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A b s t r a c t .  We describe several ordinal indices that are capable of detecting,
according to various metric notions of faithfulness, the embeddability between
pairs of Polish spaces. These embeddability ranks are of theoretical interest but
seem dicult to estimate in practice. Embeddability ranks, which are easier to
estimate in practice, are embeddability ranks generated by Schauder bases.
These embeddability ranks are inspired by the nonlinear indices a la Bourgain
from [?BLMS_FM]. In particular, we resolve a problem [?BLMS_FM, Problem 3.10]
regarding the necessity of additional set-theoretic axioms regarding the main
coarse universality result of [?BLMS_FM].

1. Int roduc t i on

In 1980, Bourgain [?Bourgain1980] showed that a separable Banach space that
contains an isomorphic copy of every separable reexive space must also contain

an isomorphic copy of C[0; 1], and thus, by Banach-Mazur embedding theorem, an
isomorphic copy of every separable Banach space. This universality theorem is a
far reaching improvement of an earlier result of Szlenk [?Szlenk1968], which states

that there is no separable reexive Banach space that is isomorphically universal for
the class of separable reexive Banach spaces. Bourgain’s argument in turn relies

on a reformulation of the problem in terms of the computation of an ordinal index,
making the problem amenable to descriptive set theoretic techniques. Bourgain’s
innovative approach was further developed in [?Bossard2002], [?ArgyrosDodos],
and [?Dodos2009], in order to show that a class of Banach spaces that is analytic,

in the Eros-Borel structure of subspaces of C[0; 1], and contains all separable
reexive Banach spaces, must contain a universal space. In [?BLMS_FM], nonlinear

versions of Bourgain’s universality theorem were proposed. Thanks to Aharoni’s
theorem [?Aharoni1974], it is known that c0 contains a bi-Lipschitz, and hence a
coarse and uniform, copy of every separable metric space. Depending on whether
we consider bi-Lipschitz embeddings or coarse embeddings, the role of the class of

reexive spaces considered by Szlenk or Bourgain is played by a collection of metric
spaces R[S]c       with  <  ! 1  and where R  =  Q for bi-Lipschitz embeddings and R
=  Z  for coarse embeddings. Here R[S]c      is the metric subspace of c0 consisting of

all vectors              x i e i  where x i  2  R  and A  belong to the th Schreier family S. In
this note we prove the coarse universality result below. This result was orig-inally

proved in [?BLMS_FM] under additional set theoretical assumptions, namely
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Martin’s Axiom (MA) together with the negation of the Continuum Hypothesis
( : C H ) .  The main point of our theorem is to show that these axioms are actually
not required, thus solving Problem 3.10 from [?BLMS_FM].

Theorem. If a separable metric space contains a coarse copy of Z[S]c       for every
ordinal  <  ! 1 ,  then it contains a coarse copy of every separable metric space.

In [?BLMS_FM], the proof (under M A + : C H )  of the theorem above relied on a
reformulation a la Bourgain of the universality problem. In particular, certain
combinatorial trees on Polish spaces capturing the nonlinearity of the problem
together with associated ordinal indices were introduced. In order for this approach
to be successful in the coarse setting, it was necessary to extract an uncountable
family of equi-coarse embeddings out of an uncountable family of merely coarse
embeddings. While the similar problem in the Lipschitz or linear settings can be
solved with a simple pigeonhole principle, the argument for the coarse case required
the additional set theoretic assumptions mentioned above.

Proposition 1.1 ( M A + : C H ) .  If ( X ; d ) < !       is a collection of metric spaces such
that for all  <  ! 1 ,  X  embeds coarsely into a metric space (M; d), then there exists an
uncountable subset C  of ! 1  such that ( X ; d ) 2 C  embeds equi-coarsely into (M; d).

In Section ??, we recall the denitions of the objects being considered in this ar-
ticle (e.g. coarse, uniform, bi-Lipschitz embeddings) and introduce various ordinal
indices related to the corresponding notions of metric embeddability. Our point of
view relies on the notion of rank of well-founded binary relations on Polish spaces
(instead of trees on Polish spaces as in [?BLMS_FM]). In order to avoid the use of
additional axioms through Proposition ??, we incorporate the main characteristics
of the metric embeddings into the denitions of the ordinal indices. The guaran-teed
uniform control on the moduli in the conclusion of Proposition ?? becomes an
automatic feature of the denition and consequently the use of additional set
theoretic axioms is bypassed. In Section ??, we introduce some natural and eas-ily
dened embeddability ranks. However, estimating these ranks does not seem
straightforward in practice and therefore, in Section ??, we dene embeddability
ranks induced by Schauder bases. These ranks are similar to the nonlinear indices
introduced in [?BLMS_FM] but are more general and most importantly, as hinted at
above, incorporate the compression and expansion moduli into their denitions. As in
[?BLMS_FM], these ranks are easily estimated and lead to the same results without the
use of additional set theoretic assumptions.

The extraction of subcollections of embeddings with uniform control on their
moduli of expansion and compression is an interesting problem in its own right and,
in the last section, we generalize Proposition ?? by relating this type of problems
to certain cardinal invariants of the continuum, in particular the bounding number
b. Our proof is arguably more transparent than the one in [?BLMS_FM].

2. Embeddabi l i ty  ranks

2.1. Funct ional  moduli. The various notions of embeddability we will consider
can all be described in terms of functional moduli, which we now proceed to dene. For
this purpose, let

Z  =  f: : : ; 3 ; 2 ; 1; 2; 3; : : :g
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and set
N  =  f :  Z  !  [0 ; 1]    is non-decreasing g:

Observe that N  can be seen as a closed subset of the Polish space [0 ; 1 ] Z ,  where
we view [0; 1]  as the one-point compactication of [0; 1) .

When : X  !  E  is a function between two non-empty metric spaces, we dene
the compression modulus  2  N  and the expansion modulus !  2  N  by

(r )  =  inf fdE  (x); (y )  dX (x; y ) >  rg; r  2  Z

and ! (
r

)
 
=

 supfdE
 

(x); (y )
  dX (x; y ) 6  rg;

r
 2  Z :

Remark that, if X  is bounded, there may be no x; y 2  X  for which dX (x; y ) >  r,
which means that (r )  =  inf ;  =  1 .  So, for any r  2  Z ,

(r )  <  1  ,  9x; y 2  X  dX (x; y ) >  r:
We need one more piece of notation. For any real number t >  0, let t  and t +  be
respectively the largest and smallest element of Z  so that

t  6  t 6  t +

and observe that, for all t >  0, we have t 6  t  6  t 6  t +  6  2t. By denition of  and
! ,  we note that

 d(x; y)      6  d (x); (y) 6  !  d(x; y )+

for all x; y 2  X .
As noted above, the various notions of embeddability between metric spaces we

shall consider are dened by imposing dierent restrictions of the compression and
expansion moduli of a function : X  !  E .  We therefore dene

Mcoarse =  f ( ; ! )  2  N   N   ! ( r )  <  1  for all r  2  Z  and lim (n) =  1 g ;
Muniform =  f ( ; ! )  2  N   N  

 
0 <  (r )  for all r  2  Z  and lim ! ( n )  =  0g

and nally
ML ipsch i t z  =  f ( ; ! )  2  N   N   (r )  >  cr; ! ( r )  6  C r  for some 0 <  c <  C  <  1 g :

A  map : X  !  E  is then called a coarse, uniform or bi-Lipschitz embedding ac-
cording to whether ( ; ! )  belongs to Mcoarse , Muniform or to MLipschitz .

Each of the sets Mcoarse , Muniform and ML ipschi t z  are easily seen to be Borel
subsets of the Polish space N   N .  For example,
Mcoarse =  2  N   (n) 2  [ l ; 1 ] !  2  N   ! ( r )  2  [0; 1[  :

l 2 N  m 2 N  n > m r 2 Z

2.2. Simple embeddability ranks. Suppose X  and E  are metric spaces and that
D  =  fx1; x2; : : :g is a xed enumeration of a countable dense subset of X .  We then let
 D ; E  be the collection of all quadruples (; ! ; k; ) 2  N   N   N  E D  so that

 d(x; y)      6  d (x); (y ) 6  !  d(x; y )+

for all distinct x; y 2  fx1; x2; : : : ; xk g. Let also
Coa D ; E  =  f(; ! ; k ; ) 2
 D ; E   ( ; ! )  2  Mcoarseg;

U ni D ; E  =  f(; ! ; k ; ) 2
 D ; E   ( ; ! )  2  Muniformg; L i p  D ; E  =  f(; ! ; k ; ) 2

 D ; E   ( ; ! )  2  MLipschitz g:
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Finally, we dene a binary relation <  on 
D ; E

 
by letting

(; ! ; k; ) <(0; !0; k0; 0) ,

( ; ! )  =  (0; !0) & k =  k0 +  1 &  f x 1 ; x 2 ; : : : ; x k 0  g =  0 
f x 1 ; x 2 ; : : : ; x k 0  g ;

where A  denotes the restriction of a map to a subset A.
Recall that a binary relation  on a set A  is said to be ill-founded if and only if

there is an innite sequence a1; a2; : : : 2  A  so that

  a3  a2  a1:

On the other hand, if there is no such innite sequence, we say that  is well-
founded. Observe that another way of stating that  is well-founded is by saying that
every non-empty subset B   A  has a minimal element x  2  B ,  i.e., so that y  x  for all
y 2  B .

Lemma 2.1. The binary relation <  is ill-founded on any of the spaces

Coa D ; E  ; U ni D ; E  ; L i p  D ; E

if and only if X  coarsely embeds, uniformly embeds, respectively bi-Lipschitz embeds
into E .

Proof. We give the proof for the case of coarse embeddings, the two other cases
being entirely analogous. So suppose rst that : X  !  E  is a coarse embedding and
hence that ( ; ! )  2  Mcoarse . Furthermore,

 d(x; y)      6  d (x); (y) 6  !  d(x; y )+

for all distinct x; y 2  X .  Letting =   D ,  we have (; !; k; )  2  Coa D ; E  for all k
and

 <  (; !; 3; )  <  (; !; 2; )  <  (; !; 1; )
is an innite descending sequence in Coa D ; E  , showing ill-foundedness.

Conversely, suppose that <  is ill-founded on the set Coa D ; E  . This means that
there is some ( ; ! )  2  Mcoarse , a natural number k0, and functions k  : D  !  E  for k
>  k0 so that, for all k >  k0,

k + 1  f x 1 ; x 2 ; : : : ; x k g =  k  f x 1 ; x 2 ; : : : ; x k g

and  
dX (x; y )      

 
6  d E

 
k (x); k (y )

 
6  !

 
d X (x ; y ) +

for all distinct x; y 2  fx1; x2 ; : : : ; xk g. It follows that there is a single function
: D  !  E  extending the restrictions k  f x 1 ; x 2 ; : : : ; x k g  and satisfying

 dX (x; y )       6  d E  (x); (y ) 6  !  d X (x ; y ) +

for all distinct x; y 2  D .  In particular, for all n >  1 and x; y 2  D ,  we have that

dX (x; y ) >  n )  d E  (x); (y) >   dX (x; y )       >  (n)

and
dX (x; y ) 6  n )  d E

 
(x); (y )

 
6  !

 
d X (x ; y ) +

 
6  ! (n):

Because D  is dense in X ,  we can now extend  to a map : X  !  E  as follows.
For x  2  X  n D ,  pick an arbitrary point x0 2  D  so that dX (x0 ; x) <  2 and set

(x)  =  (x0):
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Then we still have
dX (x; y ) >  n +  1 )  d E

 
(x); (y )

 
>  (n)

and
dX (x; y ) 6  n      1 )  d E

 
(x); (y )

 
6  ! (n):

As l i m n ! 1  (n) =  1  and ! (n )  <  1  for all n, it follows that  is a coarse embed-
ding.

Recall that, if  is a well-founded relation on a set A, we may dene an ordinal-
valued rank function : A  !  Ord by letting

(x)  =  supf(y) +  1  y  xg

for all x  2  A. Thus, (x)  =  0 if and only if x  2  A  is minimal, that is, if y  x  for
all y 2  A.

 
Similarly, (x)  >  !  if and only if, for all m >  1, one may nd x1; : : : ; xm

2  A  so that
x1  x2    x m   x:

The image [A] =  f ( x )   x  2  Ag of the rank function  associated with a particular well-
founded relation  on a set A  is always an initial segment of the ordinals and hence
is an ordinal itself. That allows us to dene the rank by

rk(A; ) =  [A] =  supf(x) +  1  x  2  Ag 2  Ord:

Let us now recall the well-known boundedness theorem for analytic well-founded
relations (see [?Kechris, Theorem 31.1]). For this, let us say that a binary relation
on a Polish space A  is analytic if it is analytic when viewed as a subset of A A.

Theorem 2.2. Suppose  is an analytic, well-founded, binary relation on a Borel
subset of a Polish space A .  Then the rank rk(A; ) is countable.

The following theorem then connects Theorem ?? with Lemma ??.

Theorem 2.3. Suppose X  and E  are separable complete metric spaces and D  =
fx1; x2; : : :g is a xed enumeration of a dense subset of X .  Then either X  coarsely
embeds into E  or the rank

rk Coa D ; E  ; <

is countable.

Similar results hold for uniform and bi-Lipschitz embeddability, and our proof
applies to all of the three cases.
Proof. Because D  is countable and E  is Polish, the set 

D ; E
 
is a closed subset of the Polish space N  N  N E D .  Also, Mcoarse , Muniform, and

MLipschitz ,  are all Borel sets in N   N ,  whereby each of the sets
Coa

 
D ; E ; U ni

 
D ; E ; L i p

 
D ; E

are Borel subsets of the Polish space N   N   N  E D .  Furthermore, the relation <  is
closed as a subset of
 D ; E  . The theorem now follows from Theorem ?? and Lemma ??.
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2.3. Emb eddabi l i ty  ranks based on Schauder bases. In this section we de-ne
embeddability ranks that are a little more delicate to dene but are easier to estimate
from below.

Let R  be a ring and denote by R[e1; e2; : : :] the free R-module with basis ele-
ments e1; e2; : : :. Also, if A   fe1; e2; : : :g, we let R [A]  denote the submodule of
R[e1; e2; : : :] spanned by A. For two nite subsets A ; B   fe1; e2; : : :g, we write

A  ?  B

to denote that B  =  fe n  ; : : : ; en g and A  =  fe n  ; : : : ; en ; en g for some n1 <
: : : <  nk <  nk +1 .

Suppose now that ( e n ) 1 is a basic sequence in a real Banach space (X; kk).
Let also the ring R  be either Z  or Q, in which case, R[e1; e2; : : :]  X .  We thus view
R[e1; e2; : : :] as a metric space with the metric induced by the norm on X .  Assume
that E  is a metric space and dene  R; (e n ) ; E )  as the collection of all quadruples
(; ! ; A; )  where ; !  2  N , A  is a nite subset of fe1; e2; : : :g and  is
a function R[e ; e ; : : :]  ! E  so that 

kx      yk     
 
6  d E

 
(x); (y )

 
6  !

 
kx      yk+

for all distinct x; y 2  R[A]. As in the preceding section, we let
Coa

 
R; (e n ) ; E

 
=  f ( ; ! ; A; )  2  

 
R; (e n ); E

  ( ; ! )  2  Mcoarseg; U ni
R; (e n ) ; E

 
=  f ( ; ! ; A; )  2  

 
R ; (e n ) ; E

  ( ; ! )  2  Muniformg;

L i p  R; (e n ) ; E  =  f ( ; ! ; A; )  2   R ; (e n ) ; E
 
 ( ; ! )  2  MLipschitz g and

dene a binary relation <  on  R ; (e n ) ; E  by setting

(; ! ; A; )  <  (0; !0; A0;0) ,

( ; ! )  =  (0; !0) & A  ?  A0 &  R [ A 0 ] =  0 
R [ A 0 ]  :

In analogy we Lemma ??, we now have the following.

Lemma 2.4. The binary relation <  is ill-founded on any of the spaces
Coa

 
R; (en ); E ; U ni

 
R; (en ); E ; L i p

 
R; (e n ) ; E

if and only if there is an innite subsequence en ; en ; en ; : : : of the basis of X  so
that R[en  ; en ; en ; : : :] coarsely embeds, uniformly embeds, respectively bi-Lipschitzly
embeds into E .

Now, when ( e n ) 1 is a subsymmetric Schauder basis for X ,  then, for any in-
nite subsequence en ; en ; en ; : : :, the map ek !  en      extends to a bi-Lipschitz
equivalence between the two metric spaces R[e1; e2; e3; : : :] and R[en  ; en ; en ; : : :].
Also, as R  is countable, so is R[e1; e2; e3; : : :]. The following result is thus obtained
exactly as Theorem ??.

Theorem 2.5. Suppose ( e n ) 1 is a subsymmetric Schauder basis for a Banach
space X ,  E  is a separable complete metric space and R  is either Z  or Q. Then
either R[e1; e2; e3; : : :] coarsely embeds into E  or the rank

rk Coa R; (e n ) ; E  ; <

is countable.
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Again, similar results hold for uniform and bi-Lipschitz embeddability.
Observe now that, if R  =  Q, then R[e1; e2; e3; : : :] is a dense subspace of the

Banach space X  and so coarse, uniform or bi-Lipschitz embeddability of X  into
E  is equivalent to the corresponding embeddability of R[e1; e2; e3; : : :] into E .  We
thus have the following corollary.

Corol lary 2.6. Suppose ( e n ) 1 is a subsymmetric Schauder basis for a Banach
space X  and E  is a separable complete metric space. Then either X  coarsely embeds
into E  or the rank

rk Coa Q; (en ); E ; <

is countable.

In the specic case when ( e n ) 1 is the standard unit vector basis for X  =  c0,
we note that Z[e1; e2; e3; : : :] is 1-dense in c0 and hence that coarse embeddability
of c0 into E  is again equivalent to that of Z[e1; e2; e3; : : :] into E .

Corol lary 2.7. Suppose ( e n ) 1 is the standard unit vector basis for c0 and E  is
a separable complete metric space. Then either c0 coarsely embeds into E  or the
rank

rk Coa Z; (en ) ; E ; <

is countable.

2.4. Schreier spaces. To  provide lower estimates for the coarse embeddability
ranks, as in [?BLMS_FM] we will employ metric spaces built over the so-called Schreier
sets, which are compact hereditary families of nite subsets of N =  f1; 2; 3; : : :g. For
this, if A  and B  are nite subsets of N and n 2  N, we write

n 6  A

to denote that either A  is empty or that n 6  min A and write

A  <  B

to mean that either one of A  and B  is empty or that max A <  min B. Finally, let

A  ?  B

denote that B  =  fn1; : : : ; nkg and A  =  fn1; : : : ; nk ; nk+1g for some n1 <  : : : <
nk <  nk +1 . For every countable limit ordinal , we x  once and for all an increasing
sequence 1 <  2 <  3 <  : : : of ordinals with limit .

By induction on  <  !1 ,  we dene a family S   P (N) consisting exclusively of nite
subsets of N so that S  is hereditary, i.e., if A   B  and B  2  S, then A  2  S, and so that S
is compact when viewed as a subset of the Cantor space f0; 1gN. This is done as
follows.

S0 =  fng  n 2  N [  f ;g ;

S + 1  =  
 [  

A j   n 2  N & A1; : : : ; An 2  S  & n 6  A1  <  : : : <  A n  ; j = 1

S  =  A   9n 2  N
 
A  2  S n  & n 6  A      for  a limit ordinal:

By transnite induction on  <  !  , one can show that
rk

 
S; ?   

=  !  +  1:



1

Xn o

n = 1

0

   

  

f

 

   

0  

1

8 F L O R E N T  P.  B A U D I E R  A N D  C H R I S T I A N  R O S E N D A L

If now (e n )n = 1  is a Schauder basis for a Banach space X ,  we let

Z[S]  = ti ei   A  2  S  & ti 2  Z  :
i 2 A

Note that, contrary to the subspaces Z[A]  for A   fe1; e2; : : :g, the subset Z[S]  will
not be a submodule of Z[e1; e2; : : :] as it is not closed under addition. We write Z [ S ] X
for the metric space obtained by endowing Z[S]  with the distance induced by the
norm of X .

Theorem 2.8. Suppose ( e n ) 1 is the standard unit vector basis for c0 and E  is
a separable complete metric space. Then c0 coarsely embeds into E  if and only if
Z[S]c 0      coarsely embeds into E  for all  <  ! 1 .

Proof. Suppose  <  ! 1  and that Z[S]c   ! E  is a coarse embedding and let  and
!  be the compression and expansion moduli of . Extend also  arbitrarily

to a map Z[e1; e2; : : :]  ! E .  This means that, for all A  2  S, we have

kx      yk      6  d E  (x); (y ) 6  !  kx      yk+

whenever x; y 2  Z[ fe i g i 2 A ]  are distinct and so

; ! ; fe i g i 2 A ;  2  Coa Z; (en ); E :
Furthermore, we note that the map S   ! C o a

 
Z; (en ); E

 
given by

f ( A )  =  ; ! ; fe i g i 2 A ;
satises

A  ?  B  )  f ( A )  <  f ( B ) ;
which implies that

!  +  1 =  rk S; ? 6  rk Coa Z; (en ); E ; <  :
Therefore, if Z[S]c       coarsely embeds into E  for all  <  ! 1 ,  we see that the rank rk
Coa Z; (en ); E ; < is uncountable and therefore that c0 coarsely embeds into
E .  The reverse implication is immediate.

3. A  r e m a r k  on e x t r a c t i n g  equi-coarse embeddings

If A  and B  are two subsets of N, we say that A  is almost contained in B ,  written
A   B ,  if jA n B j  <  @0. A  innite set D   N is called a pseudo-intersection of a
family C of subsets of N provided that D   C  for all C  2  C. In [?BLMS_FM],
Proposition ?? was established via the following diagonalization principle.

Lemma 3.1 ( M A + : C H ) .  Let f A g < !       be a family of innite subsets of N such that
A  

 A  whenever  <  . Then f A g < ! 1      has a pseudo-intersection.

Given an ordinal , a -tower is a family f A g <  of innite subsets of N with no
pseudo-intersection and such that A  

 A  whenever  <   <  . We then dene the
cardinal number t by

t =  minfjj : there exists a -towerg:

Whereas it is easy to see that @1 6  t 6  2@0 , the specic value of t is highly sensitive to
additional set theoretical assumptions. For example, under the assumption of MA-

centered (a slight weakening of MA), we have

t =  2@0



i
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(see [?JustWeese, Theorem 19.24, Theorem 19.25]), which immediately implies
Lemma ??. Therefore, the argument from [?BLMS_FM] could be straightforwardly
extended to other uncountable cardinals strictly less than 2@0 . Here we present a
dierent way to derive Proposition ?? in terms of another cardinal number, the
bounding number b, that is more naturally related to the problem at hand.

For functions f ; g : N !  N, set

f  <  g ,  there is some n so that f (m) <  g(m) for all m >  n:

In this case, we say that g eventually dominates f .  The relation <  denes a partial
order on NN and we say that a family F   NN is bounded (with respect to < )  if there
exists g 2  NN such that f  <  g for all f  2  F .  If a family is not bounded it is called
an unbounded family. The bounding number is the cardinal number b dened by

b =  minfjF j : F   NN & F  is unboundedg:

The following inequalities hold without any additional assumptions (see [?JustWeese,
Theorem 19.24]),

@1 6  t 6  b 6  2@0 :
In particular, MA-centered +  : C H  imply that b =  2@0 >  @1.

The next lemma relates the bounding number to the boundedness problem for
families of non-negative maps and will subsequently be applied to the families of
compression and expansion moduli of a family of coarse embeddings.

Lemma 3.2 (b >  @1). Suppose fg i g i 2 I  and f f i g i 2 I  are uncountable families of
non-decreasing functions g i ; f i  2  NN satisfying l i m n ! 1  gi (n) =  l i m n ! 1  f i (n)  =  1 .
Then there are non-decreasing functions f ; g 2  NN also satisfying l i m n ! 1  g(n) =
l i m n ! 1  f (n) =  1  and an uncountable subset J   I  so that

g 6  gi ; f i  6  f for all i  2  J :

Proof. Without loss of generality, we have jI j =  @1. In order to bound the gi’s
from below we will bound the collection of generalized inverses f g _ g i 2 I  from above.
Because l i m n ! 1  gi (n) =  1 ,  the generalized inverse gi 2  NN may be dened by

g _ (k) =  minfn  gi (n) >  kg

and hence satises
(1) gi

 
gi (k)

 
>  k:

Also, because jI j <  b, the families F  =  f f i g i 2 I  and G _  =  f g _ g i 2 I  are bounded and
we may therefore choose some h 2  NN so that

g _ ; f i  <  h     for all i  2  I :

Replacing, if necessary h by the function h" dened by h" (n) =  max m 6 n  h(m), we
may also suppose that h is non-decreasing. Since clearly l i m n ! 1  h(n) =  1 ,  we can
take f  =  h as the upper bound for the collection F .

Consider the generalized inverse h_  dened by

h_ (k) =  minfn  h(n) >  kg;

and note that, for all suciently large k, we have
(2) h

 
h_ (k)      1

 
6  k:



_

i

? ?

? ? _

1

0
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Also, h_  is non-decreasing and l i m n ! 1  h_ (n) =  1 .  Dene g 2  NN by

g(n) =  maxf1; h_ (n)      1g:

Then, given i  2  I ,  pick some p so that both

gi (k) <  h(k)

and (2) hold for all k >  p. Then, for all n >  p large enough so that g(n) >  p, we
have by denition of h_  that

g _ (g(n)) <  h
 
g(n)

 
=  h

 
h_ (n)      1

 (
6

)  
n:

and so, because gi is non-decreasing,

g(n) 
(
<

)  
gi

 
gi  (g(n)

 
6  gi (n):

Now, for all i  2  I ,  let ni be minimal so that

g(n) <  gi (n); f i (n)  <  f (n)

for all n >  ni . Since I  is uncountable, there is some uncountable set J   I  and
some m so that ni =  m for all i  2  J .  By replacing f  and g by the functions

f 0(n) =  maxff (n); f (m)g

and (

g0(n) =
g(n)

if n <  m;
if n >  m;

we can then ensure that g 6  gi and f i  6  f  for all i  2  J .

Proposition 3.3 (b >  @1). Suppose Y is a metric space and f X i g i 2 I  is an un-
countable family of metric spaces so that each X i  coarsely embeds into Y . Then
there is an uncountable subfamily f X i g i 2 J  that equi-coarsely embeds into Y , i.e.,
so that all the X i  with i  2  J  embed into Y with the same moduli  and ! .

Proof. For every i  2  I ,  there are maps f i  : X i  !  Y and non-decreasing functions
i ; ! i  : [ 0 ; 1 )  !  [ 0 ; 1 )  so that l i m t ! 1  i (t) =  1  and, for all x1 ; x2 2  X i ,

i ( d X i  (x1 ; x2 )) 6  dY (f (x1 ); f i (x2 ))  6  ! i ( d X i  (x1 ; x2 )):
We apply Lemma ?? to the maps gi (n) =  bi (n) +  1c and f i (n)  =  b! i (n)  +  1c,
which gives us non-decreasing functions g; f 2  NN so that g 6  gi and f i  6  f  for an
uncountable number of i. Setting

(t) =  g(btc)      1; ! ( t )  =  f (dte)

for all t >  1 and (t) =  0, ! ( t )  =  f (1)  for t 2  [0; 1), we see that  6  i  and ! i  6  !  for
an uncountable set of i’s.
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