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25Università del Molise, Campobasso, Italy
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We present a new measurement of the positive muon magnetic anomaly, aμ ≡ ðgμ − 2Þ=2, from the
Fermilab Muon g − 2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4
times the number of positrons from muon decay than in our previous result from 2018 data. The systematic
error is reduced bymore than a factor of 2 due to better running conditions, amore stable beam, and improved
knowledge of the magnetic field weighted by the muon distribution, ω̃0

p, and of the anomalous precession
frequency corrected for beam dynamics effects, ωa. From the ratio ωa=ω̃0

p, together with precisely

determined external parameters, we determine aμ ¼ 116 592 057ð25Þ × 10−11 (0.21 ppm). Combining this

result with our previous result from the 2018 data, we obtain aμðFNALÞ ¼ 116 592 055ð24Þ × 10−11

(0.20 ppm). The new experimental world average is aμðexpÞ ¼ 116 592 059ð22Þ × 10−11 (0.19 ppm), which
represents a factor of 2 improvement in precision.

DOI: 10.1103/PhysRevLett.131.161802

Introduction.—A precise experimental measurement of
the muon magnetic anomaly aμ provides a stringent test of
the Standard Model (SM) as it can be theoretically
predicted with high precision. Any deviation between
experiment and theory may be a sign of physics beyond
the SM. We report a new measurement of aμ using data
collected in 2019 (Run-2) and 2020 (Run-3) by the
Muon g − 2 Experiment at Fermilab. The data constitute
a fourfold increase in detected positrons compared to our
previous measurement (Run-1) [1–4]. Analysis and run
condition improvements also lead to more than a factor of
2 reduction in the systematic uncertainties, surpassing the
experiment’s design goal [5].
Our Run-1 publications describe the principle of the

experiment, previous results, and experimental details [1–4].
The experiment uses 3.1 GeV=c polarized muons produced
at the FermilabMuonCampus [6].Muons are injected into a
7.112-m radius storage ring that was moved, and

significantly upgraded, from the BNL experiment [7,8].
Two key components of the storage ring are kicker magnets
that direct the injected muons onto the central orbit of the
storage ring [9] and electrostatic quadrupoles (ESQs) that
provide vertical focusing of the stored beam [10]. The
anomalous spin precession frequency ωa—the difference
between the muon spin precession frequency and the
cyclotron frequency—is measured by recording the time
dependence of the number of high-energy positrons detected
in a series of calorimeters located on the inner radius of the
storage ring [11]. The magnetic field is mapped every few
days using a trolley instrumented with nuclear magnetic
resonance (NMR) probes housing petroleum jelly [12].
These probes are calibrated using a retractable water-based
cylindrical probe [13]. This enables the expression of the
magnetic field in terms of the precession frequency of
shielded protons in a spherical sample ω0

p, for which the
relation between precession frequency and magnetic field is
precisely known. After weighting for the muon spatial
distribution, the precession frequency is denoted ω̃0

p.
Changes in the field between trolley measurements are
tracked using NMR probes embedded in the vacuum
chamber walls above and below the muon storage volume
[3]. Dedicated instrumentation is used to measure transient
magnetic fields caused by the pulsing of the kickers and
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ESQs. The spatial distribution of the muon beam within the
storage ring as a function of time since injection is inferred
from positron trajectories recorded using two tracking
detectors [14].
We incorporated major instrumental improvements

with respect to Run-1. Resistors in the high-voltage
feedthroughs for the ESQ system that were damaged in
Run-1 were replaced before Run-2. This upgrade greatly
improved transverse beam stability. Thermal insulation was
added to the storage ring magnet before Run-2 to remove
diurnal temperature variations. Increased cooling power
and improved air circulation in the experimental hall
installed before Run-3 reduced seasonal temperature var-
iations. The magnitude and reliability of the kicker field
were improved between Run-1 and Run-2, and again
within Run-3. Because of these improvements, the data
are analyzed in three sets—Run-2, Run-3a, and Run-3b. A
full description of the hardware upgrades, operating con-
ditions, and analysis details will be provided in an in-depth
paper currently in preparation.
The data are blinded by hiding the true value of the

calorimeter digitization clock frequency. This blinding
factor is different for Run-2 and Run-3.
We obtain the muon magnetic anomaly from Ref. [15],

aμ ¼
ωa

ω̃0
pðTrÞ

μ0pðTrÞ
μeðHÞ

μeðHÞ
μe

mμ

me

ge
2
; ð1Þ

where this experiment measures two frequencies to form
the ratio R0

μ ¼ ωa=ω̃0
pðTrÞ, where Tr ¼ 34.7 °C is the

temperature at which the shielded proton-to-electron mag-
netic moment is measured [16]. The ratio of the measured
frequencies must be corrected for a number of effects,
which shift the value ofR0

μ by þ622 ppb in total. We write
the ratio in terms of measured quantities and corrections as

R0
μ ≈

fclock · ωm
a ð1þ Ce þ Cp þ Cpa þ Cdd þ CmlÞ

fcalib · hω0
pð  rÞ ×Mð  rÞið1þ Bq þ BkÞ

: ð2Þ

The numerator consists of the clock-blinding factor fclock,
the measured precession frequency ωm

a , and five correc-
tions Ci associated with the spatial and temporal motion
of the beam. In the denominator, we separate ω̃0

pðTrÞ into
the absolute NMR calibration procedure (indicated by
fcalib) and the magnetic field maps, which are weighted
by the muon spatial distribution and positron count
[hω0

pð  rÞ ×Mð  rÞi, where the average is over all points  r
within the storage region]. We apply corrections Bi to the
magnetic field to account for two fast magnetic transient
fields that are synchronized to the muon storage period.
The uncertainties and correction values for the elements of
Eq. (2) are shown in Table I.
Anomalous precession frequency ωm

a .—The time
dependence of the number of positrons from muon decays
recorded by calorimeters in a storage period is given by

NðtÞ ¼ N0ηNðtÞe−t=γτμ
× f1þ AηAðtÞ cos ½ωm

a tþ φ0 þ ηϕðtÞ�g; ð3Þ

where N0 is the normalization, γτμ is the time-dilated muon
lifetime (≈64.4 μs), A is the average weak-decay asym-
metry, and φ0 is the average phase difference between the
muon momentum and spin directions at the time of muon
injection. The normalization, asymmetry, and phase have
time-dependent correction factors, ηN , ηA, and ηϕ, that
account for horizontal (x) and vertical (y) beam oscilla-
tions, including x-y coupling.
Nearly all parameters in Eq. (3) have some energy

dependence, but it is particularly strong for N0 and A.
We choose to combine the data in the statistically optimal
way of weighting each positron by its energy-dependent
asymmetry [21].
Seven different analysis groups perform independent

extractions of ωm
a by a χ2 minimization. Each analysis team

adds an independent blind offset to their result in addition
to the aforementioned clock blinding. Two groups perform
a new asymmetry-weighted ratio method by subdividing
the data and constructing a ratio that preserves statistical
power whilst reducing sensitivity to slow rate changes [2].
Each fit models the data well, producing reduced χ2 values
consistent with unity. Fourier transforms of the fit residuals
have no unexpected frequencies, as shown in Fig. 1. Scans
of fit start and end times, positron energy, and individual
calorimeter stations show variation in ωm

a consistent with

TABLE I. Values and uncertainties of the R0
μ terms in Eq. (2),

and uncertainties due to the external parameters in Eq. (1) for aμ.
Positive Ci increases aμ; positive Bi decreases aμ [see Eq. (2)].
The ωm

a uncertainties are decomposed into statistical and sys-
tematic contributions. All values are computed with full precision
and then rounded to the reported digits.

Quantity Correction (ppb) Uncertainty (ppb)

ωm
a (statistical) � � � 201

ωm
a (systematic) � � � 25

Ce 451 32
Cp 170 10
Cpa −27 13
Cdd −15 17
Cml 0 3

fcalib · hω0
pð  rÞ ×Mð  rÞi � � � 46

Bk −21 13
Bq −21 20

μ0pð34.7°Þ=μe � � � 11
mμ=me � � � 22
ge=2 � � � 0

Total systematic for R0
μ � � � 70

Total external parameters � � � 25
Total for aμ 622 215
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statistical expectations. After unblinding, the analysis
groups determine consistent values for ωm

a and their
independently estimated systematic uncertainties. We com-
bine the six asymmetry-weighted methods equally for the
final central value and verify the result with other less
sensitive methods.
The extraction of ωm

a is the only aspect of the result with
significant statistical uncertainty. The number of positrons
above 1000 MeV entering the asymmetry-weighted analy-
ses increased from 15 × 109 in Run-1 to 71 × 109 in
Run-2=3. This reduces the statistical uncertainty from
434 ppb to 201 ppb.
The systematic uncertainty on ωm

a is also reduced by a
factor greater than 2 to 25 ppb. The largest reduction comes
from our treatment of pileup, when two positrons enter a
calorimeter close in time and are not separated by
reconstruction algorithms. The difference in phase between
two lower-energy positrons and a single higher-energy
positron, coupled with a rate change over the storage
period, can bias ωm

a . Each calorimeter comprises a 9 × 6
array of PbF2 crystals that are read out independently.
Improved clustering of crystal hits in the reconstruction
algorithms reduces the number of unresolved pileup events.
In addition, some groups adopted a method of overlaying
waveforms rather than modeling the reconstruction
response to proximate crystal hits. The pileup uncertainty
is reduced from 35 ppb in Run-1 to 7 ppb in Run-2=3.
The other significant reduction is related to transverse

beam oscillations. The repair of the damaged ESQ resistors
removes the majority of systematic effects associated with
large changes in the betatron frequencies over amuon storage
period.Additionally, thehigher statistical precision allows for
improved empirical modeling of the decoherence envelope,
enabling a wider range of possibilities to be studied. The

uncertainty drops from38ppb inRun-1 to 21ppb but remains
the dominant systematic uncertainty for Run-2=3 for ωm

a .
Smaller reductions are achieved in the systematic uncer-

tainties from a residual early-to-late effect and the calo-
rimeter gain correction (see Ref. [2]), resulting in values of
10 ppb and 5 ppb, respectively.
Beam-dynamics corrections Ci.—Five corrections must

be made to convert the measured frequency ωm
a into the

anomalous precession frequency ωa in Eq. (1).
The largest correction is due to the electric fields of the

ESQs. The effect on ωa is minimized by the choice of
nominal muon momentum 3.1 GeV=c [10]. The electric
field correction Ce is required to account for the momentum
spread of the muon beam.
The muon momentum distribution is determined from

the frequency distribution and debunching rate of the
injected beam using calorimeter data. Additionally, the
radial distribution of stored muons over a betatron period is
obtained from tracker data. The debunching analysis takes
into account differences in momentum spread along the
injected bunch length that were not included in the Run-1
analysis. Accounting for this difference and using com-
plementary tracker information reduces the Ce uncertainty
from 52 ppb in Run-1 to 32 ppb in Run-2=3.
A pitch correction Cp accounts for the reduction of ωa

caused by vertical betatron oscillations. We use tracker data
to extract the distribution of vertical betatron amplitudes.
The analysis is largely unchanged from Run-1.
Any temporal change to the muon ensemble-average

phase φ0 in Eq. (3) will bias ωm
a . Correlations between the

muon decay position and φ0 are accounted for through the
phase acceptance correction Cpa. This correction is evalu-
ated bymeasuring the transverse beam distribution through-
out the storage period and using simulations to determine the
shifts in average phase at the calorimeters. The size ofCpa is
determined by variation in the beam spatial distribution,
which is significantly reduced by replacing the damaged
ESQ resistors, and the associated systematic uncertainty is
reduced from 75 ppb to 13 ppb.
Phase is also correlated with muon momentum owing

to the momentum-dependent phase advance in upstream
beamline components [4]. A differential decay correction
Cdd is required since the higher-momentum muons have a
longer boosted lifetime than lower-momentum muons.
Three separate contributions to the Cdd correction yield
a −15 ppb correction with 17 ppb uncertainty. This
correction was not applied to the Run-1 analysis.
Muons lost during a storage period can also lead to a

change in the muon momentum distribution. This effect has
also been greatly reduced by replacing the ESQ resistors.
The correction factor Cml is evaluated as 0� 3 ppb
compared to a correction in Run-1 of −11� 5 ppb.
Muon-weighted magnetic field fcalib · hω0

p ×Mi.—The
increased temperature stability in Run-2 and Run-3 due to
thermal magnet insulation and improved hall temperature
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FIG. 1. Fourier transform of the residuals from a fit following
Eq. (3) excluding ηN , ηA, and ηϕ (red dashed line), and from the
full fit (black line). The peaks correspond to the missing betatron
frequencies and muon losses. Data are from the Run-3a data set.
Inset: corresponding asymmetry-weighted eþ time spectrum
(black line) with the full fit function (red line) overlaid.
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stability results in a significantly more stable magnetic field
(RMSof2 ppm forRun-2 and0.5 ppm forRun-3).Additional
systematic measurements of the temperature dependence of
the petroleum-jelly-based NMR probes used in the trolley
have reduced the systematic uncertainty from trolley temper-
ature changes to 9–15 ppb, depending on the data set.
The calibration procedure is improved for Run-2=3

compared to Run-1. Not only are two calibrations per-
formed, one for each run, but the process is also optimized,
resulting in reduced uncertainties. Small differences
between the sample volume in the calibration and the trolley
probes are now corrected. In addition, correction terms
for the calibration probe are determined more precisely.
The overall systematic uncertainty from calibration is
below 20 ppb.
As in Run-1, the magnetic field is parametrized in a

multipole expansion in transverse planes. In the current
analysis, the number of terms used increases from 9 to 12,
improving the fit quality. The dominant uncertainties for
the spatial field maps—each approximately 20 ppb in
magnitude—arise from NMR frequency extraction [22],
the motion effects of the trolley, and the estimated pertur-
bation by the mechanism used to retract the trolley from the
storage region.
The systematic uncertainty of tracking the field in time

using the fixed probe data between two field maps is
estimated by a Brownian bridge model tuned to the
observed mismatch from propagating one map to another.
Because of the larger number of field maps (69 in Run-2=3,
compared to 14 in Run-1), the uncertainty from the field
tracking is reduced to 10–16 ppb depending on the data set.
We discovered and corrected a tracking bias as a function of
time after the last magnet ramp-up (3–10 ppb).
The muon weighting follows the same approach used in

Run-1. The more uniform field reduces the uncertainties by
around a factor of 2 to 7–13 ppb. The beam distribution and
azimuthally averaged magnetic field from Run-3b are
shown in Fig. 2.
Magnetic field transients Bi.—Transient magnetic fields

synchronized with beam injection are caused by the pulsing
of ESQs and eddy currents in the kickers. Both effects
require corrections to the muon-weighted magnetic field
and are improved significantly compared to Run-1 by
additional measurements.
In Run-1, the correction from the magnetic field transient

due to vibrations caused by ESQ pulsing, Bq, was only
measured at a limited number of locations around the ring.
Using the same vacuum-sealed petroleum-jelly-based NMR
probe, but now on a nonconductive movable device, we
mapped the transient fields in the storage region between the
ESQ plates azimuthally. This mapping, in combination with
improved methodology and repeated measurements over
time, leads to a reduction of the formerly dominant sys-
tematic effect by more than a factor of 4 to 20 ppb.

The effect of kicker-induced eddy currents Bk was
measured with the same fiber magnetometer based on
Faraday rotation in terbium gallium garnet crystals used in
Run-1 [3]. An improved setup, mainly to further reduce
vibrations, and more extensive measurements, reduces the
uncertainty by around a factor of 3 to 13 ppb.
Consistency checks.—In addition to the three data sub-

sets described here, the data are further subdivided based on
a number of monitored experimental parameters to examine
possible correlations. These parameters include ring tem-
perature, magnet current, vacuum pressure, day/night, time
since magnet ramp-up, and variables associated with the
beam motion. We find no statistically significant correla-
tions between our results and any of these parameters.
Calculation of aμ.—Table II contains the values of ωa

and ω̃0
p, including all correction terms in Eq. (2), for the

three data subsets and their ratios R0
μ. The statistical

uncertainty dominates in each subset, and as such, the
R0

μ values are largely uncorrelated. Nearly all systematic

FIG. 2. Azimuthally averaged magnetic field contours overlaid
on the time- and azimuthally averaged muon distribution for the
Run-3b data set. The field is more uniform, and the increased
kicker strength moves the beam closer to the center than in Run-1.

TABLE II. Measurements of ωa, ω̃0
p, and their ratios R0

μ

multiplied by 1000. The Run-1 value has been updated from [1]
as described in the text.

Run ωa=2π [Hz] ω̃0
p=2π [Hz] R0

μ × 1000

Run-1 3.7073004(17)

Run-2 229077.408(79) 61790875.0(3.3) 3.7073016(13)
Run-3a 229077.591(68) 61790957.5(3.3) 3.7072996(11)
Run-3b 229077.81(11) 61790962.3(3.3) 3.7073029(18)

Run-2=3 3.70730088(79)

Run-1=2=3 3.70730082(75)
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uncertainties that enter into R0
μ are fully correlated across

the subsets. Over the course of this analysis, three small
errors in the Run-1 analysis were identified [23]. The total
shift in the previous result due to these errors is þ28 ppb,
which has been applied to the value reported in this Letter.
The weighted-average value of the Run-2=3 data is

R0
μðRun-2=3Þ ¼ 0.00370730088ð75Þð26Þ, where the first

error is statistical and the second is systematic. This
value is in excellent agreement with the adjusted Run-1
value R0

μðRun-1Þ¼ 0.0037073004ð16Þð6Þ. Assuming that
the systematic errors are fully correlated between
R0

μðRun-2=3Þ and R0
μðRun-1Þ, we obtain the combined

value of R0
μðRun-1=2=3Þ ¼ 0.00370730082ð68Þð31Þ.

From Eq. (1), we arrive at a new determination of the
muon anomaly,

aμðFNALÞ¼ 116592055ð24Þ×10−11 ð0.20 ppmÞ;
where the statistical, systematic, and external parameter
uncertainties from Table I are combined in quadrature. The
combined (BNL and FNAL) experimental (exp) average
becomes

aμðexpÞ¼ 116592059ð22Þ×10−11 ð0.19 ppmÞ:

The results are displayed in Fig. 3.
A comprehensive prediction for the SM value of the

muon magnetic anomaly was compiled most recently by
the Muon g − 2 Theory Initiative in 2020 [24], using results
from Refs. [25–44]. The leading-order hadronic contribu-
tion, known as hadronic vacuum polarization (HVP), was
taken from eþe− → hadrons cross-section measurements
performed by multiple experiments. However, a recent
lattice calculation of HVP by the BMW Collaboration [45]
shows significant tension with the eþe− data. In addition, a
new preliminary measurement of the eþe− → πþπ− cross
section from the CMD-3 experiment [46] disagrees sig-
nificantly with all other eþe− data. There are ongoing
efforts to clarify the current theoretical situation [47]. While
a comparison between the Fermilab result from Run-1=2=3

presented here, aμðFNALÞ, and the 2020 prediction yields a
discrepancy of 5.0σ, an updated prediction considering all
available data will likely yield a smaller and less significant
discrepancy.
In summary, we report a measurement of the muon

magnetic anomaly to 0.20 ppm precision using our first
three years of data. This is the most precise determination
of this quantity, and it improves on our previous result by
more than a factor of 2. Analysis of the remaining data from
three additional years of data collection is underway and is
expected to lead to another factor of 2 improvement in
statistical precision.
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