. Furthermore, we also note several 
pers which have applied Hodge Laplacians to directed graphs [52,69]. We remark that in some of these cases, the condition 
at 0 = 𝜆0 < 𝜆1 may not hold. In these settings, both 𝑈 and the windowed scattering transform are still well-defined and most 
 our analysis carries through unchanged. The definition of the windowed scattering transform, however, should be modified to 
ther be projection onto the 0-eigenspace, in the case where 0 has multiplicity, or to be defined via a global summation, i.e., 
[𝑝]𝑓 ∶=

∑
𝑣∈𝑉 𝑈 [𝑝]𝑓 (𝑣), in the case where 0 < 𝜆1. However, it is important to note that in the latter case it is no longer true, in 

neral, that the non-windowed scattering transform is the limit of the windowed scattering transform. (It follows from the proof of 
oposition 2 that the windowed scattering transform converges to zero in this case.)

3. Manifolds

In [63], the authors constructed a scattering transform for smooth and compact manifolds without boundary via the spectral 
composition of the Laplace-Beltrami operator. If we choose 𝑔(𝜆) = 𝑒−𝜆, the wavelets proposed in Section 2.1 are a minor variation 
 those considered there. Indeed, if we add an additional square root term as discussed in Remark 2, then the wavelets from 
ction 2.1 will exactly coincide with those considered in [63]. We also note [59] which replaced with wavelets used in [63] with 
avelets optimized for fast computation on the sphere. As with the wavelets considered in [89], these wavelets are not a special case 
 the wavelets constructed in Section 2.1. However, it is likely that one could derive analogs of most of our results for this version 
 the scattering transform as well.
Our framework can also be applied to other interesting setups not considered in previous work on the scattering transform. For 
ample, when the Laplace-Beltrami operator is equipped with suitable boundary conditions, our methods may also be applied to 
anifolds with boundary. Moreover, it may also be applied to weighted Laplacians such as those considered in [41] or [42] or 
isotropic Laplacians such as those applied to two-dimensional surfaces in [6].

 Continuity and invariance

In this section, we establish the fundamental continuity and invariance properties of the windowed and non-windowed scattering 
nsform. In Section 4.1, we show that both the windowed and non-windowed scattering transforms are Lipschitz continuous with 
spect to additive noise, and then, in Section 4.2, we establish invariance and equivariance properties for the scattering transforms 
der certain group actions.

1. Lipschitz continuity with respect to additive noise

The following two theorems show that the windowed and non-windowed scattering transforms are Lipschitz continuous on . 
r first result, Theorem 1, shows that the windowed scattering is nonexpansive. Its proof is based on analogous theorems in works 
ch as [57], [63], [64], and [89] which consider specific measure spaces.

eorem 1. Let 𝑆 be the scattering transform built on top of the wavelet frame  . Then the scattering transform is a nonexpansive operator 
m  → 𝓁2(), i.e., for all 𝑓1, 𝑓2 ∈,

‖𝑆𝑓1 −𝑆𝑓2‖𝓁2() ≤ ‖𝑓1 − 𝑓2‖ .
Theorem 2 shows that the non-windowed scattering transform is Lipschitz continuous on . Its proof is a generalization of 
8

eorem 3.2 of [64]. Notably, unlike Theorem 1, Theorem 2 requires that we use the wavelets defined in (10).
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eorem 2. Let 𝑆𝐽 be the scattering transform built on top of diffusion wavelets 𝐽 defined in (10). Assume that inf𝑥 |𝜑0(𝑥)| > 0 and 
> 0. Then

‖𝑆𝑓1 −𝑆𝑓2‖22 ≤ 1
min𝑥 |𝜑0(𝑥)|2vol()

‖𝑓1 − 𝑓2‖ .
r proofs of Theorems 1 and 2, please see Appendix C.

mark 4. In many cases of interest such as when either i)  is a compact Remannian manifold without boundary and  is the 
place-Beltrami operator or ii)  is an unweighted and undirected graph and  is the unnormalized graph Laplacian, we have that 
(𝑥) is constant and therefore 1

min𝑥 |𝜑0(𝑥)|2vol() = 1.

mark 5. Inspecting the proof, we see that results analogous to Theorem 2 can be derived for the non-windowed scattering 
nsform built upon other frames as long as one is able to establish a result similar to Proposition 2.

2. Invariance and equivariance

Let  be a collection of bijections 𝜁 ∶𝑋→𝑋 which form a group under composition. For 𝜁 ∈ , let
𝜁 ∶= (𝑋,𝜁 , 𝜇𝜁 ) (16)

 the measure space with 𝜎-algebra 𝜁 and measure 𝜇𝜁 given by
𝜁 ∶= {𝜁−1(𝐵) ∶𝐵 ∈ }, 𝜇𝜁 (𝐵) ∶= 𝜇(𝜁−1(𝐵)).

e let  act on  by function composition and we let it act on the set of linear operators by conjugation. Let (𝜁) be the Hilbert 
ace of functions on 𝜁 which are square integrable with respect to 𝜇𝜁 . Let 𝑉𝜁 ∶ →(𝜁) denote the operator 𝑉𝜁𝑓 ∶= 𝑓◦𝜁−1 and 
t 𝜁 denote the operator on (𝜁) defined by

𝜁∶=𝑉𝜁◦◦𝑉 −1
𝜁 .

e following lemma relates the eigenfunctions of  and 𝜁 .
mma 1. If 𝜑 is an eigenfunction of  with 𝜑 = 𝜆𝜑, then 𝑉𝜁𝜑 is an eigenfunction of 𝜁 and 𝜁 𝑉𝜁𝜑 = 𝜆𝑉𝜁𝜑.

oof. The proof is immediate from the definition:

𝜁 𝑉𝜁𝜑 = 𝑉𝜁𝑉 −1
𝜁 𝑉𝜁𝜑 = 𝑉𝜁𝜑 = 𝑉𝜁𝜆𝜑 = 𝜆𝑉𝜁𝜑. □

In the case where  is a graph or a manifold, the standard choice of  is the permutation group or the isometry group. The 
y desired property of this group is that the associated group action is an isometry from  to (𝜁). This motivates the following 
finition.

finition 1. We say that  preserves inner products on  if for all 𝜁 ∈  and all 𝑓1, 𝑓2 ∈ we have

⟨𝑉𝜁𝑓1, 𝑉𝜁𝑓2⟩(𝜁 ) = ⟨𝑓1, 𝑓2⟩ .
Importantly, we note that Definition 1 is satisfied both when  is a compact Riemannian manifold,  is the isometry group, and 𝜇
the Riemannian volume and also when  is a graph,  is the permutation group, and 𝜇 is any measure, including both the uniform 
easure and measures which assign different weights to vertices depending upon their degrees.

mma 2. Suppose  preserves inner products on . Then, for all 𝜁 ∈ , 𝜁 is self-adjoint on (𝜁).

oof. Using the definition of 𝜁 , the fact that  is self-adjoint on , and the assumption that  preserves inner products implies
⟨𝜁 𝑓1, 𝑓2⟩(𝜁 ) = ⟨𝑉𝜁𝑉 −1

𝜁 𝑓1, 𝑉𝜁𝑉
−1
𝜁 𝑓2⟩(𝜁 ) = ⟨𝑉 −1

𝜁 𝑓1, 𝑉
−1
𝜁 𝑓2⟩

= ⟨𝑉 −1
𝜁 𝑓1,𝑉 −1

𝜁 𝑓2⟩ = ⟨𝑉 −1
𝜁 𝑓1, 𝑉

−1
𝜁 𝑉𝜁𝑉 −1

𝜁 𝑓2⟩

9

= ⟨𝑉 −1
𝜁 𝑓1, 𝑉

−1
𝜁 𝜁 𝑓2⟩ = ⟨𝑓1,𝜁 𝑓2⟩(𝜁 ) . □
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Recall the operators 𝐻𝑡 ∶ →
𝐻𝑡𝑓 =

∑
𝑘∈

𝑔(𝜆𝑘)𝑡𝑓 (𝑘)𝜑𝑘 =
∑
𝑘∈

𝑔(𝜆𝑘)𝑡⟨𝑓,𝜑𝑘⟩𝜑𝑘,
d define

𝐻𝑡
𝜁
𝑓 ∶=

∑
𝑘∈

𝑔(𝜆𝑘)𝑡⟨𝑓,𝜑(𝜁)
𝑘
⟩(𝜁 )𝜑

(𝜁)
𝑘

 be the corresponding operator on (𝜁), where {𝜑(𝜁)
𝑘
}𝑘∈ is an orthonormal basis of eigenfunctions for 𝜁 . Let 𝑊 (𝜁)

𝑗 and 𝐴(𝜁)

note wavelets and averaging operators on (𝜁), and let 𝑈 (𝜁), 𝑆(𝜁), and 𝑆(𝜁) be the analogs of 𝑈 , 𝑆 , and 𝑆 on (𝜁). We observe 
at by Remark 1, the definition of 𝐻𝑡

𝜁
does not depend on the choice of eigenbasis. Therefore, by Lemma 1, we may assume without 

ss of generality that 𝜑(𝜁)
𝑘

= 𝑉𝜁𝜑𝑘 and therefore that

𝐻𝑡
𝜁
𝑓 =

∑
𝑘∈

𝑔(𝜆𝑘)𝑡⟨𝑓,𝑉𝜁𝜑𝑘⟩(𝜁 )𝑉𝜁𝜑𝑘. (17)

 light of (17), if  preserves inner products, we see that 𝐻𝑡 commutes with 𝑉𝜁 in the sense that

𝐻𝑡
𝜁
𝑉𝜁𝑓 = 𝑉𝜁𝐻𝑡𝑓 for all 𝑡 ≥ 0 (18)

ce we may compute

𝐻𝑡
𝜁
𝑉𝜁𝑓 =

∑
𝑘∈

𝑔(𝜆𝑘)𝑡⟨𝑉𝜁𝑓 ,𝑉𝜁𝜑𝑘⟩(𝜁 )𝑉𝜁𝜑𝑘 =
∑
𝑘∈

𝑔(𝜆𝑘)𝑡⟨𝑓,𝜑𝑘⟩𝑉𝜁𝜑𝑘
= 𝑉𝜁

∑
𝑘∈

𝑔(𝜆𝑘)𝑡⟨𝑓,𝜑𝑘⟩𝜑𝑘 = 𝑉𝜁𝐻𝑡𝑓 .

is readily leads to the following theorem which shows that the condition that  preserves inner products on  is sufficient to 
oduce equivariance results for the wavelet transform and the windowed scattering transform analogous to (2) mentioned in the 
troduction. For a proof, please see Appendix D.

eorem 3. Let  = {0, … , 𝐽}, and let  =𝐽 be the diffusion wavelets constructed in (10) and assume 𝜆1 > 0. Then, if  preserves 
ner products, then  commutes with both the wavelet transform, the operator 𝑈 defined in (13) and the scattering transform. That is, for 
l 𝜁 ∈ , 𝑓 ∈ and 0 ≤ 𝑗 ≤ 𝐽 , we have

𝑊
(𝜁)
𝑗 𝑉𝜁𝑓 = 𝑉𝜁𝑊𝑗𝑓 , 𝐴

(𝜁)𝑉𝜁𝑓 = 𝑉𝜁𝐴𝑓, 𝑈 (𝜁)𝑉𝜁𝑓 = 𝑉𝜁𝑈𝑓 and 𝑆(𝜁)𝑉𝜁𝑓 = 𝑉𝜁𝑆𝑓.

mark 6. Equations analogous to (18) hold for any spectral filter of the form (4), as long as ̂ℎ(𝑘) is a function of 𝜆𝑘, i.e., ̂ℎ(𝑘) = ℎ̃(𝜆𝑘)
r some function ℎ̃. Therefore, results similar to Theorem 3 can be derived for any network constructed from such filters and 
intwise nonlinearities 𝜎. Additionally, analogous results can also be derived for the scattering transform built upon other geometric 
avelet constructions. For example, the conclusions of Proposition 4.1 of [89] are similar to those of Theorem 3 above.

Our next result shows that the non-windowed scattering transform 𝑆 is fully invariant under the assumption that  preserves inner 
oducts on . Importantly, we note that the windowed scattering transform is not in general invariant. Intuitively, this distinction 
ises from the fact that 𝑆 is the composition of an equivariant operator 𝑈 together with a final global aggregation operator whereas 
uses a localized averaging operator 𝐴.

eorem 4. Let  = {0, … , 𝐽}, and let  =𝐽 be the diffusion wavelets constructed in (10). Assume  has a spectral gap, i.e., 𝜆1 > 0. 
en, if  preserves inner products, the non-windowed scattering transform is invariant to the action of , i.e.,

𝑆(𝜁)𝑉𝜁𝑓 = 𝑆𝑓 for all 𝜁 ∈  and all 𝑓 ∈.
oof. Since 𝜆1 > 0, the eigenspace corresponding to 𝜆 = 0 has dimension one. Therefore, 𝜑(𝜁)

0 = 𝑐𝑉𝜁𝜑0, for some constant 𝑐 with | = 1, and so

𝑆(𝜁)[𝑝]𝑉𝜁𝑓 = |⟨𝑈 (𝜁)[𝑝]𝑉𝜁𝑓 , 𝑐𝑉𝜁𝜑0⟩(𝜁 ) |
= |⟨𝑉𝜁𝑈 [𝑝]𝑓,𝑉𝜁𝜑0⟩(𝜁 ) | = |⟨𝑈 [𝑝]𝑓,𝜑0⟩ | = 𝑆[𝑝]𝑓. □

Unlike the non-windowed scattering transform, 𝑆, the windowed scattering transform 𝑆𝐽 is not in general permutation invariant, 
en in the limit as 𝐽 →∞. If one wishes the windowed-scattering transform to be invariant to the action of , then one must also 
10

quire that  preserves the measure 𝜇 as defined below.
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finition 2. We say that  preserves the measure 𝜇 if 𝜁 =  and 𝜇𝜁 (𝐵) = 𝜇(𝐵) for all 𝜁 ∈  and all 𝐵 ∈  .
To better understand this definition, we note that if  is a Riemannian manifold, then the isometry group preserves 𝜇 when 𝜇 is 
e Riemannian measure, but not if a general 𝜇 is chosen. Similarly, if  is a graph, the permutation group will preserve 𝜇 if it gives 
ual weight to each vertex, but not if, for example, 𝜇 gives different weights to vertices depending on their degrees.
Under the assumption that  preserves the measure 𝜇, we are able to show that the windowed scattering transform is invariant 

 the action of  in the limit as 𝐽 →∞ at an exponential rate.

eorem 5. Let  = {0, … , 𝐽}, and let  =𝐽 be the diffusion wavelets constructed in (10). Suppose that 𝜑0(𝑥) is constant and assume 
preserves both measures and inner products. Then for all 𝜁 ∈ , we have

‖𝑆𝐽𝑓 −𝑆(𝜁)
𝐽
𝑉𝜁𝑓‖𝓁2() ≤ 2|𝑔(𝜆1)|2𝐽 ‖𝑈𝑓‖𝓁2().

The proof of Theorem 5 is based on Lemma 3 as well as the observation that lim𝐽→∞ ‖𝐴𝐽𝑉𝜁 − 𝐴𝐽‖ = 0. We note that while 
eorem 5 assumes that the  =𝐽 are the diffusion wavelets constructed in (10), Lemma 3 does not. (Note that other geometric 
avelet constructions such as the one utilized in [89] also lead to versions of the scattering transform where the (19) condition is 
tisfied.) For a proof of both Theorem 5 and Lemma 3, please see Appendix E.

mma 3. Assume  preserves both measures and inner products and that 𝑆 is equivariant with respect to the action of  in the sense that
𝑆(𝜁)𝑉𝜁𝑓 = 𝑉𝜁𝑆𝑓. (19)

en for all 𝜁 ∈ , we have
‖𝑆𝑓 −𝑆(𝜁)𝑉𝜁𝑓‖𝓁2() ≤ ‖𝑉𝜁𝐴−𝐴‖‖𝑈𝑓‖𝓁2().

mark 7. One limitation of Theorem 5 is that the right-hand side is given in terms of ‖𝑈𝑓‖𝓁2() instead of ‖𝑓‖ . This is a common 
ue with many asymptotic invariance results for the windowed scattering transform. However, as first noted in [57], one may use 
1) and the fact that 𝜎 is nonexpansive to see∑

𝑝∈ 𝑚
‖𝑈 [𝑝]𝑓‖2 ≤ ∑

𝑝∈ 𝑚−1
‖𝑈 [𝑝]𝑓‖2

r any 𝑚 ≥ 1. Therefore,∑
𝑝∈ 𝑚

‖𝑈 [𝑝]𝑓‖2 ≤ ∑
𝑝∈ 𝑚−1

‖𝑈 [𝑝]𝑓‖2 ≤… ≤ ∑
𝑝∈

‖𝑈 [𝑝]𝑓‖2 ≤ ‖𝑓‖2 (20)

d so, if one only uses 𝑀 scattering layers, the total energy of 𝑈𝑓 may be bounded by

∑
𝑚≤𝑀

( ∑
𝑝∈ 𝑚

‖𝑈 [𝑝]𝑓‖2
)

≤ (𝑀 + 1)‖𝑓‖2 .
erefore, if one only uses finitely many scattering layers, the right-hand side of Theorem 5 may be controlled in terms of ‖𝑓‖ . 
oreover, in the case where  is a graph, for certain classes of wavelets we have∑

𝑝∈ 𝑚
‖𝑈 [𝑝]𝑓‖2 ≤ 𝑟 ∑

𝑝∈ 𝑚−1
‖𝑈 [𝑝]𝑓‖2 (21)

r some 𝑟 < 1 (see, e.g., Proposition 3.3 of [89] or Theorem 3.4 of [64]). Therefore, in this case, one has

‖𝑈𝑓‖2
𝓁2() =

∞∑
𝑚=0

( ∑
𝑝∈ 𝑚

‖𝑈 [𝑝]𝑓‖2
)

≤
∞∑
𝑚=0

𝑟𝑚‖𝑓‖2 = 1
1 − 𝑟

‖𝑓‖2
dependent of the number of layers used.

The main results of this section, Theorems 3, 4, and 5, can be summarized as follows: If  preserves inner products, and the 
attering transform is constructed using the diffusion wavelets defined in Section 2.1, then the windowed scattering transform is 
uivariant and the non-windowed scattering transform is invariant to the action of . If we further assume that  preserves measure 
d that 𝜑0 is constant, then we also have that the windowed scattering transform is invariant in the limit as 𝐽 →∞.
As alluded to in the introduction, these invariance and equivariance results show that the scattering transform respects the 
trinsic structure of the data and therefore is well-suited for a variety of machine learning tasks. In particular, the equivariance 
11

sult, Theorem 3, shows that it is well-suited for point-level tasks such as the node classification task which we will consider in 
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ction 7.3. Similarly, the invariance results Theorems 4 and 5, show that it is well-equipped to handle shape-level tasks such as the 
anifold classification tasks considered in Sections 7.1 and 7.2.
We also note that the assumption that  preserves inner products is quite natural. It is satisfied both when 𝜇 is the Riemannian 
easure on a manifold and  is the isometry group and when  is a (possibly signed, possibly directed) graph,  is the permutation 
oup, and 𝜇 is any measure. The conditions that  preserves volumes and 𝜑0 is constant are a bit stronger. For example, when  is 
graph, permutations do not preserve measure if the 𝜇 gives different vertices different weights. Moreover, if we take  to be the 
mmetric normalized graph Laplacian (on an undirected, unsigned graph), then 𝜑0 is given by 𝜑0(𝑥) ∼ degree(𝑥)1∕2 and therefore 
not constant unless the graph is regular.

 Stability

In this section, we show that the measure space scattering transform is robust to small perturbations to the measure 𝜇 and the 
ffusion operator 𝐻 . In particular, we consider a measure space  = (𝑋,  , 𝜇) and another measure space  ′ = (𝑋′,  ′, 𝜇′) which 
e interpret as a perturbed version of  . We assume that these two spaces have the same underlying sets and 𝜎-algebras and that 
easures are mutually absolutely continuous with bounded Radon-Nikodyn derivatives, i.e., we have 𝑋 =𝑋′,  =  ′ and that there 
ist Radon-Nikodyn derivatives such that

𝑑𝜇 = 𝑑𝜇

𝑑𝜇′
𝑑𝜇′ and 𝑑𝜇′ = 𝑑𝜇′

𝑑𝜇
𝑑𝜇.

To quantify the distortion between measures, we let  = 𝐋2() and ′ = 𝐋2( ′), and we introduce two quantities, 𝑅 =𝑅(, ′)
d 𝜅 = 𝜅(, ′), defined by

𝑅 ∶=𝑅(,′) ∶= max
{‖‖‖‖𝑑𝜇′𝑑𝜇

‖‖‖‖∞ ,‖‖‖‖ 𝑑𝜇𝑑𝜇′ ‖‖‖‖∞
}

(22)

d

𝜅(,′) = max
{‖‖‖‖1 − 𝑑𝜇

𝑑𝜇′
‖‖‖‖∞ ,‖‖‖‖1 − 𝑑𝜇′

𝑑𝜇

‖‖‖‖∞
}
.

e note that these two quantities are closely related to their analogs in [64] which focused on the special case where  was an 
directed, unsigned graph. In the case where 𝜇 = 𝜇′, we have 𝑅(, ′) = 1 and 𝜅(, ′) = 0. Therefore, we will consider 𝜇 and 𝜇′
 be close to one another if 𝑅 ≈ 1 and 𝜅 ≈ 0.
To further understand these definitions, consider the case where  and  ′ are two (possibly signed, possibly directed) graphs 

ith 𝑁 vertices and identify both vertex sets with {0, 1, … , 𝑁 −1}. If 𝜇 and 𝜇′ are both the uniform measure, then we automatically 
ve 𝑅(, ′) = 1 and 𝜅(, ′) = 0. In this case, bounds produced in Theorem 6 will simplify considerably as discussed below. 
other natural choice of measure in the graph setting is to let 𝜇(𝑖) = 𝐝−1𝑖 = degree(𝑖)−1 since this is the measure needed in order to 

ake the random-walk Laplacian 𝐼 −𝐴𝐷−1 self-adjoint. In this case, we have 𝑅(, ′) =max0≤𝑖≤𝑁−1 max
{

𝐝𝑖
𝐝′
𝑖

,
𝐝′
𝑖

𝐝𝑖

}
. In particular, 

both 𝐝 and 𝐝′ satisfy the entrywise bound 0 <𝑚 ≤ 𝐝𝑖, 𝐝′𝑖 ≤𝑀 <∞, we have 𝑅(, ′) ≤ 𝑀

𝑚
.

Observe that the assumption 𝑅(, ′) <∞ implies that the sets with measure zero with respect to 𝜇 are the same as those with 
easure zero with respect to 𝜇′. Therefore, each function 𝑓 ∈ can be uniquely identified with an element of ′ = 𝐋2( ′) (and 
ce-versa) and so we may regard the Hilbert spaces  and ′ as having the same elements. Therefore, if 𝑓 ∈ and 𝑓 ∈′, the 
btraction 𝑓 − 𝑓 is well defined. We also note that

‖𝑓‖2 = ∫
𝑋

|𝑓 |2𝑑𝜇 = ∫
𝑋

|𝑓 |2 𝑑𝜇
𝑑𝜇′

𝑑𝜇′ ≤𝑅(,′)‖𝑓‖2′ , (23)

d similarly,

‖𝑓‖2′ ≤𝑅(,′)‖𝑓‖2 . (24)

e also observe that

|⟨𝑓, 𝑔⟩ − ⟨𝑓, 𝑔⟩′ | = |||||||∫𝑋 𝑓𝑔̄

(
1 − 𝑑𝜇′

𝑑𝜇

)
𝑑𝜇

||||||| ≤ 𝜅(,
′)‖𝑓‖‖𝑔‖ . (25)

Let  and ′ be self-adjoint positive semidefinite operators on  and ′ respectively, and let {𝜑𝑘}∞𝑘=0, {𝜑
′
𝑘
}∞
𝑘=0 be the associated 

genbases. Let 𝑔 be a spectral function satisfying the same assumptions as described in Section 2.1 and let 𝐻 and 𝐻 ′ be the 
sociated operators defined as in (8). Importantly, we note that we use the same function 𝑔 when constructing both 𝐻 and 𝐻 ′, so 
e may interpret 𝐻 and 𝐻 ′ as being analogous operators on different spaces. For example, in the case where  and  ′ are manifolds 
d 𝑔(𝜆) = 𝑒−𝜆, one may check that {𝐻𝑡}𝑡≥0 is the heat semigroup on  and {(𝐻𝑡)′}𝑡≥0 is the heat semigroup on  ′.
Below, we prove a stability result for the wavelet transform. Our result will give bounds in terms of 𝑅(, ′) and 𝜅(, ′), 
12

hich measure how much 𝜇 differs from 𝜇′. However, these terms are not by themselves necessarily sufficient to characterize how 
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fferent  is from  ′. For example, consider the case where  is a complete graph with 𝑁 vertices,  ′ is a cycle graph of 𝑁
rtices, and  and ′ are the unnormalized graph Laplacians on  and  ′. In both of these cases, the natural choice of measure 
to assign equal mass to each vertex, and so we will have 𝜇({𝑥}) = 𝜇′({𝑥}) for every vertex 𝑥 ∈ 𝑋 = 𝑋′. It follows, that 𝑑𝜇

′

𝑑𝜇
= 1

iformly, and therefore, we have 𝑅(, ′) = 1 and 𝜅(, ′) = 0. However, a complete graph and a cycle graph are clearly very far 
m being isomorphic as graphs in any reasonable sense. In particular, one way in which these graphs differ is that heat will diffuse 
uch more rapidly through a fully connected graph than through a directed cycle. This motivates us to follow the lead of [34] (see 
so [20] and [61]) and consider the term

‖𝐻 −𝐻 ′‖ . (26)

e note that since we assume that 𝑅(, ′) is finite, the operator 𝐻 ′ is well-defined on . We also note that unlike [34], (26) does 
t take the infimum over the orbits of . This is because the wavelet transform is not invariant to the action of , but is merely 
uivariant. Therefore, no infimum will appear in Theorem 6 stated below which establishes the stability of the wavelet transform. 
e scattering transform, by contrast, is invariant to the action of  and therefore such infimums will emerge in Theorems 7 and 8
hich establish stability for the windowed and non-windowed scattering transforms.

1. Stability of the wavelet transform

We will decompose 𝐻 and 𝐻 ′ by

𝐻 = 𝐻̃ +𝐻, 𝐻 ′ = 𝐻̃ ′ +𝐻
′

(27)

here

𝐻̃𝑓 = 𝑓 (0)𝜑0, and 𝐻𝑓 =
∑
𝑘≥1

𝑔(𝜆𝑘)𝑓 (𝑘)𝜑𝑘,

d 𝐻̃ ′ and 𝐻
′
are defined similarly.

‖𝐻𝑓‖2 = ‖∑
𝑘≥1

𝑔(𝜆𝑘)𝑓 (𝑘)𝜑𝑘‖2 ≤ 𝑔(𝜆1)2‖𝑓‖2 (28)

d similarly,

‖𝐻̃𝑓‖′ 2 ≤ 𝑔(𝜆′1)2‖𝑓‖2′ . (29)

oreover, combining (29) with (23) and (24) implies

‖𝐻̃ ′𝑓‖2 ≤𝑅(,′)𝑔(𝜆′1)
2‖𝑓‖2′ ≤𝑅(,′)2𝑔(𝜆′1)

2‖𝑓‖2 .
erefore,

𝛽 ≤max{𝑔(𝜆1), 𝑔(𝜆′1)𝑅(,′)}. (30)

 light of (30), in order for the requirement that 𝛽 < 1 to hold it suffices for 𝜇 and 𝜇′ to be well-aligned enough so that 𝑅(, ′) <
𝜆′1)

−1. Therefore, Theorem 6 stated below can be interpreted as a local stability result where the radius of convergence depends on 
e spectral gap 𝜆′1.

eorem 6. Let 𝐽 be the diffusion wavelets on  defined as in (10), and let  ′
𝐽
be the analogous wavelets on  ′. Let 𝛽 =

ax{‖𝐻‖ , ‖𝐻 ′‖} and assume that 𝛽 < 1. Then,

‖𝐽 − ′
𝐽‖2𝓁2()

≤𝐶(𝛽) [‖𝜑0 −𝜑′
0‖2𝑅(,′) +𝑅(,′)2𝜅(,′)2 + ‖𝐻 −𝐻 ′‖2]

ere 𝐶(𝛽) = 𝐶 𝛽2+1
(1−𝛽2)3 for some absolute constant 𝐶 > 0.

r a Proof of Theorem 6, please see Appendix F. As noted above, in the case where  is a graph and 𝜇 is the uniform measure, we 
ve 𝑅(, ′) = 1 and 𝜅(, ′) = 0. Therefore, the result of Theorem 6 simplifies to

‖𝐽 − ′
𝐽‖2𝓁2() ≤ 𝐶(𝛽)

[‖𝜑0 −𝜑′
0‖2 + ‖𝐻 −𝐻 ′‖2] .

rthermore, if  is the unnormalized graph Laplacian, we have 𝜑0 = 𝜑′
0, and the result further simplifies to ‖𝐽 − ′

𝐽
‖2
𝓁2()

≤

13

(𝛽)‖𝐻 −𝐻 ′‖2 .
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2. Stability of the scattering transform

In this section, we prove the stability of the windowed and non-windowed scattering transforms. As in Section 4.1, and follow-
g the lead of [64], in this section, we will not assume that the scattering transform is constructed using the diffusion wavelets 
nstructed in Section 2.1. Instead, as in Section 2.2, we will let  be an arbitrary countable indexing set and assume that

 = {𝑊𝑗,𝐴}𝑗∈ and  ′ = {𝑊 ′
𝑗 ,𝐴

′}𝑗∈
e any frames on  and ′ such that (11) holds. We do this because, for any given measure space, there may be many possible 
ays to construct wavelets, or more generally frames satisfying (11) and in the Euclidean setting there have been various works 
fining the scattering transform using more general non-wavelet frames [24,36,84,85]. Therefore, we will show that the stability 
 the underlying frame directly implies the stability of the resulting scattering transforms. Throughout this section, we will let 𝓁

note the set of all 𝓁-th order scattering coefficients, on  , i.e.,
𝓁𝑓∶={𝑆[𝑝]𝑓 ∶ 𝑝 = (𝑗1,… , 𝑗𝓁)},

d let (𝓁)′ denote the corresponding set of scattering coefficients on  ′. We will also continue to assume that the sets 𝑋 and 𝑋′

d the 𝜎-algebras  and  ′ are the same and also that 𝑅(, ′) and 𝜅(, ′) are finite. We recall that, as noted prior to (23), this 
eans that  and ′ can be regarded as having the same elements and so the subtraction of elements ′ from elements of  is 
ell defined.

eorem 7 (Stability for the windowed scattering transform). Let  = (𝑋,  , 𝜇) and  ′ = (𝑋′,  ′, 𝜇′) be measure spaces with 𝑋 =𝑋′ and 
=  ′. Let  = 𝐋2(), ′ = 𝐋2( ′) and let  be a countable indexing set. Let  = {𝑊𝑗, 𝐴}𝑗∈ and  ′ = {𝑊 ′

𝑗 , 𝐴
′}𝑗∈ be frames on 

and ′ such that (11) holds. Let 𝑆𝓁 and (𝑆𝓁)′ be the 𝓁-th layers of the windowed scattering transforms on  and  ′ constructed from 
and  ′. Further assume that 𝑆𝓁 is equivariant to the action of  and also invariant up to a factor of  in the sense that

𝑉𝜁𝑆
𝓁𝑓 = 𝑆𝓁,(𝜁)𝑉𝜁𝑓 , and

‖‖‖𝑉𝜁𝑆𝓁𝑓 − 𝑆𝓁𝑓
‖‖‖𝓁2()

≤‖𝑓‖ (31)

r all 𝑓 ∈ and 𝜁 ∈ . Then for all 𝑓 ∈ and 𝑓 ∈′, we have‖‖‖𝑆𝓁𝑓 − (𝑆𝓁)′𝑓‖‖‖𝓁2()
(32)

≤ inf
𝜁∈

[
‖𝑓‖ +𝑅

(,(𝜁))‖𝑉𝜁𝑓 − 𝑓‖
+

(√
2𝑅

(,(𝜁))‖ (𝜁) − ′‖(𝜁 )

(
𝓁∑
𝑘=0

‖ ′‖𝑘(𝜁 )

))
⋅ ‖𝑓‖].

For a proof of Theorem 7, please see Appendix G. We note that if  are the diffusion wavelets constructed in Section 2.1, 
eserves measures, and 𝜑0 is constant, then Theorem 5 and Remark 7 imply condition (31) holds with  =

√
(𝓁 + 1)|𝑔(𝜆1)|2𝐽

hich converges to zero as 𝐽 →∞). In particular, these conditions are satisfied both when  is a Riemannian manifold,  is the 
place-Beltrami operator, and 𝜇 is the Riemannian volume form and when  is a graph, 𝜇 is the uniform measure, and  is the 
normalized graph Laplacian.
We also note that we can interpret each of the terms on the right-hand side of (32). We are looking for a bijection 𝜁 ∈  which will 
ultaneously align both the wavelets  (which are typically constructed from the operators  of ), the Hilbert spaces , and the 
nal 𝑓 . Therefore, the term 𝑅(, (𝜁)) measures how well aligned the Hilbert spaces are, the term ‖ (𝜁) − ′‖(𝜁 ) measures how 
ell aligned the wavelets are, and the term ‖𝑉𝜁𝑓 − 𝑓‖ measures how well aligned the signals are. We also note that in the case 
here  are the diffusion wavelets constructed in Section 2.1, we can control the term ‖ (𝜁) − ′‖(𝜁 ) by applying Theorem 6.
The next result is the analogue of Theorem 7 for the non-windowed scattering transform. We note that the terms on the right-hand 
e of (34) have similar interpretations as those in Theorem 7. Additionally, by Theorems 2 and 4, we note that the condition (33)
satisfied whenever inf𝑥 |𝜑0(𝑥)| > 0, 𝜆1 > 0,  preserves inner products and  =𝐽 are the diffusion wavelets constructed in (10).

eorem 8 (Stability for the non-windowed scattering transform). Let  = (𝑋,  , 𝜇) and  ′ = (𝑋′,  ′, 𝜇′) be measure spaces with 𝑋 =𝑋′

d  =  ′. Let  = 𝐋2(), ′ = 𝐋2( ′) and let  be a countable indexing set. Let  = {𝑊𝑗, 𝐴}𝑗∈ and  ′ = {𝑊 ′
𝑗 , 𝐴

′}𝑗∈ be frames 

  and ′ such that (11) holds. Let 𝑆𝓁 and (𝑆𝓁)′ be the 𝓁-th layers of the non-windowed scattering transforms on  and  ′ constructed 
m  and  ′. Assume that 𝑆 is fully invariant to the action of  and also Lipschitz continuous on  with constant 𝐶𝐿 in the sense that

‖𝑆𝑓1 −𝑆𝑓2‖22 ≤ 𝐶𝐿‖𝑓1 − 𝑓2‖ and 𝑆(𝜁)𝑉𝜁𝑓1 = 𝑆𝑓1 (33)

Then for all 𝑓 ∈ and 𝑓 ∈′, we have
2

14

‖‖‖𝑆𝓁𝑓 − (𝑆𝓁)′𝑓‖‖‖2 (34)
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≤3 inf
𝜁∈

[
2𝐶𝐿‖𝑉𝜁𝑓 − 𝑓‖2(𝜁 ) +𝑅((𝜁),′)2‖𝜑(𝜁)

0 −𝜑′
0‖2′‖𝑓‖2′

+ 2‖ (𝜁) − ′‖2(𝜁 )

(
𝓁−1∑
𝑘=0

‖ ′‖𝑘(𝜁 )

)2 ‖𝑓‖2(𝜁 ) + 𝜅(′,(𝜁))‖𝑓‖′ .

]

r a proof of Theorem 8, please see Appendix H.

 Implementing the manifold scattering transform from point-cloud data

In [63], the authors showed that the manifold scattering transform was effective for classification tasks on known two-dimensional 
rfaces with predefined meshes. However, in many applications of interest, one is not given a predefined manifold. Instead, one is 
ven a collection of points {𝑥𝑖}𝑁−1

0=1 embedded in some high-dimensional Euclidean space ℝ𝐷 and one makes a modeling assumption 
at these points lie on (or near) a comparatively low-dimensional manifold. Thus, in this section, we will assume that  is a smooth 
dimensional Riemannian manifold without boundary which is embedded in ℝ𝐷 for some 𝐷 ≫ 𝑑 and that {𝑥𝑖}𝑁−1

𝑖=0 is a discrete 
bset randomly and independently sampled from  . We will use the 𝑥𝑖 to construct a weighted graph 𝑁 and present two methods 
hich use 𝑁 to implement an approximation of the manifold scattering transform when one only has access to these sample points.
Both of these methods rely on an affinity kernel 𝐾𝜖(⋅, ⋅) to construct a data-driven graph 𝑁 with weighted adjacency matrix 
(𝑁). In our first method, we simply define an approximate heat semigroup at time 𝑡 = 1 by 𝐻1

𝑁,𝜖
∶=(𝐷(𝑁))−1𝑊 (𝑁), where 𝐷(𝑁) =

(𝑁)𝟏 is the degree matrix associated to 𝑊 (𝑁). One may then approximate 𝐻2𝑗 by, e.g., matrix multiplication. We note that while 
 principle, 𝐻1

𝑁,𝜖
is a dense matrix, most of its entries will typically be small and therefore one may apply a threshold operator 

d use sparse matrix multiplications to implement an approximation of the wavelet transform. (Notably, if one imitates the method 
ed in [77], there is no need to ever form a dense matrix after the initial thresholding.) In our second method, we use 𝑊 (𝑁) to 
nstruct a data-driven graph Laplacian 𝐿𝑁,𝜖 . We then define a discrete approximation of the heat semigroup using the eigenvectors 
d eigenvalues of 𝐿𝑁,𝜖 .
In either case, once we have our approximations of 𝐻𝑡, it is then straightforward to implement the wavelet transform and 
erefore the scattering transform. The advantage of the second, eigenvector-based method is that we will be able to use results 
m [27,15] to prove a quantitative rate of convergence for the scattering transform. The first method, on the other hand, is more 
mputationally efficient for large 𝑁 (if one uses a thresholding operator to promote sparsity as discussed above) since it does not 
quire one to compute an eigendecomposition. We are not able to prove a convergence rate for the scattering transform computed 
ing this method, but we note that the approximation 𝐻1 ≈𝐻1

𝑁,𝜖
= (𝐷(𝑁))−1𝑊 (𝑁) was shown to converge pointwise [20], albeit 

ithout a rate.
In order to avoid confusion, we will typically denote objects corresponding to 𝑁 with a subscript or superscript 𝑁 and objects 
rresponding to  without such subscript or subscript. For example, we will let 𝑊𝑗 denote a wavelet on  at scale 2𝑗 and 𝑊𝑗,𝑁

note the corresponding wavelet on 𝑁 . Throughout the section, we will choose  = −∇ ⋅∇ to be the Laplace-Beltrami operator on 
, where ∇ is the intrinsic gradient. We will also choose 𝑔(𝜆) = 𝑒−𝜆, in which case {𝐻𝑡}𝑡≥0 is the heat semigroup (see Equation (9)). 
e will let ℎ𝑡(𝑥, 𝑦) denote the heat kernel so that 𝐻𝑡𝑓 (𝑥) = ∫ ℎ𝑡(𝑥, 𝑦)𝑓 (𝑦)𝑑𝜇(𝑦), where 𝑑𝜇 is the Riemannian measure, normalized 
 that

𝜇() = 1. (35)

is well known that

∫

ℎ𝑡(𝑥, 𝑦)𝑑𝜇(𝑦) = 1 (36)

r all 𝑥 ∈  and all 𝑡 > 0, and

ℎ𝑡(𝑥, 𝑦) =
∞∑
𝑘=0

𝑒−𝑡𝜇𝑘𝜑𝑘(𝑥)𝜑𝑘(𝑦), (37)

here in (37), and throughout this section, we will use 𝜇𝑘 to denote eigenvalues of the Laplace-Beltrami operator  = −∇ ⋅∇ and 
ill reserve 𝜆𝑘 (sometimes with additional superscripts) for eigenvalues of the data-driven graph Laplacian which we will define 
low.
We now construct a weighted graph. We let 𝐾(⋅, ⋅) be an affinity kernel such as

′ ′ −𝑑∕2

( ‖𝑥− 𝑥′‖22)

15

𝐾(𝑥,𝑥 )∶=𝐾𝜖(𝑥,𝑥 )∶=𝜖 exp −
𝜖

, 𝜖 > 0 (38)
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here in the above equation ‖𝑥 − 𝑥′‖2 refers to the Euclidean distance between two points in ℝ𝐷 and 𝜖 is a bandwidth parameter.2
ven this kernel, we define an affinity matrix 𝑊 (𝑁) and a diagonal degree matrix 𝐷(𝑁) by

𝑊
(𝑁)
𝑖,𝑗 ∶=𝐾(𝑥𝑖, 𝑥𝑗 ) and 𝐷

(𝑁)
𝑖,𝑖 ∶=

𝑁−1∑
𝑗=0

𝑊
(𝑁)
𝑖,𝑗 .

ven 𝑊 (𝑁) and 𝐷(𝑁), one may then approximate 𝐻1 by

𝐻1
𝑁,𝜖∶=(𝐷

(𝑁))−1𝑊 (𝑁). (39)

hile the primary motivation of this method is to avoid computing eigenvectors and eigenvalues, we do note that (39) may also 
 equivalently obtained from (8) by choosing  to be the Markov normalized Graph Laplacian 𝐼 (𝑁) − (𝐷(𝑁))−1𝑊 (𝑁) on 𝑁 and 
oosing 𝑔(𝜆) = 1 − 𝜆.
Our second method constructs approximations of 𝐻𝑡 based on (37). In our implementation, we may only use finitely many 

genvalues. This motivates us to define the truncated heat semigroup by

𝐻𝜅
𝑡 𝑓 (𝑥)∶=∫


ℎ𝜅𝑡 (𝑥, 𝑦)𝑓 (𝑦)𝑑𝜇(𝑦), where ℎ

𝜅
𝑡 (𝑥, 𝑦) ∶=

𝜅∑
𝑘=0

𝑒−𝑡𝜇𝑘𝜑𝑘(𝑥)𝜑𝑘(𝑦),

here 𝜅 is chosen by the user. Our goal is to construct a good discrete approximation of . This will require controlling the two 
urces of error: (i) that we only use the first 𝜅 +1 eigenvalues and (ii) that we do not know the eigenvalues or eigenfunctions of the 
place-Beltrami operator  and must instead use the eigenvalues and the eigenvectors of the data-driven Laplacian defined below. 
e following lemma addresses (i) by bounding the error induced by only using finitely many eigenvalues. For a proof please see 
pendix I.

mma 4. For 𝜅 ≥ 0 and 𝑓 ∈ 𝐋2(), we have

‖𝐻𝜅
𝑡 𝑓 −𝐻𝑡𝑓‖𝐋2() ≤ 𝑒−𝑡𝜇𝜅+1‖𝑓‖𝐋2() (40)

d also

‖𝐻𝜅
𝑡 𝑓 −𝐻𝑡𝑓‖∞ ≤ 𝐶‖𝑓‖∞, (41)

ere 𝐶 is a constant which depends on the geometry of  but does not depend on 𝜅, 𝑡, or 𝑓 .

Next, we construct an unnormalized data-driven graph Laplacian by

𝐿𝑁,𝜖∶=
1
𝜖𝑁

(𝐷(𝑁) −𝑊 (𝑁)).

e will interpret 𝑊 (𝑁) and 𝐿𝑁,𝜖 as the adjacency matrix and Laplacian matrix of a data-driven graph 𝑁 . We will denote the 
genvectors and eigenvalues of 𝐿𝑁,𝜖 by 𝜆

𝑁,𝜖
𝑘

and 𝐮𝑁,𝜖
𝑘

so that

𝐿𝑁,𝜖𝐮
𝑁,𝜖
𝑘

= 𝜆𝑁,𝜖
𝑘

𝐮𝑁,𝜖
𝑘
. (42)

hen convenient, we make the dependence on 𝑁 and 𝜖 implicit and simply write 𝐮𝑘 and 𝜆𝑘 in place of 𝐮
𝑁,𝜖
𝑘

and 𝜆𝑁,𝜖
𝑘

. We define 
e discrete truncated heat-kernel matrix by

𝐻𝑁,𝜖,𝜅,𝑡∶=
𝜅∑
𝑘=0

𝑒−𝑡𝜆
𝑁,𝜖
𝑘 𝐮𝑁,𝜖

𝑘
(𝐮𝑁,𝜖
𝑘

)𝑇 . (43)

To accomplish goal (ii), we will need discrete approximations of our eigenfunctions 𝜑𝑘 of the Laplace-Beltrami operator, which 
otivates us to introduce the normalized evaluation operator 𝜌 ∶ () →ℝ𝑁 given by

𝜌𝑓∶= 1√
𝑁

(𝑓 (𝑥0),… , 𝑓 (𝑥𝑁−1)).

e then define

𝐯𝑘 ∶= 𝜌𝜑𝑘.

e note these definitions differ slightly from [15]. There, the authors do not include the normalization term 1√
𝑁
in the definition 

 the evaluation operator 𝜌 but instead include it in the definition of the vector 𝐯𝑘. Importantly, we note that in either case the 

Notably, our construction is sensitive to the choice of this bandwidth parameter. For more on this issue, we refer the reader to [53] which discusses some remedies 
16

this sensitivity.
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finition of 𝐯𝑘 is ultimately the same, i.e., (𝐯𝑘)𝑖 =
1√
𝑁
𝜑𝑘(𝑥𝑖) (although [15] uses the letter 𝜙 instead of 𝐯)). Our convention is 

osen so that 𝔼‖𝜌𝑓‖22 = ‖𝑓‖2𝐋2()
. Additionally, we may also use Hoeffding’s inequality to derive the following lemma which shows 

at ‖𝜌𝑓‖22 ≈ ‖𝑓‖2𝐋2()
with high probability as 𝑁 →∞. For a proof please see Appendix J.

mma 5. Assume that the points {𝑥𝑖}𝑁−1
𝑖=0 are drawn i.i.d. uniformly at random, and let 𝑓, 𝑔 ∈ (). Then, with probability at least 1 − 2

𝑁9 , 
 have

|⟨𝜌𝑓 , 𝜌𝑔⟩2 − ⟨𝑓, 𝑔⟩𝐋2()| ≤√18 log𝑁
𝑁

‖𝑓𝑔‖∞.
Our goal is to show that for a large fixed 𝜅, in the limit as 𝑁 →∞ and 𝜖→ 0, we have 𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 ≈ 𝜌𝐻𝑡𝑓 in the sense that 𝜅 is 

rge enough so that ‖𝜌𝐻𝑡𝑓 − 𝜌𝐻𝜅
𝑡 𝑓‖2 is negligible, which follows for large 𝜅 from Lemmas 4 and 5, and

‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝑡𝑓‖2 → 0 as 𝑁 →∞.

 order to do this, we need the following result that shows that 𝜆𝑁,𝜖
𝑘

and 𝐮𝑁,𝜖
𝑘

are good approximations of 𝜇𝑘 and 𝐯𝑘. It is a special 
se of Theorem 5.4 from [15], which follows by setting 𝜖 ∼𝑁−2∕(𝑑+6).

eorem 9 (Theorem 5.4 of [15]). Assume that the points {𝑥𝑖}𝑁−1
𝑖=0 are drawn i.i.d. uniformly at random and that the first 𝜅+2 eigenvalues 

 , 𝜇0, … , 𝜇𝜅+1, all have single multiplicity. As in (42), let 𝐮
𝑁,𝜖
𝑘

and 𝜆𝑁,𝜖
𝑘

be the eigenvectors and eigenvalues of the data-driven Laplacian 
nstructed via the Gaussian affinity kernel 𝐾𝜖 defined as in (38), and let 𝜅 > 0 be fixed. Assume that 𝜖→ 0 and 𝑁 →∞ at a rate where 
𝑁−2∕(𝑑+6). Then, with probability at least 1 − 

(
1
𝑁9

)
, there exist scalars 𝛼𝑘 with

|𝛼𝑘| = 1 + 𝑜(1)

ch that for all 0 ≤ 𝑘 ≤ 𝜅
|𝜇𝑘 − 𝜆𝑁,𝜖𝑘

| =
(
𝑁

− 2
𝑑+6

)
, ‖𝐮𝑁,𝜖

𝑘
− 𝛼𝑘𝐯𝑘‖2 =

(
𝑁

− 2
𝑑+6

√
log𝑁

)
,

ere the constants implied by the big- notation depend on 𝜅 and the geometry of  .
mark 8. Inspecting the proofs of Theorem 5.4 of [15] and the related results in that paper shows that when 𝜖 ∼𝑁−2∕(𝑑+6), we 
ve

max
{||𝛼𝑘|− 1|, |||| 1|𝛼𝑘| − 1

||||
}

≤
(√

log𝑁
𝑁

)
+

(
log(𝑁)
𝑁4∕(𝑑+6)

)
.

ease see Appendix K for details.

Given Theorem 9, we may use Lemma 5 to derive the following result which shows that 𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 converges to 𝜌𝐻𝜅
𝑡 𝑓 as 

→∞. Moreover, the rate of the convergence for 𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 , is the same (up to logarithmic factors) as the convergence rate for the 
genvectors and eigenvalues provided in Theorem 9.

eorem 10. Let 𝑓 ∈ (). Then, under the assumptions of Theorem 9 we have

‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝜅
𝑡 𝑓‖22 ≤max{𝑡2,1}

(
log𝑁

𝑁
4
𝑑+6

)(‖𝑓‖2𝐋2() +
√

log𝑁
𝑁

‖𝑓‖2∞
)

th probability at least 1 − 
(

1
𝑁9

)
if 𝑑 ≥ 2. In the case where 𝑑 = 1, if the assumptions of Theorem 9 hold, then we have

‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝜅
𝑡 𝑓‖22

≤max{𝑡2,1}
(

(
log𝑁
𝑁4∕7

)‖𝑓‖2𝐋2() +
(
log𝑁
𝑁

)‖𝑓‖2∞) .
 both cases, the implied constants depend both on 𝜅 and on the geometry of  .
If we combine Theorem 10 with Lemma 4, we may then obtain the following corollary.

rollary 1. Let 𝑓 ∈ (). Then, under the assumptions of Theorem 9, we have
17

‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝑡𝑓‖22 (44)
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≤max{𝑡2,1}
[(


(
log𝑁

𝑁
4
𝑑+6

)
+ 2𝑒−2𝑡𝜇𝜅+1

)‖𝑓‖2𝐋2() +
(√

log𝑁
𝑁

)‖𝑓‖2∞] (45)

th probability at least 1 − 
(

1
𝑁9

)
, where the constants implied by the  notation depend both on 𝜅 and the geometry of  .

r proofs of Theorem 10 and Corollary 1, please see Appendix L.
In our eigenvector based method, where we approximate the heat semigroup via (43), we next define a data-driven wavelet 
nsform

𝐽 ,𝑁𝐱 ∶= {𝑊𝑗,𝑁𝐱,𝐴𝐽,𝑁𝐱}𝐽
𝑗=0,

here 𝑊0,𝑁𝐱 = (𝐼𝑁 −𝐻𝑁,𝜖,𝜅,1)𝐱, 𝐴𝐽,𝑁𝐱 =𝐻𝑁,𝜖,𝜅,2𝐽 𝐱 and for 1 ≤ 𝑗 ≤ 𝐽 ,
𝑊𝑗,𝑁𝐱 =𝐻𝑁,𝜖,𝜅,2𝑗−1𝐱 −𝐻𝑁,𝜖,𝜅,2𝑗 𝐱.

e note that these wavelets implicitly depend on both 𝜅 and 𝜖 in addition to 𝑁 , but we suppress these dependencies in order to 
oid cumbersome notation. Analogously to Section 2.2, for a path 𝑝 = (𝑗1, … , 𝑗𝑚) we define

𝑈𝑁 [𝑝]𝐱∶=𝜎𝑊𝑗𝑚,𝑁
…𝜎𝑊𝑗1 ,𝑁

𝐱

d define data-driven scattering coefficients by

𝑆𝐽,𝑁 [𝑝]𝐱∶=𝐴𝐽,𝑁𝑈𝑁 [𝑝]𝐱 and 𝑆𝑁 [𝑝]𝐱∶=|⟨𝑈𝑁 [𝑝]𝐱,𝐮0⟩2|.
 the case where we approximate the heat semigroup via (39) rather than (43), we define 𝑊𝑗,𝑁 , 𝑈𝑁 [𝑝], and 𝑆𝐽,𝑁 similarly, but with 
2𝑗
𝑁,𝜖

in place of 𝐻𝑁,𝜖,𝜅,2𝑗 and we define the non-windowed scattering transform by 𝑆𝑁 [𝑝]𝐱 = ‖𝑈𝑁 [𝑝]𝐱‖1 in order to avoid needing 
 compute any eigenvalues.
The following theorem uses Corollary 1 to bound the discretization error of the wavelets.

eorem 11. Let 𝑓 ∈ () and assume that the heat semigroup is approximated as in (43). Then, under the assumptions of Theorem 9, we 
ve that

‖𝑊𝑗,𝑁𝜌𝑓 − 𝜌𝑊𝑗𝑓‖22
≤22𝑗

[(

(
log𝑁

𝑁
4
𝑑+6

)
+(𝑒−2𝑗𝜇𝜅+1))‖𝑓‖2𝐋2() +

(√
log𝑁
𝑁

)‖𝑓‖2∞],
th probability at least 1 − 

(
1
𝑁9

)
, where the constants implied by the big- notation depend both on 𝜅 and on the geometry of  .

oof. For 𝑗 ≥ 1,

‖𝑊𝑗,𝑁𝜌𝑓 − 𝜌𝑊𝑗𝑓‖22 ≤ ‖(𝐻𝑁,𝜖,𝜅,2𝑗−1𝜌𝑓 −𝐻𝑁,𝜖,𝜅,2𝑗 𝜌𝑓 ) − (𝜌𝐻2𝑗−1𝑓 − 𝜌𝐻2𝑗 𝑓 )‖22
≤ 2‖𝐻𝑁,𝜖,𝜅,2𝑗−1𝜌𝑓 − 𝜌𝐻2𝑗−1𝑓‖22 + 2‖𝐻𝑁,𝜖,𝜅,2𝑗 𝜌𝑓 − 𝜌𝐻2𝑗 𝑓‖22.

erefore, the result follows from Corollary 1. For the case where 𝑗 = 0, we note that 𝐼𝑁𝜌𝑓 = 𝜌Id𝑓 . Therefore,

𝑊𝑗,𝑁𝜌𝑓 − 𝜌𝑊𝑗𝑓 =𝐻𝑁,𝜖,𝐾,1𝜌𝑓 − 𝜌𝐻1𝑓

d we may again conclude by applying Corollary 1. □

Iteratively applying Theorem 11, one may obtain the following bound for the discretization error of 𝑈𝑁 [𝑝]𝜌𝑓 . For a proof, please 
e Appendix M.

eorem 12. Let 𝑓 ∈ () and assume that the heat semigroup is approximated as in (43). Let 𝑝 = (𝑗1, … , 𝑗𝑚) be a path of length 𝑚 for 
me 𝑚 ≥ 1, and let 𝑗max = max1≤𝑖≤𝑚 𝑗𝑖. Then, under the assumptions of Theorem 9, we have that

‖𝑈𝑁 [𝑝]𝜌𝑓 − 𝜌𝑈 [𝑝]𝑓‖22
≤22𝑗max

[(

(
log𝑁

𝑁
4
𝑑+6

)
+ (𝑒−𝜇𝜅+1 )

)‖𝑓‖2𝐋2() +
(√

log𝑁
𝑁

)‖𝑓‖2∞],
18

ere the constants implied by the  notation depend on 𝑚, 𝜅, and the geometry of  .
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Inspecting the proof of Theorem 12, one may observe that the constants implied by the big- notation increase exponentially 
ith respect to 𝑚. However, in practice, one typically only uses two or three scattering layers, so we do not view this as a major 
itation. We also note that a similar exponential dependence on the number of layers was observed for the generalization bounds 
r message passing networks arising from the discretization of graphons in [58]. Additionally, we note that, by inspecting the proof, 
is clear that the implied constants in the term  (𝑒−𝜇𝜅+1 ) do not depend on 𝜅. A similar remark holds for the analogous terms in 
r subsequent results.
The next two results establish convergence of the windowed and non-windowed scattering coefficients as 𝑁 →∞. For proofs, 
ease see Appendix N.

eorem 13. Let 𝑓 ∈ () and assume that the heat semigroup is approximated as in (43). Let 𝑝 = (𝑗1, … , 𝑗𝑚) be a path of length 𝑚 for 
me 𝑚 ≥ 1. Then, under the assumptions of Theorem 9, we have

‖𝑆𝐽,𝑁 [𝑝]𝜌𝑓 − 𝜌𝑆𝐽 [𝑝]𝑓‖22
≤22𝐽

[(

(
log𝑁

𝑁
4
𝑑+6

)
+ (𝑒−𝜇𝜅+1 )

)‖𝑓‖2𝐋2() +
(√

log𝑁
𝑁

)‖𝑓‖2∞],
th probability at least 1 − 

(
1
𝑁9

)
, where the constants implied by the big- notation depend on 𝑚, 𝜅, and the geometry of  .

The following is the analog of Theorem 13 for the non-windowed scattering transform.

eorem 14. Let 𝑓 ∈ () and assume that the heat semigroup is approximated as in (43). Let 𝑝 = (𝑗1, … , 𝑗𝑚) be a path of length 𝑚 for 
me 𝑚 ≥ 1. Then, under the assumptions of Theorem 9, we have

|𝑆𝑁 [𝑝]𝜌𝑓 − 𝑆[𝑝]𝑓 |
≤2𝐽

[(

(√

log𝑁

𝑁
2
𝑑+6

)
+(𝑒−𝜇𝜅+1∕2))‖𝑓‖𝐋2() +

((
log𝑁
𝑁

)1∕4
)‖𝑓‖∞]

th probability at least 1 − 
(

1
𝑁9

)
, where the constants implied by the big- notation depend on 𝑚, 𝜅, and the geometry of  .

The convergence guarantees presented in this section may be summarized as follows. Theorem 9 is a result from [15] which 
ovides convergence rates for the eigenvectors and eigenvalues of 𝐿𝑁,𝜖 . We then use this result to obtain convergence rates for our 
scretization of the heat semigroup, the wavelet transform, and the scattering transform. In all of these results, both the assumptions 
 the manifold and the convergence rate with respect to 𝑁 are the same as in Theorem 9. Moreover, inspecting the proofs, one will 
serve that any future work which builds upon Theorem 9 by, e.g., relaxing the assumption that the 𝜆𝑘 have single multiplicity, 
ill readily lead to improved versions of our convergence results for the scattering transform. We also note that, given a point cloud, 
ere are many possible ways to construct a graph Laplacian which approximates the Laplace-Beltrami operator. For example, [12]
oves a result analogous to Theorem 9 for nearest neighbor graphs and 𝜖 graphs. One could readily modify our method to define 
proximations of the manifold scattering transform using these graphs, and it is likely that one could imitate the methods presented 
re in order to obtain convergence results as 𝑁 →∞. Additionally, we note that under certain assumptions on the generation of 
ta points {𝑥𝑖}𝑁−1

𝑖=0 , for example, when the sampling is not uniform, the users could add additional terms which account for the 
nsity of the data (see, e.g., the 𝛼-normalization approach [20,27,54]) when constructing 𝑊 (𝑁) or to implement methods based on 
her data-driven Laplacians such as the longest-leg path distance Laplacian considered in [55].

 Numerical results

The numerical effectiveness of the graph scattering transform for tasks such as node classification, graph classification, and even 
aph synthesis has been demonstrated in numerous works such as [35,34,89,83,88] and [3]. However, the numerical effectiveness 
 the manifold scattering transform is much less well established. Indeed, the initial work [63] only provided numerical experiments 
 two-dimensional surfaces with predefined meshes. Here, in Sections 7.1 and 7.2, we will show that the methods proposed in 
ction 6 are effective for both synthetic and real-world data. As in Section 6, we assume that we may only access the manifold 
ough a finite collection of random samples {𝑥𝑖}𝑁−1

𝑖=0 in both Sections 7.1 and 7.2. Additionally, in Section 7.3, we will show that 
r proposed method is effective for node classifications on directed graphs.
First, in Section 7.1 we will show that the manifold scattering transform is effective for learning on two-dimensional surfaces, 
en without a mesh. In particular, we will consider the same toy data sets that were analyzed with a mesh-based approach in [63]. 
ese experiments aim to provide validation for our methods and show that the manifold scattering transform can still produce good 
sults in the more challenging setting where one does not have access to the entire manifold. Having established proof of concept 
 toy data sets, in Section 7.2 we apply the manifold scattering transform to high-dimensional biomedical data where one models 
e data as lying upon some unknown manifold. In both of these settings, we will follow the lead of [35] and [3] and augment the 
19

pressive power of the scattering transform by considering higher 𝑞-th order scattering moments for 1 ≤ 𝑞 ≤𝑄 defined by
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Fig. 1. The MNIST dataset projected onto the sphere.

Table 1

Classification accuracies for spherical MNIST averaged over 
10 realizations.
DATA TYPE 𝑁 𝜅 𝑄 ACCURACY (%)

POINT CLOUD 1200 200 4 79 ± 0.9
POINT CLOUD 1200 400 4 88 ± 0.2
POINT CLOUD 1200 642 4 84 ± 0.7
MESH 642 642 1 91 ± 0.2

𝑆[𝑝, 𝑞]𝜌𝑓 = 1
𝑁
‖𝑈𝑁 [𝑝]𝜌𝑓‖𝑞𝑞 .

ing these higher-order moments instead of the standard non-windowed scattering transform increases the expressive power of 
r representation and helps compensate for the lack of global knowledge of the manifold. Notably, these scattering moments are 
variant to the ordering of the data points, since by Theorem 3 each 𝑈𝑁 [𝑝] is equivariant to permutations (i.e., reorderings) and 
ch 𝑆[𝑝, 𝑞] is defined via a global summation. Additionally, we note that if the kernel 𝐾(𝑥𝑖, 𝑥𝑗 ) is a function of the Euclidean 
stance between 𝑥𝑖 and 𝑥𝑗 then the 𝑆𝑁 [𝑝, 𝑞] will be invariant to rigid motions in the embedded space. Throughout this section, we 
all report all accuracies as mean ± standard deviation.

1. Two-dimensional surfaces without a mesh

When implementing convolutional networks on two-dimensional surfaces, it is standard, e.g., [5,6] to use triangular meshes. In 
is section, we show that mesh-free methods can also work well in this setting. Importantly, note that we are not claiming that 
esh-free methods are better for two-dimensional surfaces. Instead, we aim to show that these methods can work relatively well 
ereby justifying their use in higher-dimensional settings.
We conduct experiments using both mesh-based and mesh-free methods on a spherical version of MNIST and on the FAUST dataset 

hich were previously considered in [63]. In both methods, we use the wavelets defined in Section 2.1 with two scattering layers 
d 𝐽 = 8 and use a radial basis function (RBF) kernel support vector machine (SVM) see, for example, [22,14] with cross-validated 
perparameters as our classifier. For the mesh-based methods, we use the same discretization scheme as in [63] and set 𝑄 = 1
hich was the setting implicitly assumed there. For our mesh-free experiments, we use the eigenvector-based method discussed in 
ction 6 and set 𝑄 = 4. We show that the information captured by the higher-order moments can help compensate for the structure 
st by not using a mesh. For all of our experiments on spherical MNIST and FAUST, we used an 80/20 train-test split with 10-fold 
oss-validation.
We first study the MNIST dataset projected onto the sphere as visualized in Fig. 1. We uniformly sampled 𝑁 points from the 
it two-dimensional sphere, and then applied random rotations to the MNIST dataset and projected each digit onto the spherical 
int cloud to generate a collection of signals {𝑓𝑖} on the sphere. Table 1 shows that for properly chosen 𝜅, the mesh-free method 
n achieve similar performance to the mesh-based method. As noted in Section 6, the implied constants in our theoretical results 
pend on 𝜅. By inspecting the proof of Theorem 5.4 of [15] we see that for larger values of 𝜅, more sample points are needed to 
sure the convergence of the first 𝜅 eigenvectors in Theorem 9. Thus, we want 𝜅 to be large enough to get a good approximation of 
1, but also not too large.
Next, we consider the FAUST dataset, a collection of surfaces corresponding to scans of ten people in ten different poses [4] as 
own in Fig. 2. As in [63], we use 352 SHOT descriptors [76] as our signals. We use the first 𝜅 = 80 eigenvectors and eigenvalues of 
e approximate Laplace-Beltrami operator of each point cloud to generate scattering moments. We achieved 94 ±3.7% classification 
curacy over 10 realizations for the task of classifying different poses. This is comparable with the 95% accuracy obtained with 
eshes in [63].

2. Single-cell datasets

In this section, we present two experiments showing the utility of manifold scattering in analyzing single-cell data. We will 
rmulate these experiments as manifold classification tasks, where each patient will correspond to a different manifold and the goal 
20

to predict patient outcomes. In particular, each patient will correspond to a collection of cells, and each cell will correspond to a 
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. 2. Wavelets on the FAUST dataset with 𝑔(𝜆) = 𝑒−0.0005𝜆 , 𝑗 = 1, 3, 5 from left to right. Positive values are red, while negative values are blue. (For interpretation of 
 colors in the figure(s), the reader is referred to the web version of this article.)

int in high-dimensional space.3 Therefore, each patient will be described by a high-dimensional point cloud which we model as 
ing upon a low-dimensional manifold. In order to classify the patients, we compute the scattering transform on each manifold with 
nals corresponding to protein expression and then feed this representation into a classifier. For both of the experiments described 

 this section, we used a 75/25 train-test split. Notably, in both of the data sets we consider, the number of patients in fairly small. 
erefore, the fact that the scattering transform uses predesigned filters is particularly advantageous in this setting.
On these datasets, we deviate slightly from our theory and demonstrate that our method can be effectively utilized with different 
aph constructions. In our first data set, which focuses on data derived from melanoma patients, we use a 𝑘-NN graph with 𝑘 = 5. 
 our second data set, which is derived from COVID-19 patients, we use a Gaussian kernel with an adaptive bandwidth which is 
signed to account for non-uniform density of the data points. Specifically, we set

𝐾k-nn(𝑥,𝑥′) =
1
2

(
exp

(
−
‖𝑥− 𝑥′‖22
𝜎𝑘(𝑥)2

)
+ exp

(
−
‖𝑥− 𝑥′‖22
𝜎𝑘(𝑥′)2

))
, (46)

here 𝜎𝑘(𝑥) is the distance from 𝑥 to its 𝑘-th nearest neighbor (𝑘 = 3). We then approximate 𝐻1 via (39). For the COVID data, we 
ed three scattering layers with 𝐽 = 8 and 𝑄 = 4, imitating the settings used in [35]. We then apply principal component analysis 
CA) to the scattering features and train a decision tree classifier on the top 10 principal components. For the melanoma patients, 
e used 2 scattering layers with 𝐽 = 4 and 𝑄 = 4, followed by a multilayer perceptron with a single hidden layer. Additionally, with 
e melanoma data, in order increased the effective size of our training data, we subsample point clouds of 400 points each and 
peat this procedure 10 times for each point cloud (so the data set consists of 540 graphs rather than 54). Importantly, we note that 
e do this subsampling after splitting the data into train and test in order to ensure that no patient is in both the train and test set. 
 a baseline comparison, we compare our scattering-based method against a method which first preprocesses the data by using a 
means clustering based approach to extract features and then applies a decision tree classifier. For details on this baseline, please 
e Appendix O.
We first consider data collected in [65] on patients with various stages of melanoma. All patients received checkpoint blockade 
munotherapy, a treatment that licenses patient T cells to kill tumor cells. (For details on this therapy, see [43].) In this dataset, 
,862 T lymphocytes from core tissue sections were taken from each of 54 patients diagnosed with melanoma, and 30 proteins 
ere measured per cell. Therefore, we model our data as consisting of 54 manifolds embedded in 30-dimensional space (with one 
mension corresponding to each of the proteins) with 11,862 points per manifold. We achieved 71% accuracy when using scattering 
oments based on protein expression feature signals4 with a decision tree classifier compared to 46% accuracy using our baseline 
ethod.
We next consider data previously studied in [48] comprised of 209 blood samples from 148 people.5 Of the 209 samples, 61 

ere taken from healthy controls, 123 were taken from patients who were COVID+ but recovered, and 25 were taken from patients 
ho were COVID+ and died. Here, our goal is to predict whether the person corresponding to each blood sample died of COVID, 
covered from COVID, or was a control. This task is particularly challenging because COVID outcome depends on a wide variety of 
own and unknown immunoregulatory pathways, unlike response to checkpoint blockade immunotherapy which targets a specific 
own immunoregulatory axis (T-cell inhibition). We focus on innate immune (myeloid) cells, a population that has previously been 
own to be predictive of patient mortality [48]. Fourteen proteins were measured on 1, 502, 334 total cells, approximately 10, 000
lls per patient. To accommodate the size of these data sets lying in ℝ14, we first aggregate data points for each patient into less 
an 500 clusters via the diffusion condensation algorithm [48]. We treat the centroids (with respect to Euclidean distance) of each 
uster as single data points in the high-dimensional immune state space when implementing the manifold scattering transform. As 

In order to turn the cells into points, we take single-cell protein measurements and apply a logarithmic transformation followed by 𝓁1 normalization.
Proteins were selected on the basis of having a known functional role in T cell regulation and included CD4, CD8, CD45RO, CD56, FOXP3, Granzyme B, Ki-67, 
G3, PD-1, and TIM-3.
21

In [48] the data was taken from 168 patients. However, here we focus on the 148 patients for whom sufficient monocyte data was available.
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Table 2

Classification accuracies for patient outcome prediction.
DATA SET 𝑁PATIENTS BASELINE SCATTERING

MELANOMA 54 46.0 ± 7.1% 71.0 ± 9.0%
COVID 148 40.1 ± 2.2% 47.7 ± 0.5%

ith our melanoma experiments, we used signals related to protein expression, averaged across cells in each cluster. For the baseline 
ethod, 𝑘-means clustering, we set 𝑘 = 3 based on expected monocyte subtypes (classical, non-classical, intermediate). We achieved 
% accuracy with scattering and a decision tree classifier compared to 40% via the baseline method. See Table 2 for a summary of 
e results for both of the data sets discussed in this subsection.

3. Directed graphs

Next, we apply our framework to weighted and directed graphs 𝐺 = (𝑉 , 𝐸, 𝑊 ) with vertices 𝑉 , edges 𝐸, and edge weights 𝑊 . 
e turn 𝐺 into a measure space  = (𝑋,  , 𝜇) by setting 𝑋 = 𝑉 , letting  be the set of all subsets of 𝑉 , and letting 𝜇 be the uniform 
easure such that 𝜇({𝑣}) = 1 for all 𝑣 ∈ 𝑉 . In our experiments in this section, we will take  to be the normalized magnetic Laplacian 
scribed in detail below.
We let 𝐴 denote the asymmetric, weighted adjacency matrix of 𝐺, and let 𝐴(𝑠) = 1

2 (𝐴 +𝐴𝑇 ) be its symmetric counterpart. Next, we 
fine the symmetric, diagonal degree matrix 𝐷(𝑠) by 𝐷(𝑠)

𝑖,𝑖 =
∑𝑁−1
𝑗=0 𝐴

(𝑠)
𝑖,𝑗 , where 𝑁 = |𝑉 |, and 𝐷(𝑠)

𝑖,𝑗 = 0 if 𝑖 ≠ 𝑗. We then let Θ =𝐴 −𝐴𝑇
d define the Hermitian adjacency matrix by

𝐻 (𝑞) =𝐴(𝑠) ⊙ exp(2𝜋i𝑞Θ),

here i =
√
−1, ⊙ denotes Hadamard product (componentwise multiplication), 𝑞 is a “charge” parameter,6 and exponentiation is 

fined componentwisely, i.e.,

exp(2𝜋i𝑞Θ)𝑖,𝑗 = exp(2𝜋i𝑞Θ𝑖,𝑗 ).

tably, 𝐻 (𝑞) encodes the undirected geometry of the graph in the magnitude of its entries and directional information via its phases. 
e charge parameter 𝑞 allows one to balance the relationship between directed and undirected information as desired.
Given 𝐻 (𝑞), we define the unnormalized and normalized magnetic Laplacians by

𝐿
(𝑞)
𝑈

=𝐷(𝑠) −𝐻 (𝑞)

d

𝐿
(𝑞)
𝑁

= (𝐷(𝑠))−1∕2𝐿(𝑞)
𝑈
(𝐷(𝑠))−1∕2

= 𝐼 − (𝐷(𝑠))−1∕2𝐻 (𝑞)(𝐷(𝑠))−1∕2.

 construction, both 𝐿(𝑞)
𝑈
and 𝐿(𝑞)

𝑁
are Hermitian and one may check (see, e.g., Theorem 1 of [87]) that they are positive semidefinite. 

erefore, both of these matrices fit within our framework as admissible choices of  and can be used to define scattering transforms 
 directed graphs.
In our experiments, we will choose  =𝐿(𝑞)

𝑁
and consider the task of node classification on the following directed stochastic block 

odel considered in [87]. We first divide the 𝑁 vertices into 𝑛𝑐 equally-sized clusters 𝐶1, … , 𝐶𝑛𝑐 for some 𝑛𝑐 which divides 𝑁 . We 
t {𝛼𝑖,𝑗}1≤𝑖,𝑗≤𝑛𝑐 to be a collection of probabilities, with 𝛼𝑖,𝑗 = 𝛼𝑗,𝑖 and 0 < 𝛼𝑖,𝑗 ≤ 1. For an unordered pair of vertices, 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ≠ 𝑣
e create an undirected edge between 𝑢 and 𝑣 with probability 𝛼𝑖,𝑗 if 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶𝑗 . We then define {𝛽𝑖,𝑗}1≤𝑖,𝑗≤𝑛𝑐 to be a collection 
 probabilities such that 𝛽𝑖,𝑗 + 𝛽𝑗,𝑖 = 1 and 0 ≤ 𝛽𝑖,𝑗 ≤ 1. We then replace each undirected edge {𝑢, 𝑣}, with a directed edge which 
ints from 𝑢 to 𝑣 with probability 𝛽𝑖,𝑗 if 𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶𝑗 , and otherwise points from 𝑣 to 𝑢. Notably, if 𝛼𝑖,𝑗 is constant, then the 
ly way to determine the clusters will be from the directional information.
For our experiments, we set 𝑛𝑐 = 5 and consider three meta-graphs: ordered, cyclic, and noisy cyclic. For all meta-graphs, we set 

,𝑖 = 0.5. For the ordered meta-graph (Fig. 3a), we set 𝛼𝑖,𝑗 = 0.1 for all 𝑖, 𝑗 and set 𝛽𝑖,𝑗 = 0.95 for 𝑖 < 𝑗. For the cyclic meta-graph 
ig. 3b, but without the dashed gray edges), we set

𝛼𝑖,𝑗 =
⎧⎪⎨⎪⎩
0.1 𝑖 = 𝑗
0.1 𝑖 = (𝑗 ± 1) mod 5
0 otherwise

and 𝛽𝑖,𝑗 =
⎧⎪⎨⎪⎩
0.5 𝑖 = 𝑗
0.95 𝑖 = (𝑗 − 1) mod 5
0.05 𝑗 = (𝑖− 1) mod 5
0 otherwise

.

nally, for the noisy cyclic meta-graph (Fig. 3b), we set 𝛼𝑖,𝑗 = 0.1 for all 𝑖, 𝑗 and set the edge direction probabilities as

This term, as well as the name Magnetic Laplacian originates from the Magnetic Laplaican serving as the quantum mechanical Hamiltonian of a particle under 
22

gnetic flux [51].
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Fig. 3. Meta-graphs for synthetic datasets (reproduced from [87]).

Table 3

Node classification accuracy on our directed stochastic block model with differ-
ent meta-graph structures (ordered, cyclic, or noisy cyclic) and different graph 
methods.

METHOD/META-GRAPH ORDERED CYCLIC NOISY CYCLIC

MAGNET [87] 99.6 ± 0.2 100.0 ± 0.0 80.5 ± 1.0
CHEBNET [26] 19.9 ± 0.7 74.7 ± 16.5 18.3 ± 3.1
GCN [45] 68.6 ± 2.2 78.87 ± 30.0 24.2 ± 6.8
APPNP [46] 97.4 ± 1.8 19.6 ± 0.5 17.4 ± 1.8
SAGE [38] 20.2 ± 1.2 88.6 ± 8.3 26.4 ± 7.7
GIN [86] 57.9 ± 6.3 75.3 ± 21.5 24.7 ± 6.4
GAT [80] 42.0 ± 4.8 98.3 ± 2.2 27.4 ± 6.9
DGCN [79] 81.4 ± 1.1 83.7 ± 23.1 37.3 ± 6.1
DIGRAPH [78] 82.5 ± 1.4 39.1 ± 33.6 18.0 ± 1.8
DIGRAPHIB [78] 99.2 ± 0.4 84.8 ± 17.0 43.4 ± 10.1
SCATTERING 97.8 ± 1.2 99.8 ± 0.2 88.5 ± 4.0

PARAMETERS 𝐽 = 9, 𝑞 = 0.25 𝐽 = 9, 𝑞 = 0 𝐽 = 10, 𝑞 = 0.2

𝛽𝑖,𝑗 =
⎧⎪⎨⎪⎩
0.95 𝑖 = (𝑗 − 1) mod 5
0.05 𝑗 = (𝑖− 1) mod 5
0.5 otherwise

.

Motivated by the so-called residual convolution operators used in [83], for improved numerical performance, we use a modified 
rsion of the windowed scattering transform given by 𝑆res

𝐽
[𝑝] =𝐻1𝑈 [𝑝] in our experiments. We chose our input signals to be i.i.d. 

ndard Gaussian random vectors and used paths of length 𝑚 ∈ {0, 1, 2}. Following the settings used in [87], we set 𝑁 = 2500 and 
= 500 for the ordered and cyclic meta-graphs and 𝑁 = 500 and 𝑛𝑐 = 100 for the noisy meta-graph, and we used 2%, 10%, and 
% of the nodes in each cluster for training for the ordered, cyclic, and noisy cyclic meta-graphs, respectively. On all three data 
ts, we used 20% of the nodes for validation and the remaining nodes were used for testing. Details on our validation procedure 
e provided in Appendix P. After computing the scattering transform, we used an SVM with an RBF kernel for classification. In 
ble 3, we report our results for each meta-graph along with the maximum scale 𝐽 used to compute the scattering coefficients and 
rameter 𝑞 used to compute the magnetic Laplacian.7 As we can see, scattering performs well on all three versions of the stochastic 
ock model and is the top-performing method on the noisy cyclic stochastic block model.8

 Conclusion

In this work, we have extended the geometric scattering transform to a broad class of measure spaces. In particular, our con-
uction extends several previous works defining the scattering transform on undirected, unsigned graphs and smooth compact 
emannian manifolds without boundary as special cases and also includes many other examples as discussed extensively in Sec-
n 3. Our invariance and equivariance results help clarify the relationship between the invariance / equivariance of the scattering 
nsform and the group of bijections to which it is invariant or equivariant. Namely, they show that the critical property for  to 
ssess is that for every 𝜁 ∈ , the operator 𝑉𝜁 , defined by 𝑉𝜁𝑓 (𝑥) = 𝑓 (𝜁−1(𝑥)), is an isometry on 𝐋2(). Additionally, we provide two 
merical schemes for implementing the manifold scattering transform when one only has access to finite point clouds and provide 
antitative convergence rates for one of these schemes as the number of sample points grows to infinity. The proof of this conver-
nce result utilizes previous work showing the convergence of the eigenvectors and eigenvalues of the Laplace-Beltrami operator. 

All baseline results taken from [87].
For methods not designed for di-graphs, the reported accuracies are the maximum of those obtained by a) symmetrizing the adjacency matrix as a preprocessing 
23

p and b) running the algorithm as is.
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hile we do not know whether or not our convergence rate is optimal, we do note that both the assumptions of our convergence 
eorems and our convergence rates are the same as for the previous work on the convergence of the eigenvectors and eigenvalues. 
erefore, our convergence results should be interpreted as showing that the number of sample points needed to apply scattering to 
gh-dimensional point cloud data is the same as other manifold learning based methods.
We believe our work opens up several new exciting avenues for future research. The framework presented here provides a 
eoretical foundation for defining neural networks on manifolds from point-cloud data, a relatively unexplored topic except in the 
tting of two-dimensional surfaces. Additionally, it would be interesting to extend our methods to higher-order operators such as 
e connection Laplacian or to implement versions of our method that utilize anisotropic diffusions. Lastly, it would be interesting 
 improve on our convergence results by relaxing the assumptions on the data generation or developing quantitative convergence 
arantees that do not require the explicit computation of eigenvectors or eigenvalues.

ta availability

Data will be made available on request.

pendix A. The proof of Proposition 1

oof. To prove the upper bound, we note,

𝐽∑
𝑗=0

‖𝑊𝑗𝑓‖2 + ‖𝐴𝐽𝑓‖2
=
∑
𝑘∈

𝐽∑
𝑗=0

(|𝑊𝑗𝑓 (𝑘)|2 + |𝐴𝐽𝑓 (𝑘)|2)

=
∑
𝑘∈

(|1 − 𝑔(𝜆𝑘)|2 + 𝐽∑
𝑗=1

|||𝑔(𝜆𝑘)2𝑗−1 − 𝑔(𝜆𝑘)2𝑗 |||2 + |||𝑔(𝜆𝑘)2𝐽 |||2
)|𝑓 (𝑘)|2

≤∑
𝑘∈

(
1 − 𝑔(𝜆𝑘) +

𝐽∑
𝑗=1

(
𝑔(𝜆𝑘)2

𝑗−1 − 𝑔(𝜆𝑘)2
𝑗
)
+ 𝑔(𝜆𝑘)2

𝐽

)2 |𝑓 (𝑘)|2 (47)

=
∑
𝑘∈

|𝑓 (𝑘)|2
=‖𝑓‖2 ,

here in (47), we used the fact that 𝑔 is nonnegative and decreasing.
In order to prove the lower bound, we define 𝑝0(𝑡) ∶= (1 − 𝑡), 𝑝𝑗 (𝑡) ∶= (𝑡2𝑗−1 − 𝑡2𝑗 ) if 1 ≤ 𝑗 ≤ 𝐽 , and 𝑝𝐽+1(𝑡) ∶= 𝑡2𝐽 and observe that 
ce 𝑔 is positive and decreasing we have

𝐽∑
𝑗=0

‖𝑊𝑗𝑓‖2 + ‖𝐴𝐽𝑓‖2
=
∑
𝑘∈

(|1 − 𝑔(𝜆𝑘)|2 + 𝐽∑
𝑗=1

|||𝑔(𝜆𝑘)2𝑗−1 − 𝑔(𝜆𝑘)2𝑗 |||2 + |||𝑔(𝜆𝑘)2𝐽 |||2
)|𝑓 (𝑘)|2

=
∑
𝑘∈

(
𝑝0(𝑔(𝜆𝑘))2 +

𝐽∑
𝑗=1

𝑝𝑗 (𝑔(𝜆𝑘))2 + 𝑝𝐽+1(𝑔(𝜆𝑘))2
)|𝑓 (𝑘)|2

≥ min
0≤𝑡≤1

𝐽+1∑
𝑗=0

𝑝𝑗 (𝑡)2‖𝑓‖2 ,
here in the final inequality we use Plancherel’s identity and the fact that 0 ≤ 𝑔(𝜆𝑘) ≤ 𝑔(0) = 1.
Therefore it suffices to show that min0≤𝑡≤1

∑𝐽+1
𝑗=0 𝑝𝑗 (𝑡)

2 ≥ 𝑐 > 0. To do so, we let 0 ≤ 𝑡 ≤ 1 and consider three cases. First, if 
𝑡 ≤ 1∕2, then

𝐽+1∑
𝑗=0

𝑝𝑗 (𝑡)2 ≥ 𝑝0(𝑡)2 = (1 − 𝑡)2 ≥ (1 − 1
2

)2
= 1∕4.
24

condly, if 𝑡2𝐽 ≥ 1∕2,
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𝐽+1∑
𝑗=0

𝑝𝑗 (𝑡)2 ≥ 𝑝𝐽+1(𝑡)2 =
(
𝑡2
𝐽
)2 ≥ (1

2

)2
= 1∕4.

 the final case where 𝑡2𝐽 < 1
2 < 𝑡, there exists a unique 𝑗0, 1 ≤ 𝑗0 ≤ 𝐽 , such that 𝑡2𝑗0 < 1∕2 ≤ 𝑡2𝑗0−1 . Since 𝑡2𝑗0−1 ≥ 1∕2 and 𝑡2𝑗0−1 𝑡2𝑗0−1 =

0 it follows that 1∕4 ≤ 𝑡2𝑗0 < 1∕2 and thus 1∕2 ≤ 𝑡2𝑗0−1 < 1∕
√
2. Therefore, in this case we have

𝐽+1∑
𝑗=0

𝑝𝑗 (𝑡)2 ≥ 𝑝𝑗0 (𝑡)2 = (𝑡2
𝑗0−1 − 𝑡2

𝑗0 )2 ≥ inf
𝑥∈[ 12 ,

1√
2
]
(𝑥− 𝑥2)2 =∶ 𝑐 > 0. □

pendix B. The proof of Proposition 2

oof. Using the definition on the scattering transform as well as the fact that 𝑔(0) = 1, one may compute

||||𝑆𝐽 [𝑝]𝑓 (𝑥)|− 𝑆[𝑝]𝑓 |𝜑0(𝑥)|||| = ||||||
||||||
∑
𝑘≥0

𝑔(𝜆𝑘)2
𝐽 ⟨𝑈 [𝑝]𝑓,𝜑𝑘⟩𝜑𝑘(𝑥)||||||− |⟨𝑈 [𝑝]𝑓,𝜑0⟩ ||𝜑0(𝑥)|||||||

≤
||||||
∑
𝑘≥1

𝑔(𝜆𝑘)2
𝐽 ⟨𝑈 [𝑝]𝑓,𝜑𝑘⟩𝜑𝑘(𝑥)|||||| .

erefore, Parseval’s identity implies that‖‖‖|𝑆𝐽 [𝑝]𝑓 (𝑥)|− 𝑆[𝑝]𝑓 |𝜑0(𝑥)|‖‖‖2 ≤∑
𝑘≥1

|||𝑔(𝜆𝑘)2𝐽 |||2 |⟨𝑈 [𝑝]𝑓,𝜑𝑘⟩ |2
≤ 𝑔(𝜆1)2𝐽+1

∑
𝑘≥1

|⟨𝑈 [𝑝]𝑓,𝜑𝑘⟩ |2
≤ 𝑔(𝜆1)2𝐽+1‖𝑈 [𝑝]𝑓‖2 .

nce 𝜆1 > 0, (7) implies 𝑔(𝜆1) < 1, and so the right-hand side converges to zero as 𝐽 →∞. □

pendix C. The proof of Theorems 1 and 2

The proof of Theorem 1 is based on the following lemma.

mma 6. For all 𝑓1, 𝑓2 ∈, we have∑
𝑝∈ 𝑚

‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2 ≥ ∑
𝑝∈ 𝑚+1

‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2 +
∑
𝑝∈ 𝑚

‖𝑆[𝑝]𝑓1 −𝑆[𝑝]𝑓2‖2 . (48)

oreover, for all 𝑓 ∈∑
𝑝∈ 𝑚

‖𝑈 [𝑝]𝑓‖2 ≥ ∑
𝑝∈ 𝑚+1

‖𝑈 [𝑝]𝑓‖2 +
∑
𝑝∈ 𝑚

‖𝑆[𝑝]𝑓‖2 . (49)

e Proof of Lemma 6. The assumption (11) implies that for all 𝑝 ∈  𝑚 we have that

‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2 ≥ ∑
𝑗𝑚+1∈

‖𝑊𝑗𝑚+1
(𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2)‖2 + ‖𝐴(𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2)‖2 .

erefore,∑
𝑝∈ 𝑚

‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2
≥ ∑
𝑝∈ 𝑚

( ∑
𝑗𝑚+1∈

‖𝑊𝑗𝑚+1
(𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2)‖2 + ‖𝐴(𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2)‖2

)
(50)

=
∑
𝑝∈ 𝑚

( ∑
𝑗𝑚+1∈

‖𝑊𝑗𝑚+1
𝑈 [𝑝]𝑓1 −𝑊𝑗𝑚+1

𝑈 [𝑝]𝑓2‖2 + ‖𝐴(𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2)‖2
)

≥ ∑ ( ∑ ‖𝜎𝑊 𝑈 [𝑝]𝑓 − 𝜎𝑊 𝑈 [𝑝]𝑓 ‖2 + ‖𝐴(𝑈 [𝑝]𝑓 −𝑈 [𝑝]𝑓 )‖2 ) (51)
25

𝑝∈ 𝑚 𝑗𝑚+1∈
𝑗𝑚+1 1 𝑗𝑚+1 2  1 2 
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=
∑
𝑝∈ 𝑚

( ∑
𝑗𝑚+1∈

‖𝑈 [𝑗𝑚+1]𝑈 [𝑝]𝑓1 −𝑈 [𝑗𝑚+1]𝑈 [𝑝]𝑓2‖2 + ‖𝐴(𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2)‖2
)

=
∑

𝑝∈ 𝑚+1
‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2 +

∑
𝑝∈ 𝑚

‖𝑆[𝑝]𝑓1 −𝑆[𝑝]𝑓2‖2 .
is completes the proof of (48). (49) follows from setting 𝑓2 = 0 and noting that in this case equality holds in (50) and (51). □

oof of Theorem 1. Applying Lemma 6, and recalling that 𝑈 [𝑝𝑒]𝑓 = 𝑓 , we see

‖𝑆𝑓1 −𝑆𝑓2‖2𝓁2()
= lim
𝑁→∞

𝑁∑
𝑚=0

∑
𝑝∈ 𝑚

‖𝑆[𝑝]𝑓1 − 𝑆[𝑝]𝑓2‖2
≤ lim
𝑁→∞

𝑁∑
𝑚=0

⎛⎜⎜⎝
∑
𝑝∈ 𝑚

‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2 −
∑

𝑝∈ 𝑚+1
‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2⎞⎟⎟⎠

≤ ‖𝑓1 − 𝑓2‖2 − limsup
𝑁→∞

∑
𝑝∈𝑁+1

‖𝑈 [𝑝]𝑓1 −𝑈 [𝑝]𝑓2‖2
≤ ‖𝑓1 − 𝑓2‖2 . □

e Proof of Theorem 2. Note that‖‖‖‖ |𝑆𝐽 [𝑝]𝑓𝑖||𝜑0| −𝑆[𝑝]𝑓𝑖
‖‖‖‖ ≤ 1

min𝑥 |𝜑0(𝑥)| ‖|𝑆𝐽 [𝑝]𝑓𝑖|− 𝑆[𝑝]𝑓𝑖|𝜑0|‖ .
erefore, by Proposition 2,

lim
𝐽→∞

‖‖‖‖ |𝑆𝐽 [𝑝]𝑓𝑖||𝜑0| −𝑆[𝑝]𝑓𝑖
‖‖‖‖ = 0

hich in turn implies that

lim
𝐽→∞

‖‖‖‖ |𝑆𝐽 [𝑝]𝑓𝑖||𝜑0| ‖‖‖‖ = 𝑆[𝑝]𝑓𝑖vol()1∕2.

us, using Fatou’s lemma, we have

‖𝑆𝑓1 −𝑆𝑓2‖22 =∑
𝑝

|𝑆[𝑝]𝑓1 −𝑆[𝑝]𝑓2|2
= 1
vol()

∑
𝑝

lim
𝐽→∞

|||||‖‖‖‖ |𝑆𝐽 [𝑝]𝑓1||𝜑0| ‖‖‖‖ −
‖‖‖‖ |𝑆𝐽 [𝑝]𝑓2||𝜑0| ‖‖‖‖

|||||
2

≤ 1
vol()

lim inf
𝐽→∞

∑
𝑝

|||||‖‖‖‖ |𝑆𝐽 [𝑝]𝑓1||𝜑0| ‖‖‖‖ −
‖‖‖‖ |𝑆𝐽 [𝑝]𝑓2||𝜑0| ‖‖‖‖

|||||
2

≤ 1
vol()

lim inf
𝐽→∞

∑
𝑝

‖‖‖‖𝑆𝐽 [𝑝]𝑓1 − 𝑆𝐽 [𝑝]𝑓2𝜑0

‖‖‖‖2
≤ 1

min𝑥 |𝜑0(𝑥)|2vol()
lim inf
𝐽→∞

∑
𝑝

‖‖𝑆𝐽 [𝑝]𝑓1 −𝑆𝐽 [𝑝]𝑓2‖‖2
≤ 1

min𝑥 |𝜑0(𝑥)|2vol()
‖𝑓1 − 𝑓2‖ ,

here in the last line we applied Theorem 1. □

pendix D. The proof of Theorem 3

oof. Since 𝐴𝑗 =𝐻2𝐽 and 𝑊𝑗 =𝐻2𝑗−1 −𝐻2𝑗 it follows from (18) that

𝐴(𝜁)𝑉𝜁𝑓 = 𝑉𝜁𝐴𝑓, and 𝑊
(𝜁)
𝑗 𝑉𝜁𝑓 = 𝑉𝜁𝑊𝑗𝑓 . (52)

 definition, for all 𝜁 ∈ , we have that 𝑉𝜁 commutes with 𝜎 since
(𝑉𝜁𝜎𝑓 )(𝑥) = (𝜎𝑓 )(𝜁−1(𝑥)) = 𝜎(𝑓 (𝜁−1(𝑥)) = 𝜎(𝑉𝜁𝑓 (𝑥)) = (𝜎𝑉𝜁𝑓 )(𝑥).
26

erefore, since by definition, 𝑈 [𝑝]𝑓 = 𝜎𝑊𝑗𝑚
𝑓… 𝜎𝑊𝑗1

𝑓 it follows that 𝑈 (𝜁)𝑉𝜁𝑓 = 𝑉𝜁𝑈𝑓 . Lastly since 𝑆 =𝐴𝑈 , we have



J.

Ap

Pr

th
in

Pr

Th

Th
de

Th

Ap

Pr

co

w

(w
Applied and Computational Harmonic Analysis 70 (2024) 101635Chew, M. Hirn, S. Krishnaswamy et al.

𝑆(𝜁)𝑉𝜁𝑓 =𝐴(𝜁)𝑈 (𝜁)𝑉𝜁𝑓 =𝐴(𝜁)𝑉𝜁𝑈𝑓 = 𝑉𝜁𝐴𝑈𝑓 = 𝑉𝜁𝑆𝑓. □

pendix E. The proof of Theorem 5

In this Section, we prove both Theorem 5 and Lemma 3.

oof of Lemma 3. We first note that, under the assumption that  preserves the measure 𝜇, the Hilbert spaces  and (𝜁) have 
e same elements and so the subtraction 𝑆𝑓 − 𝑆𝑉𝜁𝑓 is well defined. Similarly, we may identify 𝑉𝜁 with an operator mapping 
to itself. Therefore, by the assumption (19), we have

‖𝑆𝑓 −𝑆(𝜁)𝑉𝜁𝑓‖𝓁2() = ‖𝐴𝑈𝑓 − 𝑉𝜁𝑆𝑓‖𝓁2()

= ‖𝐴𝑈𝑓 − 𝑉𝜁𝐴𝑈𝑓‖𝓁2()

≤ ‖𝑉𝜁𝐴−𝐴‖‖𝑈𝑓‖𝓁2(). □

oof of Theorem 5. Let 𝜁 ∈ . The assumption that 𝜑0 is constant implies that 𝑉𝜁𝜑0 −𝜑0 = 0. Therefore,

‖𝑉𝜁𝐴𝐽𝑓 −𝐴𝐽𝑓‖ =
‖‖‖‖‖
∑
𝑘∈

𝑔(𝜆𝑘)2
𝐽 ⟨𝑓,𝜑𝑘⟩ (𝑉𝜁𝜑𝑘 −𝜑𝑘)

‖‖‖‖‖
=
‖‖‖‖‖‖
∑
𝑘≥1

𝑔(𝜆𝑘)2
𝐽 ⟨𝑓,𝜑𝑘⟩ (𝑉𝜁𝜑𝑘 −𝜑𝑘)

‖‖‖‖‖‖
≤
‖‖‖‖‖‖
∑
𝑘≥1

𝑔(𝜆𝑘)2
𝐽 ⟨𝑓,𝜑𝑘⟩𝑉𝜁𝜑𝑘‖‖‖‖‖‖ +

‖‖‖‖‖‖
∑
𝑘≥1

𝑔(𝜆𝑘)2
𝐽 ⟨𝑓,𝜑𝑘⟩𝜑𝑘‖‖‖‖‖‖ .

e assumption that  preserves inner products together with the assumption that it preserves the measure implies that for 𝑓, 𝑔 ∈
⟨𝑉𝜁𝑓 ,𝑉𝜁 𝑔⟩ = ∫

𝑋

𝑉𝜁𝑓𝑉𝜁𝑔𝑑𝜇 = ∫
𝑋

𝑉𝜁𝑓𝑉𝜁𝑔𝑑𝜇
(𝜁) = ⟨𝑉𝜁𝑓 ,𝑉𝜁 𝑔⟩(𝜁 ) = ⟨𝑓, 𝑔⟩ .

us, {𝑉𝜁𝜑𝑘}𝑘∈ forms an orthonormal basis for , and so applying Parseval’s identity together with the assumption that 𝑔 is 
creasing implies

‖𝑉𝜁𝐴𝑓 −𝐴𝐽𝑓‖ ≤ 2|𝑔(𝜆1)|2𝐽 ‖𝑓‖ .
erefore, the result now follows from Lemma 3. □

pendix F. The proof of Theorem 6

oof. Recall, from (27) the decomposition

𝐻 = 𝐻̃ +𝐻, 𝐻 ′ = 𝐻̃ ′ +𝐻
′
.

The operator 𝐻̃ projects a function onto the zero eigenspace span(𝜑0) and the operator 𝐻 maps a function into its orthogonal 
mplement span(𝜑0)⟂. Therefore, we have 𝐻̃𝐻 =𝐻𝐻̃ = 0, and we also have 𝐻̃2𝑗 = 𝐻̃ for all 𝑗 ≥ 0. Therefore,

𝐻2𝑗 = 𝐻̃ +𝐻
2𝑗
,

hich implies

𝐻2𝑗+1 −𝐻2𝑗 =𝐻
2𝑗+1

−𝐻
2𝑗

ith similar equations holding for 𝐻 ′ and 𝐻
′
). Therefore,

‖𝐽 − ′
𝐽‖2𝓁2()

≤‖𝐻2𝐽 − (𝐻 ′)2𝐽 ‖2 +
𝐽−1∑
𝑗=0

‖𝐻2𝑗 −𝐻2𝑗+1 −
(
(𝐻 ′)2𝑗 − (𝐻 ′)2𝑗+1

)‖2 + ‖𝐻 −𝐻 ′‖2
=‖𝐻̃ − 𝐻̃ ′ + (𝐻)2𝐽 − (𝐻)′ 2𝐽 ‖2 +

𝐽−1∑
𝑗=0

‖(𝐻)2𝑗 − (𝐻)2𝑗+1 −
(
(𝐻

′
)2𝑗 − (𝐻

′
)2𝑗+1

)‖2
′

27

+ ‖𝐻̃ − 𝐻̃ ′ +𝐻 −𝐻 ‖2
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≤4‖𝐻̃ − 𝐻̃ ′‖2 + 2‖(𝐻)2𝐽 − (𝐻
′
)2𝐽 ‖2

+ 2
𝐽−1∑
𝑗=0

‖(𝐻)2𝑗 − (𝐻
′
)2𝑗 ‖2 + 2

𝐽−1∑
𝑗=0

‖(𝐻 ′
)2𝑗+1 − (𝐻)2𝑗+1‖2 + 2‖𝐻 −𝐻

′‖2
≤4

(‖𝐻̃ − 𝐻̃ ′‖2 +
𝐽∑
𝑗=0

‖(𝐻)2𝑗 − (𝐻
′
)2𝑗‖2

)
. (53)

The following Lemma is a variant of Eq. (23) in [34] (see also Lemma L.1 of [64]).

mma 7. Let 𝛽 =max
{‖𝐻‖ ,‖𝐻 ′‖} and assume that 𝛽 < 1. Then

𝐽∑
𝑗=0

‖‖‖‖𝐻2𝑗
− (𝐻

′
)2𝑗
‖‖‖‖2 ≤ 𝐶0(𝛽)

‖‖‖𝐻 −𝐻
′‖‖‖2 ,

ere 𝐶0(𝛽) ∶=
𝛽2+1

(1−𝛽2)3 .

oof. Letting 𝐴𝑗 (𝑡) = (𝑡𝐻 + (1 − 𝑡)𝐻
′
)2𝑗 , we may check that

‖‖‖‖𝐻2𝑗
− (𝐻

′
)2𝑗
‖‖‖‖ = ‖𝐴𝑗 (1) −𝐴𝑗 (0)‖ ≤

1

∫
0

‖𝐴′
𝑗 (𝑡)‖𝑑𝑡 ≤ sup

0≤𝑡≤1
‖𝐴′

𝑗 (𝑡)‖𝑑𝑡.
nce,

𝐴′
𝑗 (𝑡) =

2𝑗−1∑
𝓁=0

(
𝑡𝐻 + (1 − 𝑡)𝐻

′)𝓁 (
𝐻 −𝐻

′)(
𝑡𝐻 + (1 − 𝑡)𝐻

′)2𝑗−𝓁−1
,

d ‖𝐻‖ , ‖𝐻 ′‖ ≤ 𝛽, this implies
‖𝐴′

𝑗 (𝑡)‖2 ≤ 2𝑗𝛽2𝑗−1 ‖‖‖𝐻 −𝐻
′‖‖‖ .

erefore,

𝐽+1∑
𝑗=0

‖‖‖‖𝐻2𝑗
− (𝐻

′
)2𝑗
‖‖‖‖2 ≤

∞∑
𝑗=0

(2𝑗𝛽2𝑗−1)2 ‖‖‖𝐻 −𝐻
′‖‖‖2 =∶ 𝐶0(𝛽)

‖‖‖𝐻 −𝐻
′‖‖‖2 .

stly, one may compute

𝐶0(𝛽) =
∞∑
𝑗=0

(2𝑗𝛽2𝑗−1)2 = 𝛽−2
∞∑
𝑗=0

(2𝑗𝛽2𝑗 )2 ≤ 𝛽−2
∞∑
𝑛=0

𝑛2𝛽2𝑛 = 𝛽−2 𝛽
2(𝛽2 + 1)
(1 − 𝛽2)3

= 𝛽2 + 1
(1 − 𝛽2)3

,

here we used the Taylor expansion 𝑥
2(𝑥2+1)
(1−𝑥2)3 =

∑∞
𝑛=0 𝑛

2𝑥2𝑛. □

Returning to the proof of the theorem, we note that by the triangle inequality we have

‖𝐻 −𝐻
′‖ ≤ ‖𝐻 −𝐻 ′‖ + ‖𝐻̃ − 𝐻̃ ′‖ .

erefore, combining (53) with Lemma 7, and using the fact that (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) for all 𝑎, 𝑏 ∈ℝ, we have

‖𝐽 − ′
𝐽‖2𝓁2() ≤ 𝐶(𝛽)

(‖𝐻̃ − 𝐻̃ ′‖2 + ‖𝐻 −𝐻 ′‖2) , (54)

here 𝐶(𝛽) = 𝐶𝐶0(𝛽) for some absolute constant 𝐶 .
To estimate ‖𝐻̃ − 𝐻̃ ′‖2 , we note that for all 𝑓 ∈ we have

‖𝐻̃𝑓 − 𝐻̃ ′𝑓‖ = ‖⟨𝑓,𝜑0⟩𝜑0 − ⟨𝑓,𝜑′
0⟩′𝜑′

0‖
≤ ‖⟨𝑓,𝜑0 −𝜑′

0⟩𝜑0‖ + ‖⟨𝑓,𝜑′
0⟩ (𝜑0 −𝜑′

0)‖ + ‖|⟨𝑓,𝜑′
0⟩ − ⟨𝑓,𝜑′

0⟩′ |𝜑′
0‖

≤ ‖𝜑0 −𝜑′
0‖‖𝑓‖ + ‖𝜑0 −𝜑′

0‖‖𝜑′
0‖‖𝑓‖ + |⟨𝑓,𝜑′

0⟩ − ⟨𝑓,𝜑′
0⟩′ |‖𝜑′

0‖ .
 (23) and by (25)
28

‖𝜑′
0‖ ≤𝑅(,′)1∕2 and |⟨𝑓,𝜑′

0⟩ − ⟨𝑓,𝜑′
0⟩′ | ≤ 𝜅(,′)𝑅(,′)1∕2‖𝑓‖ .
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erefore, we have

‖𝐻̃ − 𝐻̃ ′‖ ≤ ‖𝜑0 −𝜑′
0‖ (1 +𝑅(,′)1∕2) +𝑅(,′)𝜅(,′).

us,

‖𝐽 − ′
𝐽‖2𝓁2()

≤ 𝐶(𝛽) [‖𝜑0 −𝜑′
0‖2𝑅(,′) +𝑅(,′)2𝜅(,′)2 + ‖𝐻 −𝐻 ′‖2]

 desired. □

pendix G. The proof of Theorem 7

In order to prove Theorem 7, we will need the following Lemma.

mma 8. Under the assumptions of Theorem 7, we have

‖‖‖𝑆𝓁𝑓 − (𝑆𝓁)′𝑓‖‖‖𝓁2()
≤√2‖ − ′‖( 𝓁∑

𝑘=0
‖ ′‖𝑘

)‖𝑓‖ for all 𝑓 ∈. (55)

Before proving Lemma 8, we will show how it is used to prove Theorem 7.

oof of Theorem 7. Let 𝜁 ∈ , and let 𝜁 be defined as in (16). By (31), we have 𝑉𝜁𝑆𝓁𝑓 = 𝑆𝓁,(𝜁)𝑉𝜁𝑓 . Therefore, the triangle 
equality implies‖‖‖𝑆𝓁𝑓 − (𝑆𝓁)′𝑓‖‖‖𝓁2()

≤ ‖‖‖𝑆𝓁𝑓 − 𝑉𝜁𝑆𝓁𝑓
‖‖‖𝓁2()

+ ‖𝑆𝓁,(𝜁)𝑉𝜁𝑓 −𝑆𝓁,(𝜁)𝑓‖𝓁2() + ‖𝑆𝓁,(𝜁)𝑓 − (𝑆𝓁)′𝑓‖𝓁2(). (56)

e assumption (31) also implies that

‖𝑆𝓁𝑓 − 𝑉𝜁𝑆𝓁𝑓‖𝓁2() ≤‖𝑓‖ . (57)

milarly, by Theorem 1 and (23), we have that

‖𝑆𝓁,(𝜁)𝑉𝜁𝑓 −𝑆𝓁,(𝜁)𝑓‖𝓁2() ≤𝑅(,(𝜁))1∕2 ‖𝑆𝓁,(𝜁)𝑉𝜁𝑓 −𝑆𝓁,(𝜁)𝑓‖𝓁2((𝜁 ))

≤𝑅(,(𝜁))1∕2 ‖𝑉𝜁𝑓 − 𝑓‖(𝜁 )

≤𝑅(,(𝜁))‖𝑉𝜁𝑓 − 𝑓‖ . (58)

plying Lemma 8 and (23) yields

‖𝑆𝓁,(𝜁)𝑓 − (𝑆𝓁)′𝑓‖𝓁2() ≤𝑅(,(𝜁))1∕2 ‖𝑆𝓁,(𝜁)𝑓 − (𝑆𝓁)′𝑓‖𝓁2((𝜁 ))

≤√2𝑅
(,(𝜁))1∕2 ‖ (𝜁) − ′‖(𝜁 )

(
𝓁∑
𝑘=0

‖ ′‖𝑘(𝜁 )

)‖𝑓‖(𝜁 )

≤√2𝑅
(,(𝜁))‖ (𝜁) − ′‖(𝜁 )

(
𝓁∑
𝑘=0

‖ ′‖𝑘(𝜁 )

)‖𝑓‖ .
us, infimizing over 𝜁 completes the proof. □

e Proof of Lemma 8. Let  ∶= ‖ − ′‖ and  ∶= ‖ ′‖ .
To prove (55), we need to show

∑
𝑝∈ 𝓁

‖𝑆[𝑝]𝑓 −𝑆′[𝑝]𝑓‖2 ≤ 22 ⋅

(
𝓁∑
𝑘=0

𝑘
)2 ‖𝑓‖2 . (59)

r 𝓁 = 0, we recall from (12) that the zeroth-order windowed scattering coefficient of 𝑓 is given by 𝑆[𝑝𝑒]𝑓 = 𝐴𝑓 , where 𝑝𝑒 is the 
pty-index. Therefore, by the definition of  we have∑

𝑝∈ 0

‖𝑆[𝑝]𝑓 −𝑆′[𝑝]𝑓‖2 = ‖𝐴𝑓 −𝐴′𝑓‖2 ≤ ‖𝑓 − ′𝑓‖2 ≤2‖𝑓‖2 ,
29

d so (59) holds when 𝓁 = 0. For the case where 𝓁 ≥ 1, we note that for all 𝑝 ∈  𝓁 , we have
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‖𝑆[𝑝]𝑓 −𝑆′[𝑝]𝑓‖ = ‖𝐴𝑈 [𝑝]𝑓 −𝐴′𝑈 ′[𝑝]𝑓‖
≤ ‖(𝐴−𝐴′)𝑈 [𝑝]𝑓‖ + ‖𝐴′𝑈 [𝑝]𝑓 −𝐴′𝑈 ′[𝑝]𝑓‖
≤ ‖𝐴−𝐴′‖‖𝑈 [𝑝]𝑓‖ + ‖𝐴′‖‖𝑈 [𝑝]𝑓 −𝑈 ′[𝑝]𝑓‖ ,

d so using the fact that (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2 and summing over 𝑝 implies∑
𝑝∈ 𝓁

‖𝑆[𝑝]𝑓 −𝑆′[𝑝]𝑓‖2 ≤ 2‖𝐴−𝐴′‖2 ∑
𝑝∈ 𝓁

‖𝑈 [𝑝]𝑓‖2 + 2‖𝐴′‖2 ∑
𝑝∈ 𝓁

‖𝑈 [𝑝]𝑓 −𝑈 ′[𝑝]𝑓‖2 .
erefore, (59) and thus (55), follow from applying Lemma 9 stated below, noting that ‖𝐴 −𝐴′‖2 ≤2 and ‖𝐴′‖2 ≤ 2, and using 
e fact that 𝑎2 + 𝑏2 ≤ (𝑎 + 𝑏)2 when 𝑎, 𝑏 ≥ 0. □

mma 9. Let  ∶= ‖ − ′‖ and  ∶= ‖ ′‖ . Then, for all 𝓁 ≥ 1,

∑
𝑝∈ 𝓁

‖𝑈 [𝑝]𝑓‖2 ≤ ‖𝑓‖2 , and
∑
𝑝∈ 𝓁

‖𝑈 [𝑝]𝑓 −𝑈 ′[𝑝]𝑓‖2 ≤2

(
𝓁−1∑
𝑘=0

𝑘
)2 ‖𝑓‖2 .

oof. When 𝓁 = 1, the first inequality follows immediately from (11) and the fact that 𝜎 is nonexpansive. Now, suppose by 
duction that the first inequality holds for 𝓁. Let 𝑓 ∈. Then∑

𝑝∈ 𝓁+1

‖𝑈 [𝑝]𝑓‖2 =
∑

𝑝∈ 𝓁+1

‖𝜎𝑊𝑗𝓁+1
⋯𝜎𝑊𝑗1

𝑓‖2
=
∑
𝑝∈ 𝓁

( ∑
𝑗𝓁+1∈

‖𝜎𝑊𝑗𝓁+1
(𝜎𝑊𝑗𝓁

⋯𝜎𝑊𝑗1
𝑓 )‖2

)
≤ ∑
𝑝∈ 𝓁

‖𝜎𝑊𝑗𝓁
⋯𝜎𝑊𝑗1

𝑓‖2
≤ ‖𝑓‖2 , (60)

ith the last inequality following from the inductive assumption.

To prove the second inequality, let 𝑡𝓁 ∶=
(∑

𝑝∈ 𝓁 ‖𝑈 [𝑝]𝑓 −𝑈 ′[𝑝]𝑓‖2)1∕2. Since 𝜎 is nonexpansive, the definition of  implies 
≤‖𝑓‖ . Now, by induction, suppose the result holds for 𝓁. Then, recalling that 𝑈 [𝑝] = 𝜎𝑊𝑗𝓁

⋯ 𝜎𝑊𝑗1
, we have

𝑡𝓁+1 =
⎛⎜⎜⎝
∑

𝑝∈ 𝓁+1

‖𝜎𝑊𝑗𝓁+1
⋯𝜎𝑊𝑗1

𝑓 − 𝜎𝑊 ′
𝑗𝓁+1

⋯𝜎𝑊 ′
𝑗1
𝑓‖2⎞⎟⎟⎠

1∕2

≤
⎛⎜⎜⎝
∑

𝑝∈ 𝓁+1

‖(𝑊𝑗𝓁+1
−𝑊 ′

𝑗𝓁+1
)𝜎𝑊𝑗𝓁

⋯𝜎𝑊𝑗1
𝑓‖2⎞⎟⎟⎠

1∕2

+
⎛⎜⎜⎝
∑

𝑝∈ 𝓁+1

‖𝑊 ′
𝑗𝓁+1

(𝜎𝑊𝑗𝑖
⋯𝜎𝑊𝑗1

𝑓 − 𝜎𝑊 ′
𝑗𝓁
⋯𝜎𝑊 ′

𝑗1
𝑓 )‖2⎞⎟⎟⎠

1∕2

≤
⎛⎜⎜⎝
∑

𝑝∈ 𝓁+1

‖𝜎𝑊𝑗𝓁
⋯𝜎𝑊𝑗1

𝑓‖2⎞⎟⎟⎠
1∕2

+ 
⎛⎜⎜⎝
∑
𝑝∈ 𝓁

‖𝜎𝑊𝑗𝓁
⋯𝜎𝑊𝑗1

𝑓 − 𝜎𝑊 ′
𝑗𝓁
⋯𝜎𝑊 ′

𝑗1
𝑓‖2⎞⎟⎟⎠

1∕2

≤‖𝑓‖ + 𝑡𝓁‖𝑓‖
 the definitions of  and  and by (60). By the inductive hypothesis, we have that

𝑡𝓁 ≤
𝓁−1∑
𝑘=0

𝑘‖𝑓‖ .
30
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𝑡𝓁+1 ≤‖𝑓‖ +
𝓁−1∑
𝑘=0

𝑘+1‖𝑓‖ =
𝓁∑
𝑘=0

𝑘‖𝑓‖ .
uaring both sides completes the proof of the second inequality. □

pendix H. The proof of Theorem 8

oof. Let 𝜁 ∈ , and let 𝜁 be as in (16). By (33), we have 𝑆(𝜁)𝑉𝜁𝑓 = 𝑆𝑓 . Therefore, we may use the definitions of the non-
indowed scattering transform to see that for each path 𝑝 we have

|𝑆[𝑝]𝑓 − 𝑆′[𝑝]𝑓 |
=|𝑆(𝜁)[𝑝]𝑉𝜁𝑓 − 𝑆′[𝑝]𝑓 |
≤|⟨𝑈 (𝜁)[𝑝]𝑉𝜁𝑓 ,𝜑

(𝜁)
0 ⟩(𝜁 ) − ⟨𝑈 ′[𝑝]𝑓,𝜑′

0⟩′ |
≤|⟨𝑈 (𝜁)[𝑝]𝑉𝜁𝑓 −𝑈 ′[𝑝]𝑓,𝜑(𝜁)

0 ⟩(𝜁 ) |+ |⟨𝑈 ′[𝑝]𝑓,𝜑(𝜁)
0 −𝜑′

0⟩(𝜁 ) |+ |⟨𝑈 ′[𝑝]𝑓,𝜑′
0⟩(𝜁 ) − ⟨𝑈 ′[𝑝]𝑓,𝜑′

0⟩′ |
=∶ 𝐼[𝑝] + 𝐼𝐼[𝑝] + 𝐼𝐼𝐼[𝑝].

 bound 𝐼[𝑝], we use the Cauchy Schwarz inequality to observe

|⟨𝑈 (𝜁)[𝑝]𝑉𝜁𝑓 −𝑈 ′[𝑝]𝑓,𝜑(𝜁)
0 ⟩(𝜁 ) | ≤ |⟨𝑈 (𝜁)[𝑝]𝑉𝜁𝑓 −𝑈 (𝜁)[𝑝]𝑓,𝜑(𝜁)

0 ⟩(𝜁 ) |+ |⟨𝑈 (𝜁)[𝑝]𝑓 −𝑈 ′[𝑝]𝑓,𝜑(𝜁)
0 ⟩(𝜁 ) |

≤ |𝑆(𝜁)[𝑝]𝑉𝜁𝑓 − 𝑆(𝜁)[𝑝]𝑓 |+ ‖𝑈 (𝜁)[𝑝]𝑓 −𝑈 ′[𝑝]𝑓‖(𝜁 ) .

erefore, applying (33) and Lemma 9 yields

∑
𝑝∈ 𝓁

𝐼[𝑝]2 ≤ 2𝐶𝐿‖𝑉𝜁𝑓 − 𝑓‖2(𝜁 ) + 2‖ (𝜁) − ′‖2(𝜁 )

(
𝓁−1∑
𝑘=0

‖ ′‖𝑘(𝜁 )

)2 ‖𝑓‖2(𝜁 ) . (61)

r 𝐼𝐼[𝑝], we again use the Cauchy Schwarz inequality and (23) to see

|⟨𝑈 ′[𝑝]𝑓,𝜑(𝜁)
0 −𝜑′

0⟩(𝜁 ) | ≤𝑅((𝜁),′)‖𝜑(𝜁)
0 −𝜑′

0‖′‖𝑈 ′[𝑝]𝑓‖′

erefore, again applying Lemma 9 implies∑
𝑝∈ 𝓁

𝐼𝐼[𝑝]2 ≤𝑅((𝜁),′)2‖𝜑(𝜁)
0 −𝜑′

0‖2′‖𝑓‖2′ . (62)

stly, to bound 𝐼𝐼𝐼[𝑝], we note that by (25) and the Cauchy Schwarz inequality, we have

|⟨𝑈 ′[𝑝]𝑓,𝜑′
0⟩(𝜁 ) − ⟨𝑈 ′[𝑝]𝑓,𝜑′

0⟩′ | ≤ 𝜅(′,(𝜁))‖𝑈 ′[𝑝]𝑓‖′‖𝜑′
0‖′

≤ 𝜅(′,(𝜁))‖𝑈 ′[𝑝]𝑓‖′ ,

d so summing over 𝑝 and once more applying Lemma 9 gives∑
𝑝∈ 𝓁

𝐼𝐼𝐼[𝑝]2 ≤ 𝜅(′,(𝜁))‖𝑓‖′ .

erefore, combining this with (61) and (62) yields∑
𝑝∈ 𝓁

|𝑆[𝑝]𝑓 − 𝑆
′
[𝑝]𝑓 |2

≤3
(
2𝐶𝐿‖𝑉𝜁𝑓 − 𝑓‖2(𝜁 ) +𝑅((𝜁),′)2‖𝜑(𝜁)

0 −𝜑′
0‖2′‖𝑓‖2′

+ 2‖ (𝜁) − ′‖2(𝜁 )

(
𝓁−1∑
𝑘=0

‖ ′‖𝑘(𝜁 )

)2 ‖𝑓‖2(𝜁 ) + 𝜅(′,(𝜁))‖𝑓‖′

)
.

e result follows by taking the infimum over 𝜁 ∈ . □

pendix I. The proof of Lemma 4

oof. By definition, we have
31

𝐻𝑡𝑓 (𝑥) −𝐻𝜅
𝑡 𝑓 (𝑥)
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=∫
𝑋

ℎ𝑡(𝑥, 𝑦)𝑓 (𝑦)𝑑𝜇(𝑦) − ∫
𝑋

ℎ𝜅𝑡 (𝑥, 𝑦)𝑓 (𝑦)𝑑𝜇(𝑦)

=∫
𝑋

∞∑
𝑘=0

𝑒−𝑡𝜇𝑘𝜑𝑘(𝑥)𝜑𝑘(𝑦)𝑓 (𝑦)𝑑𝜇(𝑦) − ∫
𝑋

𝜅∑
𝑘=0

𝑒−𝑡𝜇𝑘𝜑𝑘(𝑥)𝜑𝑘(𝑦)𝑓 (𝑦)𝑑𝜇(𝑦)

=∫
𝑋

∞∑
𝑘=𝜅+1

𝑒−𝑡𝜇𝑘𝜑𝑘(𝑥)𝜑𝑘(𝑦)𝑓 (𝑦)𝑑𝜇(𝑦) (63)

=
∞∑

𝑘=𝜅+1
𝑒−𝑡𝜇𝑘⟨𝜑𝑘,𝑓⟩𝐋2()𝜑𝑘(𝑥).

erefore, since the 𝜑𝑘 form an orthonormal basis, twice applying Plancherel’s theorem implies that

‖𝐻𝜅
𝑡 𝑓 (𝑥) −𝐻𝑡𝑓 (𝑥)‖2𝐋2() =

∞∑
𝑘=𝜅+1

𝑒−2𝑡𝜇𝑘 |⟨𝜑𝑘,𝑓⟩𝐋2()|2
≤ 𝑒−2𝑡𝜇𝜅+1

∞∑
𝑘=𝜅+1

|⟨𝜑𝑘,𝑓⟩𝐋2()|2
≤ 𝑒−2𝑡𝜇𝜅+1‖𝑓‖2𝐋2().

is completes the proof of (40). To prove (41), we note that (63) implies

‖𝐻𝜅
𝑡 𝑓 −𝐻𝑡𝑓‖∞ ≤ sup

𝑥,𝑦∈
| ∞∑
𝑘=𝜅+1

𝑒−𝑡𝜇𝑘𝜑𝑘(𝑥)𝜑𝑘(𝑦)|‖𝑓‖∞.
 [27], the proof of Theorem 3, it is shown that

sup
𝑥,𝑦∈

| ∞∑
𝑘=𝜅+1

𝑒−𝑡𝜇𝑘𝜑𝑘(𝑥)𝜑𝑘(𝑦)| ≤ 𝐶𝑒−𝐶
′ 𝑡 ≤ 𝐶

d so the result follows. □

pendix J. The proof of Lemma 5

oof. Let 𝑓, 𝑔 ∈ (), and define random variables 𝑋𝑖 = 𝑓 (𝑥𝑖)𝑔(𝑥𝑖). Since the 𝑥𝑖 are sampled i.i.d. uniformly at random, we have

⟨𝜌𝑓 , 𝜌𝑔⟩2 = 1
𝑁

𝑁−1∑
𝑖=0

𝑋𝑖

d (35) implies

𝔼

(
1
𝑁

𝑁−1∑
𝑖=0

𝑋𝑖

)
= ⟨𝑓, 𝑔⟩𝐋2().

erefore, by Hoeffding’s inequality, we have

ℙ
(|⟨𝜌𝑓 , 𝜌𝑔⟩2 − ⟨𝑓, 𝑔⟩𝐋2()| > 𝜂) = ℙ

(|||||| 1𝑁
(
𝑁−1∑
𝑖=0

𝑋𝑖 − 𝔼
𝑁−1∑
𝑖=0

𝑋𝑖

)|||||| > 𝜂
)

= ℙ

(||||||
(
𝑁−1∑
𝑖=0

𝑋𝑖 − 𝔼
𝑁−1∑
𝑖=0

𝑋𝑖

)|||||| >𝑁𝜂
)

≤ 2exp

(
−2𝑁2𝜂2

4𝑁‖𝑓𝑔‖2∞
)

= 2exp

(
−𝑁𝜂2

2‖𝑓𝑔‖2∞
)
.

√

32

e result now follows by setting 𝜂 = 18 log𝑁
𝑁

‖𝑓𝑔‖∞. □
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pendix K. The proof of Remark 8

To see this we note that the term 𝛼𝑘 in Theorem 5.4 of [15] is first introduced in Proposition 5.2. We observe, by Equation ((42)), 
at ||||||(𝐮𝑁,𝜖𝑘

)𝑇 𝐯𝑘
|||− 1||| = |||| 1|𝛼𝑘| − 1

|||| =(|Errnorm|+ Err2pt).
lease see [15] for the definitions of Errnorm and Err2pt.) Since |𝛼𝑘| converges to 1, for sufficiently large 𝑁 , we have 12 ||𝛼𝑘| − 1| ≤
1
𝑘| − 1

|||| ≤ 2||𝛼𝑘| − 1| and therefore, we also have that
||𝛼𝑘|− 1| =(|Errnorm|+ Err2pt).

mediately prior to Equation (42), the authors note

Errnorm =
(√

log(𝑁)
𝑁

)
,

d Equation (40) shows that

Errpt =(𝜖) +
(√

log(𝑁)
𝑁𝜖𝑑∕2+1

)
 particular, if we set 𝜖 ∼𝑁−2∕(𝑑+6) we have

Errpt =(𝑁−2∕(𝑑+6)) +
(√

log(𝑁)
𝑁4∕(𝑑+6)

)
=

(√
log(𝑁)
𝑁4∕(𝑑+6)

)

pendix L. The proof of Theorem 10 and Corollary 1

oof of Theorem 10. To avoid cumbersome notation, within this proof we will drop explicit dependence on 𝑁 and 𝜖 and simply 
rite 𝜆𝑘 in place of 𝜆

𝑁,𝜖
𝑘

.
Let 𝐮̃𝑘 = sgn(𝛼𝑘)𝐮𝑘 where sgn is the standard signum function. Then,

𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝜅
𝑡 𝑓

=
𝜅∑
𝑘=0

𝑒−𝜆𝑘𝑡𝐮𝑘𝐮𝑇𝑘 𝜌𝑓 − 𝜌
𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡⟨𝑓,𝜑𝑘⟩𝐋2()𝜑𝑘

=
𝜅∑
𝑘=0

𝑒−𝜆𝑘𝑡𝐮̃𝑘𝐮̃𝑇𝑘 𝜌𝑓 − 𝜌
𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡⟨𝑓,𝜑𝑘⟩𝐋2()𝜑𝑘

=
𝜅∑
𝑘=0

𝑒−𝜆𝑘𝑡⟨𝐮̃𝑘, 𝜌𝑓⟩2𝐮̃𝑘 − 𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡⟨𝑓,𝜑𝑘⟩𝐋2()𝐯𝑘

=
𝜅∑
𝑘=0

(𝑒−𝜆𝑘𝑡 − 𝑒−𝜇𝑘𝑡)⟨𝐮̃𝑘, 𝜌𝑓⟩2𝐮̃𝑘
+

𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡
(⟨𝐮̃𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()

)
𝐮̃𝑘

+
𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡⟨𝑓,𝜑𝑘⟩𝐋2()(𝐮̃𝑘 − 𝐯𝑘). (64)

nce |sgn(𝛼𝑘)| = 1, {𝐮̃𝑘}𝜅𝑘=0 is an orthonormal basis for the span of {𝐮𝑘}
𝜅
𝑘=0. Therefore, to bound the first of the above terms, we 

ay apply Parseval’s theorem to see

‖ 𝜅∑
𝑘=0

(𝑒−𝜆𝑘𝑡 − 𝑒−𝜇𝑘𝑡)⟨𝐮̃𝑘, 𝜌𝑓⟩2𝐮̃𝑘‖22
=

𝜅∑
𝑘=0

|𝑒−𝜆𝑘𝑡 − 𝑒−𝜇𝑘𝑡|2|⟨𝐮̃𝑘, 𝜌𝑓⟩2|2
−𝜆𝑘𝑡 −𝜇𝑘𝑡 2

𝜅∑
2

33

≤ max
0≤𝑘≤𝜅 |𝑒 − 𝑒 |

𝑘=0
|⟨𝐮̃𝑘, 𝜌𝑓⟩2|
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≤ max
0≤𝑘≤𝜅 |𝑒−𝜆𝑘𝑡 − 𝑒−𝜇𝑘𝑡|2‖𝜌𝑓‖22. (65)

 Theorem 9, we have

max
0≤𝑘≤𝜅 |𝑒−𝜆𝑘𝑡 − 𝑒−𝜇𝑘𝑡| ≤ 𝑡 max

0≤𝑘≤𝜅 |𝜆𝑘 − 𝜇𝑘|
= 𝑡(𝑁−2∕(𝑑+6)) (66)

ith probability at least 1 −(𝑁−9).
By Lemma 5 we have

‖𝜌𝑓‖22 ≤ ‖𝑓‖2𝐋2() +
√

18 log𝑁
𝑁

‖𝑓‖2∞
ith probability at least 1 − 2∕𝑁9. Therefore, combining (65) and (66), yields‖‖‖‖‖

𝜅∑
𝑘=0

(𝑒−𝜆𝑘𝑡 − 𝑒−𝜇𝑘𝑡)⟨𝐮̃𝑘, 𝜌𝑓⟩2𝐮̃𝑘‖‖‖‖‖
2

2

≤ max
0≤𝑘≤𝜅 |𝑒−𝜆𝑘𝑡 − 𝑒−𝜇𝑘𝑡|2‖𝜌𝑓‖22
≤ 𝑡2

(‖𝑓‖2𝐋2() +
√

log𝑁
𝑁

‖𝑓‖2∞
)
(𝑁−4∕(𝑑+6)) (67)

ith probability at least 1 − 
(

1
𝑁9

)
.

To bound the second term from (64), we use Parseval’s Identity to see‖‖‖‖‖
𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡
(⟨𝐮̃𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()

)
𝐮̃𝑘
‖‖‖‖‖
2

2

≤
𝜅∑
𝑘=0

|⟨𝐮̃𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()|2
≤2

𝜅∑
𝑘=0

(|⟨𝐮̃𝑘, 𝜌𝑓⟩2 − ⟨𝐯𝑘, 𝜌𝑓⟩2|2 + |⟨𝐯𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()|2)
≤2

𝜅∑
𝑘=0

(‖𝐮̃𝑘 − 𝐯𝑘‖22‖𝜌𝑓‖22 + |⟨𝜌𝜑𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()|2). (68)

 Remark 8,

max
{||𝛼𝑘|− 1|, |||| 1|𝛼𝑘| − 1

||||
}

≤
(√

log𝑁
𝑁

)
+

(
log(𝑁)
𝑁4∕(𝑑+6)

)
.

erefore,(|𝛼𝑘|− 1
𝛼𝑘

)2
≤

(
log𝑁
𝑁

)
+

(
log(𝑁)2

𝑁8∕(𝑑+6)

)
,

d so we may recall the definition of 𝐮̃𝑘 , and use Theorem 9 to see

‖𝐮̃𝑘 − 𝐯𝑘‖22 = ‖sgn(𝛼𝑘)𝐮𝑘 − 𝐯𝑘‖22
= 1
𝛼2
𝑘

‖|𝛼𝑘|𝐮𝑘 − 𝛼𝑘𝐯𝑘‖22
≤ 2
𝛼2
𝑘

(‖(|𝛼𝑘|− 1)𝐮𝑘‖2 + ‖𝐮𝑘 − 𝛼𝑘𝐯𝑘‖22)
≤ 2

(|𝛼𝑘|− 1
𝛼𝑘

)2
+ 2|𝛼𝑘|2 ‖𝐮𝑘 − 𝛼𝑘𝐯𝑘‖22

≤
(
log𝑁
𝑁

)
+

(
log(𝑁)2

𝑁8∕(𝑑+6)

)
+(𝑁− 4

𝑑+6 log(𝑁))

=(𝑁− 4
𝑑+6 log𝑁). (69)
34

 noted earlier, by Lemma 5, we have



J.

w

w

𝜆𝑘

w

Applied and Computational Harmonic Analysis 70 (2024) 101635Chew, M. Hirn, S. Krishnaswamy et al.

‖𝜌𝑓‖22 ≤ ‖𝑓‖2𝐋2() +
√

18 log𝑁
𝑁

‖𝑓‖2∞
ith probability at least 1 − 2

𝑁9 and again applying Lemma 5 we have

|⟨𝜌𝜑𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()| ≤√18 log𝑁
𝑁

‖𝑓𝜑𝑘‖∞
ith probability at least 1 − 2

𝑁9 .

It is known (see, e.g., [70]) that ‖𝜑𝑘‖∞ ≤ 𝐶𝜆(𝑑−1)∕4𝑘
. Weyl’s asymptotic formula (see, e.g., [13] Theorem 72) implies that 

≤ 𝐶𝑘2∕𝑑 . Therefore,

‖𝜑𝑘‖∞ ≤ 𝐶𝑘
2
𝑑
𝑑−1
4 = 𝐶𝑘(𝑑−1)∕2𝑑 =(1),

here the final equality uses the fact that the implied constants depend on 𝜅 and the geometry of  . Therefore, by (68),

‖ 𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡
(⟨𝐮̃𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()

)
𝐮̃𝑘‖22

≤ 2
𝜅∑
𝑘=0

(‖𝐮̃𝑘 − 𝐯𝑘‖22‖𝜌𝑓‖22 + |⟨𝜌𝜑𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()|2)
≤ 𝜅

(
(𝑁− 4

𝑑+6 log𝑁)

(‖𝑓‖2𝐋2() +
√

18 log𝑁
𝑁

‖𝑓‖2∞
)

+
(
log𝑁
𝑁

)
max
0≤𝑘≤𝜅 ‖𝑓𝜑𝑘‖2∞

)

≤ 𝜅
(
(𝑁− 4

𝑑+6 log𝑁)

(‖𝑓‖2𝐋2() +
√

log𝑁
𝑁

‖𝑓‖2∞
)

+
(
log𝑁
𝑁

)
𝜅(𝑑−1)∕𝑑‖𝑓‖2∞

)

≤
(
log𝑁

𝑁
4
𝑑+6

)‖𝑓‖2𝐋2() +

(

(
(log𝑁)3∕2

𝑁
4
𝑑+6 +

1
2

)
+

(
log𝑁
𝑁

))‖𝑓‖2∞. (70)

Finally, to bound the third term in (64), we use (69) to see

‖ 𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡⟨𝑓,𝜑𝑘⟩𝐋2()(𝐮̃𝑘 − 𝐯𝑘)‖22
≤𝜅

𝜅∑
𝑘=0

|⟨𝑓,𝜑𝑘⟩𝐋2()|2‖𝐮̃𝑘 − 𝐯𝑘‖22
≤𝜅 max

0≤𝑘≤𝜅 ‖𝐮̃𝑘 − 𝐯𝑘‖22‖𝑓‖2𝐋2()

≤(𝑁− 4
𝑑+6 log(𝑁))‖𝑓‖2𝐋2(). (71)

Combining (67), (70), and (71) with (64) implies that in the case 𝑑 ≥ 2 we have

‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝜅
𝑡 𝑓‖22

≤3‖ 𝜅∑
𝑘=0

(𝑒−𝜆
𝑁,𝜖
𝑘

𝑡 − 𝑒−𝜇𝑘𝑡)⟨𝐮̃𝑘, 𝜌𝑓⟩2𝐮̃𝑘‖22
+ 3‖ 𝜅∑

𝑘=0
𝑒−𝜇𝑘𝑡

(⟨𝐮̃𝑘, 𝜌𝑓⟩2 − ⟨𝑓,𝜑𝑘⟩𝐋2()
)
𝐮̃𝑘‖22

+ 3‖ 𝜅∑
𝑘=0

𝑒−𝜇𝑘𝑡⟨𝑓,𝜑𝑘⟩𝐋2()(𝐮̃𝑘 − 𝐯𝑘)‖22
≤ 𝑡2

(‖𝑓‖2𝐋2()
+
√

log𝑁
𝑁

‖𝑓‖2∞
)
(𝑁−4∕(𝑑+6))

+
(
log𝑁

𝑁
4
𝑑+6

)‖𝑓‖2𝐋2() +

(

(
(log𝑁)3∕2

𝑁
4
𝑑+6 +

1
2

)
+

(
log𝑁
𝑁

))‖𝑓‖2∞
4

35

+(𝑁−
𝑑+6 log(𝑁))‖𝑓‖2𝐋2()
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≤max{𝑡2,1}

(

(
log𝑁

𝑁
4
𝑑+6

)‖𝑓‖2𝐋2() +
(
(log𝑁)3∕2

𝑁
4
𝑑+6 +

1
2

)‖𝑓‖2∞
)

(72)

=max{𝑡2,1}
(
log𝑁

𝑁
4
𝑑+6

)(‖𝑓‖2𝐋2()
+
√

log𝑁
𝑁

‖𝑓‖2∞
)

here in (72) we used the fact that 𝑑 ≥ 2. Repeating the final string of inequalities in the case where 𝑑 = 1, we instead obtain

‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝜅
𝑡 𝑓‖22 ≤max{𝑡2,1}

(

(
log𝑁
𝑁4∕7

)‖𝑓‖2𝐋2()
+

(
log𝑁
𝑁

)‖𝑓‖2∞)
 desired. □

oof of Corollary 1. We first note that

‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝑡𝑓‖22 ≤ 2‖𝐻𝑁,𝜖,𝜅,𝑡𝜌𝑓 − 𝜌𝐻𝜅
𝑡 𝑓‖22 + 2‖𝜌𝐻𝑡𝑓 − 𝜌𝐻𝜅

𝑡 𝑓‖22.
mma 5 implies that with probability at least 1 − 

(
1
𝑁9

)
‖𝜌(𝐻𝑡𝑓 −𝐻𝜅

𝑡 𝑓 )‖22 ≤ ‖𝐻𝑡𝑓 −𝐻𝜅
𝑡 𝑓‖2𝐋2() + ‖𝐻𝑡𝑓 −𝐻𝜅

𝑡 𝑓‖2∞√18 log𝑁
𝑁

.

erefore, applying Lemma 4 implies

‖𝜌(𝐻𝑡𝑓 −𝐻𝜅
𝑡 𝑓 )‖22 ≤ 𝑒−2𝑡𝜇𝜅+1‖𝑓‖2𝐋2() +

(√
log𝑁
𝑁

)‖𝑓‖2∞.
plying Theorem 10 thus completes the proof. □

pendix M. The proof of Theorem 12

In order to prove Theorem 12, we will need two lemmas.

mma 10. Let 𝑓 ∈ 𝐋2(), and let 𝑝 = (𝑗1, … , 𝑗𝑚) be a path of length 𝑚, then

‖𝑈 [𝑝]𝑓‖∞ ≤ 2𝑚‖𝑓‖∞.
oof of Lemma 10. Young’s inequality and (36) implies that for all 𝑡 > 0 we have ‖𝐻𝑡𝑓‖∞ ≤ ‖𝑓‖∞. Therefore, the case where 𝑚 =
follows from the triangle inequality and the fact that 𝜎 is non-expansive. The general case follows from the fact that ‖𝑈 [𝑗1, … , 𝑗𝑚] =
[𝑗𝑚] … 𝑈 [𝑗1]. □

mma 11. For all 𝐱, 𝐲 ∈ℝ𝑁 and all 0 ≤ 𝑗 ≤ 𝐽 we have
‖𝐴𝐽,𝑁𝐱 −𝐴𝐽,𝑁𝐲‖2 ≤ ‖𝐱 − 𝐲‖2

d

‖𝑈𝑁 [𝑗]𝐱 −𝑈𝑁 [𝑗]𝐲‖2 ≤ ‖𝑊𝑗,𝑁𝐱 −𝑊𝑗,𝑁𝐲‖2 ≤ ‖𝐱 − 𝐲‖2.
oof. By construction we have, for 1 ≤ 𝑗 ≤ 𝐽

𝑊𝑗,𝑁𝐱 −𝑊𝑗,𝑁𝐲 = (𝐻𝑁,𝜖,𝜅,2𝑗−1 −𝐻𝑁,𝜖,𝜅,2𝑗 )(𝐱 − 𝐲)

=
𝜅∑
𝑘=0

(𝑒−𝜆
𝑁,𝜖
𝑘

2𝑗−1 − 𝑒−𝜆
𝑁,𝜖
𝑘

2𝑗 )𝐮𝑘𝐮𝑇𝑘 (𝐱 − 𝐲).

erefore, the fact that ‖𝑊𝑗,𝑁𝐱 −𝑊𝑗,𝑁𝐲‖2 ≤ ‖𝐱 − 𝐲‖2 follows from the fact that the vectors {𝐮𝑘}𝜅𝑘=0 are an orthonormal basis for 
eir span and the fact that

|𝑒−𝜆𝑁,𝜖𝑘
2𝑗−1 − 𝑒−𝜆

𝑁,𝜖
𝑘

2𝑗 | ≤ 1.

e bounds for 𝑊0,𝑁 and 𝐴𝐽,𝑁 follow similarly and the bound for 𝑈𝑁 [𝑗] follows from the fact that 𝜎 is nonexpansive. □

oof of Theorem 12. We argue by induction on 𝑚. To establish the base case, we let 𝑝 = (𝑗1) and observe that 𝜎 commutes with 𝜌. 
36

erefore, we have
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‖𝑈𝑁 [𝑗1]𝜌𝑓 − 𝜌𝑈 [𝑗1]𝑓‖22 = ‖𝜎𝑊𝑗1 ,𝑁
𝜌𝑓 − 𝜌𝜎𝑊𝑗𝑓‖22

= ‖𝜎𝑊𝑗1 ,𝑁
𝜌𝑓 − 𝜎𝜌𝑊𝑗𝑓‖22

≤ ‖𝑊𝑗1 ,𝑁
𝜌𝑓 − 𝜌𝑊𝑗𝑓‖22,

here the final inequality follows from the fact that 𝜎 is non-expansive. Therefore, the case where 𝑚 = 1 now follows from Theo-
m 11.
Now suppose the theorem is true for 𝑚 − 1. Let 𝑝 = (𝑗1, … , 𝑗𝑚) be a path of length 𝑚. Let 𝑝𝑚−1 = (𝑗1, … , 𝑗𝑚−1) so that 𝑈 [𝑝] =

[𝑗𝑚]𝑈 [𝑝𝑚−1] and 𝑈𝑁 [𝑝] =𝑈𝑁 [𝑗𝑚]𝑈𝑁 [𝑝𝑚−1]. Then,

‖𝑈𝑁 [𝑝]𝜌𝑓 − 𝜌𝑈 [𝑝]𝑓‖22
=‖𝑈𝑁 [𝑗𝑚]𝑈𝑁 [𝑝𝑚−1]𝜌𝑓 − 𝜌𝑈 [𝑗𝑚]𝑈 [𝑝𝑚−1]𝑓‖22
=‖𝑈𝑁 [𝑗𝑚]𝑈𝑁 [𝑝𝑚−1]𝜌𝑓 −𝑈𝑁 [𝑗𝑚]𝜌𝑈 [𝑝𝑚−1]𝑓 +𝑈𝑁 [𝑗𝑚]𝜌𝑈 [𝑝𝑚−1]𝑓 − 𝜌𝑈 [𝑗𝑚]𝑈 [𝑝𝑚−1]𝑓‖22
≤2‖𝑈𝑁 [𝑗𝑚]𝑈𝑁 [𝑝𝑚−1]𝜌𝑓 −𝑈𝑁 [𝑗𝑚]𝜌𝑈 [𝑝𝑚−1]𝑓‖22 + 2‖𝑈𝑁 [𝑗𝑚]𝜌𝑈 [𝑝𝑚−1]𝑓 − 𝜌𝑈 [𝑗𝑚]𝑈 [𝑝𝑚−1]𝑓‖22
≤2‖𝑈𝑁 [𝑝𝑚−1]𝜌𝑓 − 𝜌𝑈 [𝑝𝑚−1]𝑓‖22 + 2‖𝑈𝑁 [𝑗𝑚]𝜌𝑈 [𝑝𝑚−1]𝑓 − 𝜌𝑈 [𝑗𝑚]𝑈 [𝑝𝑚−1]𝑓‖22,

here in the final inequality we used Lemma 11. The term ‖𝑈𝑁 [𝑝𝑚−1]𝜌𝑓 − 𝜌𝑈 [𝑝𝑚−1]𝑓‖22 may be immediately bounded by the 
ductive hypothesis. Moreover, we may also apply the inductive hypothesis with 𝑈 [𝑝𝑚−1]𝑓 in place of 𝑓 to see

‖𝑈𝑁 [𝑗𝑚]𝜌𝑈 [𝑝𝑚−1]𝑓 − 𝜌𝑈 [𝑗𝑚]𝑈 [𝑝𝑚−1]𝑓‖22
≤ 22𝑗max

((

(
log𝑁

𝑁
4
𝑑+6

)
+(𝑒−𝜇𝜅+1 )

)‖𝑈 [𝑝𝑚−1]𝑓‖2𝐋2() +
(√

log𝑁
𝑁

)‖𝑈 [𝑝𝑚−1]𝑓‖2∞
)

ratively applying Proposition 1 implies that ‖𝑈 [𝑝𝑚−1]𝑓‖𝐋2() ≤ ‖𝑓‖𝐋2() and Lemma 10 implies‖𝑈 [𝑝𝑚−1]𝑓‖∞ ≤ 2𝑚−1‖𝑓‖∞. 
erefore, the result follows. □

pendix N. The proofs of Theorems 13 and 14

e Proof of Theorem 13.

‖𝑆𝐽,𝑁 [𝑝]𝜌𝑓 − 𝜌𝑆𝐽 [𝑝]𝑓‖22
=‖𝐴𝐽,𝑁𝑈𝐽,𝑁 [𝑝]𝜌𝑓 − 𝜌𝐴𝐽𝑈 [𝑝]𝑓‖22
≤2‖𝐴𝐽,𝑁𝑈𝐽,𝑁 [𝑝]𝜌𝑓 −𝐴𝐽,𝑁𝜌𝑈 [𝑝]𝑓‖22 + 2‖𝐴𝐽,𝑁𝜌𝑈 [𝑝]𝑓 − 𝜌𝐴𝐽𝑈 [𝑝]𝑓‖22
≤2‖𝐴𝐽,𝑁‖2‖𝑈𝐽,𝑁 [𝑝]𝜌𝑓 − 𝜌𝑈 [𝑝]𝑓‖22 + 2‖𝐴𝐽,𝑁𝜌𝑈 [𝑝]𝑓 − 𝜌𝐴𝐽𝑈 [𝑝]𝑓‖22
≤2‖𝑈𝐽,𝑁 [𝑝]𝜌𝑓 − 𝜌𝑈 [𝑝]𝑓‖22 + 2‖𝐴𝐽,𝑁𝜌𝑈 [𝑝]𝑓 − 𝜌𝐴𝐽𝑈 [𝑝]𝑓‖22,

here the last inequality uses Lemma 11. To bound ‖𝑈𝐽,𝑁 [𝑗]𝜌𝑓 − 𝜌𝑈 [𝑗]𝑓‖22, we may apply Theorem 12. To bound the second term, 
e apply Corollary 1 with 𝑡 = 2𝐽 to obtain

‖𝐴𝐽,𝑁𝜌𝑈 [𝑝]𝑓 − 𝜌𝐴𝐽𝑈 [𝑝]‖22
≤22𝐽

((

(
log𝑁

𝑁
4
𝑑+6

)
+(𝑒−2𝐽+1𝜇𝜅+1 )

)‖𝑓‖2𝐋2() +
(√

log𝑁
𝑁

)‖𝑓‖2∞
)
.

ratively applying Proposition 1 implies that ‖𝑈 [𝑝𝑚−1]𝑓‖𝐋𝟐() ≤ ‖𝑓‖𝐋𝟐() and Lemma 10 implies‖𝑈 [𝑝𝑚−1]𝑓‖∞ ≤ 2𝑚−1‖𝑓‖∞. 
erefore, the result follows. □

e Proof of Theorem 14. Let 𝛼0 be the scalar from Theorem 9 with 𝑘 = 0. By Remark 1, and the definition of the non-windowed 
attering coefficients, we may assume without loss of generality that 𝛼0 is non-negative (since −𝜑0 is also an eigenfunction). Thus, 
calling that 𝐯0 = 𝜌𝜑0, we see that by the definition of the non-windowed scattering coefficients, the triangle inequality, and the 
uchy-Schwarz inequality we have

|𝑆𝑁 [𝑝]𝜌𝑓 − 𝑆[𝑝]𝑓 | (73)

≤|⟨𝑈𝑁 [𝑝]𝜌𝑓 ,𝐮0⟩2 − ⟨𝑈 [𝑝]𝑓,𝜑0⟩𝐋2()|
≤|⟨𝑈𝑁 [𝑝]𝜌𝑓 ,𝐮0⟩2 − ⟨𝜌𝑈 [𝑝]𝑓,𝐯0⟩2|+ |⟨𝜌𝑈 [𝑝]𝑓,𝐯0⟩2 − ⟨𝑈 [𝑝]𝑓,𝜑0⟩𝐋2()|

1

37

=|⟨𝑈𝑁 [𝑝]𝜌𝑓 ,𝐮0⟩2 − ⟨𝛼0 𝜌𝑈 [𝑝]𝑓,𝛼0𝐯0⟩2|+ |⟨𝜌𝑈 [𝑝]𝑓,𝐯0⟩2 − ⟨𝑈 [𝑝]𝑓,𝜑0⟩𝐋2()|
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≤|⟨𝑈𝑁 [𝑝]𝜌𝑓 ,𝐮0 − 𝛼0𝐯0⟩2|+ |⟨𝑈𝑁 [𝑝]𝜌𝑓 − 1
𝛼0
𝜌𝑈 [𝑝]𝑓,𝛼0𝐯0⟩2|+ |⟨𝜌𝑈 [𝑝]𝑓,𝐯0⟩2 − ⟨𝑈 [𝑝]𝑓,𝜑0⟩𝐋2()|

≤‖𝑈𝑁𝜌𝑓‖2‖𝐮0 − 𝛼0𝐯0‖2 + ‖𝑈𝑁 [𝑝]𝜌𝑓 − 1
𝛼0
𝜌𝑈 [𝑝]𝑓‖2‖𝛼0𝐯0‖2 + |⟨𝜌𝑈 [𝑝]𝑓, 𝜌𝜑0⟩2 − ⟨𝑈 [𝑝]𝑓,𝜑0⟩𝐋2()|. (74)

mmas 5 and 11 together with the inequality 
√
𝑎2 + 𝑏2 ≤ |𝑎| + |𝑏| imply

‖𝑈𝑁𝜌𝑓‖2 ≤ ‖𝜌𝑓‖2 ≤ ‖𝑓‖𝐋2() +
(
18 log𝑁
𝑁

)1∕4 ‖𝑓‖∞
ith probability at least 1 − 

(
1
𝑁9

)
and Theorem 9 implies that

‖𝐮0 − 𝛼0𝐯0‖2 =
(
𝑁

− 2
𝑑+6

√
log𝑁

)
,

ain with probability at least 1 − 
(

1
𝑁9

)
. Therefore,

‖𝑈𝑁𝜌𝑓‖2‖𝐮0 − 𝛼0𝐯0‖2 ≤
(
𝑁

− 2
𝑑+6

√
log𝑁

)‖𝑓‖𝐋2() +
(
𝑁

− 2
𝑑+6 −

1
4 (log𝑁)3∕4

)‖𝑓‖∞. (75)

eorem 9 shows that |𝛼0| = 1 + 𝑜(1), and (35) implies that ‖𝜑0‖𝐋2() = ‖𝜑0‖∞ = 1. Therefore, Lemma 5 implies

‖𝛼0𝐯0‖2 ≤ (1 + 𝑜(1))‖𝜌𝜑0‖2 ≤ (1 + 𝑜(1))

(‖𝜑0‖2𝐋2()
+
√

log𝑁
𝑁

‖𝜑0‖2∞
)

=(1). (76)

oposition 1 and a simple induction argument implies ‖𝑈 [𝑝]𝑓‖𝐋2() ≤ ‖𝑓‖𝐋2(), and Remark 8 implies

|||| 1𝛼𝑘 − 1
|||| ≤

(√
log𝑁
𝑁

)
+

(
log(𝑁)
𝑁4∕(𝑑+6)

)
.

erefore, by Theorem 12, Lemma 5, and Lemma 10, we have

‖𝑈𝑁 [𝑝]𝜌𝑓 − 1
𝛼0
𝜌𝑈 [𝑝]𝑓‖2 ≤ ‖𝑈𝑁 [𝑝]𝜌𝑓 − 𝜌𝑈 [𝑝]𝑓‖2 + |||| 1𝛼0 − 1

|||| ‖𝜌𝑈 [𝑝]𝑓‖2
≤ 2𝐽

[(

(√

log𝑁

𝑁
2
𝑑+6

)
+(𝑒−𝜇𝜅+1∕2)

)‖𝑓‖𝐋2() +
((

log𝑁
𝑁

)1∕4
)‖𝑓‖∞]

+

(

(√

log𝑁
𝑁

)
+

(
log(𝑁)
𝑁4∕(𝑑+6)

))‖𝑓‖𝐋2()

+

(

((

log𝑁
𝑁

)3∕4
)

+
(

log5∕4(𝑁)
𝑁4∕(𝑑+6)+1∕4

))‖𝑓‖∞
=

(

(√

log𝑁

𝑁
2
𝑑+6

)
2𝐽 +

(√
log𝑁
𝑁

)
+(𝑒−𝜇𝜅+1∕2)2𝐽

)‖𝑓‖𝐋2()

+
((

log𝑁
𝑁

)1∕4
)
2𝐽‖𝑓‖∞. (77)

stly, we again apply Lemma 5 and Lemma 10 to see that

|⟨𝜌𝑈 [𝑝]𝑓, 𝜌𝜑0⟩2 − ⟨𝑈 [𝑝]𝑓,𝜑0⟩𝐋2()| =
(√

log𝑁
𝑁

)‖𝑈 [𝑝]𝑓𝜑0‖∞
=

(√
log𝑁
𝑁

)‖𝑓‖∞ (78)

ith probability at least 1 − 
(

1
𝑁9

)
. Combining (74) with (75), (76), (77), and (78) yields

|𝑆𝑁 [𝑝]𝜌𝑓 − 𝑆[𝑝]𝑓 |
≤‖𝑈𝑁𝜌𝑓‖2‖𝐮0 − 𝛼0𝐯0‖2 + ‖𝑈𝑁 [𝑝]𝜌𝑓 − 1

𝛼0
𝜌𝑈 [𝑝]𝑓‖2‖𝛼0𝐯0‖2 + |⟨𝜌𝑈 [𝑝]𝑓, 𝜌𝜑0⟩2 − ⟨𝑈 [𝑝]𝑓,𝜑0⟩𝐋2()|(

− 2 √ ) (
− 2 − 1 3∕4

)

38

≤ 𝑁 𝑑+6 log𝑁 ‖𝑓‖𝐋2() + 𝑁 𝑑+6 4 (log𝑁) ‖𝑓‖∞
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[1
[1

[1

[1
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[1
[2
[2
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+

(

(√

log𝑁

𝑁
2
𝑑+6

)
2𝐽 +

(√
log𝑁
𝑁

)
+(𝑒−𝜇𝜅+1∕2)2𝐽

)‖𝑓‖𝐋2()

+
((

log𝑁
𝑁

)1∕4
)
2𝐽‖𝑓‖∞ +

(√
log𝑁
𝑁

)‖𝑓‖∞
≤2𝐽

[(

(√

log𝑁

𝑁
2
𝑑+6

)
+(𝑒−𝜇𝜅+1∕2))‖𝑓‖𝐋2() +

((
log𝑁
𝑁

)1∕4
)‖𝑓‖∞] . □

pendix O. Details on the baseline method

For both biomedical datasets, in our baseline classification method, we first performed 𝑘-means clustering on all cells from all 
tients (modeled as points in either ℝ30 or ℝ14). The value of 𝑘 was based on expected subsets of immune cells: for the melanoma 
ta we set 𝑘 = 3 based on expected subsets of CD4+ T helper cells, CD8+ killer T cells, and FOXP3+ T regulatory cells, and in 
VID data we again set 𝑘 = 3 based on expected subsets of CD14+CD16++ non-classical monocytes, CD14++CD16 intermediate 
onocytes, and CD14++CD16- classical monocytes. Then, for each patient, we identified the proportion of cells corresponding to 
at patient lying within each cluster. We then used these features as input to a decision tree classifier.

pendix P. Training details for Section 7.3

The results for baseline methods presented in Table 3 are taken directly from [87]. Therefore, for a fair comparison, we use the 
me validation procedure when training our method as was used in [87]. For each of the three meta-graphs, we independently, 
ndomly generated 5 realizations of the DSBM. For each of these realizations, we randomly generated 10 training/test/validation 
lits. To tune our hyperparameters, 𝐽 , 𝑞, 𝑐 and 𝛾 (the latter two of which are hyperparameters of the SVM), we picked a single 
alization of each model and performed a grid search, choosing the parameters with the best average validation accuracy over the 
splits. We then used these hyperparameters for all five realizations of each model (following the standard procedure of training 
 the training set and testing on the test set, holding out the validation set). The results reported in Table 3 are the test accuracies 
eraged over both the 5 realizations of each model and the 10 training/test/validation splits (i.e., over all 50 of the test sets). In our 
arch, we selected 𝐽 from a pool of {2, 3, … , 12}, magnetic Laplacian charge parameter 𝑞 from a pool of {0, .05, .10, .15, .20, .25}, 
d SVM parameters from pools of 𝑐 ∈ {25, 100, 250, 500, 1000} and 𝛾 ∈ {10−5, 10−4, 10−3, 10−2, 10−1}.
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