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Spectral holographic trapping: Creating dynamic force landscapes with polyphonic waves
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Acoustic trapping uses forces exerted by sound waves to transport small objects along specified trajectories in
three dimensions. The structure of the time-averaged acoustic force landscape acting on an object is determined
by the amplitude and phase profiles of the sound’s pressure wave. These profiles typically are sculpted by
deliberately selecting the amplitude and relative phase of the sound projected by each transducer in large arrays
of transducers, all operating at the same carrier frequency. This approach leverages a powerful analogy with
holographic optical trapping at the cost of considerable technical complexity. Acoustic force fields also can be
shaped by the spectral content of the component sound waves in a manner that is not feasible with light. The
same theoretical framework that predicts the time-averaged structure of monotone acoustic force landscapes can
be applied to spectrally rich sound fields in the quasistatic approximation, creating opportunities for dexterous
control using comparatively simple hardware. We demonstrate this approach to spectral holographic acoustic
trapping by projecting acoustic conveyor beams that move millimeter-scale objects along prescribed paths.
Spectral control of reflections provides yet another opportunity for controlling the structure and dynamics of an
acoustic force landscape. We use this approach to realize two variations on the theme of a wave-driven oscillator,

a deceptively simple dynamical system with surprisingly complex phenomenology.

DOI: 10.1103/PhysRevE.109.044901

I. INTRODUCTION

Forces exerted by sound waves can levitate and transport
small objects without physical contact, which is a boon for
processing sensitive [1] and hazardous materials [2]. The in-
terplay of sound waves with small scatterers also provides an
archetypal model for investigating the physics of wave-matter
composite systems [3—6]. Most implementations of acoustic
trapping use sound waves of a single fixed frequency and
achieve dexterous control by suitably structuring the waves’
amplitude and phase profiles with large arrays of acoustic
“pixels” [7,8]. Like holographic optical traps [9], this kind of
acoustic trapping pattern is reconfigured by actively changing
the amplitude and phase of the wave projected by each pixel
in the array.

Here, we draw attention to an alternative approach to dy-
namic acoustic trapping whose ability to move matter along
prescribed paths is encoded in the spectral content of a small
number of acoustic sources. We illustrate the potential utility
of such spectral holograms by demonstrating dynamic acous-
tic manipulation along a single axis using just two acoustic
pixels emitting stationary sound fields.

Section I reviews relevant elements of the theory of acous-
tic forces and motivates the quasistatic approximation used to
design spectral holograms. These principles are used in Sec. 11
to realize illustrative examples of dynamic acoustic force
landscapes, including a unidirectional acoustic conveyor and a
bidirectional acoustic scanner that are realized experimentally
using the acoustic levitator depicted in Fig. 1. Experimental
realizations of spectral holographic trapping also demonstrate
a role for cavity resonances in creating structured force land-
scapes. Inertia and drag also contribute to the dynamics of
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objects moving through acoustic force landscapes in low-
viscosity media, such as air. Section III introduces methods to
incorporate their influence and uses this formalism to describe
the behavior of a wave-driven oscillator [10].

II. ACOUSTIC FORCES

A steady sound wave at frequency o propagating through
a fluid medium can be characterized by the real-valued ampli-
tude profile u(r) and phase profile ¢(r) of its pressure field:

p(r, 1) = u(r) e?® e~ 0

This structured wave can be decomposed into plane waves
whose wave number satisfies the standard dispersion relation
k = w/c,,, where ¢, is the speed of sound in the medium. For
simplicity, we assume that the pressure wave’s amplitude is
small enough that we may neglect the fluid’s viscosity and
treat the sound’s propagation to be nondispersive and linear.
This also means that we may neglect acoustic streaming in
the medium, which is reasonable for acoustic levitation in
air. Under these assumptions, the pressure acts as the scalar
potential for the sound wave’s velocity field:

o(r 1) = —wLVp, )

where p,, is the density of the medium.
A small sphere of radius a, at position r in this field
experiences a time-averaged acoustic force [11,12],

1 * : *
F(r)=sRe o pVp' +p DAL S (3a)

j=1
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acoustic pixel

acoustic pixel

FIG. 1. (a) Acoustic trap holding a single millimeter-scale
particle in air at a carrier frequency of f = w/(2w) = 40kHz.
(b) Schematic representation of spectral holographic trapping. Two
acoustic pixels launch counterpropagating pressure waves, p;(w;)
and p,(w,), into a spherical cavity of height H defined by the bound-
aries of the transducer banks. Dense rigid particles can be trapped at
nodes in the combined pressure field. The traps’ positions evolve in
time based on the spectral content of the two projected waves.

where @ and B are the particle’s monopole and dipole po-
larizabilities, respectively. For a spherical particle of radius
a, composed of a material with density p, and isentropic
compressibility «, [11,12], the polarizabilities are

A .
o = ?”a; Km fo [—1 + %(fo +f1)(kap)3] (3b)

i
B =2na pu fi [1 + 2 (ka,,)ﬂ, (3¢)
where k,, = (pnc2)”! is the isentropic compressibility of the

fluid medium, and where the monopole and dipole scattering
coefficients are

K
fo=1--F (3d)
m
and
Pp — Pm
fi= —F——, (3e)
lop + me
respectively.

Substituting Eqgs. (1) and (2) into Eq. (3) yields the time-
averaged force on a sphere,

F(r) = —VUgs(r) + O{(ka,)°}, (4a)
where
2 L oo
Ug(r)y=Au +Bk—2V u (4b)
is the classic Gor’kov potential [12,13]. The coefficients,
3
A= ai (fo - Efl) (40)
and
T
B=—Za,6nfi, (4d)

are both negative for particles that are denser and less
compressible than the medium. Such particles therefore are
attracted to nodes of the pressure field.

The force landscape described by Eq. (4) depends on the
pressure wave’s amplitude rather than its phase and is mani-
festly conservative if u(r) is independent of time. The phase
profile ¢(r) directs nonconservative acoustic radiation forces
[12] whose prefactors scale with particle size as (ka,,)6 and
therefore tend to be negligibly weak for subwavelength par-
ticles. Phase-gradient contributions to F(r) vanish identically
in standing waves, which have no phase gradients.

Equation (3a) represents an average over one acoustic
period [14]. The same expression approximately describes
changes in the acoustic force landscape F (r) due to variations
in the pressure wave’s amplitude u(r, t), provided that those
variations are sufficiently slow. This quasistatic approxima-
tion is valid when

1 Ou(r,t)
u(r,t) 0t

, &)

which is satisfied when the bandwidth Aw of the waveform
emitted by each acoustic pixel is much smaller than the center
frequency w.

III. DYNAMIC ACOUSTIC TRAPPING WITH SPECTRAL
HOLOGRAMS

A superposition of sound waves at the same frequency
can be expressed in the form of Eq. (1), with u(r) and ¢(r)
representing the amplitude and the phase of the associated in-
terference pattern, respectively. This approach has been used
to create holographic acoustic traps [7,15—19], by superposing
waves of the same frequency emanating from large arrays
of sources. These holographic acoustic trapping patterns can
be changed over time by updating the signals emitted by the
transducers to produce the desired time-dependent amplitude
and phase patterns, u(r, t) and ¢(r, t) [19].

Alternatively, time-varying acoustic force landscapes can
be created by superposing steady sound waves at different fre-
quencies; the resulting beats manifest as slow time variations
of the Gor’kov potential Ug(r, t) [20]. The spectral content
of a polyphonic superposition can supplement the spatiotem-
poral variations in a standard acoustic hologram to create
dynamic acoustic traps using comparatively simple hardware.
We refer to this more expansive approach to dynamic wave-
front shaping as “spectral holography.”

To illustrate the opportunities created by spectral holog-
raphy, we demonstrate programmable transport along one
spatial dimension using force landscapes created with two
acoustic pixels. Our experimental system, illustrated in Fig. 1,
was introduced by Marzo, Barnes, and Drinkwater [21] and
consists of two banks of ultrasonic transducers (Murata
MAA40S4S, 10 mm in diameter) operating in air at a nominal
frequency of 40 kHz. Each bank consists of 36 transducers
arranged in concentric hexagonal rings of 6, 12, and 18 trans-
ducers that are ganged together to act as a single acoustic
pixel. The transducers that make up each acoustic pixel are
mounted on a three-dimensional-printed spherical cap and are
oriented to launch waves toward the center of the sphere. Each
acoustic pixel is driven by a waveform synthesizer (Stanford
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Research Systems, DS345) with an amplitude up to 10 V.
The two synthesizers are synchronized to a common time base
to ensure that the two pixels are driven with a stable relative
phase.

The two curved transducer banks share a common center,
as depicted in Fig. 1(b). The caps therefore define a cylindrical
section of a spherical cavity of diameter H = 10cm. The
boundaries of this cavity are the top and bottom transducer
banks.

Previous studies have described the traveling waves
projected by the two acoustic pixels using finite-element
modeling [21]. To better illustrate the principles of spectral
holography, we instead adopt a simplified analytic model for
the pressure waves along the central vertical axis,

pi(z, 1) & pyefietion (6a)
and
pa(z, ) & poetmiont (6b)

where pg is the common pressure amplitude, @; and w, are the
driving frequencies, and k; and k;, are the corresponding wave
numbers. These counterpropagating waves interfere within
the cavity to create alternating nodes and antinodes of the
pressure field along the central axis.

A. Diphonic acoustic conveyor

If both sources project waves at the same frequency, w; =
w, = w, their interference creates a standing wave with axial
nodes separated by half a wavelength. Each node acts as a po-
tential energy well for small particles that are denser and less
compressible than the medium, such as the airborne expanded
polystyrene bead shown in Fig. 1(a). Detuning the two sources
by Aw < w so that w1 = w — Aw/2 and w; = w + Aw/2
creates beats in the axial pressure field,

Aw Aw
p(z,t) = 2pg cos (kz — Tt> cos <2—z — wt), (7
Cm

that manifest themselves as motion of the time-averaged axial
force field,

F,(z,1) = Fy(w) sin(2kz — Awt) %, (8)
after substitution into Eq. (4). The prefactor
Fy(@) = (A = 2B)kp; ©)

is positive for dense incompressible particles, which therefore
tend to be trapped at the nodes of the pressure field. The entire
force landscape moves along Z at a steady speed,
Aw
. = Cp ——, 10
Ve =¢ o (10)
that is proportional to the detuning Aw. Setting aside com-
plications due to inertia and drag [22-25], trapped particles
should travel along with the landscape,

2p(t) = 2, (1) (11)

where z,(t) = z,(0) + vt is the position of the nth pressure
node at time ¢. This type of traveling force landscape is known
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FIG. 2. Measured trajectories (black curves) for a 2 mm in di-
ameter EPS bead being transported through air by the instrument
shown in Fig. 1. (a) and (b) Unidirectional transport in a diphonic
acoustic conveyor. (c) and (d) Bidirectional transport in a polyphonic
acoustic scanner. Measurements are compared with predictions of
Eq. (17) for €y = 0.38 (cyan curves). (b) and (d) Tuning the carrier
frequency to a cavity resonance at f = w/(27) = (40.0 £ 0.1)kHz
creates a standing wave that modulates the trajectory. (a) and (c) De-
tuning to f = 40.7kHz suppresses the standing wave. Conveyor:
Af = Aw/(2mw) = 2Hz. Scanner: A¢p = 7207.

as a “conveyor” [21,26-30] and is the simplest example of a
spectral hologram.

This principle previously has been used to transport par-
ticles through water in pseudostanding waves created with
counterpoised plane-wave sources [30—32] and by sweeping
the frequency in a resonant cavity [33]. The same sort of linear
transport can be implemented in air using the system depicted
in Fig. 1. The system in that case is underdamped, and the
resulting motion reveals features of spectral holography that
have not previously been described.

The data in Fig. 2(a) demonstrate an acoustic conveyor
transporting a millimeter-scale bead through air. The 2-mm-
diameter particle is composed of type II expanded polystyrene
(EPS) foam with a measured [25] mass density of p, =
(30.5 £ 0.2) kg m~3 and an estimated [34] compressibility of
kp = 0.2 MPa™'. These values correspond to dimensionless
coupling constants near unity: fo = 0.97 and f; = 0.93.

The particle’s trajectory is recorded at 170 frames/s with a
monochrome video camera (FLIR, Blackfly S USB3) whose
5-ms exposure time is fast enough to avoid motion blurring
given the system magnification of 61 um/pixel. Each frame
in a video sequence is thresholded with Otsu’s method, and
the particle’s position is computed as the center of mass of
the resulting simply-connected cluster of foreground pixels.
The image of a typical particle yields a 1000-pixel cluster
whose axial centroid z,(t) can be located with an estimated
accuracy [25] of Az, = 0.17 pixel = 10 pm, which suffices
for our application.
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B. Polyphonic acoustic scanner

More sophisticated modes of transport can be achieved
with more sophisticated superpositions of tones. Such a
generalized conveyor, which we call a “scanner,” can be im-
plemented as the superposition of waves from two sources, as
depicted in Fig. 1(b), with time-varying relative phase,

(12a)
(12b)

pi(t) = po e
pa(t) = po ¥ e ™.
Such a superposition creates a time-averaged force landscape,
F,(z,1) = Fy(w) sin[2kz — ¢(1)] 2, (13)

whose traps travel along Z as

1
() = 2(0) = - 9(0). (14)

The resulting motion is slow in the sense that relevant varia-
tions in the relative phase satisfy |¢| <« @, where the dot refers
to a derivative with respect to time. Any faster variations are
suppressed in theory by the implicit time average in Eq. (4)
and physically by viscous drag and the particle’s inertia.

Active control of the relative phase ¢(¢) has been used in
the context of holographic optical trapping to project opti-
cal conveyors [26] and optical tractor beams [28], and more
recently has been used to demonstrate acoustic conveyors
[21]. Rather than actively sweeping the phase, however, we
instead can decompose ¢(¢) into its spectral components and
use those to create a scanner that operates in steady state
without active intervention. For example, a sinusoidal scanner
described by ¢(¢) = A¢ sin(£2t) can be implemented through
the Jacobi-Anger identity

pat)=po Y Ju(Ap) eI, (15)

n=—0oo

which specifies the frequencies needed to implement the scan-
ner and their relative amplitudes. A working example can
be projected with just the first few orders, n € [—4, 4]. The
resulting spectral hologram then transports trapped objects
back and forth continuously and smoothly without active in-
tervention. The data in Fig. 2(c) show such a scanner in action.

C. Spectral superposition of static and dynamic landscapes

Acoustic pixels are actively driven transducers. As a con-
sequence, they not only project sound waves but also act as
absorbing boundary conditions for incident waves [35]. This
feature has not been emphasized in previous acoustic-trapping
studies [21]. Active cancellation of reflections enables the
counterpoised acoustic pixels in an instrument such as the
example in Fig. 1 to create acoustic traps by straightforward
superposition, even when the cavity dimension H is not an
integer multiple of the wavelength.

In practice, acoustic pixels reflect a small proportion, €,
of incident sound waves. Reflections contribute to the force
landscape by forming standing waves within the cavity whose
amplitude can be controlled through the choice of w. The
associated force landscape, therefore, has both time-varying
and stationary components,

F(r,t)=F,(r,t)+ Fr), (16a)

Z [mm]

0_./4, U W W

t[s]

FIG. 3. Simulated trajectories, z,(¢), of the particle from Fig. 2
traveling through air in an acoustic conveyor as a function of the
acoustic levitator’s effective reflection coefficient €(w). In all cases,
the acoustic conveyor operates at detuning Af = Aw/(2w) = 1 Hz.
Tuning the carrier frequency w increases the reflection coefficient
from € = 0.1 to € = 1. The particle is trapped in the standing wave
when € > 0.5 and is set into oscillation by the conveyor’s periodic
forcing. The particle travels with the conveyor for € < 0.5 although
its trajectory is perturbed by the static standing wave.

where the standing-wave contribution is approximately

F,(r) ~ 2 e(w) Fy(w) sin(2kz) 2. (16b)

The factor of 2 in Eq. (16b) accounts for the independent con-
tributions from each of the pixels. The depth of the stationary
landscape’s modulation,

2H
e(w) = €y cos <—w>,

Cm

(16¢)

is proportional to the acoustic pixels’ reflection coefficient €
and can be tuned by adjusting the carrier frequency. For the
cavity depicted in Fig. 1, we find that particle trajectories
are consistent with €y = 0.38(2). The overall scale of the
stationary force landscape is set by Fy(w), which is given by
Eq. (9).

If the reflection coefficient is large enough, ¢y > 0.5, the
central frequency can be tuned so that 2¢(w) > 1. In that case,
the standing wave exerts enough force to trap the particle, and
the dynamic landscape acts as a time-dependent perturbation.
Representative trajectories for this mode of motion are plotted
in Fig. 3 as a function of €(w).

In the opposite limit of weak reflections, €(w) < 0.5, the
particle is transported by the moving conveyor across the
stationary landscape. The nodes then trace out trajectories,

1 -1
Zltle(@)] = z,(0) — 7 aretan [—EEZ; —tan <?)]

a7)

that reduce to Eq. (14) when €(w) = 0. This mode of motion
also is plotted in Fig. 3 and is consistent with the perturbed
trajectories observed experimentally in Figs. 2(b) and 2(d).
The particles’ trajectories increasingly deviate from the
traps’ trajectories as € (w) approaches 1/2 and the trajectories
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FIG. 4. Transport properties of a 2 mm in diameter EPS sphere moving through air in a diphonic acoustic conveyor. (a) Variance of the
particle’s departures from the conveyor’s planned trajectory as a function of the acoustic trap’s carrier frequency, f = w/(2m). Measured
values are computed with Eq. (18) and are plotted as discrete points. Solid curves denote analytic predictions of Eq. (17) (black curve)
and numerical solutions to Eq. (22) (orange curve). (b) Typical measured trajectories scaled according to Eq. (21) and colored to match
corresponding points in panel (a). (c) Power spectra of the trajectories in panel (b) showing the growth of harmonics in the particle’s trajectory
as the depth of modulation increases. (d) and (e) Numerical solutions of Eq. (22) for the same set of conditions. Conveyor detuning frequency:

Af = Aw/2rw =2Hz.

become increasingly sinuous. We quantify these deviations
with the kinematic variance

1 T
—/ (1) — 2 (T d1, (18)
T Jo

which is plotted as a function of the carrier frequency w in
Fig. 4(a). Measurements are compared with the prediction
obtained by setting z,(t) = z,(t|e(w)), which is plotted as
a solid curve. The kinematic model is consistent with the
measurement when the carrier frequency is tuned away from
the cavity resonance so that the particle travels smoothly
at constant speed. Tuning to the cavity resonance at f =
40.2 kHz maximizes the particle’s acceleration and increases
deviations between the trajectories of the particle and the trap.
These discrepancies can be resolved by accounting for inertial
corrections to the viscous drag acting on the particle.

oz(a)) =

IV. ACCOUNTING FOR INERTIA AND DRAG

A trapped particle hews to the trajectory of its acoustic trap
if the motion is slow enough to neglect the inertia of the fluid
medium [25]. More generally, the equation of motion for a
particle of mass m,,,

mpzp :Fa(zpyt)'sz(Zp)'i'Fd(Z.ps Zp)v (19)
reflects contributions from the active force landscape, the
stationary force landscape, and viscous drag, respectively.
Equation (19) omits the influence of gravity, whose principal
role is to offset the particle’s equilibrium position. For the
experiments described in Fig. 2, this offset is estimated to be
Az, = (80 £ 1) um [25].

The accelerating sphere experiences a drag force that

is described by the Basset-Boussinesq-Oseen equation
[22,24,36,37],

9t Z,(t)
Fd(z,,,z,,)—énnmap|:zp+fzp V= / —d ]

(20a)

which accounts for the inertia of the displaced fluid on
timescales set by the viscous relaxation time,

Pm 2
T= o a,. (20b)
Equation (20) is strictly valid for Reynolds numbers less than
unity and yields useful results for Reynolds numbers less than
100 [36,37].

The history dependence of the drag complicates an an-
alytic formulation of the transport properties for a general
spectral hologram. To illustrate the challenge, we consider
the comparatively simple case of a particle moving under the
influence of an acoustic conveyor. Competition between the
active and stationary force landscapes causes the particle to
oscillate at the beat frequency Aw about the moving trap’s
position. We therefore define the dimensionless displacement
in the comoving frame,

Awt, €(w)<0.5,

0, e(w) > 0.5. @D

C(t) = 2kz,(t) — {
Applying Egs. (19) and (20) then yields the following decep-
tively simple dimensionless equation of motion,

o - ( Aw )
"+bt'+¢=¢Esin|¢——3s), (22)
wo
where primes denote derivatives with respect to the dimen-
sionless time s = wyt. Equation (22) describes a wave-driven
oscillator [10] whose exceptionally rich phenomenology only
recently has been brought to light. Wave-driven oscillators
differ from more familiar nonlinear dynamical systems, such
as the Duffing oscillator [38,39], because their spatial non-
linearity is irreducibly coupled to the time dependence of the
driving.
The effective driving strength in Eq. (22),
2e(w),
é(w) = 1( )

2e(@)’

e(w) < 0.5,

e(w) > 0.5, (23)
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can be varied over the range é(w) € [0, 1] by adjusting the
carrier frequency relative to the cavity resonance. Similarly,
the natural frequency,

_ [2kk |1, €(w) < 0.5, 4
wo(w) = 7{«/26(60), e(w) > 0.5, 24

and the drag coefficient,

_ 6nnma,,{1,

b e(w) < 0.5,
@)= e |26,

e(w) > 0.5,

(25)

both depend on cavity tuning when €(w) > 0.5.
Equations (24) and (25) incorporate the inertial corrections
from Eq. (20) by introducing the dynamical mass [22,23,25],

gs(Aw)“

2 a,

m(Aw) = m,,{l + lp—’”[l + (262)

2 pp
under the simplifying assumption the particle oscillates har-
monically at the driving frequency Aw. The sphere’s effective
mass is increased in this approximation by the mass of the
fluid in a Prandtl-Schlichting boundary layer of thickness [22]

20m 1

§(Aw) = .
(Aw) o Ao

(26b)

This correction has been demonstrated to quantitatively model
the damped oscillations of a particle levitated in a static acous-
tic trap [25]. For particles moving in an acoustic conveyor, the
dynamic model more accurately accounts for the magnitude
of measured fluctuations, as can be seen in Fig. 4(a).

Measured acoustic-conveyor trajectories in Fig. 4(b) and
their power spectra in Fig. 4(c) are reproduced reasonably
well by the numerical solutions of Eq. (22) that are plotted
in Figs. 4(d) and 4(e). These examples illustrate the effect of
tuning the carrier frequency on the amplitude and harmonic
content of the particle’s dynamic response. Values of Fp and
mg used for the numerical solutions are obtained from mea-
sured trajectories using the analytical approach described in
Ref. [25]. The power spectra are computed as

2

1
S(SZ):‘ f LW (s)e ¥ ds| | 27)
0

using the Blackman-Harris window function W (s). The
wave-driven oscillator responds most strongly at the driv-
ing frequency 2 = Aw. Increasingly much power is directed
into harmonics of that driving frequency as the depth of
modulation increases. Agreement between the measured
and computed power spectra illustrates the utility of the
Basset-Boussinesq-Oseen (BBO) equation for interpreting the
behavior of wave-driven oscillators created with sound. At the
same time, the presence of strong harmonics suggests even
better agreement could be attained by seeking self-consistent
solutions to the equation of motion, including the BBO cor-
rection described in Eq. (20).

More generally, the wave-driven oscillator has been shown
[10] to respond at both harmonics and subharmonics of the
driving frequency and to undergo transitions between subhar-
monic states depending on the strength of the driving &(w),
the strength of the damping b(w), and the relationship be-
tween the driving frequency Aw and the oscillator’s natural
frequency wy. Transitions between subharmonic states feature
both period-doubling routes to chaos and Fibonacci cascades
[10]. No complete description of the wave-driven oscillator
is yet available, even in the weak-driving regime, € < 1. Pre-
vious experimental and numerical studies [10], furthermore,
have neglected the inertial corrections described by Eq. (20)
that are likely to have influenced their results. Future studies
of the wave-driven oscillator and related dynamical systems
would benefit both from the streamlined experimental im-
plementation afforded by spectral holography and from the
analytical approach discussed here.

V. DISCUSSION

Spectral holographic trapping uses interference among
waves at multiple frequencies to create time-averaged force
landscapes that evolve dynamically on the inertial timescales
of trapped objects. Spatiotemporal control afforded by the fre-
quency content of the projected waves reduces the complexity
of acoustic manipulation systems by replacing the many spa-
tial degrees of freedom required for conventional monotonic
holographic projection. Spectral holography therefore allows
complex force landscapes to be generated with small num-
bers of acoustic pixels. We have demonstrated two archetypal
examples, a unidirectional conveyor created with two frequen-
cies and a bidirectional scanner created with nine. We also
have shown that tuning the carrier frequency to cavity res-
onances can usefully implement a superposition of dynamic
and static force fields with no additional complexity. In the
case of an acoustic conveyor, this superposition implements
a wave-driven oscillator whose exceedingly rich dynamical
properties emerge from an interplay among the acoustic force
field, the particle’s inertia, and viscous drag in the supporting
medium. This study also highlights the importance of ac-
counting for the fluid’s inertia when planning and interpreting
the motions of particles in acoustic force landscapes.

The combination of rich spectral control and analytic
dynamical modeling expands the prospects for dexterous
acoustic manipulation of macroscopic materials. The present
study has focused on the dynamics of individual particles in
spectral holograms created within cavities. Additional oppor-
tunities can be imagined for free-space manipulation with
traveling waves and for self-organization guided by wave-
mediated interactions in many-body systems immersed in
spectral holograms.
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