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Acoustic trapping uses forces exerted by sound waves to transport small objects along specified trajectories in

three dimensions. The structure of the time-averaged acoustic force landscape acting on an object is determined

by the amplitude and phase profiles of the sound’s pressure wave. These profiles typically are sculpted by

deliberately selecting the amplitude and relative phase of the sound projected by each transducer in large arrays

of transducers, all operating at the same carrier frequency. This approach leverages a powerful analogy with

holographic optical trapping at the cost of considerable technical complexity. Acoustic force fields also can be

shaped by the spectral content of the component sound waves in a manner that is not feasible with light. The

same theoretical framework that predicts the time-averaged structure of monotone acoustic force landscapes can

be applied to spectrally rich sound fields in the quasistatic approximation, creating opportunities for dexterous

control using comparatively simple hardware. We demonstrate this approach to spectral holographic acoustic

trapping by projecting acoustic conveyor beams that move millimeter-scale objects along prescribed paths.

Spectral control of reflections provides yet another opportunity for controlling the structure and dynamics of an

acoustic force landscape. We use this approach to realize two variations on the theme of a wave-driven oscillator,

a deceptively simple dynamical system with surprisingly complex phenomenology.

DOI: 10.1103/PhysRevE.109.044901

I. INTRODUCTION

Forces exerted by sound waves can levitate and transport

small objects without physical contact, which is a boon for

processing sensitive [1] and hazardous materials [2]. The in-

terplay of sound waves with small scatterers also provides an

archetypal model for investigating the physics of wave-matter

composite systems [3–6]. Most implementations of acoustic

trapping use sound waves of a single fixed frequency and

achieve dexterous control by suitably structuring the waves’

amplitude and phase profiles with large arrays of acoustic

“pixels” [7,8]. Like holographic optical traps [9], this kind of

acoustic trapping pattern is reconfigured by actively changing

the amplitude and phase of the wave projected by each pixel

in the array.

Here, we draw attention to an alternative approach to dy-

namic acoustic trapping whose ability to move matter along

prescribed paths is encoded in the spectral content of a small

number of acoustic sources. We illustrate the potential utility

of such spectral holograms by demonstrating dynamic acous-

tic manipulation along a single axis using just two acoustic

pixels emitting stationary sound fields.

Section I reviews relevant elements of the theory of acous-

tic forces and motivates the quasistatic approximation used to

design spectral holograms. These principles are used in Sec. II

to realize illustrative examples of dynamic acoustic force

landscapes, including a unidirectional acoustic conveyor and a

bidirectional acoustic scanner that are realized experimentally

using the acoustic levitator depicted in Fig. 1. Experimental

realizations of spectral holographic trapping also demonstrate

a role for cavity resonances in creating structured force land-

scapes. Inertia and drag also contribute to the dynamics of

objects moving through acoustic force landscapes in low-

viscosity media, such as air. Section III introduces methods to

incorporate their influence and uses this formalism to describe

the behavior of a wave-driven oscillator [10].

II. ACOUSTIC FORCES

A steady sound wave at frequency ω propagating through

a fluid medium can be characterized by the real-valued ampli-

tude profile u(r) and phase profile φ(r) of its pressure field:

p(r, t ) = u(r) eiφ(r) e−iωt . (1)

This structured wave can be decomposed into plane waves

whose wave number satisfies the standard dispersion relation

k = ω/cm, where cm is the speed of sound in the medium. For

simplicity, we assume that the pressure wave’s amplitude is

small enough that we may neglect the fluid’s viscosity and

treat the sound’s propagation to be nondispersive and linear.

This also means that we may neglect acoustic streaming in

the medium, which is reasonable for acoustic levitation in

air. Under these assumptions, the pressure acts as the scalar

potential for the sound wave’s velocity field:

v(r, t ) = −
i

ωρm

∇p, (2)

where ρm is the density of the medium.

A small sphere of radius ap at position r in this field

experiences a time-averaged acoustic force [11,12],

F(r) =
1

2
Re

⎧

⎨

⎩
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FIG. 1. (a) Acoustic trap holding a single millimeter-scale

particle in air at a carrier frequency of f = ω/(2π ) = 40 kHz.

(b) Schematic representation of spectral holographic trapping. Two

acoustic pixels launch counterpropagating pressure waves, p1(ω1)

and p2(ω2), into a spherical cavity of height H defined by the bound-

aries of the transducer banks. Dense rigid particles can be trapped at

nodes in the combined pressure field. The traps’ positions evolve in

time based on the spectral content of the two projected waves.

where α and β are the particle’s monopole and dipole po-

larizabilities, respectively. For a spherical particle of radius

ap composed of a material with density ρp and isentropic

compressibility κp [11,12], the polarizabilities are

α =
4π

3
a3

p κm f0

[

−1 +
i

3
( f0 + f1)(kap)3

]

, (3b)

β = 2πa3
p ρm f1

[

1 +
i

6
f1(kap)3

]

, (3c)

where κm = (ρmc2
m)−1 is the isentropic compressibility of the

fluid medium, and where the monopole and dipole scattering

coefficients are

f0 = 1 −
κp

κm

(3d)

and

f1 =
ρp − ρm

ρp + 1
2
ρm

, (3e)

respectively.

Substituting Eqs. (1) and (2) into Eq. (3) yields the time-

averaged force on a sphere,

F(r) = −∇UG(r) + O{(kap)6}, (4a)

where

UG(r) = A u2 + B
1

k2
∇

2u2 (4b)

is the classic Gor’kov potential [12,13]. The coefficients,

A =
π

3
a3

p κm

(

f0 −
3

2
f1

)

(4c)

and

B = −
π

4
a3

p κm f1, (4d)

are both negative for particles that are denser and less

compressible than the medium. Such particles therefore are

attracted to nodes of the pressure field.

The force landscape described by Eq. (4) depends on the

pressure wave’s amplitude rather than its phase and is mani-

festly conservative if u(r) is independent of time. The phase

profile φ(r) directs nonconservative acoustic radiation forces

[12] whose prefactors scale with particle size as (kap)6 and

therefore tend to be negligibly weak for subwavelength par-

ticles. Phase-gradient contributions to F(r) vanish identically

in standing waves, which have no phase gradients.

Equation (3a) represents an average over one acoustic

period [14]. The same expression approximately describes

changes in the acoustic force landscape F(r) due to variations

in the pressure wave’s amplitude u(r, t ), provided that those

variations are sufficiently slow. This quasistatic approxima-

tion is valid when
∣

∣

∣

∣

1

u(r, t )

∂u(r, t )

∂t

∣

∣

∣

∣

≪ ω, (5)

which is satisfied when the bandwidth 
ω of the waveform

emitted by each acoustic pixel is much smaller than the center

frequency ω.

III. DYNAMIC ACOUSTIC TRAPPING WITH SPECTRAL

HOLOGRAMS

A superposition of sound waves at the same frequency

can be expressed in the form of Eq. (1), with u(r) and ϕ(r)

representing the amplitude and the phase of the associated in-

terference pattern, respectively. This approach has been used

to create holographic acoustic traps [7,15–19], by superposing

waves of the same frequency emanating from large arrays

of sources. These holographic acoustic trapping patterns can

be changed over time by updating the signals emitted by the

transducers to produce the desired time-dependent amplitude

and phase patterns, u(r, t ) and ϕ(r, t ) [19].

Alternatively, time-varying acoustic force landscapes can

be created by superposing steady sound waves at different fre-

quencies; the resulting beats manifest as slow time variations

of the Gor’kov potential UG(r, t ) [20]. The spectral content

of a polyphonic superposition can supplement the spatiotem-

poral variations in a standard acoustic hologram to create

dynamic acoustic traps using comparatively simple hardware.

We refer to this more expansive approach to dynamic wave-

front shaping as “spectral holography.”

To illustrate the opportunities created by spectral holog-

raphy, we demonstrate programmable transport along one

spatial dimension using force landscapes created with two

acoustic pixels. Our experimental system, illustrated in Fig. 1,

was introduced by Marzo, Barnes, and Drinkwater [21] and

consists of two banks of ultrasonic transducers (Murata

MA40S4S, 10 mm in diameter) operating in air at a nominal

frequency of 40 kHz. Each bank consists of 36 transducers

arranged in concentric hexagonal rings of 6, 12, and 18 trans-

ducers that are ganged together to act as a single acoustic

pixel. The transducers that make up each acoustic pixel are

mounted on a three-dimensional-printed spherical cap and are

oriented to launch waves toward the center of the sphere. Each

acoustic pixel is driven by a waveform synthesizer (Stanford
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Research Systems, DS345) with an amplitude up to 10 Vpp.

The two synthesizers are synchronized to a common time base

to ensure that the two pixels are driven with a stable relative

phase.

The two curved transducer banks share a common center,

as depicted in Fig. 1(b). The caps therefore define a cylindrical

section of a spherical cavity of diameter H = 10 cm. The

boundaries of this cavity are the top and bottom transducer

banks.

Previous studies have described the traveling waves

projected by the two acoustic pixels using finite-element

modeling [21]. To better illustrate the principles of spectral

holography, we instead adopt a simplified analytic model for

the pressure waves along the central vertical axis,

p1(z, t ) ≈ p0 eik1z+iω1t (6a)

and

p2(z, t ) ≈ p0 eik2z−iω2t , (6b)

where p0 is the common pressure amplitude, ω1 and ω2 are the

driving frequencies, and k1 and k2 are the corresponding wave

numbers. These counterpropagating waves interfere within

the cavity to create alternating nodes and antinodes of the

pressure field along the central axis.

A. Diphonic acoustic conveyor

If both sources project waves at the same frequency, ω1 =
ω2 = ω, their interference creates a standing wave with axial

nodes separated by half a wavelength. Each node acts as a po-

tential energy well for small particles that are denser and less

compressible than the medium, such as the airborne expanded

polystyrene bead shown in Fig. 1(a). Detuning the two sources

by 
ω ≪ ω so that ω1 = ω − 
ω/2 and ω2 = ω + 
ω/2

creates beats in the axial pressure field,

p(z, t ) = 2p0 cos

(

kz −

ω

2
t

)

cos

(


ω

2cm

z − ωt

)

, (7)

that manifest themselves as motion of the time-averaged axial

force field,

Fa(z, t ) = F0(ω) sin(2kz − 
ω t ) ẑ, (8)

after substitution into Eq. (4). The prefactor

F0(ω) = (A − 2B)kp2
0 (9)

is positive for dense incompressible particles, which therefore

tend to be trapped at the nodes of the pressure field. The entire

force landscape moves along ẑ at a steady speed,

vc = cm


ω

2ω
, (10)

that is proportional to the detuning 
ω. Setting aside com-

plications due to inertia and drag [22–25], trapped particles

should travel along with the landscape,

zp(t ) ≈ zn(t ) (11)

where zn(t ) = zn(0) + vct is the position of the nth pressure

node at time t . This type of traveling force landscape is known

FIG. 2. Measured trajectories (black curves) for a 2 mm in di-

ameter EPS bead being transported through air by the instrument

shown in Fig. 1. (a) and (b) Unidirectional transport in a diphonic

acoustic conveyor. (c) and (d) Bidirectional transport in a polyphonic

acoustic scanner. Measurements are compared with predictions of

Eq. (17) for ǫ0 = 0.38 (cyan curves). (b) and (d) Tuning the carrier

frequency to a cavity resonance at f = ω/(2π ) = (40.0 ± 0.1) kHz

creates a standing wave that modulates the trajectory. (a) and (c) De-

tuning to f = 40.7 kHz suppresses the standing wave. Conveyor:


 f = 
ω/(2π ) = 2 Hz. Scanner: 
φ = 720 π .

as a “conveyor” [21,26–30] and is the simplest example of a

spectral hologram.

This principle previously has been used to transport par-

ticles through water in pseudostanding waves created with

counterpoised plane-wave sources [30–32] and by sweeping

the frequency in a resonant cavity [33]. The same sort of linear

transport can be implemented in air using the system depicted

in Fig. 1. The system in that case is underdamped, and the

resulting motion reveals features of spectral holography that

have not previously been described.

The data in Fig. 2(a) demonstrate an acoustic conveyor

transporting a millimeter-scale bead through air. The 2-mm-

diameter particle is composed of type II expanded polystyrene

(EPS) foam with a measured [25] mass density of ρp =
(30.5 ± 0.2) kg m−3 and an estimated [34] compressibility of

κp = 0.2 MPa−1. These values correspond to dimensionless

coupling constants near unity: f0 = 0.97 and f1 = 0.93.

The particle’s trajectory is recorded at 170 frames/s with a

monochrome video camera (FLIR, Blackfly S USB3) whose

5-ms exposure time is fast enough to avoid motion blurring

given the system magnification of 61 µm/pixel. Each frame

in a video sequence is thresholded with Otsu’s method, and

the particle’s position is computed as the center of mass of

the resulting simply-connected cluster of foreground pixels.

The image of a typical particle yields a 1000-pixel cluster

whose axial centroid zp(t ) can be located with an estimated

accuracy [25] of 
zp = 0.17 pixel = 10 µm, which suffices

for our application.
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B. Polyphonic acoustic scanner

More sophisticated modes of transport can be achieved

with more sophisticated superpositions of tones. Such a

generalized conveyor, which we call a “scanner,” can be im-

plemented as the superposition of waves from two sources, as

depicted in Fig. 1(b), with time-varying relative phase,

p1(t ) = p0 eiωt (12a)

p2(t ) = p0 eiϕ(t ) e−iωt . (12b)

Such a superposition creates a time-averaged force landscape,

Fa(z, t ) = F0(ω) sin[2kz − ϕ(t )] ẑ, (13)

whose traps travel along ẑ as

zn(t ) = zn(0) −
1

2k
ϕ(t ). (14)

The resulting motion is slow in the sense that relevant varia-

tions in the relative phase satisfy |ϕ̇| ≪ ω, where the dot refers

to a derivative with respect to time. Any faster variations are

suppressed in theory by the implicit time average in Eq. (4)

and physically by viscous drag and the particle’s inertia.

Active control of the relative phase ϕ(t ) has been used in

the context of holographic optical trapping to project opti-

cal conveyors [26] and optical tractor beams [28], and more

recently has been used to demonstrate acoustic conveyors

[21]. Rather than actively sweeping the phase, however, we

instead can decompose ϕ(t ) into its spectral components and

use those to create a scanner that operates in steady state

without active intervention. For example, a sinusoidal scanner

described by ϕ(t ) = 
φ sin(
t ) can be implemented through

the Jacobi-Anger identity

p2(t ) = p0

∞
∑

n=−∞
Jn(
φ) ei(n
−ω)t , (15)

which specifies the frequencies needed to implement the scan-

ner and their relative amplitudes. A working example can

be projected with just the first few orders, n ∈ [−4, 4]. The

resulting spectral hologram then transports trapped objects

back and forth continuously and smoothly without active in-

tervention. The data in Fig. 2(c) show such a scanner in action.

C. Spectral superposition of static and dynamic landscapes

Acoustic pixels are actively driven transducers. As a con-

sequence, they not only project sound waves but also act as

absorbing boundary conditions for incident waves [35]. This

feature has not been emphasized in previous acoustic-trapping

studies [21]. Active cancellation of reflections enables the

counterpoised acoustic pixels in an instrument such as the

example in Fig. 1 to create acoustic traps by straightforward

superposition, even when the cavity dimension H is not an

integer multiple of the wavelength.

In practice, acoustic pixels reflect a small proportion, ǫ0,

of incident sound waves. Reflections contribute to the force

landscape by forming standing waves within the cavity whose

amplitude can be controlled through the choice of ω. The

associated force landscape, therefore, has both time-varying

and stationary components,

F(r, t ) = Fa(r, t ) + Fs(r), (16a)

FIG. 3. Simulated trajectories, zp(t ), of the particle from Fig. 2

traveling through air in an acoustic conveyor as a function of the

acoustic levitator’s effective reflection coefficient ǫ(ω). In all cases,

the acoustic conveyor operates at detuning 
 f = 
ω/(2π ) = 1 Hz.

Tuning the carrier frequency ω increases the reflection coefficient

from ǫ = 0.1 to ǫ = 1. The particle is trapped in the standing wave

when ǫ > 0.5 and is set into oscillation by the conveyor’s periodic

forcing. The particle travels with the conveyor for ǫ < 0.5 although

its trajectory is perturbed by the static standing wave.

where the standing-wave contribution is approximately

Fs(r) ≈ 2 ǫ(ω) F0(ω) sin(2kz) ẑ. (16b)

The factor of 2 in Eq. (16b) accounts for the independent con-

tributions from each of the pixels. The depth of the stationary

landscape’s modulation,

ǫ(ω) = ǫ0 cos

(

2H

cm

ω

)

, (16c)

is proportional to the acoustic pixels’ reflection coefficient ǫ0

and can be tuned by adjusting the carrier frequency. For the

cavity depicted in Fig. 1, we find that particle trajectories

are consistent with ǫ0 = 0.38(2). The overall scale of the

stationary force landscape is set by F0(ω), which is given by

Eq. (9).

If the reflection coefficient is large enough, ǫ0 > 0.5, the

central frequency can be tuned so that 2ǫ(ω) > 1. In that case,

the standing wave exerts enough force to trap the particle, and

the dynamic landscape acts as a time-dependent perturbation.

Representative trajectories for this mode of motion are plotted

in Fig. 3 as a function of ǫ(ω).

In the opposite limit of weak reflections, ǫ(ω) < 0.5, the

particle is transported by the moving conveyor across the

stationary landscape. The nodes then trace out trajectories,

zn[t |ǫ(ω)] = zn(0) −
1

k
arctan

[

ǫ(ω) − 1

ǫ(ω) + 1
tan

(

ϕ(t )

2

)]

,

(17)

that reduce to Eq. (14) when ǫ(ω) = 0. This mode of motion

also is plotted in Fig. 3 and is consistent with the perturbed

trajectories observed experimentally in Figs. 2(b) and 2(d).

The particles’ trajectories increasingly deviate from the

traps’ trajectories as ǫ(ω) approaches 1/2 and the trajectories
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FIG. 4. Transport properties of a 2 mm in diameter EPS sphere moving through air in a diphonic acoustic conveyor. (a) Variance of the

particle’s departures from the conveyor’s planned trajectory as a function of the acoustic trap’s carrier frequency, f = ω/(2π ). Measured

values are computed with Eq. (18) and are plotted as discrete points. Solid curves denote analytic predictions of Eq. (17) (black curve)

and numerical solutions to Eq. (22) (orange curve). (b) Typical measured trajectories scaled according to Eq. (21) and colored to match

corresponding points in panel (a). (c) Power spectra of the trajectories in panel (b) showing the growth of harmonics in the particle’s trajectory

as the depth of modulation increases. (d) and (e) Numerical solutions of Eq. (22) for the same set of conditions. Conveyor detuning frequency:


 f = 
ω/2π = 2 Hz.

become increasingly sinuous. We quantify these deviations

with the kinematic variance

σ 2(ω) =
1

T

∫ T

0

[zp(t ) − zn(t )]2 dt, (18)

which is plotted as a function of the carrier frequency ω in

Fig. 4(a). Measurements are compared with the prediction

obtained by setting zp(t ) = zn(t |ǫ(ω)), which is plotted as

a solid curve. The kinematic model is consistent with the

measurement when the carrier frequency is tuned away from

the cavity resonance so that the particle travels smoothly

at constant speed. Tuning to the cavity resonance at f =
40.2 kHz maximizes the particle’s acceleration and increases

deviations between the trajectories of the particle and the trap.

These discrepancies can be resolved by accounting for inertial

corrections to the viscous drag acting on the particle.

IV. ACCOUNTING FOR INERTIA AND DRAG

A trapped particle hews to the trajectory of its acoustic trap

if the motion is slow enough to neglect the inertia of the fluid

medium [25]. More generally, the equation of motion for a

particle of mass mp,

mpz̈p = Fa(zp, t ) + Fs(zp) + Fd (żp, z̈p), (19)

reflects contributions from the active force landscape, the

stationary force landscape, and viscous drag, respectively.

Equation (19) omits the influence of gravity, whose principal

role is to offset the particle’s equilibrium position. For the

experiments described in Fig. 2, this offset is estimated to be


zp = (80 ± 1) µm [25].

The accelerating sphere experiences a drag force that

is described by the Basset-Boussinesq-Oseen equation

[22,24,36,37],

Fd (żp, z̈p) = 6πηmap

[

żp + τ z̈p +
√

9τ

π

∫ t

−∞

z̈p(t ′)
√

t − t ′
dt ′

]

,

(20a)

which accounts for the inertia of the displaced fluid on

timescales set by the viscous relaxation time,

τ =
ρm

9ηm

a2
p. (20b)

Equation (20) is strictly valid for Reynolds numbers less than

unity and yields useful results for Reynolds numbers less than

100 [36,37].

The history dependence of the drag complicates an an-

alytic formulation of the transport properties for a general

spectral hologram. To illustrate the challenge, we consider

the comparatively simple case of a particle moving under the

influence of an acoustic conveyor. Competition between the

active and stationary force landscapes causes the particle to

oscillate at the beat frequency 
ω about the moving trap’s

position. We therefore define the dimensionless displacement

in the comoving frame,

ζ (t ) = 2kzp(t ) −
{


ω t, ǫ(ω) < 0.5,

0, ǫ(ω) > 0.5.
(21)

Applying Eqs. (19) and (20) then yields the following decep-

tively simple dimensionless equation of motion,

ζ ′′ + b ζ ′ + ζ = ǫ̃ sin

(

ζ −

ω

ω0

s

)

, (22)

where primes denote derivatives with respect to the dimen-

sionless time s = ω0t . Equation (22) describes a wave-driven

oscillator [10] whose exceptionally rich phenomenology only

recently has been brought to light. Wave-driven oscillators

differ from more familiar nonlinear dynamical systems, such

as the Duffing oscillator [38,39], because their spatial non-

linearity is irreducibly coupled to the time dependence of the

driving.

The effective driving strength in Eq. (22),

ǫ̃(ω) =

{

2ǫ(ω), ǫ(ω) < 0.5,
1

2ǫ(ω)
, ǫ(ω) > 0.5,

(23)
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can be varied over the range ǫ̃(ω) ∈ [0, 1] by adjusting the

carrier frequency relative to the cavity resonance. Similarly,

the natural frequency,

ω0(ω) =
√

2kF0

m

{

1, ǫ(ω) < 0.5,√
2ǫ(ω), ǫ(ω) > 0.5,

(24)

and the drag coefficient,

b(ω) =
6πηmap

m ω0

{

1, ǫ(ω) < 0.5,

[2ǫ(ω)]−1, ǫ(ω) > 0.5,
(25)

both depend on cavity tuning when ǫ(ω) > 0.5.

Equations (24) and (25) incorporate the inertial corrections

from Eq. (20) by introducing the dynamical mass [22,23,25],

m(
ω) = mp

{

1 +
1

2

ρm

ρp

[

1 +
9

2

δ(
ω)

ap

]}

, (26a)

under the simplifying assumption the particle oscillates har-

monically at the driving frequency 
ω. The sphere’s effective

mass is increased in this approximation by the mass of the

fluid in a Prandtl-Schlichting boundary layer of thickness [22]

δ(
ω) =

√

2ηm

ρm

1


ω
. (26b)

This correction has been demonstrated to quantitatively model

the damped oscillations of a particle levitated in a static acous-

tic trap [25]. For particles moving in an acoustic conveyor, the

dynamic model more accurately accounts for the magnitude

of measured fluctuations, as can be seen in Fig. 4(a).

Measured acoustic-conveyor trajectories in Fig. 4(b) and

their power spectra in Fig. 4(c) are reproduced reasonably

well by the numerical solutions of Eq. (22) that are plotted

in Figs. 4(d) and 4(e). These examples illustrate the effect of

tuning the carrier frequency on the amplitude and harmonic

content of the particle’s dynamic response. Values of F0 and

m0 used for the numerical solutions are obtained from mea-

sured trajectories using the analytical approach described in

Ref. [25]. The power spectra are computed as

S(
) =
∣

∣

∣

∣

∫ 1

0

ζ (s)W (s) e−i
s ds

∣

∣

∣

∣

2

, (27)

using the Blackman-Harris window function W (s). The

wave-driven oscillator responds most strongly at the driv-

ing frequency 
 = 
ω. Increasingly much power is directed

into harmonics of that driving frequency as the depth of

modulation increases. Agreement between the measured

and computed power spectra illustrates the utility of the

Basset-Boussinesq-Oseen (BBO) equation for interpreting the

behavior of wave-driven oscillators created with sound. At the

same time, the presence of strong harmonics suggests even

better agreement could be attained by seeking self-consistent

solutions to the equation of motion, including the BBO cor-

rection described in Eq. (20).

More generally, the wave-driven oscillator has been shown

[10] to respond at both harmonics and subharmonics of the

driving frequency and to undergo transitions between subhar-

monic states depending on the strength of the driving ǫ̃(ω),

the strength of the damping b(ω), and the relationship be-

tween the driving frequency 
ω and the oscillator’s natural

frequency ω0. Transitions between subharmonic states feature

both period-doubling routes to chaos and Fibonacci cascades

[10]. No complete description of the wave-driven oscillator

is yet available, even in the weak-driving regime, ǫ̃ < 1. Pre-

vious experimental and numerical studies [10], furthermore,

have neglected the inertial corrections described by Eq. (20)

that are likely to have influenced their results. Future studies

of the wave-driven oscillator and related dynamical systems

would benefit both from the streamlined experimental im-

plementation afforded by spectral holography and from the

analytical approach discussed here.

V. DISCUSSION

Spectral holographic trapping uses interference among

waves at multiple frequencies to create time-averaged force

landscapes that evolve dynamically on the inertial timescales

of trapped objects. Spatiotemporal control afforded by the fre-

quency content of the projected waves reduces the complexity

of acoustic manipulation systems by replacing the many spa-

tial degrees of freedom required for conventional monotonic

holographic projection. Spectral holography therefore allows

complex force landscapes to be generated with small num-

bers of acoustic pixels. We have demonstrated two archetypal

examples, a unidirectional conveyor created with two frequen-

cies and a bidirectional scanner created with nine. We also

have shown that tuning the carrier frequency to cavity res-

onances can usefully implement a superposition of dynamic

and static force fields with no additional complexity. In the

case of an acoustic conveyor, this superposition implements

a wave-driven oscillator whose exceedingly rich dynamical

properties emerge from an interplay among the acoustic force

field, the particle’s inertia, and viscous drag in the supporting

medium. This study also highlights the importance of ac-

counting for the fluid’s inertia when planning and interpreting

the motions of particles in acoustic force landscapes.

The combination of rich spectral control and analytic

dynamical modeling expands the prospects for dexterous

acoustic manipulation of macroscopic materials. The present

study has focused on the dynamics of individual particles in

spectral holograms created within cavities. Additional oppor-

tunities can be imagined for free-space manipulation with

traveling waves and for self-organization guided by wave-

mediated interactions in many-body systems immersed in

spectral holograms.
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