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Abstract. Systems of differential equations with polynomial right-hand sides are very common
in applications. On the other hand, their mathematical analysis is very challenging in general, due
to the possibility of complex dynamics: multiple basins of attraction, oscillations, and even chaotic
dynamics. Even if we restrict our attention to mass-action systems, all of these complex dynamical
behaviors are still possible. On the other hand, if a polynomial dynamical system has a weakly
reversible deficiency zero (WR0) realization, then its dynamics is known to be remarkably simple:
oscillations and chaotic dynamics are ruled out, and, up to linear conservation laws, there exists a
single positive steady state, which is asymptotically stable. Here we describe an algorithm for finding
WR0 realizations of polynomial dynamical systems, whenever such realizations exist.
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1. Introduction. By a polynomial dynamical system we mean a system of ODEs
with polynomial right-hand side, of the form

dx1

dt
= p1(x1, . . . , xn),

dx2

dt
= p2(x1, . . . , xn),

...

dxn

dt
= pn(x1, . . . , xn),

(1)

where pi(x1, . . . , xn) \in \BbbR [x1, . . . , xn]. In general, such systems are very difficult to
analyze due to nonlinearities and feedbacks that may give rise to bifurcations, multiple
basins of attraction, oscillations, and even chaotic dynamics. The second part of
Hilbert's 16th problem (about the number of limit cycles of polynomial dynamical
systems in the plane) is still essentially unsolved, even for quadratic polynomials [28].
Even the simplest object associated to (1), its steady state set, is central to real
algebraic geometry.
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1718 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

In terms of applications, polynomial dynamical systems often show up in, for
example, chemistry, biology, and population dynamics. In these models, the variable
xi typically represents concentration, population, or another quantity that is strictly
positive, so the domain of (1) is restricted to the positive orthant. For example, in an
infectious disease model, an infectious individual might infect a susceptible individual;
this would contribute a ``+ bxy"" term to dx

dt , where x is the population of susceptible
individuals, y the infectious population, and b > 0 a parameter measuring the contact
rate. Collecting all contributing terms results in an interaction network model. An
active area of research is to relate the structure of the interaction network to the
dynamics generated by it [3, 4, 8, 21, 29, 31, 32, 35, 45].

Conversely, one may start with (1) from experimental data, with little or no
information on the generating interaction network. One may try to elucidate the un-
derlying interaction network; however, without additional assumptions, a polynomial
dynamical system is not uniquely generated by one interaction network but infinitely
many [15]. This lack of identifiability of the underlying network can actually be lever-
aged to analyze the dynamics: if a network with certain properties can be found to
generate (1), then we may be able to immediately infer its dynamical behavior.

A class of systems whose dynamics is very well understood is the family of
complex-balanced systems [27], which are also called toric dynamical systems [10].
They can never exhibit oscillations or chaotic dynamics, and, up to linear conserva-
tion laws, there exists a single positive steady state, which is locally asymptotically
stable [27]. Moreover, this steady state is conjectured to be a global attractor [26].

Not only are the dynamical properties of complex-balanced systems well under-
stood but so are the network and parameter structures that characterize them [25].
While in general, there are algebraic restrictions on the parameters necessary for
complex-balancing, the exception to this rule is the case of weakly reversible and defi-
ciency zero (WR0) networks---these systems are complex-balanced for any choices of
parameters, in a sense that will be made clear below. This fact is very important in
applications because the exact values of the coefficients in the polynomial right-hand
sides of these dynamical systems are often very difficult to estimate accurately in
practice.

In this paper, we describe an efficient algorithm for determining whether a given
polynomial dynamical system admits a WR0 realization and for finding such a realiza-
tion whenever it exists (see Algorithm 1). Our algorithm does not require solving the
differential equation (1), nor does it require solving for its steady state set. Instead,
making use of the geometric and log-linear structure of WR0 networks, the algorithm
requires as its inputs the monomials and the matrix of coefficients. If a WR0 realiza-
tion exists, in Theorem 3.12 we provide a bijection between the positive steady state
set of (1) and the solution to a system of linear equations.

The paper is organized as follows. In section 2 we introduce interaction networks
as embedded in \BbbR n and formalize their relations to polynomial dynamical systems; we
also introduce complex-balanced systems, WR0 networks, and other relevant notions
and results. In subsection 3.1 we describe our algorithm for finding a WR0 realization
of a given polynomial dynamical system, whose steady state set is studied in subsec-
tion 3.3. Our algorithm applies to the case where the coefficients in the polynomials
are unspecified; we consider such systems in subsection 3.4.

2. Background. Throughout this work, we denote by \BbbR n
\geq and \BbbR n

> the sets of
vectors with nonnegative and positive entries, respectively. Similarly, \BbbZ n

\geq is the set
of vectors with nonnegative integer components. Vectors are typically denoted \bfitx ,
\bfity , or \bfitw . We denote by \.\bfitx the time-derivative d\bfitx 

dt . For any \bfitx \in \BbbR n
> and \bfity \in \BbbR n,
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1719

define the operation \bfitx \bfity = xy1

1 xy2

2 \cdot \cdot \cdot xyn
n . If Y =

\bigl( 
\bfity 1 \bfity 2 \cdot \cdot \cdot \bfity n

\bigr) 
, then \bfitx Y =

(\bfitx \bfity 1 ,\bfitx \bfity 2 , . . . ,\bfitx \bfity n)\top . The support of a vector \bfitx \in \BbbR n is the set of indices supp(\bfitx ) =
\{ i : xi \not = 0\} .

2.1. Dynamical systems and Euclidean embedded graphs. In this section,
we introduce the Euclidean embedded graph (E-graph), a directed graph in \BbbR n, and
explain how a system of differential equations with polynomial right-hand side (a
polynomial dynamical system) is defined by it.

Definition 2.1. An E-graph in \BbbR n is a directed graph (V,E), where V is a finite
subset of \BbbR n

\geq and such that there are no self-loops and no isolated vertices.

Let V = \{ \bfity 1,\bfity 2, . . . ,\bfity m\} . An edge (\bfity i,\bfity j), or (i, j)\in E, is also denoted \bfity i \rightarrow \bfity j ,
where \bfity i is said to be a source vertex. Let Vs denote the set of source vertices. Since
vertices are points in \BbbR n, an edge can be regarded as a bona fide vector between
vertices. An edge vector \bfity j  - \bfity i is associated to the edge \bfity i \rightarrow \bfity j .

For the purpose of using E-graphs to study polynomial dynamical systems, we
assume Vs \subset \BbbZ n

\geq , even though most results stated in this paper hold for V \subset \BbbR n
\geq .

The set of vertices V of (V,E) is partitioned by its connected components, which
we identify by the subset of vertices that belong to that connected component. If
every connected component is strongly connected, i.e., every edge is part of a cycle,
then (V,E) is said to be weakly reversible.

Two geometric properties of the E-graph will become important to our analysis
of polynomial dynamical systems. The first is a notion of affine independence within
each connected component; the second is a notion of linear independence between
connected components.

Definition 2.2. An E-graph (V,E) has affinely independent connected compo-
nents if the vertices in each connected component are affinely independent; i.e., if
\{ \bfity 0,\bfity 1, . . . ,\bfity r\} \subseteq V is the vertex set of a connected component, then the set of vec-
tors \{ \bfity j  - \bfity 0 : j = 1,2, . . . , r\} is linearly independent.

Definition 2.3. Let (V,E) be an E-graph. For any U \subseteq V , the associated linear
subspace of U is S(U) = span\{ \bfity j  - \bfity i : \bfity i, \bfity j \in U\} . The associated linear space of
(V,E) is

S = span\{ \bfity j  - \bfity i : \bfity i \rightarrow \bfity j \in E\} .

If U defines a connected component of (V,E), then S(U) \subseteq S. Indeed, if V1,
V2, . . . , V\ell are the connected components, then S = S(V1) + S(V2) + \cdot \cdot \cdot + S(V\ell ).

Remark 2.4. Thus far, we have defined E-graphs, and we have introduced sev-
eral objects and properties associated to them. Many of these objects are inspired
by corresponding objects in reaction network theory , where E-graphs are known as
reaction networks, edge vectors are known as reaction vectors, vertices are known as
complexes, connected components are known as linkage classes, and associated linear
spaces are known as stoichiometric subspaces. Below, we attach positive weights to
edges; in reaction network theory these weights are called reaction rate constants.

We now turn our attention to how an E-graph is canonically associated to dy-
namics on \BbbR n

> by assigning a positive weight to each edge.

Definition 2.5. Let (V,E) be an E-graph. For each \bfity i \rightarrow \bfity j \in E, let \kappa ij > 0 be
its weight, and let \bfitkappa = (\kappa ij) \in \BbbR E

>. The associated dynamical system on \BbbR n
> of the

weighted E-graph (V,E,\bfitkappa ) is
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1720 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

d\bfitx 

dt
=

\sum 

(i,j)\in E

\kappa ij\bfitx 
\bfity i(\bfity j  - \bfity i).(2)

It is sometimes convenient to refer to \kappa ij even though \bfity i \rightarrow \bfity j may not be an
edge in the network. In such cases, we set \kappa ij = 0.

Remark 2.6. We defined the domain of (2) to be \BbbR n
>. Systems of ODEs with

polynomial right-hand side do not in general leave \BbbR n
> forward-invariant, but if we

assume V \subset \BbbZ n
\geq , the positive orthant \BbbR n

> is indeed forward-invariant under (2) [40].

It is clear that the right-hand side of (2) lies in the associated linear space S, so
any solution to (2) is confined to a translate of S. By the above remark, any solution
to (2) where V \subset \BbbZ n

\geq with initial condition \bfitx 0 \in \BbbR n
> is confined to (\bfitx 0 + S) \cap \BbbR n

>,
which is called the invariant polyhedron of \bfitx 0.

Example 2.7. We illustrate the notions and notations defined above. Figure 1
shows three examples of weighted E-graphs. The graphs in Figure 1(a) and 1(b) are
weakly reversible, but the one in Figure 1(c) is not. The graph in Figure 1(a) has
two connected components, each of which is affinely independent; however, those in
Figure 1(b) and 1(c) do not have affinely independent connected components.

The associated dynamical system of the weighted E-graphs in Figure 1(a) is

d

dt

\biggl( 
x1

x2

\biggr) 
= 3

\biggl( 
2
2

\biggr) 
+ 5x2

1

\biggl( 
 - 2
2

\biggr) 
+ 2x2

1x
2
2

\biggl( 
 - 2
 - 2

\biggr) 
+ 3x2

2

\biggl( 
2

 - 2

\biggr) 

=

\Biggl( 
6 - 10x2

1  - 4x2
1x

2
2 + 6x2

2

6 + 10x2
1  - 4x2

1x
2
2  - 6x2

2

\Biggr) 
.(3)

The source vertices play the role of exponents in the monomials; thus the set of source
vertices Vs determines the monomials in the associated dynamical system.

It so happens that the weighted E-graphs in Figure 1(b) and 1(c) also have (3)
as their associated dynamical systems. We say that the three weighted E-graphs in
Figure 1 are dynamically equivalent, and the weighted graphs are realizations of the
dynamical system (3); we define these terms precisely in Definition 2.10. This example
demonstrates that while a weighted E-graph is associated to a unique dynamical
system, the converse is not true; there are in general infinitely many realizations of
a given polynomial dynamical system [15]. This work is concerned with finding a
realization that guarantees certain algebraic and stability properties.

Another way to study the vector field generated by (2) is to use a linear combina-
tion of some fixed vectors, one for each monomial, with the coefficients given by the
strength of the monomials at that point. We give a name to those fixed vectors.

1
\bullet 

\bullet 

3

2

\bullet 

\bullet 
3

5

(a)

\bullet 

\bullet 

\bullet 

\bullet 

3

5

3

1

3 3 5 1
1

(b)

\bullet 

\bullet 

\bullet 

\bullet 

\bullet 
6 10

6 4

(c)

Fig. 1. Weighted E-graphs from Example 2.7.
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1721

Definition 2.8. Let (V,E,\bfitkappa ) be a weighted E-graph, and \bfity i \in Vs. The net
direction vector from \bfity i is

\bfitw i =
\sum 

\bfity j\in V

\kappa ij(\bfity j  - \bfity i).

The matrix of net direction vectors of (V,E,\bfitkappa ) is

W= (\bfitw 1 \bfitw 2 \cdot \cdot \cdot \bfitw m) .

For convenience, we may refer to the net direction vector even if \bfity i \not \in Vs; in this case,
let the net direction vector be zero. Such a net direction vector will not show up as
a column of W.

The matrix W from Definition 2.8 is also well defined when we start not with a
weighted E-graph but with a fixed polynomial dynamical system of the form

d\bfitx 

dt
=

m\sum 

i=1

\bfitx \bfity i\bfitw i.(4)

Note that any polynomial dynamical systems can be uniquely written as such, for
some \bfity 1, \bfity 2, . . . ,\bfity m \in \BbbZ n

\geq distinct, and \bfitw 1, \bfitw 2, . . . ,\bfitw m \in \BbbR n nonzero.

Definition 2.9. Consider the polynomial dynamical system (4). The matrix of
source vertices Ys and the matrix of net direction vectors W of (4) are

Ys = (\bfity 1 \bfity 2 \cdot \cdot \cdot \bfity m) and W= (\bfitw 1 \bfitw 2 \cdot \cdot \cdot \bfitw m) .

Clearly, \.\bfitx =W\bfitx Ys .
Thus far, we start with a weighted E-graph (V,E,\bfitkappa ), and from it, we define a

dynamical system. The goal of the present work is the converse direction: start with a
polynomial dynamical system, find some (V,E,\bfitkappa ), ideally with certain properties, that

gives rise to such dynamics. For example, (4) is generated by the graph \bfity i
1 - \rightarrow \bfity i+\bfitw i,

for i= 1,2, . . . ,m. As Example 2.7 illustrates, there are in general many weighted E-
graphs that can generate the same dynamics.

Definition 2.10. A realization of a polynomial dynamical system \.\bfitx = \bfitf (\bfitx ) is
a weighted E-graph (V,E,\bfitkappa ) whose associated dynamical system is precisely \.\bfitx = \bfitf (\bfitx ).
Two realizations of \.\bfitx = \bfitf (\bfitx ) are said to be dynamically equivalent.

Lemma 2.11 ([11]). The weighted E-graphs (V,E,\bfitkappa ) and (V \prime ,E\prime ,\bfitkappa \prime ) are dynam-
ically equivalent if and only if the net direction vector from \bfity i in (V,E,\bfitkappa ) coincides
with that in (V \prime ,E\prime ,\bfitkappa \prime ) for all \bfity i \in Vs \cup V \prime 

s .

Proof. This follows from the linear independence of monomials as functions on
\BbbR n

>.

2.2. Complex-balanced systems and WR0 systems. General polynomial
dynamical systems can display a wide range of dynamical behaviors, ranging from
stable or unstable steady states, limit cycles, and even chaos. In this work, we are
interested in the family of complex-balanced systems, which enjoy various algebraic
and stability properties.

Definition 2.12. Let (V,E,\bfitkappa ) be a weighted E-graph in \BbbR n, and let \.\bfitx = \bfitf (\bfitx )
be its associated dynamical system. A state \bfitx \ast \in \BbbR n

> is said to be a positive steady

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1722 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

state if \bfitf (\bfitx \ast ) = 0. Let V>(\bfitf ) be the set of positive steady states. A state \bfitx \ast > 0 is a
complex-balanced steady state if, at every \bfity i \in V , we have

\sum 

(i,j)\in E

\kappa ij(\bfitx 
\ast )\bfity i =

\sum 

(j,i)\in E

\kappa ji(\bfitx 
\ast )\bfity j .

The equation above can be interpreted as balancing the fluxes flowing across the
vertex \bfity i. If a weighted E-graph (V,E,\bfitkappa ) admits one complex-balanced steady state,
then every positive steady state is complex-balanced [27]; such a (V,E,\bfitkappa ) is called a
complex-balanced system.

These systems first arose from the study of chemical systems under mass-action
kinetics, as a generalization of thermodynamic equilibrium. The following theorem
lists some of the most important results about complex-balanced systems. For more
details, see [18, 24, 46].

Theorem 2.13 ([27]). Let (V,E,\bfitkappa ) be a complex-balanced system, with steady
state \bfitx \ast \in \BbbR n

> and associated linear space S. Then the following are true:
(i) All positive steady states are complex-balanced, and there is exactly one steady

state within each invariant polyhedron.
(ii) Any complex-balanced steady state \bfitx satisfies ln\bfitx  - ln\bfitx \ast \in S\bot .
(iii) The function

L(\bfitx ) =

n\sum 

i=1

xi(lnxi  - lnx\ast 
i  - 1),

defined on \BbbR n
>, is a strict Lyapunov function within each invariant polyhedron

(\bfitx 0+S)\cap \BbbR n
>, with a global minimum at the corresponding complex-balanced

steady state.
(iv) Every complex-balanced steady state is asymptotically stable with respect to

its invariant polyhedron.

Beside these properties, complex-balanced systems enjoy other remarkable alge-
braic and dynamical properties. For example, the set of positive steady states V>(\bfitf )
admits a monomial parametrization [8, 10]. Each positive steady state \bfitx \ast is in fact
linearly stable with respect to its invariant polyhedron [7, 39]. Complex-balanced sys-
tems are also conjectured to be persistent and permanent1 [14]. Moreover, the unique
steady state is conjectured to be globally stable within its invariant polyhedron [26].
The Persistence and Permanence Conjectures have been proved in several cases, such
as when there is only one connected component [1, 6], or the ambient state space is \BbbR 2

[14], or the E-graph is strongly endotactic [23], or the associated linear space S is of
dimension two and all trajectories are bounded [37]. The Global Attractor Conjecture
has also been proved if there is only one connected component [1, 6], or the E-graph is
strongly endotactic [23], or the ambient state space is \BbbR 3 [14], or when the associated
linear space S is of dimension at most three [37].

Besides dynamical stability, complex-balanced systems are characterized graph-
theoretically and algebraically. Horn proved in [25] that (V,E,\bfitkappa ) is complex-balanced
if and only if (V,E) is weakly reversible and \bfitkappa satisfies some algebraic equations, the
number of which is measured by a nonnegative integer called the deficiency of (V,E).

1Roughly speaking, persistence is the property that, starting in \BbbR n
>, the solution is always

bounded away from the boundary of \BbbR n
>, and permanence occurs when solutions always converge to

a compact subset of the invariant polyhedron.
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1723

Definition 2.14. Let (V,E) be an E-graph with \ell connected components, and
let S be its associated linear space. The deficiency of (V,E) is the integer \delta =
| V |  - \ell  - dimS.

The notion of deficiency can also be applied to the connected components. Sup-
pose V1, V2, . . . , V\ell are the connected components of (V,E). The deficiency of a
connected component Vp is \delta p = | Vp|  - 1 - dimS(Vp). It is easy to see that

\delta \geq 
\ell \sum 

p=1

\delta p,

with equality if and only if S(V1), S(V2), . . . , S(V\ell ) are linearly independent. If \delta = 0,
then necessarily \delta p = 0 for all p.

If (V,E) is weakly reversible and \delta = 0, then the associated dynamical system is
always complex-balanced, regardless of the choice of \bfitkappa . This result is known as the
Deficiency Zero Theorem [17, 25]. The deficiency is a property of the E-graph, not
of the associated dynamical system, yet in the case of deficiency zero, it has strong
implications on the dynamics. The goal of this paper is to search for WR0 realizations
for polynomial dynamical systems, which are automatically complex-balanced and
therefore obey the properties listed in Theorem 2.13.

Deficiency also has a geometric interpretation; \delta = 0 if and only if (V,E) has
affinely independent connected components V1, V2, . . . , V\ell , and the subspaces S(V1),
S(V2), . . . , S(V\ell ) are linearly independent [13, Theorem 9]. Later we make use of this
interpretation when searching for WR0 realizations.

The system (2) admits a matrix decomposition that aids in studying complex-
balanced steady states. For a weighted E-graph (V,E,\bfitkappa ) where | V | =m, its associated
dynamical system (2) can be decomposed as \.\bfitx =YA\bfitkappa \bfitx 

Y [27], where

Y= (\bfity 1 \bfity 2 \cdot \cdot \cdot \bfity m)

is a matrix whose columns are the vertices (including both sources and targets); \bfitx Y

is the vector of monomials whose ith component is \bfitx \bfity i , and the Kirchhoff matrix

[A\bfitkappa ]ij =

\left\{ 
   
   

\kappa ji if \bfity i \rightarrow \bfity j \in E,

 - 
\sum 

r

\kappa jr for i= j,

0, otherwise,

is the negative transpose of the graph Laplacian of (V,E,\bfitkappa ). In general, the ith
component of A\bfitkappa \bfitx 

Y,

[A\bfitkappa \bfitx 
Y]i =

\sum 

(j,i)\in E

\kappa ji\bfitx 
\bfity j  - \bfitx \bfity i

\sum 

(i,j)\in E

\kappa ij ,

measures the net flux passing through the ith vertex, so a complex-balanced steady
state \bfitx \ast is a solution to the equation A\bfitkappa (\bfitx 

\ast )Y = 0.
A subgraph (V0,E0) \subseteq (V,E) is a terminal strongly connected component if it is

strongly connected, and there does not exist an edge in E from a vertex in V0 to a
vertex in V \setminus V0. The kernel of A\bfitkappa is supported on the terminal strongly connected
components.
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1724 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

Theorem 2.15 ([20]). Let A\bfitkappa be the Kirchhoff matrix of (V,E,\bfitkappa ) with terminal
strongly connected components V1, V2, . . . , Vt. There exists a basis \{ \bfitc 1,\bfitc 2, . . . ,\bfitc t\} for
kerA\bfitkappa with \bfitc p \in \BbbR m

\geq and

\Biggl\{ 
[\bfitc p]i > 0, if \bfity i \in Vp,

[\bfitc p]i = 0, otherwise.

According to the Matrix-Tree Theorem [10, 25], there is an explicit formula for
the entries of \bfitc p. Each nonzero [\bfitc p]i is a polynomial of \kappa ij with positive coefficients,
given by the maximal minors of A\bfitkappa [10, 22, 36].

If (V,E) is weakly reversible, then \delta = dim(kerY \cap imA\bfitkappa ). More generally,
dim(kerY \cap imA\bfitkappa ) = | V |  - \ell  - t, when (V,E,\bfitkappa ) has t terminal strongly connected
components [20]. Therefore if (V,E) is WR0, then ker(YA\bfitkappa ) = kerA\bfitkappa , and the matrix
of net direction vectors W coincides with YA\bfitkappa (see Lemma 3.1).

For the purpose of this work, we assume that we are given W and the matrix of
source verticesYs, but we do not know the decomposition ofW into the productYA\bfitkappa ,
where the columns of Ys are also columns of Y. Because kerA\bfitkappa is well characterized
[19, 20, 24], we make use of it in our search for WR0 realizations.

Example 2.16. Consider the weighted E-graph (V,E,\bfitkappa ) in Figure 2. While (V,E)
has two connected components, it has three terminal strongly connected components
(boxed in Figure 2). With the ordering of vertices as labeled in the figure, the Kirch-
hoff matrix of (V,E,\bfitkappa ) is

A\bfitkappa =

\left( 
           

 - \kappa 12 \kappa 21

\kappa 12  - \kappa 21

 - \kappa 34 \kappa 43

\kappa 34  - \kappa 43 \kappa 84

 - \kappa 56 0 \kappa 75

\kappa 56  - \kappa 67 0
0 \kappa 67  - \kappa 75 \kappa 87

 - \kappa 84  - \kappa 87

\right) 
           

.

\bullet \bullet 

\bullet 

\bullet \bullet 

\bullet 

\bullet 

\bullet 

\kappa 12

\kappa 21

\kappa 34 \kappa 43

\kappa 56

\kappa 67

\kappa 75

\kappa 87

\kappa 84

\bfity 1

\bfity 2

\bfity 3

\bfity 4

\bfity 5 \bfity 6

\bfity 7

\bfity 8

Fig. 2. A weighted E-graph with two connected components but three terminal strongly con-
nected components (boxed). Its Kirchhoff matrix A\bfitkappa and a basis for kerA\bfitkappa are given in Example
2.16.
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1725

A basis for its kernel is given by the vectors

\bfitc 1 =

\left( 
           

\kappa 21

\kappa 12

0
0
0
0
0
0

\right) 
           

, \bfitc 2 =

\left( 
           

0
0
\kappa 43

\kappa 34

0
0
0
0

\right) 
           

, \bfitc 3 =

\left( 
           

0
0
0
0

\kappa 67\kappa 75

\kappa 56\kappa 75

\kappa 56\kappa 67

0

\right) 
           

.

The supports of the basis vectors \bfitc p are precisely the terminal strongly connected
components of (V,E). If the graph is weakly reversible, then the basis of kerA\bfitkappa given
in Theorem 2.15 provides a way to partition the set of vertices.

2.3. Connection to reaction network theory. As hinted at in Remark 2.4,
the present work comes at the heel of various results on realizations in reaction net-
work theory. It was first recognized in the early 1970s that two mass-action systems
with distinct rate constants and network structures (what we call E-graphs) can give
rise to the same dynamics [27, 33]. The capacity of networks to be dynamically equiv-
alent was studied in depth in [2, 15, 41]. An algorithm based on mixed-integer linear
programming was proposed to compute realizations with additional properties [42],
followed by various improvements in subsequent years; see [30, 34, 38, 43, 44]. The
authors of these works note that the algorithms for complex-balanced realizations
(of which WR0 realizations are a subset) require as input the set of candidate com-
plexes (i.e., candidate vertices). This issue was resolved when it was proved that, for
complex-balanced realizations (as well as for weakly reversible, reversible, or detailed
balanced realizations), it suffices to use the set of monomial exponents as the set of
vertices [11].

Meanwhile, although there is in general no unique E-graph associated to a sys-
tem of ODEs, it was conjectured that uniqueness does hold for WR0 realizations. For
networks with a single connected component, a proof was first presented in [16] using
a linear algebraic method, and a proof based on the geometric interpretation of defi-
ciency was given in [13]. The proof for the general case was provided in [12]. It was
from [12] that we sought to use the geometry of the network to find WR0 realizations,
and the present work originates from that effort.

3. Main results. In this section, we present Algorithm 1 (see also Figure 3)
that finds a WR0 realization of a given system of polynomial differential equations,

d\bfitx 

dt
=

m\sum 

i=1

\bfitx \bfity i\bfitw i,(5)

whenever one exists; here \bfity 1, . . . ,\bfity m \in \BbbZ n
\geq are distinct, and\bfitw 1, \bfitw 2, . . . ,\bfitw m \in \BbbR n\setminus \{ 0\} .

Recall that whenever (5) admits a WR0 realization it follows that the system is
complex-balanced and enjoys all the properties listed in Theorem 2.13. In particular,
whenever a WR0 realization exists, the set of positive steady states has a log-linear
structure that allows us to easily find the steady states of (5), as outlined in Theo-
rem 3.12. Moreover, if no WR0 realization exists for (5), our algorithm would con-
clude as much. Finally, our algorithm is valid even if the \bfitw i's are only known up to
a positive scalar multiple; we prove this in Theorem 3.13.
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 11

\bfY s =
\bigl( 
\bfity 1, . . . ,\bfity m

\bigr) 
\in \BbbZ n\times m

\geq 

\bfW =
\bigl( 
\bfitw 1, . . . ,\bfitw m

\bigr) 
\in \BbbR n\times m

Inputs:

Find minimal set of generators

\{ \bfitc 1, . . . , \bfitc \ell \} \subset \BbbR m
\geq 

for the cone ker\bfW \cap \BbbR m
\geq 

Does \{ supp(\bfitc p)\} \ell p=1

partition [1,m] \subseteq \BbbN ?
No WR0 realization

no

Define candidate connected

components by Vp := supp(\bfitc p)

yes

Is \{ \bfity i : i \in Vp\} 
affinely independent?

for p = 1,2,...,l

no

\forall i \in Vp, is

\bfitw i \in Cone\{ \bfity j  - \bfity i : j \in Vp\} ?

yes

Uniquely decompose each \bfitw i

as \bfitw i =
\sum 

j \not =i
j\in Vp

\kappa ij(\bfity j  - \bfity i)

yes

no

WR0 realization found

endfor

Fig. 3: Algorithm 1 for finding WR0 realization of a polynomial
dynamical system \.\bfitx =

\sum m
i=1 \bfitx 

\bfity i\bfitw i.

Fig. 3. Algorithm 1 for finding WR0 realization of a polynomial dynamical system \.\bfitx =\sum m
i=1 \bfitx 

\bfity i\bfitw i.
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1727

Algorithm 1 (WR0 algorithm).

Input: Matrices Ys=
\bigl( 
\bfity 1, . . . ,\bfity m

\bigr) 
and W=

\bigl( 
\bfitw 1, . . . ,\bfitw m

\bigr) 
that define \.\bfitx =

\sum m
i=1\bfitx 

\bfity i\bfitw i.
Output: Either return the unique WR0 realization or print that such a realization
does not exist.
1: Find the minimal set of generators \{ \bfitc 1,\bfitc 2, . . . ,\bfitc \ell \} of the pointed convex cone

kerW \cap \BbbR m
\geq .

2: if the sets supp(\bfitc 1), supp(\bfitc 2), . . . , supp(\bfitc \ell ) do not form a partition of \{ 1,2,
. . . ,m\} , then

3: Print: WR0 realization does not exist. Exit.
4: else
5: Define the candidate connected components to be Vp := supp(\bfitc p) for p= 1,2,

. . . , \ell .
6: for p= 1,2, . . . , \ell do
7: if the vectors \{ \bfity i : i\in Vp\} are not affinely independent, then
8: Print: WR0 realization does not exist. Exit.
9: else
10: for each i\in Vp do
11: if \bfitw i /\in Cone\{ \bfity j  - \bfity i : j \in Vp\} , then
12: Print: WR0 realization does not exist. Exit.
13: else
14: Uniquely decompose \bfitw i =

\sum 
j\in Vp,j \not =i \kappa ij(\bfity j  - \bfity i) with \kappa ij \geq 0.

15: Add \{ \bfity i \rightarrow \bfity j : \kappa ij > 0\} to the edge set E.
16: end if
17: end for
18: end if
19: end for
20: end if
21: Print: The WR0 realization does exist and has \ell connected components.

22: Print: The connected components of this realization are given by

\{ Vp\} \ell p=1.

23: Print: The edges are listed in E, with weights \kappa ij.

3.1. Algorithm for finding WR0 realization. The inputs of Algorithm 1 are
the source vertices and their net direction vectors via Ys and W, respectively. To
find a WR0 realization (V,E,\bfitkappa ) is to find a matrix decomposition of W = YsA\bfitkappa ,
where A\bfitkappa encodes the graph structure of (V,E). In the following lemma, we prove
properties that can be expected should a WR0 realization exist.

Recall that a set X is a polyhedral cone if X = \{ \bfitx : M\bfitx \leq 0\} for some matrix
M. Such a cone is convex. It is pointed, or strongly convex, if it does not contain
a positive dimensional linear subspace. Note that a cone contained in the positive
orthant \BbbR m

\geq is always pointed. A pointed polyhedral cone admits a unique minimal
set of generators (up to scalar multiple) [9].

Lemma 3.1. Suppose a polynomial dynamical system \.\bfitx = \bfitf (\bfitx ) admits a WR0

realization (V,E,\bfitkappa ) with \ell connected components. Let Ys be the matrix of source
vertices, and let W be the matrix of net direction vectors of the polynomial dynamical
system \.\bfitx = \bfitf (\bfitx ). Let S be the associated linear space, and let A\bfitkappa be the Kirchhoff
matrix of the weighted E-graph (V,E,\bfitkappa ). Then we have

(i) W=YsA\bfitkappa and kerW=kerA\bfitkappa ,
(ii) S = imW, and the rank of W is | V |  - \ell ,
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1728 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

(iii) kerW \cap \BbbR m
\geq is a pointed polyhedral cone, and

(iv) a minimal set of generators for kerW \cap \BbbR m
\geq has \ell elements, whose supports

correspond to the connected components of (V,E).

Proof. Consider the matrix Ys = (\bfity 1, . . . ,\bfity m), whose columns correspond to the
monomials in \bfitf (\bfitx ). Because the realization (V,E) is weakly reversible, all vertices in
V are sources; in particular, \{ \bfity i\} mi=1 \subseteq V . Moreover, because the deficiency of (V,E)
is zero, by [12, Proposition 3.5], the net direction vector from any \bfity i is nonzero, so in
fact V = \{ \bfity i\} mi=1.

(i) By Definition 2.9, \.\bfitx = \bfitf (\bfitx ) =W\bfitx Ys , and because (V,E,\bfitkappa ) is a realization,
we have \bfitf (\bfitx ) =YsA\bfitkappa \bfitx 

Ys . Since the coefficients of polynomial functions are
uniquely determined, W=YsA\bfitkappa . Because dim(kerYs \cap imA\bfitkappa ) = \delta = 0, we
have kerW=kerA\bfitkappa .

(ii) Note that

rankW= rankA\bfitkappa = | V |  - \ell =dimS,

where the first and last equalities follow from 0= \delta =dim(kerYs \cap imA\bfitkappa ) =
| V |  - \ell  - dimS, and the second equality follows from weak reversibility and
Theorem 2.15. Clearly imW\subseteq S, so imW= S.

(iii) The set kerW \cap \BbbR m
\geq is the solution to W\bfitnu \geq 0,  - W\bfitnu \geq 0, and Id\bfitnu \geq 0;

thus the set is a polyhedral cone. That kerW \cap \BbbR m
\geq is pointed follows from

it being a subset of \BbbR m
\geq .

(iv) Let \scrB = \{ \bfitc 1, \bfitc 2, . . . ,\bfitc \ell \} be a basis of kerA\bfitkappa as in Theorem 2.15, where \bfitc p \geq 0,
and each Vp = \{ \bfity i : i\in supp(\bfitc p)\} is a connected component of (V,E). Clearly
\scrB \subseteq kerW \cap \BbbR m

\geq ; we claim that \scrB is a minimal set of generators for the
pointed cone.
Let \bfitnu \in kerW\cap \BbbR m

\geq be arbitrary. By (ii), \scrB is a basis for kerW, so decompose
\bfitnu accordingly:

\bfitnu =

\ell \sum 

p=1

\lambda p\bfitc p

for some \lambda p \in \BbbR . By Theorem 2.15, each \bfitc p is supported on the connected
components of (V,E), which partition the set of vertices. In particular, for
each i = 1, . . . ,m, there is exactly one p(i) such that \nu i = \lambda p(i)[\bfitc p(i)]i. Since
\bfitnu , \bfitc p(i) \in \BbbR m

\geq , it must be the case that \lambda p(i) \geq 0. In other words, \scrB generates
the cone kerW \cap \BbbR m

\geq . Because the vectors in \scrB have disjoint supports, \scrB is
minimal.

Lemma 3.2. If Algorithm 1 exits at lines 3, 8, or 12, then \.\bfitx =
\sum m

i=1\bfitx 
\bfity i\bfitw i does

not admit a WR0 realization.

Proof. If the algorithm exits at line 3, then by the contrapositive of Lemma 3.1
(iv) no WR0 realization exists. Continuing with the algorithm, let \{ \bfitc 1, . . . ,\bfitc \ell \} be a
minimal set of generators of kerW\cap \BbbR n

\geq , and partition the vertices by Vp := supp(\bfitc p).
If instead the algorithm exits at line 8, then again no WR0 realization exists because
WR0 realizations have affinely independent connected components [13, Theorem 9].
Finally, exiting at line 12 means that some net direction vector \bfitw i cannot be decom-
posed as edges from \bfity i to other vertices in Vp, which defines a connected component
of a WR0 realization if it exists according to Lemma 3.1(iv).

Lemma 3.3. Suppose Algorithm 1 reaches line 23. Then the connected compo-
nents of (V,E) are given by V1, V2, . . . , V\ell .
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1729

Proof. If the algorithm reaches line 23, because it fails the if statement in line
12, all net direction vectors \bfitw 1, . . . ,\bfitw m can be decomposed as edges from \bfity i to other
vertices in Vp; thus a realization has been found with edges among V1, . . . V\ell ; i.e.,
the connected components are subsets of Vp. We prove now that, in fact, each Vp is
connected in (V,E).

For any p= 1, . . . , \ell , let U := Vp be the support of \bfitc := \bfitc p. Suppose for a contra-
diction that V \ast \subsetneq U is a connected component of (V,E). Because the if statement in
line 7 is false, U is affinely independent, so the linear subspaces

S(V \ast ) = \{ \bfity i  - \bfity j : \bfity i,\bfity j \in V \ast \} and S(U \setminus V \ast ) = \{ \bfity i  - \bfity j : \bfity i,\bfity j \in U \setminus V \ast \} 

are linearly independent. Because \bfitc \in kerW \cap \BbbR m
\geq and supp(\bfitc ) =U , we have

0=
\sum 

i\in V \ast 

ci\bfitw i +
\sum 

i\in U\setminus V \ast 

ci\bfitw i,(6)

with ci > 0. Furthermore, the if statement in line 11 returning false implies that each
\bfitw i in (6) can be further decomposed as edges between vertices in U . For any \bfity i in
V \ast , which is a connected component, the net direction vector \bfitw i is a positive linear
combination of edge vectors between \bfity i and other vertices in V \ast , so \bfitw i \in S(V \ast ).
In particular, \bfitc \ast :=

\sum 
i\in V \ast ci\bfitw i \in S(V \ast ). Similarly, any vertices in U \setminus V \ast are only

connected to other vertices in U \setminus V \ast . Linear independence of S(V \ast ) and S(U \setminus V \ast )
means that the vectors \bfitc \ast and \bfitc  - \bfitc \ast are linearly independent. Both \bfitc \ast and \bfitc  - \bfitc \ast 

lie in the cone kerW \cap \BbbR m
\geq , so \{ \bfitc 1, . . . ,\bfitc \ell \} is not a set of generators, which is a

contradiction.

Lemma 3.4. Suppose Algorithm 1 reaches line 23. Then the deficiency of (V,E)
is zero.

Proof. The falsity of the if statement in line 7 and Lemma 3.3 imply that the
connected components V1, V2, . . . , V\ell are affinely independent. To prove \delta = 0, it
remains to show that S(V1), S(V2), . . . , S(V\ell ) are linearly independent subspaces [13,
Theorem 9].

We claim that the minimal set of generators \{ \bfitc 1,\bfitc 2, . . . ,\bfitc \ell \} forms a basis for
kerW. Let \bfitc \in kerW be arbitrary. If \bfitc has nonnegative components, then it is a
linear combination of \bfitc p's. If \bfitc \not \in \BbbR m

\geq , then there exist sufficiently large constants
\mu p > 0 so that

\bfitc +

\ell \sum 

p=1

\mu p\bfitc p \in \BbbR m
\geq .

This vector is a nonnegative combination of \bfitc 1, \bfitc 2, . . . ,\bfitc \ell ; thus, \bfitc is a linear combi-
nation of the generating vectors. Since W \in \BbbR n\times | V | , we have rankW= | V |  - \ell .

Let S be the associated linear space of (V,E), i.e., S = span\{ \bfity j - \bfity i : \bfity i \rightarrow \bfity j \in E\} .
The falsity of the if statement in line 11 implies that imW \subseteq S, so dimS \geq | V |  - \ell .
Hence, the deficiency of (V,E) is \delta = | V |  - \ell  - dimS \leq 0. Because \delta is always
nonnegative, we conclude that \delta = 0.

Lemma 3.5. Suppose Algorithm 1 reaches line 23. Then (V,E) is weakly re-
versible.

Proof. For weak reversibility, we need to show that each connected component is
strongly connected. So without loss of generality, we assume (V,E) has one connected

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1730 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

component. Because of deficiency zero, V is affinely independent and dimS = | V |  - 1,
so \delta = 0. Moreover, dim(kerY \cap imA\bfitkappa ) \leq \delta [24, Proposition 3.1],2 so ker(YA\bfitkappa ) =
kerA\bfitkappa , and the generator \bfitc 1 also spans kerA\bfitkappa . By Theorem 2.15, \bfitc 1 is supported on
the terminal strongly connected component, which in this case is all of V . Therefore,
(V,E) is in fact strongly connected.

Remark 3.6. In the proof of Lemmas 3.3 and 3.4, we have proved that the asso-
ciated linear subspace S(Vp) is in fact the span of the net direction vectors belonging
to said connected component. Thus, there are multiple ways of generating S(Vp):

span\{ \bfity j  - \bfity i : \bfity i,\bfity j \in Vp\} = span\{ \bfity j  - \bfity i : \bfity i \rightarrow \bfity j \in Ep\} = imW(p),

where W(p) has as its columns the net direction vectors of the vertices in Vp.

The lemmas above provide the technical parts that we need to prove the main
result of this paper.

Theorem 3.7. Given a system of differential equations,

d\bfitx 

dt
=

m\sum 

i=1

\bfitx \bfity i\bfitw i,

with distinct \bfity i \in \BbbZ n
\geq , and \bfitw i \in \BbbR n \setminus \{ 0\} , Algorithm 1 returns the unique WR0

realization of the dynamical system if it exists or concludes that no WR0 realization
exists.

Proof. There are two possible scenarios: either the algorithm exits at lines 3, 8,
or 12 by failing one of the if statements, or the algorithm successfully reaches line
23. In the first scenario, Lemma 3.2 implies that no WR0 realization exists. In the
second scenario, the realization has connected components V1, V2, . . . , V\ell according
to Lemma 3.3. The realization is WR0 by Lemmas 3.4 and 3.5, respectively. The
uniqueness of the realization follows from [12].

Remark 3.8. The uniqueness of the WR0 realization is also a consequence of
Algorithm 1. This is due to affine and linear independence, as well as the structure
of kerW=kerA\bfitkappa .

If a WR0 realization exists, the polynomial dynamical system is complex-balanced.
Therefore, if a system passes Algorithm 1, it automatically inherits all the algebraic
and dynamical properties of complex-balanced system. Weak reversibility implies that
a positive steady state exists [5]. The remaining statements in the theorem below are
easy consequence of Theorems 2.13 and 3.7.

Theorem 3.9. Suppose the system of differential equations

d\bfitx 

dt
=

m\sum 

i=1

\bfitx \bfity i\bfitw i,(7)

with distinct \bfity i \in \BbbZ n
\geq and \bfitw i \in \BbbR n \setminus \{ 0\} , passes Algorithm 1. Let W be the matrix of

net direction vectors and S = imW. Then the following holds:

2The author of [24] defines deficiency differently. He calls dim(kerY \cap imA\bfitkappa ) the deficiency,
and Proposition 3.1 gives the inequality dim(kerY \cap imA\bfitkappa )\leq n - \ell  - dimS, which is what we use
here. In general, dim(kerY \cap imA\bfitkappa ) = | V |  - t - dimS, where t is the number of terminal strongly
connected components [20].
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1731

(i) A positive steady state \bfitx \ast exists.
(ii) There is exactly one steady state within every invariant polyhedron (\bfitx 0+S)\cap 

\BbbR n
> for any \bfitx 0 \in \BbbR n

>, and it is complex-balanced.
(iii) Any positive steady state \bfitx satisfies ln\bfitx  - ln\bfitx \ast \in S\bot .
(iv) The function

L(\bfitx ) =

n\sum 

i=1

xi(lnxi  - lnx\ast 
i  - 1),

defined on \BbbR n
>, is a strict Lyapunov function of (7) within every invariant

polyhedron (\bfitx 0+S)\cap \BbbR n
>, with a global minimum at the corresponding complex-

balanced steady state.
(v) Every positive steady state is locally asymptotically stable with respect to its

invariant polyhedron.

Example 3.10. Consider the system of differential equations

dx1

dt
= - 12x1 + x2

3,

dx2

dt
= 14x1  - 4x2

2 + 8x2
3,

dx3

dt
= 10x1 + 4x2

2  - 10x2
3.

(8)

We have n= 3 for the three state variables andm= 3 for the three distinct monomials.
The matrices of source vertices and net direction vectors are

Ys =
\bigl( 
\bfity 1 \bfity 2 \bfity 3

\bigr) 
=

\left( 
 
1 0 0
0 2 0
0 0 2

\right) 
 ,

W=
\bigl( 
\bfitw 1 \bfitw 2 \bfitw 3

\bigr) 
=

\left( 
 
 - 12 0 1
14  - 4 8
10 4  - 10

\right) 
 ,

respectively, which are inputs to Algorithm 1. Let V = \{ \bfity 1,\bfity 2,\bfity 3\} \subset \BbbZ n
\geq . A generator

for the cone kerW \cap \BbbR m
\geq is \bfitc = (48/1441,120/131,576/1441)\top . In the notation of

Algorithm 1, V1 = [1,3]. Clearly V is affinely independent and the net direction
vectors admit the following unique decompositions:

\bfitw 1 = 7(\bfity 2  - \bfity 1) + 5(\bfity 3  - \bfity 1),

\bfitw 2 = 2(\bfity 3  - \bfity 2),

\bfitw 3 = (\bfity 1  - \bfity 3) + 4(\bfity 2  - \bfity 3).

Therefore (8) admits a WR0 realization, whose weighted E-graph is shown in Fig-
ure 4(b).

This implies that the system (8) has exactly one steady state within each invariant
triangle given by 2x1 + x2 + x3 =C for some C > 0, and this steady state is a global
attractor within each such triangle. From Theorem 3.9, we know the steady state set
admits a monomial parametrization of the form (a1s

2, a2s, a3s) for some constants
ai > 0. In fact, the set of steady states is given by

(x\ast 
1, x

\ast 
2, x

\ast 
3) =

\Biggl( 
3s2,

\surd 
330

2
s, 6s

\Biggr) 
,
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\bfity 1
\bfity 2

\bfity 3

18

4

10

(a)

\bfity 1
\bfity 2

\bfity 3

7

5 1
4

2

(b)

\bfity 1
\bfity 2

\bfity 3

4 4

10

(c)

Fig. 4. (a) A weighted E-graph realizing (8) from Example 3.10, which admits (b) a WR0

realization. (c) A weighted E-graph realizing (9) from Example 3.11 that does not admit a WR0

realization.

and an explanation for the coefficients above will be provided in Theorem 3.12.

Example 3.11. Consider the system of differential equations

dx1

dt
= - 1

2
x1 + x2

3,

dx2

dt
= - 2x1  - 4x2

2 + 8x2
3,

dx3

dt
= 3x1 + 4x2

2  - 10x2
3.

(9)

Again, we have n= 3 and m= 3. The monomials are the same as those in the previous
example. The difference lies in the first column of the matrix of net direction vectors

W=
\bigl( 
\bfitw 1 \bfitw 2 \bfitw 3

\bigr) 
=

\left( 
 
 - 1

2 0 1
 - 2  - 4 8
3 4  - 10

\right) 
 ,

whose kernel is spanned by \bfitc = (2,1,1)\top . As in the previous example, the vertices
\bfity 1, \bfity 2, and \bfity 3 are affinely independent. However, \bfitw 1 \not \in Cone\{ \bfity j  - \bfity 1 : j = 2,3\} , so
no WR0 realization exists.

3.2. On the implementation and computational complexity of Algo-
rithm 1. Before proceeding, we briefly remark on Algorithm 1 and how it compares
with an existing algorithm for WR0 realizations in [34].

The algorithm we propose to find a WR0 realization for \.\bfitx = W\bfitx Ys consists of
three steps:

1. Check for the existence of a set of generators \{ \bfitc 1, . . . ,\bfitc \ell \} with disjoint sup-
ports for the cone kerW \cap \BbbR m

\geq .
2. On the support Vp of each generator \bfitc p, check that \{ \bfity i : i \in Vp\} is affinely

independent.
3. For each i\in Vp, solve for (nonnegative) solutions \kappa ij to\bfitw i =

\sum 
j\in Vp,j \not =i \kappa ij(\bfity j - 

\bfity i).
In reality, step 2 is no more than a rank condition, that the rank of \{ \bfity i - \bfity i0 : \bfity i \in Vp\} 
is equal to | Vp|  - 1, where \bfity i0 is a distinguished vertex in Vp. At first sight, it seems

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1733

step 3 is a linear feasibility problem; however, it is in fact solving a linear system.
By the time we reach step 3, we have already verified that, for a fixed i, the set
\{ \bfity j  - \bfity i : j \in Vp, j \not = i\} is linearly independent. Hence the system of linear equations
\bfitw i =

\sum 
j\in Vp,j \not =i \kappa ij(\bfity j  - \bfity i) either has no real solution, or there is a unique solution

(\kappa ij)ij , in which case we simply check whether \kappa ij \geq 0 or not.
The ``simplest"" way to implement step 1 is to compute all the extreme rays of the

cone kerW \cap \BbbR m
\geq . A much more efficient way to implement step 1 is via a series of

linear programming problems. We find the first generator of the cone kerW\cap \BbbR m
\geq by

solving

Minimize \bfitx \top 1
subjected to W\bfitx = 0 ,

x1 = 1 ,
\bfitx \geq 0,

because we are looking for vectors in kerW that are nonnegative and nonzero and
have minimal support. Denote the solution of the problem above by \bfitc 1, and let
\Lambda = supp(\bfitc 1). We can then run another (analogous) linear programming problem,
where we remove the columns whose indices are in \Lambda from the matrix W. Let \bfitc 2 be
the solution to this second problem, augmented by zeros for indices in \Lambda . Replace
the index set by \Lambda =

\bigcup 2
p=1 supp(\bfitc p), and repeat, until \Lambda = \{ 1,2, . . . ,m\} . Of course,

if at any point the process fails, this means there is no such set of generators with
disjoint support for the cone, and therefore no WR0 realization exists. Hence, step 1
can be attained with the same computational cost as the solving of a number of linear
programming problems (and this number is no larger than the number of connected
components).

In the literature, there are also other approaches for computing WR0 realizations.
Technically speaking, these require the set of vertices as input; however, for WR0

realizations, one can use the exponents of the monomials [11, Theorem 4.12]. The
authors of [30] proposed a mixed-integer linear programming method to find a weakly
reversible realization with minimal deficiency. The authors of [34] further reduced
it to a linear programming method for the case of deficiency zero realizations. The
methods in [30, 34] are algebraic in nature, while the algorithm proposed here relies
on the geometric interpretation of deficiency.

3.3. The set of positive steady states of a WR0 realization. Algorithm 1
determines whether a given polynomial dynamical system admits a WR0 realization.
If it does, its steady state set is in fact log-linear. In this section, we write down a
system of linear equations whose solution set is in bijection with the set of positive
steady states; this provides an explicit parametrization of the set of positive steady
states for a WR0 realization.

For any \bfitz \in \BbbR n and \bfitx \in \BbbR n
>, define the componentwise operations exp\bfitz =

(ez1 , ez2 , . . . , ezn)\top and log(\bfitx ) = (logx1, logx2, . . . , logxn)
\top . We extend these oper-

ations to sets. If Z \subseteq \BbbR n, then exp(Z) = \{ exp\bfitz : \bfitz \in Z\} , and if X \subseteq \BbbR n
>, then

log(X) = \{ log\bfitx : \bfitx \in X\} .
Assume that the polynomial dynamical system

d\bfitx 

dt
=

m\sum 

i=1

\bfitx \bfity i\bfitw i,(10)

with distinct \bfity i \in \BbbZ n
\geq and \bfitw i \in \BbbR n \setminus \{ 0\} , passes Algorithm 1; i.e., it admits a WR0

realization (V,E,\bfitkappa ). Without loss of generality, assume the vertices are ordered ac-
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1734 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

cording to the connected components in (V,E); i.e., the first m1 vertices belong to
the connected component (V1,E1), the next m2 vertices belong to the connected com-
ponent (V2,E2), and so forth. Let \{ \bfitc 1,\bfitc 2, . . . ,\bfitc \ell \} be a minimal set of generators of
kerW\cap \BbbR m

\geq , ordered in an analogous way. From Algorithm 1, we know that the sup-
ports of the vectors \bfitc 1, \bfitc 2, . . . ,\bfitc \ell correspond to the connected components of (V,E).

Let \bfitc 1 = (\alpha 1, \alpha 2, . . . , \alpha m1
,0, . . . ,0)\top . Define matrix D1 \in \BbbR (m1 - 1)\times n whose rows

are the affine vectors from \bfity 1 to the remaining vertices of V1, and define vector
\bfitJ 1 \in \BbbR m1 - 1 using the log-differences of the components of \bfitc 1, i.e.,

D1 =

\left( 
    

\bfity 2  - \bfity 1

\bfity 3  - \bfity 1
...

\bfity m1
 - \bfity 1

\right) 
    and \bfitJ 1 =

\left( 
    

log(\alpha 2/\alpha 1)
log(\alpha 3/\alpha 1)

...
log(\alpha m1

/\alpha 1)

\right) 
    .

For the connected component (Vp,Ep), define Dp and \bfitJ p in a similar fashion. Then
define

D=

\left( 
    

D1

D2

...
D\ell 

\right) 
    \in \BbbR (m - \ell )\times n and \bfitJ =

\left( 
    

\bfitJ 1

\bfitJ 2

...
\bfitJ \ell 

\right) 
    \in \BbbR m - \ell .(11)

Theorem 3.12. Suppose the system of differential equation (10) admits a WR0

realization (V,E,\bfitkappa ), and let D\in \BbbR (m - \ell )\times n and \bfitJ \in \BbbR m - \ell 
> be defined as in (11). Then

the system D\bfitz = \bfitJ is solvable. Let \bfitz \ast + kerD be its solution set. Then the set of
positive steady states of (10) is exp(\bfitz \ast +kerD).

Proof. First we prove that the linear system D\bfitz = \bfitJ is solvable. Consider D1.
The vertices \bfity 1, \bfity 2, . . . ,\bfity m1

in the first connected component are affinely independent,
so the rows of D1 are linearly independent. Moreover, as noted in Remark 3.6, the
row-space of D1 is the associated linear subspace S(V1). Therefore rankD1 =m1 - 1,
and the matrix D1 is surjective onto \BbbR m1 - 1.

Similarly, for each p= 2, . . . , \ell , the row-space of the matrix Dp is S(Vp), and the
matrix Dp is surjective. In addition, because the realization (V,E,\bfitkappa ) has deficiency
zero, S(V1), S(V2), . . . , S(V\ell ) are linearly independent; in other words, the m - \ell rows
of the matrix D are linearly independent. Consequently, D is surjective, and the
system D\bfitz = \bfitJ is solvable.

Let \bfitz \ast +kerD be the set of solution to D\bfitz = \bfitJ . We next show that each solution
can be related to a positive steady state \bfitx of (10), which by definition satisfies

0=

m\sum 

i=1

\bfitx \bfity i\bfitw i.

In other words, (\bfitx \bfity 1 , . . . ,\bfitx \bfity m)\top lies in the steady state flux cone kerW \cap \BbbR m
> . De-

composing this vector with respect to the generators of the cone allows us to focus on
one connected component at a time.

For simplicity of notation, consider the first connected component. At steady
state, for some constant \lambda > 0, we have \bfitx \bfity j = \lambda \alpha j for j = 1, 2, . . . ,m1, where \alpha j are
components of the generator \bfitc 1. Thus

\bfitx \bfity j - \bfity 1 =
\alpha j

\alpha 1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WEAKLY REVERSIBLE DEFICIENCY ZERO ALGORITHM 1735

for j = 2,3, . . . ,m1. Taking the logarithm of both sides, we obtain the system D1\bfitz =
\bfitJ 1 with \bfitz = log\bfitx .

Repeating this computation for each connected component, we conclude that \bfitx 
is a positive steady state for (10) if and only if \bfitx solves D\bfitz = \bfitJ with \bfitz = log\bfitx .
This leads us to the characterization of the set of positive steady states for (10) as
exp(\bfitz \ast +kerD), where \bfitz \ast +kerD is the set of solutions to D\bfitz = \bfitJ .

3.4. Extension to polynomial systems with unspecified coefficients. If,
instead of (10), we need to analyze

d\bfitx 

dt
=

m\sum 

i=1

ai\bfitx 
\bfity i\bfitw i(12)

for some unknown ai > 0, it turns out that the answer as to whether a WR0 realization
exists is the same.

Theorem 3.13. For any ai > 0, the system (12) admits a WR0 realization
(V,E,\bfitkappa ) if and only if the system (10) admits a WR0 realization (V,E,\bfitkappa \ast ). Moreover,
\kappa ij = ai\kappa 

\ast 
ij.

Proof. The forward implication is trivial. We focus our attention on the other
direction. For any i, j, let \kappa ij = ai\kappa 

\ast 
ij , so \kappa ij > 0 if and only if \kappa \ast 

ij > 0. In other words,
the weighted E-graph (V,E,\bfitkappa ) shares the same set of edges as (V,E,\bfitkappa \ast ). Because
the deficiency is characterized by affine and linear independence of the connected
components, and the two graphs share the same structure, (V,E,\bfitkappa ) is WR0 if and
only if (V,E,\bfitkappa \ast ) is.

Suppose (V,E,\bfitkappa \ast ) is a realization of (10). Then in (V,E,\bfitkappa ), the net direction
vector from \bfity i can be expanded using the realization (V,E,\bfitkappa \ast ), since

ai\bfitw i = ai
\sum 

(i,j)\in E

\kappa \ast 
ij(\bfity j  - \bfity i) =

\sum 

(i,j)\in E

\kappa ij(\bfity j  - \bfity i).

Therefore, (V,E,\bfitkappa ) realizes (12).

3.5. Deficiency zero realizations that are not weakly reversible. If a
polynomial dynamical system admits a deficiency zero realization that is not weakly
reversible, then its dynamics is also greatly restricted: it can have no positive steady
states, no oscillations, and no chaotic dynamics; actually, such as system will admit
a linear strict Lyapunov function, and therefore all its solutions have to converge
to the boundary of the positive orthant, or to infinity [17, 19, 25]. Actually, such
realizations are special examples of mass-action systems generated by E-graphs that
are not consistent [2]. An E-graph (V,E) is said to be consistent if there exist real
numbers \alpha ij > 0 such that

(13)
\sum 

(i,j)\in E

\alpha ij(\bfity j  - \bfity i) = 0.

It is not hard to show that a polynomial dynamical system of the form (10) has
a realization (V,E,\bfitkappa ), where (V,E) is not consistent if and only if

(14) kerW \cap \BbbR m
> = \emptyset .

If a given polynomial dynamical system admits a realization that is not consistent,
then it cannot admit any positive steady state; hence, it cannot admit any realization

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1736 GHEORGHE CRACIUN, JIAXIN JIN, AND POLLY Y. YU

that is weakly reversible, because weakly reversible systems must have at least one
positive steady state [5]. Therefore, if Algorithm 1 is accompanied by a preprocessing
step that checks condition (14), then that step will decide whether our given system
(10) has a realization that is not consistent, and, in particular, that step will also find
all cases where our given system might a deficiency zero realization that is not weakly
reversible.
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