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The aim of the present paper is to organise and put into a coherent form a number
of old and new results, ideas and research programmes regarding topological groups
and their linear counterparts, namely Banach spaces. As the title indicates, our
focus will be on geometries by which we understand the various types of geometric
structures that a Banach space or a topological group may be equipped with, e.g.,
Lipschitz structure or the quasimetric structure underlying geometric group theory.
We shall attempt to provide a common framework and language for several different
currently very active disciplines, including geometric nonlinear functional analysis
and geometric group theory, and varied objects, e.g., Banach spaces, finitely gener-
ated, Lie, totally disconnected locally compact and Polish groups. For this reason,
it will be useful initially not to restrict the objects we consider.
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1. BANACH SPACES AS GEOMETRIC OBJECTS

1.1. Categories of geometric structures. Our model example of topological
groups, namely, the additive topological group (X, +) underlying a Banach space
(X, |II) is perhaps somewhat unconventional. Certainly, the Banach space (X, ||-||)
is far more structured than (X, +) and thus one misses much important information
by leaving out the normed linear structure. Moreover, algebraically (X, +) is just
too simple to be of much interest. However, Banach spaces are good examples
since they are objects that have classically been studied under a variety of different
perspectives, e.g., as topological vector spaces, as metric or as uniform spaces.
So, apart from their intrinsic interest, Banach spaces will illustrate some of the
appropriate categories in which to study topological groups and also will provide a
valuable lesson in how rigidity results allow us to reconstruct forgotten structure.

The language of category theory will be convenient to formulate the various
geometric structures we shall be studying. So recall that to define a category we
need to specify the objects and the morphisms between them. In that way, we
derive the concept of isomorphism. Namely, an isomorphism between objects X

and Y is a morphism X 24 Y 5o that, for some morphism Y N X, both ¥¢ and
¢ equal the unique identities on X and Y respectively.

On the other hand, embedding, i.e., isomorphism with a substructure, is not
readily a categorical notion as it relies on the model theoretical concept of substruc-
ture. However, in all our examples, what constitutes a substructure is evident, e.g.,
a substructure of a topological vector space is a linear subspace with the induced
topology, while a substructure of a metric space is just a subset with the restricted
metric. So, for example, an embedding of topological vector spaces is linear map

x5 Y, which is a homeomorphism with its image T[X] C Y.

1.2. Metric spaces. Recall that a Banach space is a complete normed vector space
(X, |II)- Thus, the norm is part of the given data. For simplicity, all Banach
spaces are assumed to be real, i.e., over the field R. In the strictest sense, an
isomorphism should be a surjective linear isometry between Banach spaces and the

proper notion of morphism is thus linear isometry, i.e., a linear operator X Iy
so that ||Tx| = ||z

However, instead of normed vector spaces, quite often, Banach spaces are consid-
ered in the weaker category of topological vector spaces with morphisms simply being
continuous linear operators. The procedure of dropping the norm from a normed
linear space while retaining the topology thus amounts to a forgetful functor

NVS £ Tvs

from the category of normed vector spaces to the category of topological vectors
spaces. Similarly, rather than entirely eliminating the norm, we may instead erase
the linear structure while recording the induced norm metric and thus obtain a
forgetful functor

NVS - MetricSpaces

to the category of metric spaces whose morphisms are (not necessarily surjective)
isometries. Observe also that these functors preserve embeddings.
This latter erasure however points to our first rigidity phenomenon, namely, the

Mazur—Ulam theorem. Indeed, S. Mazur and S. Ulam [41] showed that, if X 2y
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is a surjective isometry between Banach spaces, then ¢ is necessarily affine, i.e.,
the map Tax = ¢(x) — ¢(0) is a surjective linear isometry between X and Y. In
particular, any two isometric Banach spaces are automatically linearly isometric.

In a more recent breakthrough, G. Godefroy and N. J. Kalton established a
similar rigidity result for separable Banach spaces.

Theorem 1.1 (Corollary 3.3 [24]). If X 25 Y is an isometric embedding from a
separable Banach space X into a Banach space Y, then there is an isometric linear
embedding of X into Y.

Observe that the conclusion here is somewhat weaker than in the Mazur-Ulam
theorem, since ¢ itself may not be affine. This is for good reasons, as for example
the map ¢(z) = (z,sinx) is an isometric, but clearly non-affine embedding of R
into £°(2) = (R?, ||"||s). Also, the assumption that X is separable is known to be
necessary as there are counter-examples in the non-separable setting (see Corollary
4.4 24]).

Although these two rigidity results do not provide us with a functor from the
category of metric space reducts of separable Banach spaces to the category of
normed vector spaces, they do show that an isomorphism or embedding in the
weaker category of metric spaces implies the existence of an isomorphism, respec-
tively, embedding in the category of normed vector spaces.

1.3. Lipschitz structures. To venture beyond these simple examples, we consider
some common types of maps between metric spaces.

Definition 1.2. A map X 5 M between metric spaces (X, d) and (M, 0) is
e Lipschitz if there is a constant K so that, for all x,y € X,

Aoz, dy) < K - d(z,y),
e Lipschitz for large distances if there is a constant K so that, for allx,y € X,
(¢, ¢y) < K - d(z,y) + K,
e Lipschitz for short distances if there are constants K,0 > 0 so that,

whenever x,y € X satisfy d(x,y) < 0.

A fact that will becomes important later on is that our definitions above provide
a splitting of being Lipschitz as the conjunction of two weaker conditions. Namely,
we have the following simple fact:

¢ is Lipschitz < ¢ is Lipschitz for both large and short distances.

As the composition of two Lipschitz maps is again Lipschitz, the class of met-
ric spaces also forms a category where the morphisms are now Lipschitz maps.
Similarly with Lipschitz for both large and short distances. However, for later pur-
poses where there are no canonical metrics, it is better not to treat spaces with
specific choices of metrics, but rather equivalence classes of these. We therefore
define three equivalence relations, namely, bi-Lipschitz, quasi-isometric and local
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bi-Lipschitz equivalence on the collection of all metrics on a set X by letting

dr~p 0 & (X7 d) g (X7 8) are both Lipschitz
id

1
IK ~d<d<K-d
< K

id
dr~q 0 & (X , d) = (X , 8) are Lipschitz for large distances
id

1
& dK ?d—Kéf)éKwH—K

id
d ~iocLip 0 & (X , d) = (X , 8) are Lipschitz for short distances.
id
Example 1.3. The standard euclidean metric di(x,y) = |z — y| on R is locally
bi-Lipschitz equivalent with the truncated metric da(z,y) = min{l, |z — y|}. On
the other hand, since the map x — /x is not Lipschitz for short distances, these
are not locally bi-Lipschitz equivalent with the metric

d3(z,y) = /|z —yl.

Eventually, when we turn to topological groups, we may occasionally pick out
equivalence classes of metrics without being able to choose any particular metric.
These thus become objects of the following types.

Definition 1.4. A Lipschitz, quasimetric, respectively local Lipschitz space is a
set X equipped with a bi-Lipschitz, quasi-isometric, respectively, local bi-Lipschitz
equivalence class D of metrics on X.

In neither of these three cases do we have an easy grasp of what the space
actually is. By definition, it is that which is invariant under a certain class of
transformations. On the other hand, morphisms are simpler. Indeed, a morphism

(X,Dx) -2 (M, D)

between two Lipschitz or local Lipschitz spaces is a map X %4 M that is Lipschitz,
respectively, Lipschitz for short distances, with respect to some or equivalently any
choice of metrics from the respective equivalence classes Dx and Djs. In this way,
Lipschitz and local Lipschitz spaces form categories in which the isomorphisms are
bijective functions that are Lipschitz (for short distances) with an inverse that is
also Lipschitz (for short distances).

Just as maps that are Lipschitz for large distances need not be continuous and
hence fail to capture topological notions, isomorphisms between quasimetric spaces
should neither preserve topology nor record spaces’ cardinality either. In analogy
with homotopy equivalence of topological spaces, we therefore adjust the notion of
morphism.

Definition 1.5. Two maps X L Vs from a set X to a metric space (M,d) are
close if

sup d(¢z, ) < co.
reX

Observe that whether ¢ and 1 are close depends only on the quasi-isometry class
of the metric d on M. We may therefore define morphisms in the category of quasi-
metric spaces to be closeness classes of Lipschitz for large distances maps between



GEOMETRIES OF TOPOLOGICAL GROUPS 5

these spaces and where composition is computed by composing representatives of
these classes.

As a consequence, a Lipschitz for large distances map X 4 M between two
quasimetric spaces is a closeness representative of an isomorphism between X and

M exactly when there is M U x , Lipschitz for large distances, so that both ¢
and ¢ are close to the identities on X and M respectively, i.e., so that

sup d(z/)cé(x),ac) <oo and sup 8(¢1/)(z), z) < 00
reX zeM

for some/any choice of compatible metrics d,0 on X and M.

Whereas motivating the discussion of isomorphisms here, in practice we shall
often avoid equivalence classes of metrics and maps and simply work with repre-
sentatives from these classes. In this way, a map between metric spaces is called a
quasi-isometry if it is a representative for an isomorphism between the associated
quasimetric spaces.

Example 1.6. The map R" Oy gn given by ¢(z1,...,2,) = (Lxlj,..., anj) is
a quasi-isometry whose inverse is the inclusion map Z" — R™ when both are given
the euclidean metric.

It is obvious that every metric d on a set X induces not only a metric space
(X, d) but also a Lipschitz, locally Lipschitz and quasimetric space by taking the
respective equivalence classes of the metric. Moreover, because the morphisms in
the category of a metric space are (not necessarily surjective) isometries, these are
also automatically morphisms in the other categories.

On the other hand, whereas not every topological vector space X has a Lipschitz
structure compatible with its topology, if X happens to be the reduct of a normed
vector space, then all norms compatible with the topology on X are bi-Lipschitz
equivalent and thus X is naturally equipped with the Lipschitz structure induced
by these norms. This is just a consequence of the simple fact that a continuous
linear operator between normed spaces is bounded and therefore Lipschitz.

Although there are counter-examples in the non-separable case (see Example
7.12 [9]), the outstanding problem regarding Lipschitz structure on Banach spaces
is whether this completely determines the linear structure.

Problem 1.7. Suppose X and Y are bi-Lipschitz equivalent separable Banach
spaces. Must X and Y also be isomorphic as topological vector spaces?

Even though it is generally felt that the answer should be negative, there are
several partial positive results, e.g., [28, 25]. Foremost among these is the following.

Theorem 1.8 (S. Heinrich and P. Mankiewicz, Theorem 2.6 [28]). Suppose X
and Y are bi-Lipschitz equivalent separable dual Banach spaces and assume that
X2XdX andY Z2Y @Y as topological vector spaces. Then X and Y are
isomorphic as topological vector spaces.

This applies, for example, to reflexive spaces such as ¢ and LP([0,1]) for 1 <
p < o0.

1.4. Banach spaces as uniform spaces. Evidently, every map between metric
spaces that is Lipschitz for short distances is automatically uniformly continuous.
In particular, this means that the uniform structures U, and Uy given by two locally



6 CHRISTIAN ROSENDAL

Lipschitz equivalent metrics d and 0 must coincide, i.e., Uy = Uy. However, to give
a proper presentation of this and also to motivate the category of coarse spaces,
recall the definition of uniform structures.

Definition 1.9 (A. Weil [58]). A uniform space is a set X equipped with a filter U
of subsets E C X x X, called entourages, satisfying

(1) ACE forall E€U,
(2) if E€l, thenEl—{y,)|( GE}GU
(3) f E€U, then FoF = {(z ’Elymy ,2) € F} C E for some F € U.

Here A = {(z, ) | # € X} denotes the diagonal in X x X. Recall that if d is an
écart (aka. pseudo-, pre- or semimetric) on a set X, i.e., d is a metric except that
possibly d(z,y) = 0 for distinct x,y € X, then the induced uniform structure Uy is
the filter generated by the family of entourages

By = {(I7y) | d(fﬂ,y) < Ol}

for a > 0.
Also, a morphism between two uniform spaces (X,U) and (M,V) is simply a

uniformly continuous map X M , that is, satisfying
VFeV3IEeclU: (x,y) € E= (¢z,¢y) € F.

Again, as the notion of substructure is apparent, we obtain a notion of uniform
embeddings, namely, isomorphism with a substructure.

Important early work on the uniform classification of Banach spaces was done
by P. Enflo, J. Lindenstrauss and M. Ribe, who established a number of rigidity
results for these. For example, the combined results of Lindenstrass [37] and Enflo
[14] establish that if 1 < p < ¢ < oo, then the spaces LP([0,1]) and L9([0,1]) are
not uniformly homeomorphic. However, whereas this distinguishes between the L?
spaces, it does not tell an LP space apart from an arbitrary space. Regarding this,
W. B. Johnson, J. Lindenstrauss and G. Schechtman [30] show that if a Banach
space X is uniformly homeomorphic to #P for some 1 < p < oo, then X is actually
isomorphic to #P as topological vector spaces. Considering instead uniform embed-
dings, let us just mention the result of Enflo [15] stating that not every separable
Banach space embeds uniformly into £2.

For the record, let us mention that, as opposed to the Lipschitz category, it is
known that the uniform structure does not determine the linear structure even in
the separable case. Namely, by work of Ribe [47], there are examples of separable
uniformly homeomorphic Banach spaces that are not isomorphic as topological vec-
tor spaces. Similarly, quasimetric structure does not determine uniform structure.
Indeed by a result due to Kalton [34] there are separable quasi-isometric Banach
spaces that are not uniformly homeomorphic.

1.5. Banach spaces as coarse spaces. Although we have not discussed Banach
spaces viewed as quasimetric spaces, we shall now consider an even weaker category
that abstracts large scale content from metric spaces in a manner similar to how
uniform spaces abstract small scale content. In fact, the following definition is an
almost perfect large scale counterpart to that of uniform spaces.

Definition 1.10 (J. Roe [48]). A coarse space is a set X equipped with an ideal €
of entourages E C X x X satisfying
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(1) Aeg,
(2) if E€&, then E71 € &,
(3) f E€&, then EoE€€.

Again, if (X,d) is a pseudometric space, the associated coarse structure &; is
then the ideal generated by the entourages E, = {(z,y) € X x X ‘ d(z,y) < a},
where now we require o < oo rather than a > 0.

In particular, this means that we can define two maps Y’ 2% X from aset Y into
a coarse space (X, &) to be close if there is an entourage E € & so that (¢y,vy) € E
for all y € Y. This conservatively extends the definition of closeness from the case
of metric spaces.

Definition 1.11. A map X %5 M between two coarse spaces (X, &) and (M, F)
is bornologous if

VE € £IF € F: (x,y) € E = (¢, dy) € F.

It follows that a map (X, d) N (M, Q) between pseudometric spaces is bornol-
ogous if and only if there is a monotone increasing function w: Ry — Ry so that

d(¢z, py) < w(d(z,y))
for all z,y € X.
Analogously to the category of quasimetric spaces, morphisms between coarse
spaces are closeness classes of bornologous maps and so two coarse spaces (X, &)
and (Y, F) are coarsely equivalent (that is, isomorphic as coarse spaces) if there are

P
bornologous maps X & Y so that ¢ and ¢ are close to the identities on X and
®

Y respectively.

More concretely, note that a map X 4 M from a metric space (X,d) into a
metric space (M, ) is a uniform embedding if

d(@n;yn) = 0 & (dpan, dyn) — 0

for all sequences x,,,y, € X. In the same manner, X 5 M is a coarse embedding
if, for all x,,, yn,

A coarse embedding is then a coarse equivalence! if furthermore ¢[X] is cobounded
in M, i.e.,

sup dist(a, ¢[X]) < oo.
a€eM

Because Lipschitz for short distances entails uniformly continuous and Lipschitz
for large distances entails bornologous, we obtain a diagram of forgetful functors
between the categories of metric, Lipschitz, local Lipschitz, uniform, quasimetric
and coarse spaces as in Figure 1.

Example 1.12 (Near isometries). Consider the category of metric spaces in which

morphisms are closeness classes of near isometries, i.e., of maps (X, d) N (Y,0)
so that

fo = sup |d(w,2) — 06w, 62)| < .
x,z€X

1Strictly speaking, ¢ is a closeness representative of a coarse embedding.
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Metric
Lipihitz
— T
LocalLipschitz Quasimetric
|
Unigorm Coarse

FI1GURE 1. Forgetful functors between geometric categories

P
Then two spaces are isomorphic provided there are near isometries X =2 Y so that

¢ and ¢p are close to the identities on X and Y respectively. Obsed;ve that, in
this category, it is easy to produce isomorphic spaces that are not isometric and
also automorphisms that are not close to any autoisometries.

We remark that, if X and Y are Banach spaces that are isomorphic in this

category, then there is a surjective near isometry X %, ¥V so that furthermore
#(0) = 0. Furthermore, by a result due to J. Gevirtz [21] and P. M. Gruber [27],

for any such ¢, there is a linear isometry X T\ ¥ with

sup||Tz — ¢zx|| < 4ky.
T

In particular, this shows that any isomorphism is close to a surjective linear isometry
and hence that the new notion of isomorphism coincides with linear isometry of
spaces.

1.6. Rigidity of morphisms and embeddability. So far we have encountered
rigidity results for isomorphisms and individual objects in the various categories.
The following simple fact, on the other hand, will establish rigidity of morphisms.

Lemma 1.13 (General Corson—Klee lemma). Suppose X s Eisa map between
normed vector spaces so that, for some §, A >0 and all x,y € X,

[z —yll <6 = ¢z — gyl <A.
Then ¢ is Lipschitz for large distances.

Proof. Given z,y € X, let n be minimal so that ||z — y|| < n-d. Then there are
Vo = T,V1,...,U, =Yy so that ||v; — v;41]| < d for all i. It thus follows that

n—1
¢z — pyl| < Z”@h‘ — Qi1 <m-A.

=0
Therefore ||pz — ¢y|| < § - |z — y|| + A. O

In particular, both a uniformly continuous and a bornologous map between two
Banach spaces is automatically Lipschitz for large distances. Similarly, a uniform
homeomorphism or a coarse equivalence between Banach spaces is also a quasi-
isometry. On the other hand, since a uniform or coarse subspace of a Banach space
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need not be the reduct of linear subspace itself, a uniform or coarse embedding
between Banach spaces is not in general a quasi-isometric embedding.

Remark 1.14 (Reconstruction functors). The above comments show that, when
we restrict the attention to reducts of Banach or just normed vector spaces, there
are reconstruction functors going from the categories of uniform, respectively coarse
spaces to quasimetric spaces. Namely, suppose U is the uniform structure induced
from some normed vector space structure on the set X. Then we let F(X,U) =
(X, D) be the quasimetric space induced by some or, equivalently, any normed
vector space structure on the set X that is compatible with the uniformity U.
Indeed, if (X, +,|]|) and (X, @, | -||) are two such normed vector space structures,
then

(X, 1) == (X0 - 1

is a uniform homeomorphism and thus a quasi-isometric equivalence. It thus follows
that the quasi-isometric equivalence classes of the norm metrics actually coincide.

Similarly, every map between Banach spaces that is Lipschitz for short distances
is automatically Lipschitz for large distances and hence actually Lipschitz (for all
distances). So this provides a functor from the category of Banach spaces viewed as
local Lipschitz spaces to the category of Banach spaces viewed as Lipschitz spaces.

At this point, we can refer to Figure 2 for a diagram of categories and the
functors relating them. All categories refer exclusively to reducts of separable real
Banach spaces and the black arrows to functors. Also, blue arrows refer to a
rigidity result for isomorphism. For example, an isomorphism in the category of
metric spaces induces another isomorphism in the category of normed vector spaces
by the Mazur—Ulam theorem.

Again, whereas a functor maps isomorphisms to isomorphisms, it need not pre-
serve embeddings, since the latter notion is not intrinsic to the category. Thus,
although a uniform embedding between Banach spaces is bornologous, it need not
be a coarse embedding. Nevertheless, we do have rigidity results for embeddings not
stemming from functors. Indeed, for separable Banach spaces, by the Godefroy—
Kalton theorem, isometric embeddings give rise to other linear isometric embed-
dings. This rigidity is indicated by a red arrow in Figure 2.

Now, even though by [34] there are separable quasi-isometric Banach spaces
that are not uniformly homeomorphic, it is an open problem whether the notions
of uniform and coarse embeddability between Banach spaces coincide?.

Problem 1.15. Are the following two conditions equivalent for all (separable) Ba-
nach spaces X and E?

(1) X wuniformly embeds into E,
(2) X coarsely embeds into E.

Observe that this is far from being trivial, since it is easy to produce uniform
embeddings that are not coarse embeddings and vice versa. Also, one cannot hope
to replace coarse embeddings by quasi-isometric embeddings, since, for example, £!
embeds into ¢2 uniformly, but not quasi-isometrically.

2The origins of this problem are not entirely clear, but the need for a better understanding of
the connection between these notions was noted by Kalton [33]
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NVS L-—-—__ Mazur—Ulam
/ " \\\\
TVS Godefronyalton\\\\~»77 Metric
372 ~~-____ Lipschitz Local
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/ \ /
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. . . . //
LocalLipschitz reconstr. Quasimetric //
P
reconstr. .~
reconstr. -7
Uniform Coarse
Ko A
l T T
Topological

FIGURE 2. Diagram of functors between diverse categories of
reducts of separable real Banach spaces. Dashed blue and red
arrows refer to rigidity results for isomorphisms, respectively, em-
beddings.

Theorem 1.16. Assume X and E are Banach spaces and that E & E embeds as

a topological vector space into E. Suppose also X S Eis uniformly continuous
and that, for some §, A > 0,

[z —yll > A = [z — gyl > 6.

Then there is a simultaneously uniform and coarse embedding X Ny

Proof. As E @ E embeds into E, we may inductively construct three sequences
FEy,, Zy,,V, of closed linear subspaces of FE so that E,, & Z, = FE as topological
vector spaces and

EnJrl @ ZnJrl g Zn

and

Vi=E10FE,®...0FE,dZ,.
Indeed, we simply begin with an isomorphic copy Vi of E @ E inside of E and let
E, and Z; be respectively the first and second summand. Again, pick a copy of
E @ F inside of Z; with first and second summand denoted respectively Es and Zs
and let Vo = By @ Ey @ Zy C V7, etce.

Let also P,, denote the projection of V,, onto the summand E,, along the decom-
position above. While each P, is bounded, there need not be any uniform bound
on their norms. Note now that V; D Vo, D ..., so we can let V = ﬂfbozl V., which is
a closed linear subspace of E containing all of the F,,. Moreover, the P,, all restrict
to bounded projections P,: V — E, so that E,, C ker P,, whenever n # m.

Composing ¢ with linear isomorphisms between FE and F,,, we get a sequence of

uniformly continuous maps X RNy o8 satisfying ||z —y|| > A, = ||¢x — Pyl > on
for some A,,,d, > 0 and bounded projections P,: V — E, so that F,, C ker P,
for n # m. By Lemma 1 [50], this implies that X admits a simultaneously coarse
and uniform embedding into V' and thus into E. (]
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Observe that, if X %, E is either a uniform or coarse embedding between
Banach spaces, then there are A,§ > 0 as in Theorem 1.16. Therefore, apart from
the mild assumption that £ & E embeds as a topological vector space into F, we
have the implication (1)=-(2) in Problem 1.15.

Corollary 1.17. Suppose X and E are Banach spaces so that E @ E embeds as
a topological vector space into E, Then, if X uniformly embeds into E, X also
coarsely embeds into E.

On the other hand, if a coarse embedding could always be strengthened to be
uniformly continuous, then we would essentially have proved the converse direction
(2)=(1). However, one must contend with the following serious obstruction.

Theorem 1.18 (A. Naor, Theorem 1 [44]). There is a bornologous map X B
between separable Banach spaces that is not close to any uniformly continuous map.

The above results indicate that the uniform structure of a Banach space is more
rigid than the coarse structure. However, once we pass to the underlying topology,
almost no information is left. Indeed, it is a result of M. I. Kadets [31] and H.
Torunczyk [56] that any two infinite-dimensional Banach spaces of the same density
character are homeomorphic. Furthermore, in combination with a result of R. D.
Anderson [2], it follows that all separable infinite-dimensional Banach spaces are
all homeomorphic to the countable product of lines, RY.

Remark 1.19 (Universal spaces). In the various categories above, it is interesting
to search for universal spaces, that is, separable spaces into which every other
separable spaces embeds. For example, a classical result states that, for K an
uncountable compact metric space, C'(K) is universal in the category NVS; every
separable Banach space admits an isometric linear embedding into C'(K). Similarly,
by a result of I. Aharoni [1], ¢ is universal in the category Lipschitz.

In contradistinction to this, F. Baudier, G. Lancien and T. Schlumprecht [7]
recently showed that there is no infinite-dimensional space that coarsely embeds into
all infinite-dimensional spaces. And when combined with a result of Y. Raynaud
[45], one sees that the same holds for uniform embeddings.

1.7. Banach spaces as local objects. The results of Enflo, Johnson, Linden-
strauss and Schechtman [14, 37, 30] mentioned earlier show rigidity for the uniform
structure of the individual spaces LP([0, 1]) and ¢?. However, there is also a beau-
tiful rigidity result due to Ribe encompassing all Banach spaces. To explain this,
we need a technical concept.

Definition 1.20. A Banach space X is said to be crudely finitely representable
in a Banach space Y if there is a constant K so that, for every finite-dimensional
subspace E C X, there is a finite-dimensional subspace F C'Y and a linear iso-

morphism E L F with 1T - 1T~ < K.

We then say that X and Y are locally isomorphic in case they are crudely finitely
representable in each other. In [46], Ribe then establishes the surprising fact that
any two uniformly homeomorphic spaces must be locally isomorphic. In particular,
this implies that all local properties of Banach spaces, i.e., that only depend on the
finite-dimensional subspaces (up to some uniform constant of isomorphism) is in
principle expressible in terms of the uniform structure of the entire space. This, in
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turn, has motivated to so called Ribe programme (see, e.g., Naor [43]) of identifying
exclusively metric expressions for these various local invariants of Banach spaces
such as convexity, smoothness, type and cotype, which furthermore then become
applicable not only in the linear setting but to metric spaces in general.
Subsequent proofs of Ribe’s theorem go by showing that if X and Y are quasi-
isometric separable spaces, then X and Y have bi-Lipschitz equivalent ultrapowers

XY and YY. Moreover, if V 2 Wis a bi-Lipschitz embedding of a separable
Banach space V into a Banach space W, then, using differentiation techniques,
V' embeds as a topological vector space into W**. In particular, the diagonal
copy of X in X“ embeds as a topological vector space into (Y¥)**. Now, by the
principle of local reflexivity, (Y¥)** is crudely finitely representable in Y¥ and, by
the nature of ultrapowers, Y is crudely finitely representable in Y. Combined,
this shows that if X and Y are quasi-isometric separable spaces, then X is crudely
finitely representable in Y and vice versa, i.e., X and Y are locally isomorphic.
As uniformly homeomorphic or coarsely equivalent spaces are also quasi-isometric,
Ribe’s theorem follows.

One may think of Banach spaces as objects in the category Local of local spaces
in the following sense. The objects of the category are simply separable Banach
spaces and we put an arrow X — Y from X to Y in case X is crudely finitely
representable in Y. Observe that, in this way, an arrow X — Y does not necessarily
correspond to the existence of a special type of function from X to Y. However, if
X isometrically embeds into Y, then X also linearly isometrically embeds and thus
is crudely finitely representable in Y. This means that we obtain a last functor
from the category of metric reducts of separable Banach spaces to Local.

In Figure 2, Ribe’s Theorem is indicated as an arrow from the category Coarse
to Local. His original rigidity theorem, that is the arrow from Uniform to Local, is
then obtained by composition with the functors from Uniform to Quasimetric and
further onto Coarse.

When we restrict the category Local to infinite-dimensional spaces, we have initial
and terminal objects X and Y, that is, so that for every Z there are (trivially
unique) arrows

X=Z=Y.

Indeed, by a result of A. Dvoretzky, Hilbert space ¢2 is crudely finitely repre-
sentable in every infinite-dimensional Banach space (see [19]), whereas, by a result
of S. Kwapien [36], any space crudely finitely representable in ¢ has type and co-
type 2 and must be isomorphic to ¢? as a topological vector space. Thus, up to
isomorphism, ¢? is the unique initial object.

On the other hand, Y is a terminal object exactly when ¢ is crudely finitely
representable in Y, which by a result of B. Maurey and G. Pisier [40] is equivalent
to Y only having trivial cotype. This shows that, for example, ¢y and the reflexive
space

(£(2) B L°(3)P...)pe
are terminal.

For Banach spaces, there are also interesting concepts of minimality of objects,
which can be phrased as being an initial object in an appropriate category. Namely,
a separable infinite-dimensional Banach space X is said to be minimal if X em-
beds as a topological vector space into all of its infinite-dimensional closed sub-
spaces. Similarly, X is locally minimal if X is crudely finitely representable in all
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its closed infinite-dimensional subspaces. Both of these concepts allow for Ram-
sey style dichotomies that establish canonical obstructions for containing (locally)
minimal subspaces (Theorem 1.1 and Theorem 1.2 [18]). Specifically, every infinite-
dimensional Banach space contains an infinite-dimensional closed linear subspace
X satisfying one of

(1) X is crudely finitely representable in all its infinite-dimensional subspaces,

(2) X has a Schauder basis (z,)5%; so that no infinite-dimensional subspace
Y C X is crudely finitely representable in all tail subspaces X, = [£,]0% 3,
with a uniform constant.

Let us end this section by noting that, particularly through the impetus of J.
Bourgain and A. Naor, the non-linear and metric theory of Banach spaces has
blossomed into a very rich theory with deep connections to computer science. An
overview of some of these topics can be found in G. Godefroy’s survey [23].

2. GEOMETRIC STRUCTURES ON TOPOLOGICAL GROUPS

2.1. Uniform and local Lipschitz structure. In the preceding section, we have
introduced various geometric structures through the instructive example of Banach
spaces. In this case, once the categories are understood, there is no discussion of
what the appropriate structure of a Banach space is, since it is just obtained by
stripping away information. Also, we saw how one may reconstruct, e.g., affine
structure from the metric structure and quasimetric structure from the uniform
structure. However, for topological groups that do not a priori have this additional
structure, the problem is the reverse. Namely, how and when can we endow the
abstract topological group with a canonical structure of a given type.

Recall that a topological group is simply a group G equipped with a topology in
which the group operations are continuous. Even a Lie group may just be seen as a
locally compact locally euclidean group (in the light of the solution to Hilbert’s fifth
problem) and thus simply a special type of topological group without any further
differentiable structure. For simplicity, all topological groups will henceforth
be assumed to be Hausdorff.

Now, apart from being a topological space, a topological group G also has a
couple of canonical uniform structures associated with it. The most interesting in
this context in the left-uniform structure Uy, which is the filter on G x G generated
by entourages

Ey ={(z,y) e G x G | Ty eV,

where V' ranges over identity neighbourhoods in G. Observe that if (X, +) is the
additive topological group of a Banach space, this is simply the uniform structure
given by the norm metric.

As always, with uniform spaces it is often useful to work with écarts generating
the uniformity and, in the case of groups, one can even require these to be com-
patible with the algebraic structure. Indeed, an écart d is said to be left-invariant
if

d(zy, xz) = d(y, )
for all z,y,z € G.
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Theorem 2.1 (A. Weil [58]). The left-uniform structure Uy, on a topological group
G 1is given by
U, = Ja,
d
where the union is over all continuous left-invariant écarts d on G.

In fact, prior to this, independently G. Birkhoff [10] and S. Kakutani [32] showed
that if a topological group G satisfies only a weak consequence of metrisability,
namely, if it is first countable, then G in fact admits a compatible left-invariant
metric d, i.e., inducing the topology of G. Moreover, in this case, by left-invariance,
this metric will also be compatible with the left-uniform structure, that is, Uy, = Uj,.
In short, the following properties are equivalent for an arbitrary topological group
G.

(1) Uy is metrisable,
(2) G admits a compatible left-invariant metric,
(3) G is first countable.

Apart from exceptional circumstances, one should not expect that a canonical
metric, even up to rescaling, should exist on a metrisable topological group. Nev-
ertheless, it is instructive to look at what such a metric should do for us. Because
the general case is not much different, we shall not assume metrisability of G at
the outset and hence deal with écarts rather than metrics.

First of all, an écart d should be continuous. This ensures that the induced
topology 74 is coarser than that 7o of G itself. Secondly, to enforce compatibility
with the algebraic structure, we should also require the écart to be left-invariant,
which then guarantees that the uniform structure U, is coarser than the left-uniform
structure Ur,. Finally, in case G is metrisable, d can be assumed to be compatible
with the topology, whereby actually U, = Uy. By the results of Birkhoff, Kakutani
and Weil cited above, these requirements can always be fulfilled.

These were the general requirements. Now, how could we identify a canonical
local Lipschitz structure on G7 Because a local Lipschitz structure automatically
gives us a metrisable uniform structure, we shall focus exclusively on metrics.

Definition 2.2. [51] A compatible left-invariant metric d on a topological group G
is said to be minimal if, for every other compatible left-invariant metric 0 on G,

(G,9) =% (G, d)
is Lipschitz for short distances.

In fact, this definition relies on a quasiordering of metrics by setting d <, 0 if

(G,0) LN (G,d) is Lipschitz for short distances. Then a minimal metric is just a
minimum in this ordering?®.

Clearly, any two minimal metrics are locally Lipschitz equivalent and thus define
a local Lipschitz structure on G, which furthermore is compatible with the left-
uniform structure on the group.

Definition 2.3. The local Lipschitz structure of a topological group (if it exists)
is that given by any minimal metric.

3Despite the terminology, it is not clear if minimal elements in the quasiordering < are
automatically minimum too.
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Despite being conceptually clear, the definition of minimal metrics is unfortu-
nately highly impredicative as it involves a quantification over objects of the same
type, namely left-invariant metrics and hence functions on G. So is there a char-
acterisation of minimal metrics that only quantifies over elements of G? For this,
it will be slightly more convenient to consider length functions in place of met-
rics. So let us recall that a length function® on a (topological) group G is a map
{: G — [0,00[ so that

(1) L(x) =0 & z=1g,

(2) U(zy) < L(z) +£(y),

(3) Uz1) = ().
Observe also that there is a bijective correspondence between length functions and
left-invariant metrics on G given by ¢(z) = d(z,1) and d(z,y) = {(x~'y). This,
of course, generalises the correspondence between the norm ||-|| on a Banach space
and its associated norm distance. Note also that the metric d is continuous if and
only if ¢ is continuous and that d is compatible with the topology on G if and only
if £ is compatible, in the sense that the balls By(e) = {z € G | {(z) < €} form a
neighbourhood basis at the identity in G. We thus say that a compatible length
function ¢ on G is minimal if and only if the corresponding metric is minimal.

Theorem 2.4 (Theorem 3 [51]). The following conditions are equivalent for a
compatible length function £ on a topological group G.

(1) £ is minimal,

(2) for some identity neighbourhood U, constant K and alln > 1 and x € G,

0?23 2 eU = nf(z) < K -0z,
(3) for some constants € >0, K and alln > 1 and z € G,
n-llx)<e = n-Llx)<K-L(z").

Because £(z™) < n - £(z) holds for all n and z, condition (2) is a linear growth
condition on ¢ in an identity neighbourhood of the group. Thus, for example, the
norm on a Banach space X is a minimal length function on the additive topological
group (X, +).

Condition (2) is obviously much simpler that the initial definition of minimality
and also has the non-trivial consequence that the restriction of a minimal metric d
on G to a subgroup H < G with the induced topology is also minimal on H.

Example 2.5. Consider the Banach space L!(]0, 1]) of integrable real-valued func-
tions on [0, 1] and let

G={feL'([0,1])im(f) C Z}.
Then G is a closed additive subgroup of L([0, 1]), whereby the norm is also minimal
when restricted to G. Observe also that, if f € G, then fy = f -1y, A €
[0,1], defines a continuous path from 0 to f in G. Thus, G is a connected abelian

topological group with a minimal metric, in fact, a closed subgroup of a Banach
space.

Whereas Theorem 2.4 provides us with a simple characterisation of minimal
metrics, we do not have any informative reformulation of which groups admit a
minimal metric and hence, equivalently, a local Lipschitz structure. The language

43ometimes also called a norm.
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of descriptive set theory allows us to make this question precise at least for the
well-behaved class of Polish groups, that is, completely metrisable separable topo-
logical groups. Concretely, the class of Polish groups can be parametrised by a
standard Borel space Gp, e.g., by letting Gp be the Effros—Borel space of closed
subgroups of some injectively universal Polish group such as the homeomorphism
group Homeo([0, 1]V) of the Hilbert cube [57].

Problem 2.6. Is the class of Polish groups admitting a minimal metric a Borel
set in the standard Borel space Gp of Polish groups?

A positive answer would show that one can characterise these groups without
simply asking for an object of the same complicated type as a minimal metric itself.
For locally compact second countable groups, the answer to Problem 2.6 is already
known. Indeed, condition (3) of Theorem 2.4 formulated for the corresponding
metric appears under the name weak Gleason metric in T. Tao’s book [55]. Fur-
thermore, by A. Gleason, D. Montgomery, H. Yamabe and L. Zippin’s solution to
Hilbert’s fifth problem along with Tao’s exposition of this in [55] and Theorem 2.4,
the following equivalent conditions for a locally compact second countable group
emerge.

(1) G is locally Euclidean,
(2) G has no small subgroups, that is, there is an identity neighbourhood in G
not containing any non-trivial subgroup,

(3) G has a weak Gleason metric,

(4) G has a minimal metric,

(5) G is a Lie group.
In particular, a locally compact second countable group has a canonical local Lip-
schitz structure if and only if it is a Lie group.

Beyond locally compact groups, the problem of characterising those admitting
minimal metrics remains largely open. The strongest positive result in this direc-
tion is the fact that connected Banach—Lie groups also admit minimal metrics. This
is a recent result of H. Ando, M. Doucha and Y. Matsuzawa [3] extending a previ-
ous unpublished result do to C. Badea for the unitary groups of complex Banach
algebras. We shall return to this in Section 2.3. However, as opposed to the case of
finitely dimensional Lie groups, not every closed subgroup of a Banach—Lie group is
Banach—Lie, whereas it will still have a minimal metric. In the light of the case of
locally compact groups, it is therefore tempting to conjecture that the topological
groups admitting a minimal metric are exactly the closed subgroups of Banach—Lie
groups.

Working towards this conjecture, let us first verify that some amount of Lie
group structure follows from having a minimal metric even in the general case’.
For this, let us say that a topological group G has ample square roots if, for every
identity neighbourhood W, the set of squares

{¢*|ge W}
is dense in some other identity neighbourhood. Recall also that a one-parameter
subgroup of a topological group G is a continuous homomorphism z: R — G. We

5Because minimal metrics are exactly the weak Gleason metrics, it is possible to imitate the
proof of Hilbert’s fifth problem from [55] by successively adding the extra assumptions needed,
which happen to be automatic in the case of locally compact groups. Although this procedure is
rather straightforward, we keep matters simple and focus only on the abelian case.
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let g denote the collection of all one-parameter subgroups of G and let
e

be the map given by exp(z) = 2(1). If € g and a € R, let also ax € g be defined
by (az)(t) = x(at). The following result (slightly simplifying a result of [51]) has
its origins in work of C. Chevalley [11], Enflo [16] and Gleason [22].

Theorem 2.7. Let G be a completely metrisable group with a minimal metric and
ample square roots. Then there is neighbourhood basis at the identity consisting of
sets W so that each f € W is of the form f = exp(z) for a unique x € g satisfying
x(t) € W for allt € [-1,1].

Proof. For any identity neighbourhood V', let
gy ={zecg|at)eVforaltel-1,1]}

By Theorem 25 [51], there are open identity neighbourhoods U 2 O so that every
f € O is of the form f = exp(z) for a unique = € gy. Moreover, by the last
paragraph of the proof, U and thus also O can be supposed to be arbitrarily small.
It follows that the collection

N = {exp[gv] | V is an identity neighbourhood and V' C O}

is a neighbourhood basis at the identity.

Suppose now that V is a given identity neighbourhood. Then, for any x € gy
and r € [—1,1], we have (ra)(t) = z(rt) € V for all t € [—1, 1], which shows that
also rx € gy. We claim that

Jexplgy] = BV -
Indeed, explgy] € V and so also gexplg,] S gv. Conversely, if z € gy and r €
[—1,1], then r& € gy and so z(r) = exp(rz) € exp[gy], which shows that x €
Gexplgy] and hence that gexplg,] 2 gv-

Suppose now that W € N and write W = exp[gy] for some identity neighbour-
hood V C O. Then

explgw] = expl@exp(g,]] = explov] = W.

Moreover, because W = expl[gy] C V C O C U, we see that gy 2R W s also
injective. O

The notation g for the space of one-parameter subgroups of course indicates that
we aim to make g the Lie algebra associated with G. Whereas this may not pan
out in general, let us first note that the the right derivative at 0 of the function
£(x(-)) defines an appropriate “norm” of z € g. So, let G be a topological group
with minimal length function ¢ and let U and K be as in condition (2) of Theorem
2.4. Choose also € > 0 small enough so that g € U whenever ¢(g) < e.

Lemma 2.8. Assume that x € g, x # 0. Then

o ) _ | ta(t) _ K
t—0 |t| 40 |t‘

where
te =inf {t € Ry | L(z(t)) > €}.
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Proof. Because z is non-constant, ¢(x(t)) > ¢ for some t > 0 and so
te =inf {t € Ry | L(2(t)) 2 €} >0
and ¢(z(t;)) = e. We first note that
alt) _ Ke

\tx-

20 |t
Indeed, because ¢(x(—t)) = £(x(t)~!) = £(z(t)) and both 2 and ¢ are continuous,

% < It(—: for all rational numbers r > 0. So suppose

p,q = 1 are natural numbers and note that
| e | pta  pla te t te

it suffices to verify that

We now show that

) ()
o R T

Indeed, suppose e(gﬂtﬂ > § for some t > 0 and § > 0. By continuity of = and ¢, we

can find some 7 > 0 so that
£(z(s))

s
whenever |s—t| < n. Now, if 0 < r < 5, there is n > 1 so that |nr —t| < 7, whereby
Uzx(nr)) _n-La(r) _ Lx(r))

0 < < = ,
nr nr r

>0

showing that also liminf,_,q Z($T(T)) > 4. Thus, liminf,_, W > SUp;g Laft(‘t)),

which proves (1). O

Suppose now further that G is abelian. Then, as is easily seen, g becomes a
normed vector space when equipped with the operations

(z+y)(t) = x(t)y(t),  (ax)(t) = z(at)

) )
Il = i === = sup =~

and the norm

Observe also that the exponential map g 2R @ is a continuous group homomor-
phism, in fact, ¢(exp(z)) < |||

Theorem 2.9. Suppose G is a completely metrisable connected abelian topological
group with minimal length function £ and ample square roots. Then g is a Banach
space and

G =g/A,
where A is a discrete subgroup of (g,+). In particular, G is a Banach—Lie group.

Proof. Let us first note that the sets gy, where W ranges over identity neighbour-
hoods in G, form a neighbourhood basis at 0. Indeed, that each gy is a norm
neighbourhood of 0 follows from the fact that, for all ¢t € [—1,1],

o(z(t)) < E(Tt(f) )

<l
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Conversely, given 6 > 0, we can find W small enough so that If—; < ¢ forallz € gw,
where t, = inf {t € Ry | £(2(t)) > ¢}. By Lemma 2.8 it follows that ||z|| <  for
all x € gw.

As noted above, the exponential map g 2B @ is a continuous group homomor-
phism. Because the sets gy, where W ranges over identity neighbourhoods in G,
form a neighbourhood basis at 0, Theorem 2.7 implies that exp restricts to a home-
omorphism between two identity neighbourhoods gy and W. In particular, this
shows that A = ker(exp) is a discrete subgroup of g and, because G is completely
metrisable, that g is complete, i.e., a Banach space. Moreover, the image of exp is
an open subgroup of GG, which is thus G itself, since G is connected. Finally, exp
descends to an isomorphism between g/A and G. (]

2.2. Coarse and quasimetric structure. Of course having a minimal metric
is already a restrictive condition among locally compact groups and one should
not expect it to be ubiquitous in other settings either. So let us instead turn our
attention to quasimetric and coarse geometry.

Example 2.10 (Finitely generated groups). The standard and indeed motivating
example of a quasimetric geometry is that induced by the word metric

ps(x,y) = min(k ‘ 351,...,5. € STz =ys; - s1)

on a group I' generated by a finite generating subset S C I'. The fundamental
observation of geometric group theory is that this geometry is independent of the
specific finite generating set S. Indeed, if T' is another finite generating set, then
there is a k so that each element of S can be written as a word of length at most
k in T and so one sees that pr < k- pg. By symmetry, it thus follows that the two
metrics are bi-Lipschitz equivalent and hence define the same quasimetric and even
Lipschitz structure.

Example 2.11 (Compactly generated groups). A similar argument applies to
compactly generated locally compact groups. Namely, if M and L are two sym-
metric compact generating sets containing 1 for a locally compact group G, then
M C M? C M3 C ... is an exhaustive sequence of compact subsets and thus, by
the Baire category theorem, some M’ has non-empty interior and therefore covers
the compact set L by finitely many left-translates. It thus follows that L C MF
for some k > 1 and therefore as in Example 2.10 the two word metrics py; and py,
are Lipschitz equivalent. However, although left-invariant, the word metrics are no
longer compatible with the topology on G unless G itself is discrete. But a simple
argument using the construction of Birkhoff and Kakutani allows us to find a con-
tinuous left-invariant écart d representing the same quasi-isometry class as pp; and
PL-

The recent book by Y. de Cornulier and P. de la Harpe [12] provides a fuller
picture of the geometric group theory of locally compact groups.

Example 2.12 (Fragmentation metrics on homeomorphism groups). Fix a closed
manifold M and let Homeog (M) be the identity component of the homeomorphism
group equipped with the compact-open topology. We note that Homeog (M) consists
of the isotopically trivial homeomorphisms. Fix also a covering B = {B1, Ba, ..., B,}
of M by embedded open balls and let U; C Homeog(M) be the set of homeomor-
phisms g with supp(g) C B;. By results of R. D. Edwards and R. C. Kirby [13], every



20 CHRISTIAN ROSENDAL

g € Homeog (M) sufficiently close to the identity can be factored as g = hy -+ hy,
with h; € U;. In other words,

U=U0,U;---U,

is an identity neighbourhood in Homeog(M). Moreover, as Homeoy(M) is con-
nected, this means that U generates Homeop(M). The word metric py is called
the fragmentation metric associated to the cover B. Furthermore, as shown by E.
Militon [42], any two such covers produce quasi-isometric fragmentation metrics
and thus define a canonical quasimetric structure on Homeog(M).

Observe however that the definition on the fragmentation norm is not a priori
intrinsic to the topological group, but rather depends on viewing Homeog (M) as a
transformation group of the manifold M, that is, depends on the group Homeog (M)
along with its tautological action Homeog(M) ~ M.

The above examples give us concrete quasimetric structures induced by word
metrics, including on groups that don’t have small generating sets in any reasonable
topological sense. For other specific transformation groups there may be similar
constructions, but is there a way to see these as instances of a general construction
that applies to all groups? The correct way of doing this is to take serious the idea
that a coarse structure is somehow dual to uniform structure (without implying
that there is an actual duality between these categories). We thus dualise Weil’s
Theorem 2.1 into a definition as follows.

Definition 2.13. [52] The left-coarse structure £, on a topological group G is given

by
&L = ﬂ &a,
d

where the intersection ranges over all continuous left-invariant écarts d on G.

As with uniform spaces, metrisable coarse spaces (X, &), that is, so that £ = &4
for some metric or, equivalently, for some écart d on the set X, are much simpler
to understand than the general case. So let us call an écart d on X coarsely proper
if it induces the coarse structure on X, i.e., if £ = &,.

Every coarse space (X, &) has an associated bornology of bounded sets, i.e., an
ideal B of subsets of X with X = (Jzcp B. Namely, B C X is said to be coarsely
bounded if Bx B € £. A subset B of a topological group G is then coarsely bounded
exactly when

diamg(B) < o0
for every continuous left-invariant écart d on G. By left-invariance and continuity of
the écarts defining &y, the bornology of coarsely bounded sets in G is furthermore
stable under the operations

A cl(Ad), A—A"' (A B)— A-B.

Moreover, a continuous left-invariant écart d on G is coarsely proper provided the
d-bounded sets are exactly the coarsely bounded sets of G.

Example 2.14 (Proper metrics). Clearly every compact subset of a topological
group is coarsely bounded. But conversely, by a theorem of R. A. Struble [53], every
locally compact second countable group G admits a compatible left-invariant proper
metric, i.e., so that closed sets of finite diameter are all compact. It follows that
the coarsely bounded sets in G are exactly the relatively compact sets and hence
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that d is also coarsely proper. In particular, the coarse structure on a countable
discrete group is that given by any left-invariant metric whose balls are finite.

As for minimal metrics, the characterisation of coarsely bounded sets involves
quantification over a large sets of écarts, so one would like a simpler operative
criterion for coarse boundedness and thus coarse properness too. If, for every
identity neighbourhood V in G, there is a countable set D C G so that G is
generated by V U D, for example, if G is separable or connected, we do get a
simpler description. Namely, a subset B of such a group G is coarsely bounded if
and only if, for every identity neighbourhood V, there are a finite set ' C G and
k > 1 so that

B C (FV)*
(see Proposition 2.15 [52]). In particular, if G is Polish, the ideal of coarsely bounded
sets is Borel in the Effros Borel space F(G) of closed subsets of G. Furthermore, we
have an analogue of Birkhoff and Kakutani’s characterisation of metrisable groups
above.

Theorem 2.15 (Theorem 2.38 [52]). The following conditions are equivalent for a
Polish group G,
(1) the coarse structure &y, is metrisable,
(2) G admits a compatible left-invariant coarsely proper metric,
(3) G is locally coarsely bounded, i.e., has a coarsely bounded identity neigh-
bourhood.

As it is straightforward to see that no identity neighbourhood in the Polish group
ZXLXLX ...

is coarsely bounded, this shows that not every Polish group has metrisable coarse
structure. Nevertheless, most important transformation groups do and, in fact,
they often admit a canonical compatible quasimetric structure.

Example 2.16 (Topological vector spaces). Topological vector spaces are a source
of algebraically trivial, but occasionally topologically involved examples. So assume
for simplicity that X is a real topological vector space. Let us first recall that a
subset A C X is said to be Kolmogoroff bounded if, for every O-neighbourhood
U C X, we have that
ACSU
for some § > 0. Usually, these are simply known as bounded sets, but we use the
longer name here to distinguish them from sets that are coarsely bounded when
viewed as subsets of the abelian topological group (X, +).
By A. Kolmogoroff’s [35] normability criterion and a simple argument using
Lemma 2.8, we find that the following conditions are equivalent for X.
(1) (X,+) admits a minimal metric,
(2) X is normable, that is, admits a topologically compatible vector space norm,
(3) X is locally locally Kolmogoroff bounded, i.e., has a Kolmogoroff bounded
0-neighbourhood, and is locally convex.
Because the topological group (X, +) is connected, a subset A C X is coarsely
bounded if, for every 0-neighbourhood U, there is some n so that

ACU+---+U.
—_———

n times
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In general, coarse boundedness is strictly weaker than Kolmogoroff boundedness.
For an extreme example, consider the vector space L°([0, 1]) of all measurable func-

tions [0, 1] N R, where we identify two functions if they agree almost everywhere
with respect to Lebesgue measure A. LY([0, 1]) becomes a Polish topological vector
space when equipped with the topology of convergence in measure, where basic
0-neighbourhoods are of the form

Ue={f € L°(0,1]) | M { [f(z)] > €} < ¢}
for € > 0. Note that, if 717 < €, then

LY%([0,1)) =Uc + - + U,
————
n times

which shows that L°([0, 1]) is itself coarsely bounded. On the other hand, if € < 1,
then U, fails to be Kolmogoroff bounded in L%([0, 1]), so L°([0, 1]) is not even locally
Kolmogoroff bounded.

For the two notions of local boundeness to be equivalent, we need furthermore
to assume local pseudoconvexity. Here a set A C X is pseudoconvez if NA C A for
all 0 < A <1 and also

A+ACGHA

for some § > 0. Also X is locally pseudoconvex if it has a neighbourhood basis at 0
consisting of pseudoconvex sets.

One can then show that the following conditions are equivalent for a real topo-
logical vector space X.

(1) X is locally pseudoconvex and (X, +) is locally coarsely bounded,

(2) X is locally Kolmogoroff bounded,

(3) X admits a compatible p-homogeneous length function ¢ for some 0 < p < 1,
i.e., so that £(tz) = [t|Pl(z) for all t € R and z € X.

Here, the equivalence between (2) and (3) is given by the well-known Aoki-Rolewicz
Theorem [4, 49].

To address how a quasimetric structure compatible with the coarse structure
may be defined, we first define a quasiordering of continuous left-invariant écarts
on G by

Ik d & (G,d) i, (G, 9) is bornologous.
Then the coarsely proper écarts are simply the maximum elements of the ordering
<. Refining <, we set

ok d < (G,d) i, (G, 0) is Lipschitz for large distances

and say that a continuous left-invariant écart is mazimal if maximum in this order-
ing. Since the sum of two écarts is still an écart, these are directed orderings and
hence maximal elements are automatically maximum too. Also, as any two maxi-
mal écarts are obviously quasi-isometric, when they exist they induce an inherent
quasimetric structure on G identifiable exclusively from the topological group struc-
ture. Moreover, because maximal écarts are also coarsely proper, the quasimetric
structure is automatically compatible with the coarse structure.

As always, we are left with three main issues, namely, (i) finding simpler opera-
tive charaterisations of maximal metrics, (i) determine criteria for their existence
and (iii) analyse concrete groups.
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Proposition 2.17 (Proposition 2.72 [52]). The following are equivalent for a con-
tinuous left-invariant écart d on a topological group,

(1) d is maximal,

(2) d is coarsely proper and large scale geodesic, that is, for some constant K
and all z,y € G, there are z9 = ©,21,...,2n, =y S0 that d(z;—1,2;) < K
and

> d(zi1,z) < K - d(x,y),
=1

(3) d is quasi-isometric to the word metric pg given by a coarsely bounded
generating set B C G.

From condition (2), one easily gets that every outright geodesic metric is maximal
and hence that the norm induces the quasimetric structure of the additive group
(X,+) of a Banach space. Since the norm metric is also minimal, we see that both
the local Lipschitz and quasimetric structures on (X, +) are what they should be,
namely, those given by the norm.

One may also use condition (3) to give a simple criterion for when, e.g., Polish
groups have maximal metrics and hence canonical quasimetric structure. But first
a word of caution. Even for a Polish group, it is not true that the word metric pp of
every coarsely bounded generating set B C G will induce the quasimetric structure.
But, if B is either closed or if pp is known to be quasimetric to a compatible metric
on G, then it does.

Theorem 2.18 (Theorem 2.73 [52]). A Polish group G admits a mazimal met-
ric and thus a quasimetric structure if and only if G is algebraically generated by
a coarsely bounded subset B C G. Moreover, in this case, the word metric pg
associated to B induces the quasimetric structure.

Because the Polish groups admitting maximal metrics are exactly the ones whose
left coarse structure is generated by a single entourage, these are called monogenic.

Our examples before can now be seen as instances of this general setup and, in
addition, many other groups have easily calculable quasimetric structure.

e Let I be a finitely generated group. Then the quasimetric structure of the
discrete topological group I' is simply that given by the word metrics.

e If G is a compactly generated locally compact second countable group, the
quasimetric structure of G is that given by the word metric px where K is
any compact generating set.

e If M is a closed manifold, the quasimetric structure on Homeog (M) is that
given by the fragmentation metric. In particular, the fragmentation metric
is intrinsic to the topological group Homeog (M) without knowledge of its
tautological action on M [39].

e Let T,, be the n-regular simplicial tree for n = 2,3,4,..., 8y and equip
its automorphism group Aut(T},,) with the permutation group topology in
which vertex stabilisers are declared to be open. Then, for any vertex
t € T),, the orbit map

g € Aut(T,) — g(t) € T,

is a quasi-isometry between Aut(7),) and T,, (Example 6.34 [52]).
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Observe that, in the last example, when n is finite, Aut(7},) is compactly gener-
ated locally compact. However, for n = N, i.e., when the valency is denumerable,
then Aut(T;,) is only Polish and thus cannot be compactly generated.

Of course, not every group has an inherent quasimetric structure, i.e., a max-
imal écart. For example, a countable, but not finitely generated, group will be
such. It has a metrisable coarse structure, but any attempt at constructing a finer
quasimetric structure will involve choices not dictated by the (topological) group
structure.

With this framework in place, it is now possible develop substantial parts of
geometric group theory in this larger setting; see [52] for an account. However, one
must caution that there are dramatic changes from the theory of finitely generated
or even locally compact groups to this more general setting. For example, if H
is a closed subgroup of G, then the inclusion mapping is automatically a uniform
embedding and, if G and H are locally compact second countable, then it is also a
coarse embedding. On the contrary, if G and H are no longer locally compact, H
is in general not coarsely embedded in G and so, as opposed to minimal metrics,
a coarsely proper metric on G need not restrict to a coarsely proper metric on
H. This phenomenon is similar to the fact that a finitely generated subgroup of
a finitely generated group may not be quasi-isometrically embedded and leads to
substantial complications and new aspects of the theory that one must contend
with.

Example 2.19 (Mapping class groups of infinite type surfaces). A topic of high
current interest in geometric topology is the study of mapping class groups of infinite
type surfaces, that is, surfaces S for which the fundamental group is not finitely
generated. Specifically, consider for simplicity a connected orientable surface S
without boundary and define the mapping class group by

Map(S) = Homeo, (S)/Homeoy(S),

where Homeo (S) is the group of orientation preserving homeomorphisms and
Homeoy(S) is again the component of the identity in Homeo(S). Thus, Map(S)
is the group of isotopy classes of orientation preserving homeomorphisms of S. Be-
cause Homeo () is Polish and Homeog(S) a closed subgroup, also Map(S) is Polish
and the focus is therefore on the case when this group is uncountable. It turns out
that a more combinatorial description of Map(S) is available. Namely, associated
with the surface S, there is the so called curve graph C(S), whose vertices are the
isotopy classes of essential simple closed curves in S and where two such classes are
connected by an edge in C(S) provided they admit disjoint realisations in S. It is
easy to see that Map(.S) acts by automorphisms on the graph C(S), but, in fact, as
shown independently by J. Bavard, S. Dowdall and K. Rafi [8] and J. Herndndez
Herndndez, I. Morales and F. Valdez [29], this action induces an isomorphism of
topological groups
Map(S) = Aut(C(S)),

where the latter is equipped with the permutation group topology.

Furthermore, K. Mann and K. Rafi [38] have determined for which surfaces
Map(.S) is respectively locally coarsely bounded, monogenic and coarsely bounded.
This thus allows the partial transfer of geometric group theoretical methods into a
previously unmapped territory. More information about these groups can be found
in the survey paper by J. Aramayona and N. G. Vlamis [5].
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One of the many beautiful results of M. Gromov’s fundamental work on geometric
group theory is the fact that quasi-isometric equivalence between finitely generated
groups I and A is equivalent to the groups admitting a topological coupling, that
is, a pair

X~ A

of commuting proper cocompact actions by homeomorphisms on a locally compact
Hausdorff space X (Theorem 0.2.CY [26]). On the one hand, this shows that one can
pass from a weak metric equivalence between I" and A to a more robust dynamical
equivalence. On the other hand, it also provides the vantage point from which
several other notions of couplings, e.g., measure theoretical, may be defined.

One direction of Gromov’s theorem is rather straightforward and works in a
wider generality. Namely, if I' ~ X v A is a topological coupling, one may define

a coarse equivalence T’ A by simply requiring that, for some fixed x € X and
compact set K C X withI'- K = X = K - A, we have

x € gKp(g)™"

for all g € T

For the other direction, one lets I and A act on the space AT of functions from I'
to A by pre and post composition with the left shifts of the groups on themselves.
Clearly the actions commute and one may simply take X =T"- ¢ - A, which turns
out to be locally compact.

If one tries to repeat this second construction for a coarse equivalence G o H
between locally compact groups, one quickly realises that the action G ~ X C H®
will not in general be continuous unless ¢ is uniformly continuous. Nevertheless,
Gromov’s theorem remains true for locally compact groups [6] and even in a much
wider setting.

For this, let us say that a continuous action G ~ X of a topological group on
a locally compact Hausdorff space X is coarsely proper if, for every compact set
K C X, the set

{9eG|Kng-K +0}

is coarsely bounded in G. Similarly, the action is modest if B - K is compact for
all coarsely bounded B C G and compact K C X. In a second countable locally
compact group, the coarsely bounded sets are relatively compact and hence all its
actions are automatically modest. However, this is not the case for more general
groups. Also, in locally compact second countable groups, coarse properness is just
properness.

To better understand the condition of coarse properness, let us just note that a
modest continuous action G ~ X is coarsely proper exactly when the sets of the
form

Ex ={(9,f) € Gx G| gKNfK # 0}

form a basis for the coarse structure on G as K varies over compact subsets of the
locally compact Hausdorff space X. Now, as it turns out, not every group admits a
coarsely proper modest cocompact action G ~ X on a locally compact Hausdorff
space, In fact, a Polish group G admits such an action exactly when G is coarsely
equivalent to a proper metric space (Theorem 5.14 [52]). Such G are said to have
bounded geometry as it can be seen to be equivalent to G having bounded geometry
as a coarse space in the sense of Roe [48].
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Theorem 2.20 (Theorem 5.31 [52]). Two Polish groups G and H of bounded
geometry are coarsely equivalent exactly when they admit a coarse coupling, i.e.,
a pair of commuting, coarsely proper, modest, cocompact, continuous actions on a
locally compact Hausdorff space.

' X A

For a prototypical example of this setup, consider the group Homeoz(R) of all lifts
of orientation-preserving homeomorphisms h of the circle S ! to homeomorphisms
h of R. Then Homeoyz(R) is given as a central extension

0 — Z — Homeoz(R) — Homeo, (S*) — id.

Alternatively, Homeoyz(R) is the group of homeomorphisms of R commuting with in-
tegral translations. Then Homeoz(R) is a non-locally compact Polish group coarsely
equivalent with Z and, in fact, the canonical actions

Z ~ R~ Homeoz(R)

amount to a topological coupling of these groups.

It is worthwhile to consider the import of the large scale geometry on topolog-
ical groups. Wherein lies its utility? Observe first that the coarse structure of a
topological group provides a non-trivial invariant. That is, isomorphic topological
groups are of course coarsely equivalent or even quasi-isometric (provided they have
a well-defined quasimetric structure). This perspective may be useful for specific
classes of groups or just to tell apart a few particular groups, but is unlikely to be
of much practical value in classifying large groups such as Homeog (M) for compact
manifolds M. A good example is Banach spaces that turn out to be incredibly
difficult to tell apart up to isomorphism and a fortiori up to quasi-isometry. In
fact, I would venture to postulate that, except for classes of spaces explicitly given
by a set of parameters such as P, p € [1,00], or C(«) for @ a countable ordinal,
there is no non-trivial family of Banach spaces that is classified up to isomorphism.

Thus rather than focusing on the entire coarse space (G,£y) as an invariant
for the topological group G, one should concentrate on the geometry imparted to
G. For this reason, it is much easier to work with groups with metrisable coarse
structure or even those admitting maximal metrics. This allows one, on the one
hand, to gauge the relative “sizes” of group elements, namely, their distances to
the identity, and, on the other hand, detect non-trivial geometric features of the
group, for example, hyperbolicity and asymptotic dimension. One may also obtain
non-trivial geometric bounds by investigating the properties of the Banach spaces
into which the group coarsely embeds.

2.3. Lipschitz geometry. Having introduced the uniform and coarse structure
and also discussed the conditions under which these can be further improved to
provide locally Lipschitz and quasimetric structures, the last issue at hand is to
determine when locally Lipschitz and quasimetric structure can be integrated. That
is, suppose a topological group G has both a locally Lipschitz and a quasimetric
structure. When are these two reducts of the same Lipschitz structure on G?

Proposition 2.21. Suppose G has a minimal metric d and a mazimal metric D
(both compatible and left-invariant). Then G has a metric O that is simultaneously
minimal and mazximal and any two such metrics will be Lipschitz equivalent.
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Proof. Suppose first that 0 and 05 are both simultaneously minimal and maximal.
Then, since 9; is maximal,

(G,01) % (G, )
is Lipschitz for large distances and, since d5 is minimal, it is also Lipschitz for short
distances. It therefore follows that the map is Lipschitz. By symmetry, we see that
the two metrics are Lipschitz equivalent.

To construct 0 from d and D, we observe first that, since D is maximal, G must
be generated by a coarsely bounded set B C G. Let then r > 0 be large enough so
that B is contained in the open D-ball V' of radius r centred at the identity. Then
D is quasi-isometric with py and the formula

8(x,y) :lnf(zn:d('l}“]_g) | T =Yvy--Up &Ui c V)
i=1

defines a compatible left-invariant metric on G that is quasi-isometric to py and
hence also to D. Moreover, if U is an identity neighbourhood so that U? C V, then
d and 9 agree on U and hence 0 is also minimal. Thus, 0 is both minimal and
maximal. O

By Proposition 2.21, a Lipschitz structure on G, if it exists, is simply that
given by any compatible left-invariant metric that is simultaneously maximal and
minimal. Moreover, the existence of this is equivalent to the conjunction of existence
of locally Lipschitz and quasimetric structure.

The prime example of such groups is the class of compactly generated (locally
compact) Lie groups. However, by a recent result of Ando, Doucha and Matsuzawa,
this even applies to Banach—Lie groups.

Theorem 2.22 (see Theorem A [3]). Let G be a connected Banach-Lie group with
Banach-Lie algebra g and define the exponential length function elg by the formula

ela(g) =it { YKl [ n> 1, Xi €9, g =exp(Xy) - exp(X,)}.
i=1

Then the associated left-invariant metric d(g, f) = ela(g~1f) is a compatible met-
ric on G that is simultaneously maximal and minimal and therefore defines the
canonical global Lipschitz geometric structure on G.

It is worth noting that the metric d associated with exponential length function
coincides with well-known Finsler distance (see Remark 3.11 [3]). This again means
that the Finsler distance (at least up to bi-Lipschitz equivalence) is implicitly given
by the abstract topological group and that the geometric group theory of G is
simply the study of G with its Finsler distance.

It is now time to return to the general picture of geometric categories we have
constructed so far.

To sum up, every topological group G has canonical uniform and coarse struc-
tures Uy, and £p. These may or may not be metrisable, depending on whether G
is first countable, respectively, whether G is locally coarsely bounded (for Polish
G). A local Lipschitz structure is then that given by a minimal metric, while a
quasimetric structure is that given by a maximal metric, if such exist. However,
when G has both, these are integrated into a single metric that is both maximal
and minimal and defines the inherent Lipschitz geometry of G.
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FIGURE 3. Geometric structures on topological groups

Not surprisingly, there is a tight relationship between the various geometric cat-
egories and, as for Banach spaces, there are rigidity phenomena of morphisms too.

For example, by the proof of Lemma 1.13, we see that, if G 2 Hisa bornologous
map between topological groups with maximal metrics, then ¢ is automatically
Lipschitz for large distances. In particular, every coarse equivalence between G
and H is also a quasi-isometry.

Similarly, if G S Hisa uniformly continuous map between topological groups
and G has no proper open subgroups, then ¢ is bornologous. Thus, uniformly
homeomorphic groups without proper open subgroups are also coarsely equivalent.
As, for example, Z and Z? are uniformly but not coarsely equivalent, this evidently
fails in general.
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