SEPARATION RATIOS OF MAPS BETWEEN BANACH SPACES

CHRISTIAN ROSENDAL

ABSTRACT. Under the weak assumption on a Banach space E that E @ E
embeds isomorphically into E, we provide a characterisation of when a Banach
space X coarsely embeds into E via a single numerical invariant.

1. INTRODUCTION

The concept of coarse embeddability between metric spaces can be viewed as a
large scale analogue of uniform embeddability and may most easily be understood
in terms of the moduli associated with a map. However, as we are exclusively
concerned with Banach spaces, these moduli can further be reduced to a couple of
numerical invariants.

Definition 1. For a (generally discontinuous and nonlinear) map X %4 E between
two Banach spaces we define the exact compression coefficient &(¢), the compression
coefficient k(¢) and the expansion coefficient w(¢) by

R(¢)=sup inf [[é(z) - ¢(y)

,
t<oo [|lz—yll=t

k(¢) = sup inf H(ﬁ(;v) - qS(y)H,

t<oo [lz—yl>t

and

(@) =jof  sup_ [¢(z) = o(w)]|
To avoid certain trivialities, we shall tacitly assume that all Banach spaces have
dimension at least 2 and hence, in particular, that the infima and suprema above
are taken over non-empty sets. Let us first note the obvious fact that w(¢) = 0 if
and only if ¢ is uniformly continuous. On the other hand, w(¢) < oo if and only if
¢ is Lipschitz for large distances, that is,

|o(z) = o(y)|| < Kz —yll + K

for some constant K and all z,y € X. Similarly, assumptions on x(¢) correspond
to known conditions on the map ¢. We summarise these as follows.

(1) w(¢) =0, that is, ¢ is uniformly continuous,

(2) w(¢) < oo, that is, ¢ is Lipschitz for large distances,

(3) K(¢) = o0, that is, ¢ is expanding,

(4) k(¢) > 0, that is, ¢ is uncollapsed.
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Note that the three coefficients above are all positive homogenous, in the sense that

K(AP) = A k(o)
for all A > 0 and similarly for %(¢) and w(¢). In particular, this means that the
following quantity is invariant under rescaling ¢.

Definition 2. The separation ratio of a map X S E is the quantity

K(9)

R(¢) = )

D=0
whereweset&z%:()forallae[0,00] and § = % = =00 forall0 < a < oco.

Whereas ¢ being a uniform embedding cannot be directly expressed via the
coefficients above, we note that ¢ is a coarse embedding provided that w(¢) < oo
and k(@) = oo, that is, if ¢ is Lipschitz for large distances and is expanding. We
thus see that

R(9) = o0
if and only if ¢ is either uniformly continuous and uncollapsed (e.g., a uniform
embedding) or if ¢ is a coarse embedding.

Motivated in part by the still open problem of deciding whether a Banach space
X coarsely embeds into a Banach space F if and only it uniformly embeds, the
papers [3, 4, 8, 9, 10, 11] contain various constructions for producing uniform and
coarse embeddings or obstructions to the same. In particular, in [11] (see Theorem
1.16) we showed that, provided that E @ E isomorphically embeds into F, then a

uniformly continuous and uncollapsed map X B gives rise to a simultaneously
uniform and coarse embedding of X into E. However, as shown by A. Naor [8],
there are Lipschitz for large distance maps that are not even close to any uniformly
continuous map. For the exclusive purpose of coarse embeddability, our main result,
Theorem 3, removes the problematic assumption of uniform continuity of ¢.

Theorem 3. Suppose X and E are Banach spaces so that E & E isomorphically
embeds into E. Then X coarsely embeds into E if and only if

sup R(¢) = oo,
¢

where the supremum is taken over all maps X 2 E.

The proof of Theorem 3 also allows us to address another issue, namely, the
preservation of cotype under different forms of embeddability. For this, consider
the following conditions on a map X 2 E.

(5) R(¢p) = oo, that is, ¢ is almost expanding,

(6) ®(¢) > 0, that is, ¢ is almost uncollapsed.
Also, the map ¢ is said to be solvent provided that there are constants Ry, Ra, ...
so that

Ry <|lz —yl <R +n = |¢x) - o@)| >n

Provided that ¢ is Lipschitz for large distances, ¢ is solvent if and only if it is
almost expanding (see Lemma 8 [9]). In analogy with Definition 2, we then define
the exact separation ratio of ¢ to be
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As k(¢) < R(¢), we then have R(¢) < R(¢). Also, R(¢p) = oo exactly when
¢ is either uniformly continuous and almost uncollapsed or is Lipschitz for large
distances and solvent.

In connection with this, B. Braga [4] strengthened work by M. Mendel and A.
Naor [7] to show that, if X maps into a Banach space F with non-trivial type by a
map that is either uniformly continuous and almost uncollapsed or is Lipschitz for
large distances and solvent, then

cotype(X) < cotype(E).
The following statement therefore covers both cases of Braga’s result and seemingly
provides the ultimate extension in this direction.
Theorem 4. Suppose X and E are Banach spaces so that
sup R(¢) = 00

and that E has non-trivial type. Then
cotype(X) < cotype(E).

Problem 7.4 in Braga’s paper [4] asks what can be deduced about a space X

that admits a map X %, F that is just Lipschitz for large distances and almost
uncollapsed, i.e. so that R(¢) > 0. That is, will restrictions on the geometry of
FE also lead to information about the geometry of X? In Example 10, we show
that this is not always so. Indeed, if X is separable and F is infinite-dimensional,

one can always find a map X %, E that is both Lipschitz for large distances and
uncollapsed, i.e., so that R(¢) > 0, and after renorming E one can even obtain
R(¢) = 1. On the other hand, Theorem 4 provides a positive answer to Braga’s

question under the alternative assumption sup, R(¢) = 0.

Acknowledgements: I am very grateful for the extensive feedback and criticisms
I got from B. Braga on a first version of this paper and for suggesting a link with
cotype that led to Theorem 4.

2. PROOFS

Before proving our main results, let us introduce four functional moduli that lie
behind the definitions of the (exact) compression and expansion coefficients.

Definition 5 (Compression moduli). For a (generally discontinuous and nonlinear)
map X % E between two Banach spaces we define the exact compression modulus
Fg: [0, 00[ = [0,00]

Folt) = inf {l6(@) — 6@ | llo - yll = 1}

and the compression modulus by Ry : [0, 00[ — [0, 0o by
kg (t) = inf {[|(z) — o) | llz — yll > t}.

Thus, Ky is the pointwise largest map so that Ry (||z — zf|) < H(;S(x) — d)(y)”
for all z,y € X, while k4(t) = inf, >, R4(r) is the pointwise largest monotone map
satisfying the same inequality.
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Definition 6 (Expansion moduli). For a map X i) FE between Banach spaces, the
exact expansion modulus @y : [0, 00[ — [0, 00] is defined by

@y (t) = sup {[lo(x) — o)l | lz — yll = t},
and the expansion modulus wy: [0, co[ — [0, c0] by

we(t) = sup {||¢(z) — ()|l | lz — yll < t}.

The following are evident.
ro(t) SFp(t) < Wy(t) < wolt)-

We recall that, to avoid trivialities, all Banach spaces are assumed to have di-

mension at least 2. Thus, suppose X  Eisa map and that ¢ > 0 and z,y € X.
Let n > 1 be minimal so that ||« — y|| < nt, whereby (n — 1)t < ||z — y|| and pick

20 = T,21,29,...,2n, =¥y SO that ||zi—1 — z;|| =t for i = 1,...,n. Then
" Wt
o) — 6wl < D lléin) — ol < n-Bolt) < ZB e~y 4 7000
i=1

In turn, this shows that

Wy (1)
t

for all s,z > 0 and so limsup,_,, we(s) < infisowWy(t). Because wy is non-

decreasing, the limit lims_,0, we(s) = infesowg(s) exists, whereby

s+ @,(t)

CES (1) < Tminf S (f) < Tmsun s (4) < T < inf T (D).
tlg(f) We(t) < htrgérif We(t) < h;g(b)ljp We(t) < t1~I>r(IJ1+ we(t) < g(f) Wy (1)

All in all, we find that

w(6) = infwo(t) = Jim w(t) = lim @(t) = inf @, (1),

In particular, we would obtain nothing new by introducing an ezact expansion
coefficient by w(¢) = inf;~o Wy (t), since this is just the expansion coefficient itself.
Furthermore, if w(¢) < oo, then ¢ is Lipschitz for large distances, that is,

[o(x) —o(y)|| < K|z —y| + K

for some constant K and all z,y € X.
Next, the definition of the separation ratio may initially be difficult to parse, so
let us briefly restate it more explicitly.

Lemma 7. For a map X s E and a constant K > 0, we have
R(¢) > K
if and only if there are constants A, 6, A, A > 0 so that
lz =yl = A = o) - ¢(y)]| =4,

lz —yll <A = |[¢(z) — d(y)]| <A
and§>K,
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Proof. Note that, if R(¢) > K, we may find A;A > 0 so that Z‘(‘;((ﬁ)) > K. Letting

0 = kg(A) and X = wg(A), the two implications follow.
Conversely, if the two implications hold for some A, 4§, A, \ > 0 so that % > K,
then

SUD; < o0 Kp(t) _ Kg(A
R(o) = — >
(¢ infysowe(t) wg(A

which verifies the lemma. O

Proof of Theorem 3. As noted, if X %4 F is a coarse embedding between arbitrary
Banach spaces, then R(¢) = oo, which proves one direction of implication. Also,
under the stated assumption on E, by Theorem 1.16 [11], we have that X coarsely

embeds into E if and only if R(¢) = oo for some map X 2y E. So suppose instead

only that sup, R(¢) = oo. We then construct a coarse embedding X %E as
follows.

Because F & E embeds isomorphically into E/, we may inductively construct two
sequences F,,, Z, of closed linear subspaces of E all isomorphic to E so that

En+1 ® Zn+1 g Zn

Concretely, we simply begin with an isomorphic copy E @ F inside of E and let E;
and Z; be respectively the first and second summand. Again, pick an isomorphic
copy of E® F inside of Z; with first and second summand denoted respectively Fs
and Zs, etc. It thus follows that

EDEI®Z D E10E,®Z, O BTG E,OE®Z O ...

is a decreasing sequence of closed linear subspaces of E. Let
Vi=E18E&---®FE,®Z,

and set V = ()°_; V,,. We note that V is a closed linear subspace of E in which

each FE, is a closed subspace complemented by a bounded projection V' P, E, so
that E,, C ker P,, whenever n # m. On the other hand, we have no uniform bound
on the norms || P, ||.

Fix now a sequence of isomorphisms F LE,L and find maps X Oy B with
R(0,) > n 2™ || P, ||| T || 757t ]]. Observe that, for all ¢ > 0,

K, (t)
K’Tnoen (t) 2 "_ ’
1T |

whereas
w00, () < | Tl - we, (),

which shows that

R(6,
R(Ty, 060,) > (7)71 > n2"|| P,
Tl 5 |l
Setting ¢, = T, 06,,, we find that lim,, R(én) _ . The conclusion of the theorem

2n HPn ”
therefore follows directly from Lemma 8 below. (]
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Lemma 8. Suppose X and E are Banach spaces and EXE isa sequence of
bounded linear projections onto subspaces E, C E so that E,, C ker P, for all
m # n. Assume also that there is a sequence of maps

X E,

so that R(6,)
lim =
n 2| P
Then X coarsely embeds into E.

Proof. By composing with a translation, we may suppose that ¢,(0) = 0 for each

R
n. Because lim,, S =

o=yl = An = ||én(z) — du(y)| = bn

= 00, we may also find constants A, d,,, A, A, > 0 so that

and
|z -yl < An = ||¢n ¢n(y)|| < Ay
while
hmai o0
n An2"|| Pyl '
For every n, we let
1
nla) = 5 0u (32 )
Then
lz =yl <n = |5z = %2yl <A,
M = [én (32 @) = 6u (& -9)|| < 2
= [[¢n(z) = ¢u(y)| <27"
Similarly,
Ap
lo =yl > 22" = |42 2 — 42y > A,

o) = [én (B 2) = ou(Be-u) | > 00
= [[vn(@) — vn(y)| >

In particular, if ||z — y|| < m, then ||x —y|l < n for all n > m, whereby

ZHwn( — ¥nly ann wn(y)||+zzfn<oo

Also, ¥, (0 ) 0 for all n, which shows that, for all x € X,

Z [[von ()

and so the series Y 2 | ¢, (z) is absolutely convergent in E. We may therefore

define a map X g by letting

= tn(x)
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We now verify that 1 is a coarse embedding of X into F. First, let m > 1 be
any given natural number and suppose that z,y € X satisty || — y|| < m. Then

we may find zo = x, 21, 22,...,2m = y so that ||z;—1 — z]| < 1 for all < and so, in
particular, ||¢n,(zi—1) — ¥n(2:)]] < 27" for all n. It thus follows that

960 = sl = |32 v - iwn@u

(e - H+ZH% —¥n ()]

1 md
< ) ¥n(z0) wn<zm)H+Z2‘"

3

SEM

3
I
—

m—1 m
HZ Un(2i-1) — Yn(2i) H+2_m+1
n=1 =1
m—1 m
< ZHQZ}" Zi— 1 wn Zi H +2 ml
n=1 i=1
m—1 m
< ZQ—H + 2—m+1
n=1 i=1
m—1

=y m27" 427

n=1

<m+27 "
In other words, for all m and z,y € X, we have
lz —yll <m = [Jo(@) —¢(y)]| <m+27mF

Conversely, if m is any given number, find n large enough so that %’ﬁpu > m.
Then, if || — y|| >

(2 On
~ 27| Byl
>m.

Taken together, these two conditions show that ¢ is a coarse embedding. (I

The gluing presented in Lemma 8 may be contrasted with the so-called barycen-
tric gluing technique discussed in detail in [1]. In our gluing above, the purpose
is to improve the metric qualities of maps X — E, whereas the barycentric gluing
allows one to paste together a sequence of maps nBx — FE defined on larger and
larger balls of X, but where, on the other hand, the metric qualities of the maps
are not improved. It is not clear whether the two techniques may be combined.
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Proof of Theorem 4. Suppose X and E are Banach spaces so that
sup R(¢) = oo,
]

and F have non-trivial type, i.e., type(E) > 1. We then note that also type(€2 (E)) =
type(E) > 1 and cotype((2(E)) = cotype(E). Thus, if we can show that X maps
into ¢5(F) by a map that is Lipschitz for large distances and solvent, then, by the
previously mentioned result of Braga (Theorem 1.3 [4]), we will have that

cotype(X) < cotype(l2(E)) = cotype(E).

So fix a sequence of maps X B so that R(¢n) > n2" for all n > 1. This means
that there are A, dn, Ap, Ay > 0 so that
o=yl = An = ||¢n(z) = ¢uly)| > dn
and
o =yl S Aw = ||on(z) = dn(y)]| < An
and 2= > n2". We then define 1, by Yn(x) = ﬁd)n(%x) and note that, as in

Xn
(1) and (2),

e =yl <n = |[vn(z) - vuly)| <277,
whereas

We finally define X —% £5(E) by v(z) = (¢1(z),¢a(x),...) and note that 1 is
well-defined by the above and satisfies w(¢) < wy (1) < 1 and B(Y) > Ry (”AAW) >n
for all n. So % is Lipschitz for large distances and almost expanding, whence, by

[9, Lemma 8], ¢ is Lipschitz for large distances and solvent. O

Another way to prove Theorem 4 is first to establish an analogue to Theorem 3
for the quantity sup, R(¢) in place of sup, R(¢). This is done by observing that
the proof of Theorem 3 above can be changed to prove the following statement.

Theorem 9. Suppose X and E are Banach spaces so that E & E isomorphically
embeds into E. Assume also that
sup R(¢) = oo,
@
then there is a map X S E that is Lipschitz for large distances and solvent.

In order to obtain Theorem 4, one then notes that ¢5(F) @ ¢5(F) = ¢5(E) and

so, if sup, R(¢) = oo, where the supremum is taken over all maps X i)E, we

have a map X i>£2(E) that is both Lipschitz for large distances and solvent.

3. EXAMPLES

For every pair of Banach spaces X and E, we define the coarse embeddability
ratio of X in E to be the numerical invariant

CR(X,E) =sup {R(¢) | ¢: X — E is a map }.
This is simply the quantity appearing in Theorem 3, which therefore states that,
under very mild assumptions on E, we have CR(X, E) = oo if and only if X coarsely

embeds into E. As the next example shows, the main interest lies in the case when
CR(X,E) > 1, whereas CR(X, E) =1 is easily obtained.
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Example 10. If X is separable and E is a Banach space that admits an infinite
equilateral set, that is, an infinite subset A C E so that, for some § > 0,

le —yll =0

for all distinct z,y € A, then we have CR(X, E) > 1. To see this, let (Y)zca be
a partition of X indexed by the set A into subsets Y, C X of diameter at most 1

and let X -2 E be defined by
Py =2 & zcA&kyeY,.

Observe that, if ||y — ¢'|| > 1, then y and y’ must belong to different pieces of the
partition and so ||¢(y) — ¢(y')|| = d. On the other hand, ||¢(y) — ¢(y')|| < ¢ for all
v,y € X, so we see that kg(t) = 6 for all t > 1, whereas wy(t) < 0 for all ¢ > 0. So
R(¢) > 1.

In particular, this reasoning applies when F is one of the classical Banach spaces
¢y, co, L, or even the Tsirelson space 7. Indeed, in these spaces, the standard
unit basis (e,)52, is an infinite equilateral set (or, in the case of Tsirelson’s space,
(en)S% 5 is equilateral). Here we remark that 7™ is the reflexive space originally
constructed and described by B. S. Tsirelson [12], while T is its ¢;-asymptotic dual
whose explicit construction was given by T. Figiel and W. B. Johnson [6].

Let us also observe that, if F is infinite-dimensional, then I admits an equivalent
renorming with respect to which it has an infinite equilateral set. Indeed, since F
is infinite-dimensional, it contains a normalised basic sequence (e, )52 ;. We define
a new equivalent norm || - | on the closed linear space [e,]5°; by letting

o0
I35 =[S v ] S |
n=1 nel neJ

1,J are intervals and i < j for all i € [ and j € J}.

As |le,|| =1 for all n, we find that |le; —¢;]| = 2 for all ¢ < j and so (e,)5%; is an
equilateral set of the norm | - ||. It now suffices to notice that || - || extends to an
equivalent norm on all of F.

Example 10 illustrates that the embeddability ratio CR(X, E) is sensitive to the
specific norm on E, but not to the choice of norm on X. On the other hand, the
condition CR(X, E) = oo only depends on the isomorphism class of E. Note also
that, if X, Y and Z are Banach spaces so that CR(X,Y) = oo, then

CR(X,Z) > CR(Y, Z).

An important non-embeddability result was recently established by F. Baudier,
G. Lancien and T. Schlumprecht [2], who showed that the separable Hilbert space £5
does not coarsely embed into Tsirelson’s space T™. It is known that 7™ is minimal,
that is, T* embeds isomorphically into all of its infinite-dimensional subspaces (see
Chapter VI [5]). Also, T* has an unconditional basis and can therefore be written
as a direct sum of two infinite-dimensional subspaces. It therefore follows that
T* @ T* embeds isomorphically into 7" and thus E = T™* satisfies the assumption
of Theorem 3. Tt follows that the coarse embeddability ratio CR(¢s,T™) is finite
and we now proceed to give an upper bound.

Proposition 11. If T* denotes Tsirelson’s space, then
CR(¢3,T) < 4.
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Proof. We rely on the analysis of [2], which also contains additional details about

the construction below. For the proof, assume towards a contradiction that ¢ & E
satisfies R(¢) > 4. Then by pre and post-composing ¢ with dilations we can suppose
that, for some constants A > 0 and § > 4, we have

lz =yl > A = [l¢() - oy)]| >0
and

lz =yl < V2 = [|é(2) - ¢(y)]| < 1.
Let (e,)22; be the standard unit vector basis for ¢5 and set € = 5%4. Let also &
be large enough so that v/2k > A and let [N]¥ be the collection of all k-element
subsets of N equipped with the Johnson metric,

AAB
d,(A,B) = | 5 3

Observe that d; is simply the shortest-path metric on the graph whose vertices
is [N]* and where two vertices A and B are connected by an edge provided that
|A A B| = 2. Let then f: [N]¥ — T* be defined by

FA) =6( D en).

neA

Observe that, if d;(A4, B) = 1, then

HZen—Zen :\/|AAB|:\/§
ncA neB
and so || f(A) — f(B)|| < 1. Thus, f is Lipschitz with constant 1.

By Proposition 4.1 [2] there is an infinite subset M C N and some y € T so that,
for any A € [N]* with A C M, there are vectors yi, ...,y € T* with |ly/| < 1so
that y, ... ,y,f form a finite block basis of the standard unit vector basis for 7%,
k < minsupp(yi') and

[F(A) = (+ui ++uid)| <e
In particular, for all A, B € [N]¥, A, B C M|, we have that
1F(A) = FB < |yt + -+ wid]| + [Jof +-- +y || +2¢
<242+ 2
<9,

where the second bound follows from (2.13) in [2]. On the other hand, for any two
disjoint A, B € [N]*, we have

TSI
neA neB

which implies that || f(A4) — f(B)|| = ¢ and thus contradicts the preceding upper
bound. 0

=2k > A,

The following still unsolved problem provides the main theoretical motivation
for our investigations here.

Problem 12. Suppose X and E are Banach spaces. Is it true that X coarsely
embeds into E if and only if it uniformly embeds?
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Problem 13. Suppose X and E are Banach spaces so that CR(X, E) > 1. Does
it follow that CR(X, E) = oo?

il
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