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Abstract. Systems of differential equations with polynomial right-hand sides are very common
in applications. On the other hand, their mathematical analysis is very challenging in general, due
to the possibility of complex dynamics: multiple basins of attraction, oscillations, and even chaotic
dynamics. Even if we restrict our attention to mass-action systems, all of these complex dynamical
behaviors are still possible. On the other hand, if a polynomial dynamical system has a weakly
reversible deficiency zero (WRy) realization, then its dynamics is known to be remarkably simple:
oscillations and chaotic dynamics are ruled out, and, up to linear conservation laws, there exists a
single positive steady state, which is asymptotically stable. Here we describe an algorithm for finding
WRy realizations of polynomial dynamical systems, whenever such realizations exist.
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1. Introduction. By a polynomial dynamical system we mean a system of ODEs
with polynomial right-hand side, of the form

d.’El
at =p1(®1,...,Tn),
dxg ( )
— = DP2(Z1,...,Tn),
(1) dt
dxy, ( )
— =pn(x1,...,T
dt Pn{T1, sbn )y
where p;(z1,...,2,) € Rlz1,...,2,]. In general, such systems are very difficult to

analyze due to nonlinearities and feedbacks that may give rise to bifurcations, multiple
basins of attraction, oscillations, and even chaotic dynamics. The second part of
Hilbert’s 16th problem (about the number of limit cycles of polynomial dynamical
systems in the plane) is still essentially unsolved, even for quadratic polynomials [28].
Even the simplest object associated to (1), its steady state set, is central to real
algebraic geometry.
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In terms of applications, polynomial dynamical systems often show up in, for
example, chemistry, biology, and population dynamics. In these models, the variable
x; typically represents concentration, population, or another quantity that is strictly
positive, so the domain of (1) is restricted to the positive orthant. For example, in an
infectious disease model, an infectious individual might infect a susceptible individual;
this would contribute a “+ bxy” term to C.%v where z is the population of susceptible
individuals, y the infectious population, and b > 0 a parameter measuring the contact
rate. Collecting all contributing terms results in an interaction network model. An
active area of research is to relate the structure of the interaction network to the
dynamics generated by it [3, 4, 8, 21, 29, 31, 32, 35, 45].

Conversely, one may start with (1) from experimental data, with little or no
information on the generating interaction network. One may try to elucidate the un-
derlying interaction network; however, without additional assumptions, a polynomial
dynamical system is not uniquely generated by one interaction network but infinitely
many [15]. This lack of identifiability of the underlying network can actually be lever-
aged to analyze the dynamics: if a network with certain properties can be found to
generate (1), then we may be able to immediately infer its dynamical behavior.

A class of systems whose dynamics is very well understood is the family of
complezx-balanced systems [27], which are also called toric dynamical systems [10].
They can never exhibit oscillations or chaotic dynamics, and, up to linear conserva-
tion laws, there exists a single positive steady state, which is locally asymptotically
stable [27]. Moreover, this steady state is conjectured to be a global attractor [26].

Not only are the dynamical properties of complex-balanced systems well under-
stood but so are the network and parameter structures that characterize them [25].
While in general, there are algebraic restrictions on the parameters necessary for
complex-balancing, the exception to this rule is the case of weakly reversible and defi-
ciency zero (WRg) networks—these systems are complex-balanced for any choices of
parameters, in a sense that will be made clear below. This fact is very important in
applications because the exact values of the coefficients in the polynomial right-hand
sides of these dynamical systems are often very difficult to estimate accurately in
practice.

In this paper, we describe an efficient algorithm for determining whether a given
polynomial dynamical system admits a WRg realization and for finding such a realiza-
tion whenever it exists (see Algorithm 1). Our algorithm does not require solving the
differential equation (1), nor does it require solving for its steady state set. Instead,
making use of the geometric and log-linear structure of WR networks, the algorithm
requires as its inputs the monomials and the matrix of coefficients. If a WRy realiza-
tion exists, in Theorem 3.12 we provide a bijection between the positive steady state
set of (1) and the solution to a system of linear equations.

The paper is organized as follows. In section 2 we introduce interaction networks
as embedded in R™ and formalize their relations to polynomial dynamical systems; we
also introduce complex-balanced systems, WR networks, and other relevant notions
and results. In subsection 3.1 we describe our algorithm for finding a WR realization
of a given polynomial dynamical system, whose steady state set is studied in subsec-
tion 3.3. Our algorithm applies to the case where the coefficients in the polynomials
are unspecified; we consider such systems in subsection 3.4.

2. Background. Throughout this work, we denote by RY and RY the sets of
vectors with nonnegative and positive entries, respectively. Similarly, Z% is the set
of vectors with nonnegative integer components. Vectors are typically denoted x,

dx

y, or w. We denote by & the time-derivative 7. For any € RY and y € R”,
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define the operation @¥ = a¥{'z4*---a¥. If Y = (y; y, -+ y,), then ¥ =
(xY1,2Y2,...,x2¥) . The support of a vector € R" is the set of indices supp(z) =

{i: z; #0}.

2.1. Dynamical systems and Euclidean embedded graphs. In this section,
we introduce the Euclidean embedded graph (E-graph), a directed graph in R™, and
explain how a system of differential equations with polynomial right-hand side (a
polynomial dynamical system) is defined by it.

DEFINITION 2.1. An E-graph in R™ is a directed graph (V,E), where V is a finite
subset of RS and such that there are no self-loops and no isolated vertices.

Let V ={y1,¥Y2,---,Yn}. Anedge (y;,y;), or (i,j) € E, is also denoted y, — y;,
where vy, is said to be a source vertex. Let Vs denote the set of source vertices. Since
vertices are points in R™, an edge can be regarded as a bona fide vector between
vertices. An edge vector y; —y; is associated to the edge y, — y;.

For the purpose of using E-graphs to study polynomial dynamical systems, we
assume V, C ZZ, even though most results stated in this paper hold for V C RZ.

The set of vertices V of (V, E) is partitioned by its connected components, which
we identify by the subset of vertices that belong to that connected component. If
every connected component is strongly connected, i.e., every edge is part of a cycle,
then (V) E) is said to be weakly reversible.

Two geometric properties of the E-graph will become important to our analysis
of polynomial dynamical systems. The first is a notion of affine independence within
each connected component; the second is a notion of linear independence between
connected components.

DEFINITION 2.2. An E-graph (V,E) has affinely independent connected compo-
nents if the vertices in each connected component are affinely independent; i.e., if
{Yo,Y1,---,Y,.} CV is the vertex set of a connected component, then the set of vec-
tors {y; —Yo: j=1,2,...,7} is linearly independent.

DEFINITION 2.3. Let (V, E) be an E-graph. For any U CV, the associated linear
subspace of U is S(U) = span{yj Y Y, Y, € U}. The associated linear space of
(V,E) is

S=span{y; —y;: y, >y, € £}

If U defines a connected component of (V,E), then S(U) C S. Indeed, if V7,
Va, ..., Vp are the connected components, then S =S5(V7) + S(Va) + -+ + S(Vp).

Remark 2.4. Thus far, we have defined E-graphs, and we have introduced sev-
eral objects and properties associated to them. Many of these objects are inspired
by corresponding objects in reaction network theory, where E-graphs are known as
reaction networks, edge vectors are known as reaction vectors, vertices are known as
complexes, connected components are known as linkage classes, and associated linear
spaces are known as stoichiometric subspaces. Below, we attach positive weights to
edges; in reaction network theory these weights are called reaction rate constants.

We now turn our attention to how an E-graph is canonically associated to dy-
namics on RY by assigning a positive weight to each edge.

DEFINITION 2.5. Let (V,E) be an E-graph. For each y, —y; € E, let r;; >0 be
its weight, and let k = (k;;) € RE. The associated dynamical system on RY of the
weighted E-graph (V,E,K) is
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dx ,
2) o > kyaYi(y; —y)
(i,j)€E
It is sometimes convenient to refer to x;; even though y, — y; may not be an
edge in the network. In such cases, we set x;; =0.

Remark 2.6. We defined the domain of (2) to be RZ. Systems of ODEs with
polynomial right-hand side do not in general leave RY forward-invariant, but if we
assume V' C ZZ, the positive orthant RZ is indeed forward-invariant under (2) [40].

It is clear that the right-hand side of (2) lies in the associated linear space S, so
any solution to (2) is confined to a translate of S. By the above remark, any solution
to (2) where V' C ZZ with initial condition &y € RZ is confined to (xzo +.5) NRZ,
which is called the invariant polyhedron of xg.

Example 2.7. We illustrate the notions and notations defined above. Figure 1
shows three examples of weighted E-graphs. The graphs in Figure 1(a) and 1(b) are
weakly reversible, but the one in Figure 1(c) is not. The graph in Figure 1(a) has
two connected components, each of which is affinely independent; however, those in
Figure 1(b) and 1(c) do not have affinely independent connected components.

The associated dynamical system of the weighted E-graphs in Figure 1(a) is

d T o 2 2 —2 2 2 —2 2 2
T (xg) =3 <2) + 5x7 < 2> + 2775 o)t 35 _9
(6 —102% — 42323 + 6m%>

6 + 1027 — 42323 — 623

3)

The source vertices play the role of exponents in the monomials; thus the set of source
vertices V; determines the monomials in the associated dynamical system.

It so happens that the weighted E-graphs in Figure 1(b) and 1(c) also have (3)
as their associated dynamical systems. We say that the three weighted E-graphs in
Figure 1 are dynamically equivalent, and the weighted graphs are realizations of the
dynamical system (3); we define these terms precisely in Definition 2.10. This example
demonstrates that while a weighted E-graph is associated to a unique dynamical
system, the converse is not true; there are in general infinitely many realizations of
a given polynomial dynamical system [15]. This work is concerned with finding a
realization that guarantees certain algebraic and stability properties.

Another way to study the vector field generated by (2) is to use a linear combina-~
tion of some fixed vectors, one for each monomial, with the coefficients given by the
strength of the monomials at that point. We give a name to those fixed vectors.

Fic. 1. Weighted E-graphs from Example 2.7.
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DEFINITION 2.8. Let (V,E, k) be a weighted E-graph, and y, € Vs. The net
direction vector from y; is

wi= Y k(Y — )

y; eV
The matriz of net direction vectors of (V,E,K) is
W=(w; ws - wy).

For convenience, we may refer to the net direction vector even if y,; & V; in this case,
let the net direction vector be zero. Such a net direction vector will not show up as
a column of W.

The matrix W from Definition 2.8 is also well defined when we start not with a
weighted E-graph but with a fixed polynomial dynamical system of the form

@ Y
=2 N pYiw,
dt 4 !
1=1
Note that any polynomial dynamical systems can be uniquely written as such, for
some Yy, Yo, .-, Yy, € LS distinct, and w1, wo,...,w,, € R™ nonzero.

DEFINITION 2.9. Consider the polynomial dynamical system (4). The matriz of
source vertices Y5 and the matriz of net direction vectors W of (4) are

Y:=(y, vy - y,,) and W=(w; wy - wp,).

Clearly, & = Wa Y.

Thus far, we start with a weighted E-graph (V, E, k), and from it, we define a
dynamical system. The goal of the present work is the converse direction: start with a
polynomial dynamical system, find some (V, E, k), ideally with certain properties, that
gives rise to such dynamics. For example, (4) is generated by the graph y; N Y, +w;,
for i=1,2,...,m. As Example 2.7 illustrates, there are in general many weighted E-
graphs that can generate the same dynamics.

DEFINITION 2.10. A realization of a polynomial dynamical system & = f(x) is
a weighted E-graph (V, E, k) whose associated dynamical system is precisely & = f(x).
Two realizations of & = f(x) are said to be dynamically equivalent.

LEMMA 2.11 ([11]). The weighted E-graphs (V,E,k) and (V',E',K') are dynam-
ically equivalent if and only if the net direction vector from y, in (V,E,K) coincides
with that in (V',E' k') for ally, € V;UV/.

Proof. This follows from the linear independence of monomials as functions on
RZ. d

2.2. Complex-balanced systems and WRy systems. General polynomial
dynamical systems can display a wide range of dynamical behaviors, ranging from
stable or unstable steady states, limit cycles, and even chaos. In this work, we are
interested in the family of complez-balanced systems, which enjoy various algebraic
and stability properties.

DEFINITION 2.12. Let (V,E,k) be a weighted E-graph in R™, and let € = f(x)
be its associated dynamical system. A state x* € RY is said to be a positive steady
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state if f(x*)=0. Let V< (f) be the set of positive steady states. A state x* >0 is a
complex-balanced steady state if, at every y; €V, we have

Y mila)e= ) wan)v.

(i,5)EE (40)EE

The equation above can be interpreted as balancing the fluxes flowing across the
vertex y;. If a weighted E-graph (V| E, k) admits one complex-balanced steady state,
then every positive steady state is complex-balanced [27]; such a (V) E, k) is called a
complez-balanced system.

These systems first arose from the study of chemical systems under mass-action
kinetics, as a generalization of thermodynamic equilibrium. The following theorem
lists some of the most important results about complex-balanced systems. For more
details, see [18, 24, 46].

THEOREM 2.13 ([27]). Let (V,E,k) be a complex-balanced system, with steady
state ¥ € RY and associated linear space S. Then the following are true:
(i) All positive steady states are complez-balanced, and there is exactly one steady
state within each invariant polyhedron.
(ii) Any comples-balanced steady state x satisfies Inx —Inx* € S*.
(iii) The function

L(z)= in(lnxi —Inz; —1),
i=1

defined on RZ, is a strict Lyapunov function within each invariant polyhedron
(zo+S)NRL, with a global minimum at the corresponding complex-balanced
steady state.

(iv) Ewvery complez-balanced steady state is asymptotically stable with respect to
its invariant polyhedron.

Beside these properties, complex-balanced systems enjoy other remarkable alge-
braic and dynamical properties. For example, the set of positive steady states V< (f)
admits a monomial parametrization [8, 10]. Each positive steady state x* is in fact
linearly stable with respect to its invariant polyhedron [7, 39]. Complex-balanced sys-
tems are also conjectured to be persistent and permanent! [14]. Moreover, the unique
steady state is conjectured to be globally stable within its invariant polyhedron [26].
The Persistence and Permanence Conjectures have been proved in several cases, such
as when there is only one connected component [1, 6], or the ambient state space is R?
[14], or the E-graph is strongly endotactic [23], or the associated linear space S is of
dimension two and all trajectories are bounded [37]. The Global Attractor Conjecture
has also been proved if there is only one connected component [1, 6], or the E-graph is
strongly endotactic [23], or the ambient state space is R? [14], or when the associated
linear space S is of dimension at most three [37].

Besides dynamical stability, complex-balanced systems are characterized graph-
theoretically and algebraically. Horn proved in [25] that (V| E, k) is complex-balanced
if and only if (V, E) is weakly reversible and k satisfies some algebraic equations, the
number of which is measured by a nonnegative integer called the deficiency of (V, E).

1Roughly speaking, persistence is the property that, starting in RZ, the solution is always

bounded away from the boundary of R, and permanence occurs when solutions always converge to
a compact subset of the invariant polyhedron.
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DEFINITION 2.14. Let (V,E) be an E-graph with ¢ connected components, and
let S be its associated linear space. The deficiency of (V,E) is the integer § =
|[V|—¢—dimS.

The notion of deficiency can also be applied to the connected components. Sup-
pose Vi, Va,...,V; are the connected components of (V,E). The deficiency of a
connected component V,, is 6, =|V,| —1 —dimS(V},). It is easy to see that

14
5> 6y,
p=1

with equality if and only if S(V7), S(Va),...,S(V;) are linearly independent. If § =0,
then necessarily d, =0 for all p.

If (V, E) is weakly reversible and § = 0, then the associated dynamical system is
always complex-balanced, regardless of the choice of k. This result is known as the
Deficiency Zero Theorem [17, 25]. The deficiency is a property of the E-graph, not
of the associated dynamical system, yet in the case of deficiency zero, it has strong
implications on the dynamics. The goal of this paper is to search for WRy realizations
for polynomial dynamical systems, which are automatically complex-balanced and
therefore obey the properties listed in Theorem 2.13.

Deficiency also has a geometric interpretation; § = 0 if and only if (V,E) has
affinely independent connected components Vi, Va,...,V;, and the subspaces S(V1),
S(Va),...,S5(Vy) are linearly independent [13, Theorem 9]. Later we make use of this
interpretation when searching for WRy realizations.

The system (2) admits a matrix decomposition that aids in studying complex-
balanced steady states. For a weighted E-graph (V| E, k) where |V| = m, its associated
dynamical system (2) can be decomposed as & = YA,z Y [27], where

Y=y Y2 - Yn)

is a matrix whose columns are the vertices (including both sources and targets); ¥

is the vector of monomials whose ith component is «¥:, and the Kirchhoff matriz
Kji fy, -y, €k,
[Agliy={ —> kjr fori=j,
6, otherwise,

is the negative transpose of the graph Laplacian of (V,E, k). In general, the ith
component of A xY,

[A,QCL'Y]Z': Z Iijiwyj—il:yi Z Kij,

(ji)EE (i,5)EE

measures the net flux passing through the ith vertex, so a complex-balanced steady
state &* is a solution to the equation A, (x*)Y =0.

A subgraph (Vo, Fo) C (V, E) is a terminal strongly connected component if it is
strongly connected, and there does not exist an edge in F from a vertex in Vj to a
vertex in V' \ V. The kernel of A, is supported on the terminal strongly connected
components.
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THEOREM 2.15 ([20]). Let A, be the Kirchhoff matriz of (V, E, k) with terminal
strongly connected components Vi, Va,...,Vi. There exists a basis {c1,¢a,...,¢} for
ker A, with ¢, € R’; and

{ [c,)i >0, ify, eV,

[cpli =0, otherwise.

According to the Matrix-Tree Theorem [10, 25], there is an explicit formula for
the entries of ¢,. Each nonzero [c,]; is a polynomial of k;; with positive coefficients,
given by the maximal minors of A, [10, 22, 36].

If (V,E) is weakly reversible, then § = dim(kerY NimA,). More generally,
dim(kerY NimA,) = |V| — ¢ —t, when (V,E,k) has ¢ terminal strongly connected
components [20]. Therefore if (V, E') is WRq, then ker(YA ) =ker A, and the matrix
of net direction vectors W coincides with YA, (see Lemma 3.1).

For the purpose of this work, we assume that we are given W and the matrix of
source vertices Y4, but we do not know the decomposition of W into the product YA,
where the columns of Y, are also columns of Y. Because ker A is well characterized
[19, 20, 24], we make use of it in our search for WR realizations.

Ezample 2.16. Consider the weighted E-graph (V, E, k) in Figure 2. While (V, E)
has two connected components, it has three terminal strongly connected components
(boxed in Figure 2). With the ordering of vertices as labeled in the figure, the Kirch-
hoff matrix of (V, E, k) is

—Rki12 K21
K12 —HK21
—K34 K43
A, — R34 —HK43 K84
R —K56 0 K75
K56 —Ke7 0
0 Ker —K75 K87
—hKg4 — Kgr
Yo
K12
)
K21 Yy
Y@ °
\ 1484/
Y7 | kg7
o<——©@ K34||k43
K75 Ys
K67
Ys K56 Ys Y3
/ | S

Fic. 2. A weighted E-graph with two connected components but three terminal strongly con-
nected components (boxzed). Its Kirchhoff matrix A and a basis for ker A, are given in Example
2.16.
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A basis for its kernel is given by the vectors

K21 0 0

K12 0 0

0 K43 0

o 0 K34 o 0
“a=1 0 |’ ©2=1 9 |’ €= Ke7K75
0 0 Ks56KT5
0 0 K56K67

0 0 0

The supports of the basis vectors ¢, are precisely the terminal strongly connected
components of (V| E). If the graph is weakly reversible, then the basis of ker A, given
in Theorem 2.15 provides a way to partition the set of vertices.

2.3. Connection to reaction network theory. As hinted at in Remark 2.4,
the present work comes at the heel of various results on realizations in reaction net-
work theory. It was first recognized in the early 1970s that two mass-action systems
with distinct rate constants and network structures (what we call E-graphs) can give
rise to the same dynamics [27, 33]. The capacity of networks to be dynamically equiv-
alent was studied in depth in [2, 15, 41]. An algorithm based on mixed-integer linear
programming was proposed to compute realizations with additional properties [42],
followed by various improvements in subsequent years; see [30, 34, 38, 43, 44]. The
authors of these works note that the algorithms for complex-balanced realizations
(of which WRy realizations are a subset) require as input the set of candidate com-
plexes (i.e., candidate vertices). This issue was resolved when it was proved that, for
complex-balanced realizations (as well as for weakly reversible, reversible, or detailed
balanced realizations), it suffices to use the set of monomial exponents as the set of
vertices [11].

Meanwhile, although there is in general no unique E-graph associated to a sys-
tem of ODEs, it was conjectured that uniqueness does hold for WR realizations. For
networks with a single connected component, a proof was first presented in [16] using
a linear algebraic method, and a proof based on the geometric interpretation of defi-
ciency was given in [13]. The proof for the general case was provided in [12]. It was
from [12] that we sought to use the geometry of the network to find WRy realizations,
and the present work originates from that effort.

3. Main results. In this section, we present Algorithm 1 (see also Figure 3)
that finds a WRj realization of a given system of polynomial differential equations,

® S e
— =) zViw;,
dt e
whenever one exists; here y,,...,vy,, € Z2 are distinct, and wy, wa, ..., w,, € R"\{0}.

Recall that whenever (5) admits a WRg realization it follows that the system is
complex-balanced and enjoys all the properties listed in Theorem 2.13. In particular,
whenever a WRy realization exists, the set of positive steady states has a log-linear
structure that allows us to easily find the steady states of (5), as outlined in Theo-
rem 3.12. Moreover, if no WRy realization exists for (5), our algorithm would con-
clude as much. Finally, our algorithm is valid even if the w;’s are only known up to
a positive scalar multiple; we prove this in Theorem 3.13.
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Inputs: P <

Find minimal set of generators
{Cl,...,Cg} C Rg
for the cone ker W N RY

YS = (yla"'7ym) GZ;XW
W = (wl,...,wm) € R*MX™
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- J
Y
( N\
¢
no Does {supp(c _
No WRy realization ‘ { pPP(Cp) }p=1
partition [1,m] C N?
A A L )
yes
\ 4
( N\

Define candidate connected
components by V, := supp(cp)

for p =1,2,...,1 |«€

Y
no [ Is {yi:z‘EVp}
{ affinely independent?
yes
Y
( )
no VieVy,is
w; € Cone{y, —y,;: j € V;}7?
|\ J
yes
Y
4 )

Uniquely decompose each w;

aswi = > kij(y; — v,)

J#i
JEVp
| J
endfor
Y
[ WRy realization found ]

Fic. 3. Algorithm 1 for finding WRy realization of a polynomial dynamical system & =
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Algorithm 1 (WRy algorithm).

Input: Matrices YS:(yl7 ... ,ym) and W:(wl, ... ,wm) that define d:zzzilwyiwi.

Output: Either return the unique WRy realization or print that such a realization
does not exist.

1:  Find the minimal set of generators {cy,ca,..., ¢/} of the pointed convex cone
ker W NRZ.

2: if the sets supp(cy1),supp(cs),...,supp(cs) do not form a partition of {1,2,
...,m}, then

3: Print: WRO realization does not exist. Exit.

4: else

5: Define the candidate connected components to be V, :=supp(c,) for p=1, 2,

A

6: for p=1,2,...,¢ do

7 if the vectors {y,: i € V,,} are not affinely independent, then

8: Print: WRO realization does not exist. Exit.

9: else

10: for each i €V, do

11: if w; ¢ Cone{y; —y,;: j€V,}, then

12: Print: WRO realization does not exist. Exit.

13: else

14: Uniquely decompose w; = Zjeij# Kij(Yy; —y;) with x;; > 0.

15: Add {y; =y, Kij >0} to the edge set E.

16: end if

17: end for

18: end if

19: end for

20: end if

21: Print: The WRO realization does exist and has ¢ connected components.
22: Print: The connected components of this realization are given by
L
{V;?}pzl .
23: Print: The edges are listed in F, with weights k.

3.1. Algorithm for finding WRy realization. The inputs of Algorithm 1 are
the source vertices and their net direction vectors via Y, and W, respectively. To
find a WRy realization (V,E,k) is to find a matrix decomposition of W = Y A,
where A, encodes the graph structure of (V| E). In the following lemma, we prove
properties that can be expected should a WRy realization exist.

Recall that a set X is a polyhedral cone if X = {x: Mz < 0} for some matrix
M. Such a cone is convex. It is pointed, or strongly converz, if it does not contain
a positive dimensional linear subspace. Note that a cone contained in the positive
orthant RY is always pointed. A pointed polyhedral cone admits a unique minimal
set of generators (up to scalar multiple) [9].

LEMMA 3.1. Suppose a polynomial dynamical system & = f(x) admits a WRy
realization (V,E,K) with ¢ connected components. Let Y, be the matriz of source
vertices, and let W be the matriz of net direction vectors of the polynomial dynamical
system &© = f(x). Let S be the associated linear space, and let A, be the Kirchhoff
matriz of the weighted E-graph (V,E,k). Then we have

(i) W=Y A, and ker W =ker A,

(ii) S=1m'W, and the rank of W is |V| — ¢,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/03/24 to 88.120.99.78 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1728 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

(iii) ker W NRY is a pointed polyhedral cone, and
(iv) a minimal set of generators for ker W N R has £ elements, whose supports

correspond to the connected components of (V, E).

Proof. Consider the matrix Y= (y4,...,¥,,), whose columns correspond to the
monomials in f(x). Because the realization (V, E) is weakly reversible, all vertices in
V are sources; in particular, {y,}",; C V. Moreover, because the deficiency of (V, E)
is zero, by [12, Proposition 3.5], the net direction vector from any y, is nonzero, so in
fact V ={y;}i%,.

(i) By Definition 2.9, & = f(x) = Wz Y+, and because (V, E, k) is a realization,
we have f(z) = Y,A.xYs. Since the coefficients of polynomial functions are
uniquely determined, W =Y A,. Because dim(ker Y;NimA,) =03 =0, we
have ker W = ker A ..

(ii) Note that

rank W =rank A, = |V| —(=dim S,

where the first and last equalities follow from 0 =§ =dim(ker Y Nim A, ) =
|[V| — ¢ —dim S, and the second equality follows from weak reversibility and
Theorem 2.15. Clearly imW C S, so imW = S.

(iii) The set ker W N RZ is the solution to Wv > 0, —Wv > 0, and Idv > 0;
thus the set is a polyhedral cone. That ker W N RZ is pointed follows from
it being a subset of RZ". -

(iv) Let B={ei, ¢, ...,c} be a basis of ker A as in Theorem 2.15, where ¢, > 0,
and each V, ={y,: i € supp(c,)} is a connected component of (V, E). Clearly
B C ker W N RY; we claim that B is a minimal set of generators for the
pointed cone.

Let v € ker WNRZ be arbitrary. By (ii), B is a basis for ker W, so decompose
v accordingly:

0
v= E ApCp
p=1

for some A, € R. By Theorem 2.15, each ¢, is supported on the connected
components of (V, E), which partition the set of vertices. In particular, for
each i = 1,...,m, there is exactly one p(i) such that v; = A\p;)[ep))i- Since
v, ¢y € RY, it must be the case that A,;) > 0. In other words, B generates
the cone ker W N RZ'. Because the vectors in B have disjoint supports, B is
minimal. - 0

LEMMA 3.2. If Algorithm 1 exits at lines 3, 8, or 12, then &€ =) . x¥%iw; does
not admit a WRy realization.

Proof. 1f the algorithm exits at line 3, then by the contrapositive of Lemma 3.1
(iv) no WRy realization exists. Continuing with the algorithm, let {cj,...,c¢} be a
minimal set of generators of ker WNRZ, and partition the vertices by V,, :=supp(c,).
If instead the algorithm exits at line 8, then again no WR realization exists because
WRy realizations have affinely independent connected components [13, Theorem 9].
Finally, exiting at line 12 means that some net direction vector w; cannot be decom-
posed as edges from y; to other vertices in V},, which defines a connected component
of a WR realization if it exists according to Lemma 3.1(iv). O

LEMMA 3.3. Suppose Algorithm 1 reaches line 23. Then the connected compo-
nents of (V, E) are given by Vi, Va,...,Vp.
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Proof. If the algorithm reaches line 23, because it fails the if statement in line
12, all net direction vectors wy,...,w,, can be decomposed as edges from y, to other
vertices in Vj,; thus a realization has been found with edges among Vi,...V;; ie.,
the connected components are subsets of V,,. We prove now that, in fact, each V,, is
connected in (V, E).

For any p=1,...,¢, let U :=V], be the support of c:=¢,. Suppose for a contra-
diction that V* C U is a connected component of (V, E). Because the if statement in
line 7 is false, U is affinely independent, so the linear subspaces

S(V*):{yi_yj:yivyje‘/*} and S(U\V*):{yi_yj:yiayjeU\V*}

are linearly independent. Because ¢ € ker W NRZ' and supp(c) = U, we have

(6) 0=> cw;+ Y cw;,

eV iEU\V*

with ¢; > 0. Furthermore, the if statement in line 11 returning false implies that each
w; in (6) can be further decomposed as edges between vertices in U. For any y, in
V*, which is a connected component, the net direction vector w; is a positive linear
combination of edge vectors between y, and other vertices in V*, so w; € S(V*).
In particular, ¢* := ), . c;w; € S(V*). Similarly, any vertices in U \ V* are only
connected to other vertices in U \ V*. Linear independence of S(V*) and S(U \ V*)
means that the vectors ¢* and ¢ — ¢* are linearly independent. Both ¢* and ¢ — c*
lie in the cone ker W N RZ, so {e1,...,¢c¢} is not a set of generators, which is a
contradiction. B O

LEMMA 3.4. Suppose Algorithm 1 reaches line 23. Then the deficiency of (V,E)
18 zero.

Proof. The falsity of the if statement in line 7 and Lemma 3.3 imply that the
connected components Vi, Va,...,V, are affinely independent. To prove § = 0, it
remains to show that S(V1), S(V2),...,5(V;) are linearly independent subspaces [13,
Theorem 9].

We claim that the minimal set of generators {ci,ca,...,c¢} forms a basis for
ker W. Let ¢ € ker W be arbitrary. If ¢ has nonnegative components, then it is a

m

linear combination of ¢,’s. If ¢ ¢ RY, then there exist sufficiently large constants
tp > 0 so that

¢
c+ Z,upcp eRY.

p=1

This vector is a nonnegative combination of ¢;, ca,...,cy; thus, ¢ is a linear combi-
nation of the generating vectors. Since W € R"*IVl, we have rank W = |V| — £.

Let S be the associated linear space of (V, E), i.e., S =span{y,~y,: y, >y, € E}.
The falsity of the if statement in line 11 implies that imW C S, so dimS > |[V| — £.
Hence, the deficiency of (V,E) is 6 = |V| — ¢ —dimS < 0. Because ¢ is always
nonnegative, we conclude that 6 =0. O

LEMMA 3.5. Suppose Algorithm 1 reaches line 23. Then (V,E) is weakly re-
versible.

Proof. For weak reversibility, we need to show that each connected component is
strongly connected. So without loss of generality, we assume (V, E') has one connected
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component. Because of deficiency zero, V is affinely independent and dim S =|V|—1,
so § = 0. Moreover, dim(ker Y Nim A,) < § [24, Proposition 3.1],%2 so ker(YA,) =
ker A, and the generator ¢; also spans ker A . By Theorem 2.15, ¢; is supported on
the terminal strongly connected component, which in this case is all of V. Therefore,
(V,E) is in fact strongly connected. |

Remark 3.6. In the proof of Lemmas 3.3 and 3.4, we have proved that the asso-
ciated linear subspace S(V,) is in fact the span of the net direction vectors belonging
to said connected component. Thus, there are multiple ways of generating S(V}):

span{y,; — y,: ¥;,y; € Vp} =span{y; —y,: y;, >y, € By} =imW®),

where W) has as its columns the net direction vectors of the vertices in Vp.

The lemmas above provide the technical parts that we need to prove the main
result of this paper.

THEOREM 3.7. Given a system of differential equations,

m

dx

= Yigp.

yr =Y aViw;,
=1

with distinct y, € 2%, and w; € R" \ {0}, Algorithm 1 returns the unique WRg
realization of the dynamical system if it exists or concludes that no WRy realization
exists.

Proof. There are two possible scenarios: either the algorithm exits at lines 3, 8,
or 12 by failing one of the if statements, or the algorithm successfully reaches line
23. In the first scenario, Lemma 3.2 implies that no WRy realization exists. In the

second scenario, the realization has connected components Vi, Va,...,V, according
to Lemma 3.3. The realization is WRy by Lemmas 3.4 and 3.5, respectively. The
uniqueness of the realization follows from [12]. O

Remark 3.8. The uniqueness of the WRy realization is also a consequence of
Algorithm 1. This is due to affine and linear independence, as well as the structure
of ker W =ker A,..

If a WR realization exists, the polynomial dynamical system is complex-balanced.
Therefore, if a system passes Algorithm 1, it automatically inherits all the algebraic
and dynamical properties of complex-balanced system. Weak reversibility implies that
a positive steady state exists [5]. The remaining statements in the theorem below are
easy consequence of Theorems 2.13 and 3.7.

THEOREM 3.9. Suppose the system of differential equations

dx '
(7) oY arw,

with distinct y; € Z% and w; € R™\ {0}, passes Algorithm 1. Let W be the matriz of
net direction vectors and S =im W. Then the following holds:

2The author of [24] defines deficiency differently. He calls dim(ker’Y Nim A,) the deficiency,
and Proposition 3.1 gives the inequality dim(kerY Nim Ax) <n — £ — dim S, which is what we use
here. In general, dim(kerY Nim A,) = |V| —t — dim S, where ¢ is the number of terminal strongly
connected components [20].
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(i) A positive steady state x* exists.
(ii) There is exactly one steady state within every invariant polyhedron (xg+S)N
RY for any xo € RY, and it is complex-balanced.
(iii) Any positive steady state x satisfies Inx —Inx* € S*.
(iv) The function

L(z)= Zzi(lnzi —Inz} —1),
i=1

defined on RZ, is a strict Lyapunov function of (7) within every invariant
polyhedron (xo+S)NRZ , with a global minimum at the corresponding complez-
balanced steady state.

(v) Bvery positive steady state is locally asymptotically stable with respect to its
invariant polyhedron.

Ezample 3.10. Consider the system of differential equations

d.Tl
ﬁ = —12301 =+ .’L'g,
d
(8) % = 142 — 423 + 82,
d
% =102 + 422 — 1022,

We have n = 3 for the three state variables and m = 3 for the three distinct monomials.
The matrices of source vertices and net direction vectors are

1 0 0
Ys:(yl Ys 3/3): 02 0],
0 0 2
—12 0 1
W:(w1 wo U)g): 14 —4 81,
10 4 -10

respectively, which are inputs to Algorithm 1. Let V = {y,,y,,y3} C Zx. A generator
for the cone ker W NRY is ¢ = (48/1441,120/131,576/1441) 7. In the notation of

Algorithm 1, V4 = [1,3]. Clearly V is affinely independent and the net direction
vectors admit the following unique decompositions:

w1 =Ty — Y1) +5(y3 —y1),
w2 :2(y3 —Ys),
w3 = (Y1 —Y3) +4(Y2 — Y3)-

Therefore (8) admits a WRy realization, whose weighted E-graph is shown in Fig-
ure 4(b).

This implies that the system (8) has exactly one steady state within each invariant
triangle given by 227 + x5 4+ 3 = C' for some C' > 0, and this steady state is a global
attractor within each such triangle. From Theorem 3.9, we know the steady state set
admits a monomial parametrization of the form (alsQ,ags,ags) for some constants
a; > 0. In fact, the set of steady states is given by

1/330
(27,25, 2%) = (3327 Ts, 65) ,
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Ys Yse

10

FiG. 4. (a) A weighted E-graph realizing (8) from Ezample 3.10, which admits (b) a WRy
realization. (c) A weighted E-graph realizing (9) from Ezample 3.11 that does not admit a WRy
realization.

and an explanation for the coefficients above will be provided in Theorem 3.12.

Ezample 3.11. Consider the system of differential equations

dZZ?1 1
oS Tt
d
9) 2 _ —2xy — 4x3 + 8z§,
dt
dng

Again, we have n = 3 and m = 3. The monomials are the same as those in the previous
example. The difference lies in the first column of the matrix of net direction vectors

-3 0 1
W= (’LUl w2 'Ll)g) = -2 —4 8 5
3 4 —-10

whose kernel is spanned by ¢ = (2,1,1)T. As in the previous example, the vertices
Y1, Y2, and y5 are affinely independent. However, w; ¢ Cone{y; —y,: j = 2,3}, so
no WRy realization exists.

3.2. On the implementation and computational complexity of Algo-
rithm 1. Before proceeding, we briefly remark on Algorithm 1 and how it compares
with an existing algorithm for WRy realizations in [34].

The algorithm we propose to find a WRq realization for & = Wz Y+ consists of
three steps:

1. Check for the existence of a set of generators {ci,...,c;} with disjoint sup-
ports for the cone ker W NRZ.
2. On the support V,, of each generator c,, check that {y,: i € V,} is affinely
independent.
3. Fo)r each i € V), solve for (nonnegative) solutions k;; to w; = ZjEVp,j;éi Kij(y,;—
Yi)-
In reality, step 2 is no more than a rank condition, that the rank of {y, —y, : ¥, €V}
is equal to |V,| — 1, where y; is a distinguished vertex in V},. At first sight, it seems

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/03/24 to 88.120.99.78 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1733

step 3 is a linear feasibility problem; however, it is in fact solving a linear system.
By the time we reach step 3, we have already verified that, for a fixed i, the set
{y; —y,;: j €Vp,j #i} is linearly independent. Hence the system of linear equations
w; = Zjevp,j;&i Kij (yj —y,) either has no real solution, or there is a unique solution
(Kij)ij, In which case we simply check whether x;; >0 or not.

The “simplest” way to implement step 1 is to compute all the extreme rays of the
cone ker W N RZ. A much more efficient way to implement step 1 is via a series of
linear programming problems. We find the first generator of the cone ker W NRZ* by
solving

Minimize z'1
subjected to Wx=0,
I = 1 5

x>0,

because we are looking for vectors in ker W that are nonnegative and nonzero and
have minimal support. Denote the solution of the problem above by c;, and let
A = supp(e;). We can then run another (analogous) linear programming problem,
where we remove the columns whose indices are in A from the matrix W. Let e be
the solution to this second problem, augmented by zeros for indices in A. Replace
the index set by A = UZ=1 supp(c,), and repeat, until A = {1,2,...,m}. Of course,
if at any point the process fails, this means there is no such set of generators with
disjoint support for the cone, and therefore no WR realization exists. Hence, step 1
can be attained with the same computational cost as the solving of a number of linear
programming problems (and this number is no larger than the number of connected
components).

In the literature, there are also other approaches for computing WRy realizations.
Technically speaking, these require the set of vertices as input; however, for WRq
realizations, one can use the exponents of the monomials [11, Theorem 4.12]. The
authors of [30] proposed a mixed-integer linear programming method to find a weakly
reversible realization with minimal deficiency. The authors of [34] further reduced
it to a linear programming method for the case of deficiency zero realizations. The
methods in [30, 34] are algebraic in nature, while the algorithm proposed here relies
on the geometric interpretation of deficiency.

3.3. The set of positive steady states of a WRy realization. Algorithm 1
determines whether a given polynomial dynamical system admits a WRy realization.
If it does, its steady state set is in fact log-linear. In this section, we write down a
system of linear equations whose solution set is in bijection with the set of positive
steady states; this provides an explicit parametrization of the set of positive steady
states for a WRy realization.

For any z € R and € R%, define the componentwise operations expz =
(e*r,e*,...,e*)T and log(x) = (logz1,logxs,...,logz,) . We extend these oper-
ations to sets. If Z C R™, then exp(Z) = {expz: z € Z}, and if X C RZ, then
log(X) ={logz: x € X}.

Assume that the polynomial dynamical system

dx
1 e § :wyi“,,
( 0) dt Pt 19

with distinct y; € Z% and w; € R™\ {0}, passes Algorithm 1; i.e., it admits a WRy
realization (V, E, k). Without loss of generality, assume the vertices are ordered ac-
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cording to the connected components in (V| E); i.e., the first m; vertices belong to
the connected component (7, E1), the next my vertices belong to the connected com-
ponent (Va, Es), and so forth. Let {c1,¢s,...,¢¢} be a minimal set of generators of
ker WNRY, ordered in an analogous way. From Algorithm 1, we know that the sup-
ports of the vectors ¢i, ¢z, ...,¢, correspond to the connected components of (V, E).

Let ¢; = (a1,a2,...,aml,O,...,O)T. Define matrix Dy € R(M1~D*" whose rows
are the affine vectors from vy, to the remaining vertices of V;, and define vector
J1 € R™~! using the log-differences of the components of ¢, i.e.,

Yo — Yy log(az/az)

Ys—Yy log(a3/a1)
D, = ’ . ! and J;= .

Ym, — Y1 log(am, /a1)

For the connected component (V,, E,), define D, and J, in a similar fashion. Then
define

D, Jy
DQ J2

(11) D=["|eR"™ " and J=["|eR™"
D, Ji

THEOREM 3.12. Suppose the system of differential equation (10) admits a WRy
realization (V, E, k), and let D € RU"=9*" qnd J € RT™* be defined as in (11). Then
the system Dz = J is solvable. Let z* + ker D be its solution set. Then the set of
positive steady states of (10) is exp(z* + ker D).

Proof. First we prove that the linear system Dz = J is solvable. Consider D;.
The vertices y,, Ya, - - -, Y,,, in the first connected component are affinely independent,
so the rows of D are linearly independent. Moreover, as noted in Remark 3.6, the
row-space of Dy is the associated linear subspace S(V;). Therefore rankD; =mq —1,
and the matrix D is surjective onto R™ ~1.

Similarly, for each p=2,...,¢, the row-space of the matrix D,, is S(V},), and the
matrix D, is surjective. In addition, because the realization (V, E, k) has deficiency
zero, S(V1), S(Va),...,5(V;) are linearly independent; in other words, the m — ¢ rows
of the matrix D are linearly independent. Consequently, D is surjective, and the
system Dz = J is solvable.

Let z* +ker D be the set of solution to Dz = J. We next show that each solution
can be related to a positive steady state & of (10), which by definition satisfies

m
0= E x¥iw;.
i=1

In other words, (x¥1,...,2¥n)T lies in the steady state flux cone ker W N RZ. De-
composing this vector with respect to the generators of the cone allows us to focus on
one connected component at a time.

For simplicity of notation, consider the first connected component. At steady
state, for some constant A >0, we have &% = Aa; for j =1, 2,...,m1, where a; are
components of the generator ¢;. Thus

x¥i Y1 = &
aq
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for j=2,3,...,my. Taking the logarithm of both sides, we obtain the system D,z =
J1 with z =logx.

Repeating this computation for each connected component, we conclude that x
is a positive steady state for (10) if and only if @ solves Dz = J with z = loga.
This leads us to the characterization of the set of positive steady states for (10) as
exp(z* + ker D), where z* + ker D is the set of solutions to Dz = J. |

3.4. Extension to polynomial systems with unspecified coefficients. If,
instead of (10), we need to analyze

dt — ‘ ’

for some unknown a; > 0, it turns out that the answer as to whether a WR realization
exists is the same.

THEOREM 3.13. For any a; > 0, the system (12) admits a WRy realization
(V, E, k) if and only if the system (10) admits a WRy realization (V, E,k*). Moreover,

— *
Rij = amij .

Proof. The forward implication is trivial. We focus our attention on the other
direction. For any 4, j, let k;; = a;K];, so ki; >0 if and only if £7; > 0. In other words,
the weighted E-graph (V, E, k) shares the same set of edges as (V, E,k*). Because
the deficiency is characterized by affine and linear independence of the connected
components, and the two graphs share the same structure, (V, E, k) is WRy if and
only if (V, E,Kk*) is.

Suppose (V,E,k*) is a realization of (10). Then in (V, E, &), the net direction
vector from y, can be expanded using the realization (V, E,k*), since

a;W; = a; Z ki (Y —yi) = Z kij (Y — Yi)-

(i,j)eE (i.5)€E
Therefore, (V, E, k) realizes (12). |

3.5. Deficiency zero realizations that are not weakly reversible. If a
polynomial dynamical system admits a deficiency zero realization that is not weakly
reversible, then its dynamics is also greatly restricted: it can have no positive steady
states, no oscillations, and no chaotic dynamics; actually, such as system will admit
a linear strict Lyapunov function, and therefore all its solutions have to converge
to the boundary of the positive orthant, or to infinity [17, 19, 25]. Actually, such
realizations are special examples of mass-action systems generated by E-graphs that
are not consistent [2]. An E-graph (V, E) is said to be consistent if there exist real
numbers o;; > 0 such that

(13) Z aij(y; —y;)=0.

(i.4)eE

It is not hard to show that a polynomial dynamical system of the form (10) has
a realization (V, E, k), where (V, E) is not consistent if and only if

(14) ker WNRZ =0.

If a given polynomial dynamical system admits a realization that is not consistent,
then it cannot admit any positive steady state; hence, it cannot admit any realization
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that is weakly reversible, because weakly reversible systems must have at least one
positive steady state [5]. Therefore, if Algorithm 1 is accompanied by a preprocessing
step that checks condition (14), then that step will decide whether our given system
(10) has a realization that is not consistent, and, in particular, that step will also find
all cases where our given system might a deficiency zero realization that is not weakly

reversible.
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