ABSTRACT EMBEDDABILITY RANKS

FLORENT P. BAUDIER AND CHRISTIAN ROSENDAL

Abstract. We describe several ordinal indices that are capable of detecting,
according to various metric notions of faithfulness, the embeddability between
pairs of Polish spaces. These embeddability ranks are of theoretical interest but
seem dicult to estimate in practice. Embeddability ranks, which are easier to
estimate in practice, are embeddability ranks generated by Schauder bases.
These embeddability ranks are inspired by the nonlinear indices a la Bourgain
from [?BLMS_FM]. In particular, we resolve a problem [?BLMS_FM, Problem 3.10]
regarding the necessity of additional set-theoretic axioms regarding the main
coarse universality result of [?BLMS_FM].

1. Introduction

In 1980, Bourgain [?Bourgain1980] showed that a separable Banach space that
contains an isomorphic copy of every separable reexive space must also contain
an isomorphic copy of C[0; 1], and thus, by Banach-Mazur embedding theorem, an
isomorphic copy of every separable Banach space. This universality theorem is a
far reaching improvement of an earlier result of Szlenk [?Szlenk1968], which states
that there is no separable reexive Banach space that is isomorphically universal for
the class of separable reexive Banach spaces. Bourgain’s argument in turn relies
on a reformulation of the problem in terms of the computation of an ordinal index,
making the problem amenable to descriptive set theoretic techniques. Bourgain’s
innovative approach was further developed in [?Bossard2002], [?ArgyrosDodos],
and [?Dodos2009], in order to show that a class of Banach spaces that is analytic,
in the Eros-Borel structure of subspaces of C[0;1], and contains all separable
reexive Banach spaces, must contain a universal space. In [?BLMS_FM], nonlinear
versions of Bourgain’s universality theorem were proposed. Thanks to Aharoni’s
theorem [?Aharonil974], it is known that co contains a bi-Lipschitz, and hence a
coarse and uniform, copy of every separable metric space. Depending on whether
we consider bi-Lipschitz embeddings or coarse embeddings, the role of the class of
reexive spaces considered by Szlenk or Bourgain is played by a collection of metric
spaces R[S]. with < !1 and where R = Q for bi-Lipschitz embeddings and R
= Z for coar%e embeddings. Here R[S]. is the metric subspace of co consisting of
all vectors P xiei where xj 2 R and‘A belong to the th Schreier family S. In
this note we prd¥é the coarse universality result below. This result was orig-inally
proved in [?BLMS_FM] under additional set theoretical assumptions, namely
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Martin’s Axiom (MA) together with the negation of the Continuum Hypothesis
(:CH). The main point of our theorem is to show that these axioms are actually
not required, thus solving Problem 3.10 from [?BLMS_FM].

Theorem. If a separable metric space contains a coarse copy of Z[S]. for every
ordinal < !i, then it contains a coarse copy of every separable metric space.

In [?BLMS_FM], the proof (under MA+:CH) of the theorem above relied on a
reformulation a la Bourgain of the universality problem. In particular, certain
combinatorial trees on Polish spaces capturing the nonlinearity of the problem
together with associated ordinal indices were introduced. In order for this approach
to be successful in the coarse setting, it was necessary to extract an uncountable
family of equi-coarse embeddings out of an uncountable family of merely coarse
embeddings. While the similar problem in the Lipschitz or linear settings can be
solved with a simple pigeonhole principle, the argument for the coarse case required
the additional set theoretic assumptions mentioned above.

Proposition 1.1 (MA+:CH). If (X;d)<1 is a collection of metric spaces such
that for all < 11, X embeds coarsely into a metric space (M d), then there exists an
uncountable subset C of !1 such that (X; d)2c embeds equi-coarsely into (M; d).

In Section ??, we recall the denitions of the objects being considered in this ar-
ticle (e.g. coarse, uniform, bi-Lipschitz embeddings) and introduce various ordinal
indices related to the corresponding notions of metric embeddability. Our point of
view relies on the notion of rank of well-founded binary relations on Polish spaces
(instead of trees on Polish spaces as in [?BLMS_FM]). In order to avoid the use of
additional axioms through Proposition ??, we incorporate the main characteristics
of the metric embeddings into the denitions of the ordinal indices. The guaran-teed
uniform control on the moduli in the conclusion of Proposition ?? becomes an
automatic feature of the denition and consequently the use of additional set
theoretic axioms is bypassed. In Section ??, we introduce some natural and eas-ily
dened embeddability ranks. However, estimating these ranks does not seem
straightforward in practice and therefore, in Section ??, we dene embeddability
ranks induced by Schauder bases. These ranks are similar to the nonlinear indices
introduced in [?BLMS_FM] but are more general and most importantly, as hinted at
above, incorporate the compression and expansion moduli into their denitions. As in
[?BLMS_FM], these ranks are easily estimated and lead to the same results without the
use of additional set theoretic assumptions.

The extraction of subcollections of embeddings with uniform control on their
moduli of expansion and compression is an interesting problem in its own right and,
in the last section, we generalize Proposition ?? by relating this type of problems
to certain cardinal invariants of the continuum, in particular the bounding number
b. Our proof is arguably more transparent than the one in [?BLMS_FM].

2. Embeddability ranks

2.1. Functional moduli. The various notions of embeddability we will consider
can all be described in terms of functional moduli, which we now proceed to dene. For
this purpose, let

Z = f:::;%;%;1;2;3;:::g
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and set
N =f:Z ! [0;1] is non-decreasing g:

Observe that N can be seen as a closed subset of the Polish space [0; 1]%, where
we view [0; 1] as the one-point compactication of [0; 1).

When : X | E is a function between two non-empty metric spaces, we dene
the compression modulus 2 N and the expansion modulus ! 2 N by
(r) = inffde (x);(y) dx(x;y)> rg; r22
and () = r
r supfde (x); (y) dx(x;y) 6 rg; 27:

Remark that, if X is bounded, there may be no x;y 2 X for which dx(x;y) > r,
which means that (r) = inf; = 1. So, foranyr 2 Z,

(N<1 , 9%y2X dx(x;y)>r:

We need one more piece of notation. For any real number t> 0, lett and t: be
respectively the largest and smallest element of Z so that

t 6t6 t.

and observe that, for all t > 0, we have 32 6t 6 t6 t. 6 2t. By denition of and
I, we note that

dix;y)  6.d (x);(y) 6! d(x;y)+
for all x;y 2 X.

As noted above, the various notions of embeddability between metric spaces we
shall consider are dened by imposing dierent restrictions of the compression and
expansion moduli of a function : X | E. We therefore dene

Mcoarse = f(; 1) 2 N N I(r)< 1 forallr2Z and lim (n)= 1g;
Muniform = f(; 1) 2 N N 0< (r) forallr2Z and lim"{}!)= 0Og
1

and nally nt1
Mtipschitz = f(; 1) 2 N N (r) > cr; !(r) 6 Cr forsome0O< c< C < 1g:

A map : X | E is then called a coarse, uniform or bi-Lipschitz embedding ac-
cording to whether (; !) belongs to Mcoarse, Muniform 0Or to Miipschitz.
Each of the sets Mcoarse, Muniform and Miipschitz are easily seen to be Borel
subsets of the Polish space N N. For example,
Mcoarse =\ [ \ 2N (n)2[l;1] \ I'2N I(r)2[0;1] :
I2N m2N n>m r2z
2.2. Simple embeddability ranks. Suppose X and E are metric spaces and that
D = fx1;x2;:::g is a xed enumeration of a countable dense subset of X. We then let
D; E be the collection of all quadruples (;!;k;) 2 N N N EP sothat
dix;y) 6 .d (x);(y) 6! d(x;y)+

CoaD;E =f(;!;k;)2
D;E (;!) 2 Mcoarse8;
Uni D;E = f(;1;k;) 2
D;E (;!) 2 Muniformg; Lip D; E fGhk;)2
D;E (;!) 2 MLipschitz8:
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Finally, we dene a binary relation < on
D; E by letting
G ks ) <(%1%5K%0)
(; ') = (0;10) & k= k0+ 1& fX1;X2;:15%08 = Ofxl;xz;:::;xkog;

where A denotes the restriction of a map to a subset A.
Recall that a binary relation on a set A is said to be ill-founded if and only if
there is an innite sequence ai;az;:::2 A so that

a3 dz ai:

On the other hand, if there is no such innite sequence, we say that is well-
founded. Observe that another way of stating that is well-founded is by saying that
every non-empty subset B A has a minimal element x 2 B, i.e., so thaty x for all
y2B.

Lemma 2.1. The binary relation < is ill-founded on any of the spaces
Coa D; E ; Uni D; E ; Lip D; E
if and only if X coarsely embeds, uniformly embeds, respectively bi-Lipschitz embeds

into E.

Proof. We give the proof for the case of coarse embeddings, the two other cases
being entirely analogous. So suppose rst that : X | E is a coarse embedding and
hence that (; !) 2 Mcoarse. Furthermore,

dix;y) 6.d(x);(y) 6! d(x;y)+

for all distinct x;y 2 X. Letting = p, wehave (;!;k; )2 Coa D; E forall k
and

<GL3 )<Gh2 )<L )
is an innite descending sequence in Coa D; E , showing ill-foundedness.

Conversely, suppose that < is ill-founded on the set Coa D; E . This means that
there is some (; !) 2 Mcoarse, a natural number ko, and functions ¢ : D ! E fork
> ko so that, for all k > ko,
k+1 fxq;xp;::xe8 = K fxo;xa;:;Xkg

and

dx(x;y) 6 de k(x);k(y) &6 ! dx(x;y)+
for all distinct x;y 2 fxi;x2;:::;xkg. It follows that there is a single function
:D ! E extending the restrictions k tx,;x,;:::;x,g and satisfying

.....

dx(x;y) 6 de (x);(y) 6! dx(x;y)+
for all distinct x;y 2 D. In particular, for all n > 1 and x;y 2 D, we have that
dx(x;y) > n ) de (x);(y) > dx(x;y) > (n)

and
dx(x;y) 6 n ) de (x);(y) 6 ! dx(x;y)+ 6 !(n):
Because D is dense in X, we can now extend toamap : X ! E as follows.
For x 2 X nD, pick an arbitrary point x° 2 D so that dx(x%; x) < % and set

(x) = (x°):
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Then we still have
dx(x;y)> n+ 1) de (x);(y)> (n)

and
dx(x;y) 6 n 1) de (x);(y)6 !(n):

Aslimpii (n)=1 and !(n) < 1 for all n, it follows that is a coarse embed-
ding.

Recall that, if is a well-founded relation on a set A, we may dene an ordinal-
valued rank function : A'! Ord by letting

(x) = supf(y)+ 1y xg
for all x 2 A. Thus, (x) = 0 if and only if x 2 A is minimal, that is, if y x for

2 A so that
X1 X2 Xm X:
The image [A] = f(x) x 2 Ag of the rank function associated with a particular well-

founded relation on a set A is always an initial segment of the ordinals and hence
is an ordinal itself. That allows us to dene the rank by

rk(A;) = [A] = supf(x)+ 1 x 2 Ag 2 Ord:

Let us now recall the well-known boundedness theorem for analytic well-founded
relations (see [?Kechris, Theorem 31.1]). For this, let us say that a binary relation
on a Polish space A is analytic if it is analytic when viewed as a subset of A A.

Theorem 2.2. Suppose is an analytic, well-founded, binary relation on a Borel
subset of a Polish space A. Then the rank rk(A;) is countable.

The following theorem then connects Theorem ?? with Lemma ??.

Theorem 2.3. Suppose X and E are separable complete metric spaces and D =
fx1;x2;:::g is a xed enumeration of a dense subset of X. Then either X coarsely
embeds into E or the rank

rk Coa D; E ;<

is countable.

Similar results hold for uniform and bi-Lipschitz embeddability, and our proof
applies to all of the three cases.

Proof. Because D is countable and E is Polish, the  set
D; E is a closed subset of the Polish space N N N EP. Also, Mcoarse, Muniform, and
MULipschitz, are all Borel sets in N N, whereby each of the sets

Coa D; E; Uni D; E; Lip D; E

are Borel subsets of the Polish space N N N EP. Furthermore, the relation < is
closed as a subset of
D; E . The theorem now follows from Theorem ?? and Lemma ??.
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2.3. Embeddability ranks based on Schauder bases. In this section we de-ne
embeddability ranks that are a little more delicate to dene but are easier to estimate
from below.

Let R be a ring and denote by R[e1;ez;:::] the free R-module with basis ele-
ments ej;ez;:::. Also, if A fei;ez;:::g, we let R[A] denote the submodule of
R[e1; ez;:::] spanned by A. For two nite subsets A; B fej;ey;:::g, we write

A’B
to denote that B = fenl;:::;enkg and A = fenl;:::;en
11:< Nk < Nks1.

Suppose now that (en)L, is a basic sequence in a real Banach space (X; kk).
Let also the ring R be either Z or Q, in which case, R[e1;e2;:::] X. We thus view
Rle1; ez;:::] as a metric space with the metric induced by the norm on X. Assume
that E is a metric space and dene R;(en); E) as the collection of all quadruples
(;';A;) where ;! 2 N, A is a nite subset of fe1;ez;:::g and is
a function Rle ;e,;:::] ! E so that

kx vyk 6 de (x);(y)6 ! kx yk.

for all distinct x; y 2 R[A]. As in the preceding section, we let
Coa R;(en); E=f(;1;A;)2 R;(en); E (1) 2 Mcoarseg; Uni
R;(en); E=f(;1;A;)2 R;(en); E (5!) 2 Muniform8;

Lip R;(en); E =1f(;!1;A;)2 R;(en); E (') 2 MLipschitzg and

;en ., 8 for some ni <

dene a binary relation < on R;(en); E by setting
LA < (%1%5A%9
G = (%19 & A°A% & giaej= ORiao) :
In analogy we Lemma ?7?, we now have the following.

Lemma 2.4. The binary relation < is ill-founded on any of the spaces
Coa R; (en); E; Uni R;(en); E; Lip R;(en); E

if and only if there is an innite subsequence en ;en ;en ;::: of the basis of X so
that R[enl; €n,;€n, ;! :] coarsely embeds, uniformly embeds, respectively bi-Lipschitzly
embeds into E.

Now, when (en)nl:1 is a subsymmetric Schauder basis for X, then, for any in-
nite subsequence en ;en ;en ;::: the map ex ! en extends to a bi-Lipschitz
equivalence between the two metric spaces Rle1; e2;e3;:::] and R[enl €en ;e ;i 1]
Also, as R is countable, so is R[e1; ez;es3;:::]. The following result is thus obtained

exactly as Theorem ?7?.

Theorem 2.5. Suppose (en)nl:1 is a subsymmetric Schauder basis for a Banach
space X, E is a separable complete metric space and R is either Z or Q. Then
either R[e1;ez;es3;:::] coarsely embeds into E or the rank

rk Coa R; (en); E ;<

is countable.
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Again, similar results hold for uniform and bi-Lipschitz embeddability.

Observe now that, if R = Q, then Rlei;ez;es3;:::] is a dense subspace of the
Banach space X and so coarse, uniform or bi-Lipschitz embeddability of X into
E is equivalent to the corresponding embeddability of R[e1;ez;es;:::] into E. We
thus have the following corollary.

Corollary 2.6. Suppose (en)nl=1 is a subsymmetric Schauder basis for a Banach
space X and E is a separable complete metric space. Then either X coarsely embeds
into E or the rank

rk Coa Q; (en); E ;<
is countable.
In the specic case when (en)1n:1 is the standard unit vector basis for X = co,

we note that Z[es; ez;e3;:::] is 1-dense in co and hence that coarse embeddability
of co into E is again equivalent to that of Z[e1; ez;e3;:::] into E.

Corollary 2.7. Suppose (en)n1:1 is the standard unit vector basis for co and E is
a separable complete metric space. Then either co coarsely embeds into E or the
rank

rk Coa Z; (en); E ;<

is countable.

2.4. Schreier spaces. To provide lower estimates for the coarse embeddability
ranks, as in [?BLMS_FM] we will employ metric spaces built over the so-called Schreier
sets, which are compact hereditary families of nite subsets of N = f1;2;3;:::g. For
this, if A and B are nite subsets of N and n 2 N, we write

né A
to denote that either A is empty or that n 6 min A and write
A< B

to mean that either one of A and B is empty or that max A < minB. Finally, let

?

A'B
denote that B = fnq;:::;nkg and A = fni;:::; nk; Nk+1g for some n1 < ::: <
Nk < Nnk+1. For every countable limit ordinal , we x once and for all an increasing
sequence 1 < 2 < 3 < :::of ordinals with limit .

By induction on < !1, we dene a family S P(N) consisting exclusively of nite
subsets of N so that S is hereditary, i.e., if A B andB 2 S, then A 2 S, and so that S
is compact when viewed as a subset of the Cantor space f0; 1gN. This is done as
follows.

So= fng n2 N [ f;g;
[ n
Si1 = Ai N2 N & Ag;:::;An2S & n6 A1 < i< Ap ;=1
S= A9n2NA2S,&n6 A for alimit ordinal:

By transnite induction on < ! , gne can show that
rk S;7 =1+ 1
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If now (en)}-; is a Schauder basis for a Banach space X, we let
nx o)
Z[S] = tiei A2S & t272
i2A

Note that, contrary to the subspaces Z[A] for A fei;ey;:::g, the subset Z[S] will
not be a submodule of Z[e1; e2;:::] asit is not closed under addition. We write Z[S]x
for the metric space obtained by endowing Z[S] with the distance induced by the
norm of X.

Theorem 2.8. Suppose (en)nl=1 is the standard unit vector basis for co and E is

a separable complete metric space. Then co coarsely embeds into E if and only if
Z[S]c, coarsely embeds into E for all < !1.

Proof. Suppose < !1 and that Z[S]c ! E is a coarse embedding and let and
I be the compression and expansion moduli of . Extend also arbitrarily
to a map Z[ei;ez;:::] ! E. This means that, for all A 2 S, we have
kx yk 6 de (x);(y) 6! kx vk«
whenever x;y 2 Z[feigi2a] are distinct and so
;1 feigiza; 2 Coa Z; (en); E ¢

Furthermore, we note that the map S ;Coa Z;(en); E given by

f(A) = ;! feigiza;
satises

A?B) f(A)< f(B);

which implies that

I +1=1rkS;? 6 rk Coa Z;(en); E ;<
Therefore, if Z[S]c  coarsely embeds into E for all < !, we see that the rankrk
Coa Z;(en); E ;< is uncountable and therefore that co coarsely embeds into

E. The reverse implication is immediate.

3. A remark on extracting equi-coarse embeddings

If A and B are two subsets of N, we say that A is almost contained in B, written
A B, if JAnBj < @o. A innite set D N is called a pseudo-intersection of a
family C of subsets of N provided that D C for all C 2 C. In [?BLMS_FM],
Proposition ?? was established via the following diagonalization principle.

Lemma 3.1 (MA+:CH). Let fAg<: be a family of innite subsets of N such that
A A whenever < . Then fAg<i, has a pseudo-intersection.

Given an ordinal , a -tower is a family fAg. of innite subsets of N with no
pseudo-intersection and such that A A whenever < < . We then dene the
cardinal number t by

t = minfjj: there exists a -towerg:

Whereas it is easy to see that @16 t6 2%, the specic value of t is highly sensitive to
additional set theoretical assumptions. For example, under the assumption of MA.
centered (@ slight weakening of MA), we have

t= 2
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(see [?JustWeese, Theorem 19.24, Theorem 19.25]), which immediately implies
Lemma ??. Therefore, the argument from [?BLMS_FM] could be straightforwardly
extended to other uncountable cardinals strictly less than 2€°. Here we present a
dierent way to derive Proposition ?? in terms of another cardinal number, the
bounding number b, that is more naturally related to the problem at hand.

For functions f;g: N! N, set

f < g, thereis some n so that f(m) < g(m) for all m> n:

In this case, we say that g eventually dominates f. The relation < denes a partial

order on NN and we say that a family F NN is bounded (with respect to <) if there

exists g 2 NN such that f < g forall f 2 F. If a family is not bounded it is called

an unbounded family. The bounding number is the cardinal number b dened by
b= minfjFj: F NN &F is unboundedg:

The following inequalities hold without any additional assumptions (see [?JustWeese,
Theorem 19.24]),
@6 t6 b6 2%:
In particular, MA_centered + : CH imply that b= 2@ > @;.
The next lemma relates the bounding number to the boundedness problem for
families of non-negative maps and will subsequently be applied to the families of
compression and expansion moduli of a family of coarse embeddings.

Lemma 3.2 (b > @1). Suppose fgigi2i and ffigi21 are uncountable families of
non-decreasing functions g;; fi 2 NN satisfying limn11 gi(n) = limni1 fi(n) = 1.
Then there are non-decreasing functions f; g 2 NN also satisfying lim i1 g(n) =
limnpi1 f(n) = 1 and an uncountable subset J | so that

g6 g; fief foralli2l:

Proof. Without loss of generality, we have jlj = @1. In order to bound the gi’s
from below we will bound the collection of generalized inverses fgi—gm from above.
Because limn11 gi(n) = 1, the generalized inverse g. 2 NN may be dened by

gi—(k) = minfn gi(n) > kg
and hence satises
(1) g g (k) > ki
Also, because jlj < b, the families F = ffigi21 and G- = fg;gi2i are bounded and
we may therefore choose some h 2 NN so that
g;fi< h foralli2l:

Replacing, if necessary h by the function h” dened by h"(n) = maxmen h(m), we
may also suppose that h is non-decreasing. Since clearly lim,11 h(n) = 1, we can
take f = h as the upper bound for the collection F.

Consider the generalized inverse h- dened by

h-(k) = minfn h(n) > kg;

and note that, for all suciently large k, we have
(2) h h-(k) 16 k:
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Also, h- is non-decreasing and limn11 h-(n) = 1. Dene g2 NN by
g(n) = maxfl; h-(n) 1g:
Then, given i 2 |, pick some p so that both
gr (k) < h(k)

and (2) hold for all k > p. Then, for all n > p large enough so that g(n) > p, we
have by denition of h- that

2

(
g-(g(n))< hg(n)=hh-(n) 16 n:

and so, because g;i is non-decreasing,

(59)
g(n) < gi g (g(n) 6 gi(n):
Now, for all i 2 1, let n; be minimal so that

g(n) < gi(n); fi(n) < f(n)
for all n > nj. Since | is uncountable, there is some uncountable set J | and
some m so that nj = m for all i 2 J. By replacing f and g by the functions

fO(n) = maxff(n); f(m)g
and (

1 ifn< m;
g’(n) =

g(n) ifn> m;
we can then ensure that g6 gi and f; 6 f foralli2J.

Proposition 3.3 (b > @3). Suppose Y is a metric space and fX;gi2| is an un-
countable family of metric spaces so that each X; coarsely embeds into Y. Then
there is an uncountable subfamily fX;igi,, that equi-coarsely embeds into Y, i.e.,
so that all the X; with i 2 J embed into Y with the same moduli and !.

Proof. For every i 2 |, there are maps fi: X; ! Y and non-decreasing functions
i;li:[0;1)! [0;1) sothatlimy¢igi(t) =1 and, for all x1;x2 2 Xj,

i(dx;(x1;x2)) 6 dy (f(x1); fi(x2)) 6 li(dx, (x1;x2)):
We apply Lemma ?? to the maps gi(n) = bi(n) + 1c and fi(n) = bli(n) + 1c,
which gives us non-decreasing functions g;f 2 NN so that g 6 gi and f; 6 f for an
uncountable number of i. Setting

(t) = glbtc) 1; I(t) = f(dte)

forallt> 1and (t)= 0, !(t) = f(1) fort2 [0;1), we see that 6 ; and !; 6 ! for
an uncountable set of i’s.
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