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We theoretically study the dynamics of n-level spin-orbit coupled alkaline-earth fermionic atoms with
SU(n) symmetric interactions. We consider three-dimensional lattices with tunneling along one dimen-
sion, and the internal levels treated as a synthetic dimension, realizing an n-leg flux ladder. Laser driving
is used to couple the internal levels and to induce an effective magnetic flux through the ladder. We focus
on the dense and strongly interacting regime, where in the absence of flux the system behaves as a Mott
insulator with suppressed motional dynamics. At integer and fractional ratios of the laser Rabi frequency
to the onsite interactions, the system exhibits resonant features in the dynamics. These resonances occur
when interactions help overcome kinetic constraints upon the tunneling of atoms, thus enabling motion.
Different resonances allow for the development of complex chiral current patterns. The resonances resem-
ble those appearing in the longitudinal Hall resistance when the magnetic field is varied. We characterize
the dynamics by studying the system’s long-time relaxation behavior as a function of flux, number of
internal levels n, and interaction strength. We observe a series of nontrivial prethermal plateaus caused by
the emergence of resonant processes at successive orders in perturbation theory. We discuss protocols to
observe the predicted phenomena under current experimental conditions.
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I. INTRODUCTION

Understanding the dynamics of interacting quantum par-
ticles on a lattice has been a paradigmatic goal of physics
research for many decades. The most popular description
for fermionic particles hopping on a lattice with onsite
interactions is the canonical Fermi-Hubbard model, which
is believed to contain the core requisite ingredients for
high-Tc superconductivity [1]. Extensions with more than
two internal levels exhibiting a global SU(n) symmetry
in the interaction term have also been used to describe
a broad class of models relevant to solid-state [2] and
high-energy physics [3]. Unfortunately, many details of the
quantum many-body behavior featured by these systems
remain elusive.

Arrays of alkaline-earth atoms (AEAs) featuring a
large number of long-lived nuclear spin levels in both
ground and excited electronic state manifolds, together
with SU(n)-symmetric interactions, are emerging as natu-
ral quantum simulators of the SU(n) Hubbard model [4,5].
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Because of the long coherence times in these systems, it is
also possible to emulate the presence of a strong external
magnetic field via additional laser drives without suffer-
ing from heating effects [6–10]. These versatile quantum
simulation capabilities make AEAs an ideal platform for
the exploration of new facets of quantum magnetism and
topology relevant across multiple disciplines.

Despite such great opportunities, the exploration of
many-body physics with AEAs still remains at an early
stage. Alkaline-earth-atom experiments have targeted the
noninteracting regime [11–18] or the weakly interact-
ing regime [14,19–21], for both of which a Fermi-liquid
description can be used. There has been some progress in
the strongly interacting limit achieved in deep optical lat-
tices, including the observation of few-body SU(n) orbital
physics in isolated lattice sites [22–24], of equilibrium
Mott insulating phases [25–28], and of antiferromagnetic
correlations [29,30]. However, the rich interacting quan-
tum magnetic behaviors predicted for SU(n) systems have
yet to be seen. One major roadblock for experiments thus
far is that preparing equilibrium ground-state phases has
challenging temperature requirements. At the same time,
most theory work has focused specifically on ground-state
properties. These include momentum distributions [31],
chiral currents [32,33], topological phases [34], Laughlin
states [35] and Hall insulators [36,37], density-dependent
magnetism [38], charge pumping [39], and connections
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to baryon physics [40]. Overall, experimentally amenable
settings where nontrivial quantum SU(n) magnetic behav-
iors emerge at currently accessible conditions are scarce.

In this work we explore quantum quench behaviors of
SU(n) interacting fermions that can readily be realized
with current generation optical lattice experiments. Our
studies focus on fermionic AEAs with n internal levels
trapped in a three-dimensional optical lattice and subject
to an effective magnetic flux induced by a laser drive. We
consider the case where hopping happens along only one
spatial direction, so that the overall system including the
laser-coupled internal levels (that act as a synthetic dimen-
sion) can be visualized as an n-leg flux ladder. We focus on
the out-of-equilibrium dynamics in the strongly interacting
limit with one atom per site, where in the absence of an
external drive the system is a Mott insulator. Generically,
strong onsite repulsion is expected to suppress particle
motion because of the high energetic cost of forming a
doublon. We nonetheless observe the emergence of motion
due to multibody tunneling resonances at fractional or inte-
ger values of the ratio between the laser Rabi frequency
and the onsite interactions. We first show the emergence
of these resonances for SU(2) atoms, and extend these
arguments to SU(n), finding a significantly larger number
of resonances as n increases. At such resonances parti-
cle transport is restored in the presence of a nonzero flux,
which gives rise to nontrivial chiral currents along the lon-
gitudinal lattice tunneling direction. Although in our case
the resonances are caused by interaction-enabled tunnel-
ing, they resemble the resonances observed at fractional
fillings as a function of magnetic field in the fractional
quantum Hall effect.

In addition to chiral currents along the real direction,
the resonances induce transport along the synthetic dimen-
sion that manifests as dressed spin population dynamics.
To further characterize the quantum dynamics, we also
study the long-time behavior of the system at these res-
onances. We observe the formation of several prethermal
plateaus, which we can understand in terms of a hierarchy
of higher-order resonant tunneling processes. Experiments
have explored such resonant effects by studying tilted
bosonic systems [41,42], tilted Hubbard models exhibiting
nonergodic behavior [43], and staggered tilted Hubbard
models used for gauge field simulation [44]. The behav-
ior that we find is in striking contrast to more standard
thermalization phenomena, revealing the important role of
kinetic constraints in our system.

The system we describe can be realized using cur-
rent state-of-the-art optical lattice experiments. In partic-
ular, the key requirements for experimental observation
are (i) to prepare a spin-polarized gas at near-unit fill-
ing, (ii) to drive either a direct optical transition between
ground and excited clock levels (for n = 2) or Raman
transitions between ground nuclear spin levels (for n ≥
2), and (iii) to use the same laser setup to measure

coherences and populations. All of these requirements are
within reach, as reported in recent experimental works
[11–13],[15–19],[21]. Moreover, although we discuss long
time thermalization behavior, many of the predicted res-
onance features happen at timescales set by the lattice
tunneling rate (rather than slow effective interaction scales
such as superexchange), and should therefore be visible
within current optical lattice coherence times. We pro-
vide a detailed discussion of possible implementations and
discuss various protocols for realizing spin-orbit-coupled
driving, as well as methods for preparing and measuring
the required initial states. We hope that this investigation
stimulates experimental work as well as follow-up theo-
retical research, and facilitates the observation of unique
quantum behaviors featured by strongly interacting SU(n)
symmetric fermions.

Section II will define the model we study for the sim-
plest case of n = 2 internal states. Quench dynamics of
chiral currents in the system will be compared for the
noninteracting and strongly interacting limits. A dressed
state picture will be used to characterize resonant points
and their allowed tunneling processes. Long-time aver-
age values of observables will be compared to conven-
tional thermalization predictions. Section III will extend
the model to general n and show equivalent quantum
quench dynamics of currents and dressed state populations.
Section IV will discuss experimentally realistic protocols
for implementation, state preparation, and measurement.

II. SU(2) SYSTEM

A. Fermi-Hubbard model

The system we study is a driven three-dimensional opti-
cal lattice with tunneling confined to one dimension via
strong transverse lattice depths. This arrangement creates
an array of independent one-dimensional (1D) chains with
L sites each. We assume that the 1D chains are populated
with N fermionic atoms each, prepared in the lowest Bloch
band, as depicted in Fig. 1(a). The atoms have internal
degrees of freedom, which for the moment we restrict to
two levels m ∈ {e, g}. These can be a pair of electronic
clock states or two hyperfine levels.

The Hamiltonian that describes the dynamics of the
atoms consists of three main parts,

Ĥ = ĤJ + ĤU + Ĥ�. (1)

The term ĤJ describes nearest-neighbor tunneling,

ĤJ = −J
∑

j ,m∈{e,g}

(
ĉ†
j ,mĉj+1,m + H.c.

)
, (2)

where J > 0 is the tunneling rate (in units of � = 1) and
ĉj ,m annihilates an atom of spin m on site j . The term ĤU

030328-2



RESONANT DYNAMICS OF STRONGLY. . . PRX QUANTUM 3, 030328 (2022)

(a) (b) (c) (d)

FIG. 1. (a) Schematic of the driven optical lattice system for n = 2 internal spin states labeled by m ∈ {e, g}. (b) Effective L × 2
ladder configuration realized by the system in the lab frame, where the spin-orbit coupling phase eijφ appears in the laser drive
Hamiltonian that couples the internal states. Each plaquette in the two-leg ladder is pierced by a flux φ. The Bloch spheres at the
bottom show the initial product state |ψ0〉 considered in this paper with blue arrows, treating each atom as a spin-1/2 degree of freedom
assuming a filling fraction of one atom per site. The direction of the drive about which each spin rotates is shown in red. The initial
state |ψ0〉 is an eigenstate of the drive and points in the same direction. (c) Visualization of the system in the gauged frame, where the
spin-orbit coupling phase is put into the tunneling matrix elements along the lattice direction j . (d) Visualization of the system in the
diagonal frame where a further basis rotation diagonalizes the drive, defining dressed fermionic states ν ∈ {↑, ↓} as the single-particle
eigenstates of the drive with energies +�/2, −�/2, respectively. The flux enables both spin-conserving and spin-flipping tunneling
with rates J‖ = J cos(φ/2) and J⊥ = J sin(φ/2), respectively.

is an onsite Hubbard interaction,

ĤU = U
∑

j

n̂j ,en̂j ,g , (3)

where we assume that U > 0 is a repulsive interaction
parameter set by the scattering length of the colliding
atoms and n̂j ,m = ĉ†

j ,mĉj ,m. The last term Ĥ� is a laser drive
that couples the spin states,

Ĥ� = �

2

∑

j

(
eijφ ĉ†

j ,eĉj ,g + H.c.
)
, (4)

where � is the Rabi frequency (assumed real without loss
of generality) and eijφ is a Peierls phase imprinted by the
laser. Here φ = kLa is a differential phase experienced by
atoms in adjacent lattice sites, with a the lattice spacing
and kL the magnitude of the drive laser wavevector pro-
jected along the lattice direction. This differential phase
can be interpreted as a spin-orbit coupling term, since an
atom excited from g → e by absorbing a photon from the
laser also acquires an additional momentum �kL. This sys-
tem is equivalent to a synthetic two-leg ladder where the
sites j along the lattice direction run along the individual
legs, and the synthetic spin direction m indexes the legs;
see Fig. 1(b). The phase φ amounts to a constant flux pierc-
ing each plaquette of this ladder, emulating a transverse
magnetic field.

The Hamiltonian above is written in a “lab” frame moti-
vated by experimental implementations. To facilitate better
theoretical understanding of the system, we apply a num-
ber of basis transformations to simplify the physics. We
first make a gauge transformation

ĉj ,g = e−ijφ/2ĉ′
j ,g , ĉj ,e = e+ijφ/2ĉ′

j ,e, (5)

which changes the tunneling to now contain the flux,

ĤJ = −J
∑

j

(
eiφ/2ĉ′†

j ,eĉ
′
j+1,e + e−iφ/2ĉ′†

j ,gĉ
′
j+1,g + H.c.

)
,

(6)

while the drive is now homogeneous across every lattice
site,

Ĥ� = �

2

∑

j

(
ĉ′†
j ,eĉ

′
j ,g + H.c.

)
. (7)

The interactions remain unchanged. This transformation is
analogous to a change of the vector potential (represented
here by the spin-orbit coupling phase eijφ) from a Lan-
dau gauge along the synthetic direction to a Landau gauge
along the lattice direction. Figure 1(c) shows the system
in this “gauged” frame. A spiral product state in the lab
frame with winding angle of φ per lattice site simplifies to
a coherent spin state in the gauged frame and vice versa.
Next, we make a second onsite basis rotation,

âj ,↑ = 1√
2
(ĉ

′
j ,g + ĉ

′
j ,e), âj ,↓ = 1√

2
(ĉ

′
j ,g − ĉ

′
j ,e). (8)

The new operators âj ,↑, âj ,↓ annihilate atoms in dressed
spin states ν ∈ {↑, ↓} that correspond to single-particle
eigenstates of the drive with energies +�/2, −�/2,
respectively. Under this transformation, the Hubbard inter-
actions still maintain the same form ĤU = U

∑
j n̂j ,↑n̂j ,↓

with n̂j ,ν = â†
j ,ν âj ,ν , while the drive becomes diagonal,

Ĥ� = �

2

∑

j

(n̂j ,↑ − n̂j ,↓). (9)
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Since a nonzero flux φ breaks the SU(2) symmetry of ĤJ ,
the tunneling no longer conserves spin and instead both
spin-preserving and spin-flipping tunneling terms emerge:

ĤJ = −
∑

j

[
J‖

(
â†
j ,↑âj+1,↑ + â†

j ,↓âj+1,↓
)

− iJ⊥
(
â†
j ,↑âj+1,↓ + â†

j ,↓âj+1,↑
) + H.c.

]
(10)

with J‖ = J cos(φ/2) and J⊥ = J sin(φ/2). Figure 1(d)
shows the system in this last “diagonal” frame. For φ = 0,
we only have spin-conserving tunneling J‖ = J , J⊥ = 0.
Maximum φ = π yields only spin-flip tunneling J⊥ =
J , J‖ = 0.

Before proceeding further, we clarify that our goal is to
study quench dynamics of this system using exact numer-
ical integration of the Schrödinger equation. The numeri-
cally accessible system sizes L are limited due to the rapid
Hilbert space growth. To minimize finite size effects, we
use periodic boundary conditions unless otherwise speci-
fied. For periodic boundaries, if the flux φ is an integer
multiple of 2π/L then the laser drive will only induce tran-
sitions between well-defined quasimomentum states. If the
flux does not satisfy this requirement (i.e. it is incommen-
surate), the drive will induce transitions into many different
quasimomentum states, complicating the dynamics [45].
However, in this work we will be studying the long-time
averaged dynamics of collective observables for which an
incommensurate φ will only yield 1/L corrections. We
thus ignore the issue of commensurability when making
numerical comparisons for varying φ. A more thorough
discussion of finite size scaling is given in Appendix A.

B. Chirality

The system described by Ĥ in the lab or gauged frames
is a minimal version of a 2D strip pierced by a mag-
netic field. In the noninteracting case U = 0 such a system
is described by the Harper-Hofstadter model [6–9,46,47],
which features chiral currents at its boundaries. While a
synthetic dimension of only n = 2 states is a limiting case
of the full two-dimensional Harper-Hofstadter model, one
can still gain insights into the dynamical behavior from
studying this limit [36]; we consider systems with n > 2
in Sec. III.

The magnetic field in the L × 2 strip will induce a
shearing effect where e-atom population flows in one direc-
tion while g-atom population flows in the other. A simple
example of this shearing is shown in Fig. 2(a) for the case
of a single atom prepared in an initial superposition state
|ψ0〉1atom = (1/

√
2)(ĉ′†

j=0,e + ĉ′†
j=0,g) |0〉 with a flux of φ =

π/2 and a drive strength of �/J = 2. The chiral dynamics
manifests as the e population 〈n̂j ,e〉 shifting towards lattice
sites with increasing j > 0 while the g population 〈n̂j ,g〉
has an equal and opposite drift towards sites with j < 0.

(a)

(b)

(d)

(f)

(e)

(c)

FIG. 2. (a) Time-evolution snapshots of populations 〈n̂j ,e〉,
〈n̂j ,g〉 for a single-atom initial state |ψ0〉1 atom = (1/

√
2)(ĉ′†

j=0,e +
ĉ′†
j=0,g) |0〉 in the gauged frame. The parameters are �/J = 2

and φ = π/2. (b) Evolution of the chiral current for a nonin-
teracting system U = 0 with flux φ = π/2, drive �/J = 2, and
system size L → ∞. (c) Long-time average current in terms of
�/J for the noninteracting system using the same flux. The ana-
lytic expression is given in Eq. (15). (d) Evolution of the chiral
current for a strongly interacting system U/J = 30 with flux
φ = π/2 and drive strengths �/J = 2, 32. System size is L = 9.
(e) Average current for the interacting system with varying �/J ,
averaging over tJ = 0 to 500. (f) Average current for the strongly
interacting system across the parameter space of �/U and φ. The
violet line corresponds to panel (e).

The rate of flow of spin population can be quantified via
current observables (in units of tunneling rate J ),

Îj ,e = −i
(
ĉ†
j ,eĉj+1,e − H.c.

)
,

Îj ,g = −i
(
ĉ†
j ,gĉj+1,g − H.c.

)
,

(11)
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where Îj ,e (Îj ,g) corresponds to the rate of transfer of
e- (g-)atom population from site j to site j + 1 per unit
time. To quantify the shearing for generic initial condi-
tions, we define a bulk chiral current in units of J ,

Îc =
( ∑

j

Îj ,e −
∑

j

Îj ,g

)

= −2
∑

k

sin(ka)(n̂k,e − n̂k,g), (12)

where n̂k,m = ĉ†
k,mĉk,m and ĉk,m = (1/

√
L)

∑
j e

ijkaĉj ,m. On
the second line we have shown that this current can also
be obtained from the atoms’ quasimomentum distribution,
which is experimentally accessible via, e.g., time-of-flight
measurements. While such currents have been experimen-
tally observed in optical lattices [11,13,48–51], the role
that interactions play in the many-atom limit is still wait-
ing for further exploration, especially in the context of
dynamical evolution.

To understand the interplay between the Hubbard inter-
actions and the single-particle physics, we study the
quench dynamics of the chiral current for a unit-filled sys-
tem with one particle per site N/L = 1. The initial state for
the quench we choose is

|ψ0〉 = 1
2L/2

∏

j

(
ĉ′†
j ,e + ĉ′†

j ,g

) |0〉 =
∏

j

â†
j ,↑ |0〉 . (13)

This state is maximally delocalized along the synthetic lad-
der. The state can be visualized using a collection of Bloch
spheres, each one representing a spin-1/2 particle at lattice
site j . In the lab frame [Fig. 1(b)], the initial state is a spiral
state with winding angle φ on the Bloch sphere equator. In
the gauged frame [Fig. 1(c)] the state instead looks like a
uniform collective state along the +x Bloch sphere direc-
tion, while in the diagonal frame [Fig. 1(d)] it is collective
along +z. This state is the highest-energy eigenstate of the
drive Ĥ� |ψ0〉 = (L�/2) |ψ0〉 for � > 0, and corresponds
to all atoms in the dressed spin state ↑. Such an initial
state can be prepared with an appropriate pulse sequence
or adiabatic ramp as discussed in Sec. IV. Note that, for
φ = 0, the system exhibits no dynamics independent of the
Hamiltonian parameters J ,U, � due to Pauli blocking.

Figure 2(b) shows a sample time evolution of the chiral
current from this initial state, starting with a noninteracting
(U = 0) system for a flux of φ = π/2 and drive strength
�/J = 2. The current undergoes an initial growth and
saturates to an average about which it undergoes coher-
ent oscillations. We compute this long-time average 〈Îc〉∞,
given by

〈Ô〉∞ = lim
T→∞

1
T

∫ T

0
dt〈Ô(t)〉 (14)

for any operator Ô. Figure 2(c) shows the average current
as a function of drive strength �/J . The chirality van-
ishes at � = 0 (for which the ladder legs decouple and
Îc commutes with the noninteracting Hamiltonian) and at
�/J → ±∞ (for which the initial state is an eigenstate of
the Hamiltonian), and is strongest at intermediate values of
�/J ≈ ±2. For L → ∞, we can write this noninteracting
average analytically as

〈Îc〉∞
L

∣∣∣∣
U=0

= �/J
2

cot
(

φ

2

)

×
(

1 − |�/J |√
(�/J )2 + 16 sin2(φ/2)

)
. (15)

The overall direction of the chiral current has odd parity
symmetry under φ → −φ or � → −�, while the strength
of the current vanishes at φ = 0 (no magnetic flux) or φ =
π (left-right reflection symmetry is restored) and tends to
be strongest at around φ ≈ π/2.

We now turn to the strongly interacting regime. In the
U � J limit, a Fermi-Hubbard model without driving or
spin-orbit coupling at unit filling is in the Mott insula-
tor regime, which would suppress particle current because
of the high energetic cost of forming a doublon. In the
presence of the synthetic gauge field that breaks SU(2)

symmetry this behavior is modified. In Fig. 2(d) we show a
sample time evolution of the current for strong interactions
U/J = 30, flux φ = π/2, and two different drive strengths
�/J = 2 and �/J = 32. The weak drive exhibits the
expected behavior where dynamics is suppressed as the
system is an insulator. For the strongly driven case, on the
contrary we observe a significant current since the inter-
action energy penalty for generating a doublon is partially
compensated by the drive.

Figure 2(e) shows the long-time average current across
the range of �/J . We find that the strongest response
occurs around � ≈ U with a profile similar to the nonin-
teracting case, but shifted to � = U instead of � = 0. A
small quench of drive strength from, e.g., � = U − ε to
U + ε for ε ∼ J can thus cause a macroscopic reversal of
the current without breaking any obvious reflection sym-
metry in the Hamiltonian. Furthermore, there are several
other points where the current undergoes nontrivial behav-
ior or changes direction altogether. These special points
are located at fractional values of � = U/2,U/3, . . . and
correspond to multibody resonances. We show the average
current as a function of both �/U and φ for fixed U/J in
Fig. 2(f); the resonant features persist across the parameter
range, growing stronger or weaker depending on the flux
and resonance in question.

A finite flux therefore enables the generation of particle
transport and chiral currents in the limit where interac-
tions would normally inhibit motion. Such behavior is best
understood in the diagonal frame, which we explore next.
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C. Resonant dynamics of dressed states

From a physical perspective, the rate of particle flow
along the legs of the synthetic ladder quantifies its longitu-
dinal conductivity. In addition, the system can have motion
along the synthetic dimension. Since the initial state is
the dressed spin state ↑, which is a delocalized superpo-
sition of atoms along the synthetic dimension in the lab
frame, a change in the ↑ dressed state population during
the dynamics is a measure of the transverse conductivity
of the system that we study using the diagonal frame.

For generic flux, the dressed spin atoms can undergo
both spin-conserving tunneling with rate J‖, and spin-
flipping tunneling with rate J⊥. However, the actual motion
is subject to kinetic constraints enforced by energy conser-
vation. We consider the regime of �,U � J and � ∼ U
where the interactions and drive set the dominant energy
scale, and the nontrivial resonant features occur. The
resulting constraints are summarized in Fig. 3(a). In gen-
eral, fermions are Pauli blocked from tunneling into occu-
pied states. Furthermore, spin-conserving tunneling set by
J‖ is only allowed if no doublon is created or destroyed,
as otherwise it would incur a Hubbard interaction penalty
±U. Spin-flipping tunneling J⊥ of a lone atom into an
empty site incurs an energy penalty ±� from the drive
and is also inhibited. However, depending on the ratio of
�/U, there can be a spin-flipping process that is enabled
via resonance.

The simplest example is � = U. If an ↑ atom tunnels
into ↓ on a site that already has an ↑ atom of its own,
forming a doublon, the total energy cost is −� + U = 0,
as shown in Fig. 3(a). This interaction-enabled tunneling
process may occur freely, and two adjacent ↑ atoms can
propagate in a leapfroglike manner [52]. An analogous
process of two neighboring ↓ atoms forming a doublon
cannot occur since the associated cost is +� + U �= 0.
This resonance causes the qualitative shift of the current
profiles from � = 0 to � = U [Figs. 2(b) and (c)]. At
the resonance the dynamics are similar to those of free
fermions, up to additional tunneling constraints since pairs
of adjacent ↓ atoms cannot leapfrog move.

When one is instead close to the resonance but not
exactly at it, there are high-order chiral tunneling pro-
cesses in perturbation theory proportional to powers of
1/(U − �) that change sign as the resonance is passed
(for odd powers). This is the cause of the current direction
reversal across the resonance.

Other resonances manifest through higher-order tun-
neling processes. For � = U/2, there is a second-order
process where two adjacent ↑ atoms both tunnel and flip
to ↓, forming one doublon using a third ↑ atom, as shown
in Fig. 3(a). The total cost of this process is −2� + U = 0.
The overall rate can be estimated using degenerate pertur-
bation theory as [J⊥/(−� + U)]J⊥ × 2 = 4J 2

⊥/U, where
the denominator is the energy of the intermediate state of

(a)

(b)

(c)

(d)

(e)

FIG. 3. (a) Diagrams of the allowed and forbidden tunnel-
ing processes of the n = 2 system in the diagonal frame for
�,U � J . The energy cost for an atom hopping from one level
(indicated by an empty circle) to another (indicated by the arrow)
is shown. Processes with green arrows cost zero energy and are
allowed, while ones with red arrows are off-resonant and forbid-
den. Interaction-enabled tunneling processes are shown for the
� = U and � = U/2 resonances, although higher-order ones can
occur as well. (b) Time evolution of the dressed state popula-
tion 〈n̂↑〉 for a quench starting with all atoms in that state, for
a system size L = 11, large flux φ = 9π/10, strong interactions
U/J = 30, and selected drive strengths �/U = 0.12 (nonreso-
nant) and �/U = 1, 1/2, 1/3 (different resonances). For the lat-
ter, the associated timescales tJ⊥ = 1, 4tJ 2

⊥/U = 1, 27tJ 3
⊥/U2 =

1 are indicated by vertical dotted lines. (c),(d) Long-time average
of the population 〈n̂↑〉∞ with U/J = 30, system size L = 9, and
flux values of (c) φ = 9π/10 and (d) φ = π/2, averaging out to
time tJ = 500. Discernable resonances � = U/q are labeled. (e)
Average population across the parameter range of �/U and φ,
still using U/J = 30 and L = 9. The colored lines correspond to
panels (c) and (d).

the process and the ×2 comes from the number of ways
in which the two steps can be taken. Similarly, at � =
U/3, we have a three-step resonance with approximate rate
[J⊥/(−� + U)][J⊥/(−�)]J⊥ × 6 = 27J 3

⊥/U2 (with a fac-
tor of ×6 since a three-step process can be ordered in six
possible ways). In general, we can predict resonances of
the form � = pU/q for integers p , q, each correspond-
ing to a (p + q)-atom process that moves q atoms down
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from ↑ to ↓ and forms p doublons. Resonances with p > 1
correspond to correlated processes where multiple dou-
blons are formed in different, possibly distant parts of the
lattice. Such resonances are less prominent, but can still
manifest as nonmonotonic features in the average dynam-
ics if the system is evolved to sufficiently long timescales.
Although they have a different physical origin, in many
ways these resonances resemble those observed in the lon-
gitudinal resistance in the fractional quantum Hall effect, at
fractional filling fractions as the magnetic field is changed.

We characterize these resonances by measuring the pop-
ulation of the initially filled dressed state 〈n̂↑〉 = ∑

j 〈n̂j ,↑〉.
When far from any resonances, for strong � � J , the
initial state is disparate in energy from the rest of the spec-
trum. All tunneling is thus inhibited and no dynamics will
occur, at least up to timescales that grow exponentially
long with system size [53]. At a resonance, interaction-
enabled tunneling will cause a reduction of the population
over a timescale set by the corresponding rate, which is
J⊥ for the � = U resonance, 4J 2

⊥/U for the � = U/2
resonance, 27J 3

⊥/U2 for � = U/3, etc.
Figure 3(b) shows characteristic time evolution profiles

of this population. In the long-time limit of the relevant
rate we see saturation to an average value 〈n̂↑〉∞. We
numerically compute this average for different �/U, φ at
fixed U/J in Figs. 3(c) and 3(d). Increasing φ makes the
resonances stronger and permits the resolution of higher-
order ones because the spin-flip tunneling J⊥ grows with
φ. There is also a resonance at � = 0 that corresponds
to conventional antiferromagnetic superexchange interac-
tions; while there is no drive in that regime, the initial state
is a spiral state in the lab frame with both e- and g-atom
populations that still exhibits dynamics.

All of these features are not exclusive to our spe-
cific quench; we have just chosen an initial state for
which they are particularly prominent. For example, one
could consider a different initial state such as

∏
j ĉ

†
j ,e |0〉 =

∏
j (1/

√
2)(â†

j ,↓ + â†
j ,↑) |0〉, which corresponds to all atoms

in the lab frame spin state e sitting in one leg of the ladder.
Such a state is a superposition of Fock states with different
↑, ↓ configurations in the diagonal frame, some of which
will have energetically allowed tunneling processes and
will undergo dynamics (see Appendix B for details).

D. Relaxation

The behavior of the long-time average dressed state
population is determined by the system’s ability to equi-
librate via tunneling. At resonance the interaction-enabled
tunneling processes allow the system to relax by explor-
ing the Hilbert space that is energetically accessible. We
plot the average population close to various resonances in
Fig. 4(a) for different flux values φ = π/2 and φ = π . The
results for the � = U/3 resonance appear irregular due
to finite-size and finite-time effects, but are expected to

(a)

(b)

(c)

FIG. 4. (a) Long-time average of the population 〈n̂↑〉 near
the resonances � = U/3,U/2,U for different fluxes φ = π/2, π .
The system size is L = 11 and the interaction strength is U/J =
30. Time evolution is done out to tJ = 1500, and averaging
is done over tJ = 750 to 1500 to avoid the initial population
decay. The φ = π resonance widths are set by the respective
rates 27J 3

⊥/U2, 4J 2
⊥/U, J⊥; the vertical blue lines represent val-

ues of ±4 times the corresponding rate for each resonance. The
φ = π/2 resonance widths are instead broadened by an effec-
tive bandwidth of about J‖. Note that the specific positions of
the resonances are also shifted due to off-resonant superexchange
interactions by a factor of the order of about J 2/U. The orange
dashed lines correspond to infinite-temperature thermal average
predictions of 2/5, 1/2, and 2/3, respectively (see Appendix C).
(b) Associated interaction-enabled tunneling processes for each
respective resonance in (a). (c) Leapfrog process by which pairs
of ↑ atoms can move at the � = U resonance via J⊥ only.

become smooth in the limit of L → ∞; see Appendix A
for details.

For φ = π , the system can only have spin-flip tunnel-
ing J⊥ = J while J‖ = 0. Each resonance has one allowed
tunneling process under this constraint. For � = U/q with
q ∈ {1, 2, 3, . . .}, we flip q atoms from ↑ to ↓ and form
one doublon. This process is depicted for each resonance
in Fig. 4(b) for clarity. The many-body dynamics amount
to the coherent superposition of this process occurring in
parallel across the lattice. The widths of the resonances
are set by the rate of the process, which is J⊥ for � = U,
4J 2

⊥/U for � = U/2, 27J 3
⊥/U2 for � = U/3. These widths

are indicated by the blue dashed lines in Fig. 4(a) and show
good agreement with the φ = π results.

The above discussion is valid at short times because
the initial state is unit filled and any spin-conserving tun-
neling is Pauli blocked. The interaction-enabled spin-flip
tunneling process is the only one that can occur at time
t = 0 even if J‖ �= 0. However, once interaction-enabled
tunneling does occur, it leaves behind a hole. States with
a hole can be coupled to each other via spin-conserving
tunneling processes, resulting in a dispersion that broad-
ens the otherwise degenerate spectrum of the energetically
accessible subspace and thus the resonance. For the � =
U resonance, atoms can freely move into a hole using
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either spin-conserving tunneling J‖ directly or interaction-
enabled spin-flip tunneling J⊥ via the leapfrog process
shown in Fig. 4(c). The resonance width is then determined
by both J‖ and J⊥, which are comparable for both stud-
ied flux values. Higher-order resonances require a finite
J‖ for atoms to move into a hole. The matrix element J‖
is nonvanishing at φ = π/2, and broadens the associated
resonances for that flux by an effective bandwidth of the
order of J‖. The associated timescale for relaxation cor-
respondingly increases as the resonance broadens, since
the resonant tunneling must overcome the splitting of the
many-body states induced by the dispersion.

The height of the resonance peaks can be predicted
with a thermal average. At resonance the system has a
set of energetically accessible many-body states. Since
these states all have the same energy as the initial state
(neglecting broadening effects), the thermal description is
given by a microcanonical ensemble with an effectively
infinite temperature. The corresponding thermal state is
written as ρth = P̂res/nres with P̂res the projector onto the
accessible subspace and nres the size of the subspace. The
prediction for the observable is then 〈n̂↑〉∞ = tr(n̂↑ρth) =
tr(P̂resn̂↑)/nres. In the limit L → ∞ this predicted value
is 〈n̂↑〉∞ = 2

3 , 1
2 , 2

5 for the � = U,U/2,U/3 resonances,
respectively (see Appendix C for a derivation). The peak
resonance values in Fig. 4(a) show reasonable agreement
with these thermal predictions, aside from the � = U/3
resonance that would likely require longer timescales and
larger systems due to its high-order nature. A numerical
analysis on convergence is given in Appendix A.

We note as a caveat that, in general, kinetic constraints
upon the motion can inhibit the ability of the system to
explore even the resonantly accessible Hilbert space and
prevent agreement with a thermal average [54], although
we see reasonable agreement for the resonances studied
here. In addition, for large but not infinite U/J , �/J (as in
a real experimental context), the wavefunction is not guar-
anteed to be fully confined to the accessible Hilbert space.
For large enough systems, some of the energy carried by
the doublons and drive excitations can be dispersed into
kinetic energy, causing leakage into other Hilbert space
sectors, although the system’s capacity for this depends
on the initial state and structure of the many-body spec-
trum. A full characterization of the system’s infinite-time
thermodynamic limit properties encoding the above com-
plications is an interesting pursuit, albeit one beyond the
scope of the current work.

III. SU(n) SYSTEM

A. Fermi-Hubbard model

We now move to the situation where the laser drive
couples a larger number of n > 2 internal levels. The
Hamiltonian maintains the same form as Eq. (1), only
now involving n spin flavors labeled by m ∈ {−S, −S +

1, . . . , S} with S = (n − 1)/2 the size of the effective onsite
spin. Such a system emulates a synthetic 2D strip of size
L × n. If all the internal levels experience the same lattice
potential, the tunneling Hamiltonian takes the form

ĤJ = −J
∑

j ,m

(
ĉ†
j ,mĉj+1,m + H.c.

)
. (16)

For the case of SU(n) symmetric interactions, collisions
between any pair of internal states are characterized by
the same scattering length [4,5,55] and the onsite Hubbard
repulsion can be written as

ĤU = U
2

∑

j ,m,m′
n̂j ,m

(
n̂j ,m′ − 1

n
1

)
, (17)

where 1 is the identity operator. When visualizing the
internal levels as a synthetic ladder, the interactions
become all to all along the synthetic direction and onsite
along the lattice direction. The laser drive coupling the lev-
els along the synthetic direction can be written in general
as

Ĥ� =
∑

j ,m,m′
�m,m′eij (m−m′)φ ĉ†

j ,mĉj ,m′ . (18)

The coefficient �m,m′ gives the strength of the coupling
matrix element between spin states m and m′. The phase
eij (m−m′)φ ensures that every plaquette of the synthetic lat-
tice is pierced by a constant flux φ (see Sec. IV and
Ref. [56] for details on experimental implementation).
Figure 5(a) shows this system in the lab frame. Note
that experimentally realistic implementations will gener-
ally be constrained to couple spin states with |m − m′| ≤ 2,
because every change of m by one requires an additional
photon and laser coupling schemes tend to be two pho-
ton at most. We keep generic laser couplings for now, and
provide specific realistic examples further on.

As in the n = 2 case, we make a gauge transformation
to put the flux into the tunneling terms instead of the drive,

ĉj ,m → eijmφ ĉ′
j ,m, (19)

In this gauge the tunneling becomes

ĤJ = −J
∑

j ,m

(
eimφ ĉ′†

j ,mĉ
′
j+1,m + H.c.

)
, (20)

while the drive becomes

Ĥ� =
∑

j ,m,m′

(
�m,m′ ĉ′†

j ,mĉ
′
j ,m′ + H.c.

)
. (21)

The interactions remain unchanged. The resulting system
in the gauged frame is depicted in Fig. 5(b).
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(a) (b) (c) (d)

(d)

FIG. 5. (a) Schematic of the n > 2 system now engineering an n-leg ladder in the lab frame. The synthetic dimension states are
indexed m ∈ {−S, −S + 1, . . . , S} with S = (n − 1)/2 the size of an effective onsite spin. Motion along the synthetic direction is
induced by a laser with couplings �m,m′ between internal states m, m′ and a phase eij (m−m′)φ to emulate the magnetic field. Only the
couplings from the m = S state to the others are shown for simplicity, although generically each spin state can be coupled to each other.
The SU(n) symmetric interactions are all to all in the synthetic dimension and onsite in the lattice dimension. (b) Visualization of the
same system in the gauged frame where the flux is put into the tunneling terms. (c) Visualization of the system in the diagonal frame,
where the synthetic spin dimension is comprised of dressed spin states ν ∈ {1, . . . , n} that are single-particle eigenstates of the drive.
In this frame the nearest-neighbor tunneling can flip spin from ν to ν ′ with corresponding matrix element Jν,ν′ . Again, only couplings
from ν = n are shown for simplicity, although all dressed states generically couple to all others. (d) Couplings between spin states in
the gauged frame and corresponding dressed energy levels in the diagonal frame for a Ŝx-type drive and n = 4 states. The typical initial
state of all atoms in the highest-energy dressed state ν = 4 is shown in both frames with the corresponding wavefunction amplitude
Am of each spin state in the gauged frame. (e) Tunneling matrix elements Jν,ν′ allowed for the initially occupied dressed state ν = 4
for the drive in panel (d).

For a fixed n, we can again make a single-particle basis
transformation to diagonalize the drive. If we treat the
spin states as first-quantized states of angular momentum
projection |m〉, this transformation can be written as

Ŵ†
( ∑

m,m′
�m,m′ |m〉 〈m′|

)
Ŵ =

∑

ν

Eν |ν〉 〈ν| , (22)

where Ŵ = ∑
m,m′ Wm,m′ |m〉 〈m′| is the corresponding uni-

tary and ν ∈ {1, . . . , n} indexes over the drive eigenstates
with eigenenergies Eν . As a simple example to connect
with the previous section, for the n = 2 case, we have

∑

m,m′
�m,m′ |m〉 〈m′| = �

2

(
0 1
1 0

)
,

Ŵ = 1√
2

(
1 −1
1 1

)
,

(23)

in the basis of {|+ 1
2 〉 , |− 1

2 〉} (equivalent to {e, g}).
Using this transformation, we define new dressed spin

operators as

âj ,ν =
∑

m

W∗
m,ν−S−1ĉ

′
j ,m. (24)

The resulting drive in the diagonal frame becomes

Ĥ� =
∑

j ,ν

Eν n̂j ,ν . (25)

The interactions maintain SU(n) symmetry and keep the
form ĤU = (U/2)

∑
j ,ν,ν′ n̂j ,ν(n̂j ,ν′ − 1/n). The tunneling

now contains generalized spin-flip terms,

ĤJ =
∑

j ,ν,ν′

(
Jν,ν′ â†

j ,ν âj+1,ν′ + H.c.
)
,

Jν,ν′ = −J
∑

m

eimφW∗
m,ν−S−1Wm,ν′−S−1,

(26)

with Jν,ν′ the matrix element for an atom to tunnel one lat-
tice site over and flip from dressed spin ν to ν ′. When φ =
0, we only have spin-conserving tunneling Jν,ν′ = −J δν,ν′ .
For generic φ, the strength of the various tunneling ampli-
tudes will depend on both φ and the structure of the laser
couplings �m,m′ . Figure 5(c) shows the system in the diag-
onal frame. This spin-flipping φ-dependent tunneling has
been described in the literature as a “flavor-orbital” cou-
pling [40]. In our framework, having a generic φ �= 0, π
greatly enhances the connectivity of the system because
any dressed spin can turn into any other dressed spin, thus
enabling a much larger set of multibody resonances.
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While we wrote arbitrary coefficients �m,m′ , realis-
tic schemes will be more constrained. We explore a
scheme that gives clear insight into how the n > 2 sys-
tems behave in the strongly interacting limit. Specifically,
we consider couplings of the form �m,m+1 = �m+1,m =
(�/2)

√
(S − m)(S + m + 1) and zero otherwise, with �

an overall drive strength. This configuration yields a drive
that looks like a spin-S operator Ŝx in the gauged frame,
if one treats the internal states as Zeeman levels of a spin-
S particle. The unitary transformation Ŵ can be written as
Ŵ = e−iπ Ŝy/2, which diagonalizes the drive by rotating it
into Ŵ†ŜxŴ = Ŝz. The resulting drive eigenenergies will
be equally spaced by �, with Eν = �(ν − S − 1) if we
label ν = 1, . . . , n. In Fig. 5(d) we show the couplings and
corresponding dressed state energies for an n = 4 system.
The tunneling rates of the dressed states in the diagonal
frame are shown in Fig. 5(e).

After studying the behavior of such a configuration,
we discuss how to experimentally implement it, as well
as other more generic cases. Alternative distributions of
the coupling, such as uniform couplings with periodic
boundary conditions, have also been theoretically [57] and
experimentally [18,45] studied.

B. Chirality

As in the n = 2 case we study the quench dynamics of
spin currents for a unit-filled system N/L = 1 using exact
numerical time evolution. We initialize a state of all atoms
in the highest-energy drive eigenstate,

|ψ0〉 =
∏

j

â†
j ,ν=n |0〉 . (27)

This initial state is delocalized along the synthetic ladder in
the gauged frame and exhibits enhanced resonant features
in the dynamics.

We define the longitudinal current along each leg m of
the ladder as (in units of J )

Îm = −i
∑

j

(
ĉ†
j ,mĉj+1,m − H.c.

)
. (28)

We again look at the long-time averages 〈Îm〉∞. The cur-
rents are scaled by the wavefunction amplitudes |Am| =
| 〈m| ν = n〉| of the initial state in each leg [see the exam-
ple in Fig. 5(d)] for visual clarity. We consider even n
since this allows for more natural implementation using
fermionic atoms. Since the initial state is symmetric about
m → −m and the system preserves this symmetry, we have
〈Îm〉 = −〈Î−m〉 and can thus focus on m > 0.

Figure 6(a) shows the average currents in each leg for
a range of n. As n increases, we observe a larger num-
ber of macroscopic spin flow reversals, corresponding to
an increasing number of multibody resonances. The flow

becomes concentrated at the edges of the ladder, although
the resonant features persist in all legs. We also notice
that the system can settle into different chiral current pat-
terns depending on the sign of the current in each leg.
Figure 6(b) shows snapshots of the average current in two
such regimes for n = 4. The flow can either separate into
staggered L × 2 blocks when the m = 1/2, 3/2 legs have
opposite sign of current, or generate a bulk flow if the sign
is the same for both. Higher values of n can generate even
more complex patterns.

We can gain more intuition by considering the gener-
alization of the shearing current studied in Sec. II B. We
define the overall average chiral current as (still assuming
n even)

〈Îc〉 =
∑

m>0

〈Îm〉 −
∑

m<0

〈Îm〉, (29)

which is shown in Fig. 6(c). We observe that, as n
increases, the overall profile of the current develops a
universal shape aside from the emergence of additional res-
onances at smaller �/U. For instance, near �/U = 1 and
φ � 1 the current profiles look very similar for all n up
to overall prefactors, suggesting a unifying principle that
emerges near that resonance for small flux.

To study this possibility further, we look at the currents
in each leg close to � = U. Recall that, for n = 2, the over-
all profile of the average chiral current was close to the
noninteracting case, only shifted from � = 0 to � = U.
We anticipate that similar behavior will occur for generic
n. In Fig. 7(a) we compare the average currents near the
� = U resonance to a noninteracting result shifted away
from the resonance by the same amount, i.e., we com-
pare a noninteracting system with �/J = 3 to a strongly
interacting one with (� − U)/J = 3. We see that, for legs
deeper inside the bulk of the strip (smaller |m|), the average
current of the strongly interacting system is well captured
by the equivalent noninteracting system as n increases,
especially for smaller flux φ. For this particular reso-
nance at � = U, there are sufficiently many interaction-
enabled tunneling processes that the dynamics resembles
free fermions (at least for the observable in question), as
we further explain in Sec. III C. General closed-form ana-
lytic solutions for the noninteracting system such as that in
Eq. (15) are not as easy to obtain for n > 2 as they require
the diagonalization of an n × n matrix. Still, numerical
solutions for large L can be straightforwardly computed,
which offer insights into the scaling behavior of the system
in the L → ∞ and/or n → ∞ limits.

We can also make analytic predictions in certain limit-
ing regimes. As an example, Fig. 7(b) shows the overall
average chiral currents 〈Îc〉∞ of the noninteracting and
interacting systems near � = U for the same parameters
as above. The two profiles match well as φ → 0. The non-
interacting problem can be analytically solved in the limit
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(a) (b) (c)

FIG. 6. (a) Average spin current in each leg m for different synthetic dimension sizes n across the parameter range of �/U and φ.
We scale the current along leg m by the initial wavefunction probability amplitude |Am| = |〈ψ0|m〉| in that leg. Prominent resonant
crossovers are highlighted with dashed lines. Only m > 0 legs are shown; the other legs are equal and opposite, 〈Îm〉 = −〈Î−m〉. The
system size is L = 9, 5, 4, 4 for n = 2, 4, 6, 8, respectively. Interactions are fixed at U/J = 30. The system is evolved to time tJ = 500
before taking the average. (b) Snapshots of current profiles for the n = 4 system in two particular regions of parameter space indicated
by the green and purple markers in panel (a). The size of the arrows is proportional to the scaled average current along that link; current
across the periodic link is not shown. (c) Overall average chiral current obtained by summing over all legs (with no scaling factors) for
the same parameters as (a).

of φ � J/�, yielding

〈Îc〉∞
L

|U=0 = n × n!
2n−1[(n/2)!]2

J
�

φ + O
[(

J
�

φ

)2]
. (30)

This Taylor expansion is valid for a non-negligible drive
coupling � compared to the lattice tunneling rate J . From
this expression we obtain a prediction for the interacting
system by simply replacing � with � − U:

〈Îc〉∞
L

|U�J = n × n!
2n−1[(n/2)!]2

J
� −U

φ +O
[(

J
� − U

φ

)2]
.

(31)

The resulting slope with respect to φ can be interpreted
as the linear response of the system to magnetic fields, as
φ takes the role of a magnetic flux. The small flux limit
can be viewed as the continuum limit where the size of

the lattice spacing becomes infinitely small. This is a rare
case of a strongly interacting system with nontrivial long-
time dynamics that can be described via a simple analytic
expression.

If we consider a different resonance such as � = U/2,
a comparison to the noninteracting system no longer suf-
fices because more complex constraints upon the tunneling
dynamics emerge. We can gain a better understanding of
such a resonance by again turning to the diagonal frame
and examining the dressed state population dynamics.

C. Many-body resonant dynamics

Like n = 2, the initial state used in our study corre-
sponds to all atoms in the highest-energy dressed state
ν = n. When near resonances, the population of this state
will be depleted by interaction-enabled tunneling trans-
ferring atoms into other dressed states. To quantify this
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(a)

(b)

FIG. 7. (a) Average scaled current in different legs m close
to the � = U resonance for n = 2, 4, 6, 8, fixing U/J = 30 and
�/J = 33. The dots show the numerically computed data for the
strongly interacting system, sizes L = 9, 5, 4, 4 as before, evolved
to time tJ = 500. The dashed line is the corresponding average
for a noninteracting system U = 0 with the same initial condition
and effective drive strength �/J = 3, and the same distance from
the � = U resonance assuming that it is shifted from � = U to
� = 0. (b) Average chiral current for the same resonance in the
φ � 1 limit. The solid lines are a linear approximation with a
slope given by Eq. (30).

depletion, we numerically compute the long-time average
of the population 〈n̂ν=n〉 = ∑

j 〈n̂j ,ν=n〉, still in the strongly
interacting regime U/J � 1, across the parameter range of
�/U and φ.

Figures 8(a) and 8(b) plot the resulting population for
an n = 4 system and fixed U/J = 30. There is a vari-
ety of multibody resonances that occur at rational points
� = pU/q for p , q ∈ Z and p ≤ q. For larger n, the num-
ber and strength of resonances that can be observed on the
timescales used in our numerics increase. Processes that
were higher order for n = 2 can now become direct. For
example, the � = U/2 resonance is no longer perturba-
tive as an atom can go from ν = 4 to ν = 2 via the J4,2
tunneling matrix element directly, losing energy 2� and
compensating it by the interaction energy U. There are
also resonances for which multiple types of first-order pro-
cesses occur at once. The � = U resonance can still form
a doublon with a single tunneling event, but now can also
turn a doublon into a triplon, or a triplon into a quadruplon,
as shown in Fig. 8(c). This yields an interesting behav-
ior where the occupancy of a lattice site does not inhibit
the flow of population through it unless all n levels have
already been filled, almost analogous to a noninteracting
system. It is for this reason that we find good qualitative
agreement with the noninteracting case for the currents in
Fig. 6(d) near this resonance.

Resonances that exclusively create higher-order objects
can also be seen. For example the � = 3

5U resonance cor-
responds to a second-order process that starts with three

(a)

(b) (c)

(d) (e)

FIG. 8. (a) Long-time average population of the initially pop-
ulated dressed state 〈n̂ν=4〉∞ for an n = 4 system as a function of
�/U. The interactions are fixed at U/J = 30, the system size at
L = 5, and the flux at φ = 2.0 [we use this flux rather than a sim-
pler value like π/2 to avoid accidental cancelations of dressed
tunneling matrix elements in Eq. (26)]. Resonances at � = pU/q
are labeled by their p/q values. (b) Long-time average population
for the same system across the parameter space of �/U and φ.
The purple line corresponds to panel (a). (c) Allowed spin-flip
tunneling processes at the � = U resonance. Doublons, triplons,
and quadruplons can all be formed. (d) Two-step resonant pro-
cess at the � = 3U/5 resonance, forming a triplon. (e) Time
evolution of fraction of lattice sites with exclusively two atoms
(doublon) and three atoms (triplon) at the � = 3U/5 resonance,
for parameters L = 6, U/J = 30, �/J = 18.

ν = 4 atoms on three adjacent sites, and moves the outer
two into the middle site’s ν = 1, 2 states with a total cost of
−3� − 2� + 3U = 0, forming a triplon (interaction cost
3U), as depicted in Fig. 8(d). We demonstrate this property
in Fig. 8(e), which compares the fraction of lattice sites
with exclusively two and exclusively three atoms; the latter
is much higher at this resonance. This is why we only see
fractions with numerator 3 and not 2 in Fig. 8(a); all such
fractions correspond to triplon resonances. While there can
be resonances of the form � = 2U/q, these amount to the
formation of doublons in different parts of the lattice and
are harder to resolve in the numerics for this initial state.
All such features can be intuitively understood by writing
the system in the diagonal frame and determining which
spin-flip tunneling processes conserve energy.

The width of the resonances can be understood from
the same arguments as before. All direct resonances will
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have their widths set by the tunneling matrix elements
(for n = 4, these are � = U,U/2,U/3 with rates J4,3, J4,2,
J4,1). Higher-order resonances have effective rates that can
be estimated with perturbation theory. For example, the
� = U/4 resonance for n = 4 requires a two-step pro-
cess that involves two atoms going down a total of four
levels and forming one doublon. This can be done by
one atom going from ν = 4 → 1 and another from 4 →
3, or both going from 4 → 2. The corresponding pro-
cesses would have rates of [J4,1/(−3� + U)]J4,3 × 4 and
[J4,2/(−2� + U)]J4,2 × 2, respectively (each having com-
binatorial factors for the ordering of the steps). The overall
rate can be estimated by summing these together. These
bare widths are then broadened by an effective bandwidth
proportional to the spin-conserving tunneling rates Jν,ν of
the dressed states involved in the resonance.

Another interesting insight is that certain resonances can
now have multiple allowed processes of different orders
happening simultaneously. To demonstrate this behavior,
we study the time evolution of the population at a reso-
nance � = U/2 for n = 4. There is a first-order resonance
as depicted in Fig. 9(a) with interaction-enabled tunnel-
ing between ν = 4, 2, analogous to the � = U resonance
forming leapfrogging doublons for n = 2. This resonance
dominates the dynamics at short times, leading to a deple-
tion and saturation of the ν = 4 state population on a
timescale t|J4,2| � 1. There is also a second-order res-
onance that brings two atoms down from ν = 4 → 3,
analogous to the � = U/2 resonance for n = 2. This sec-
ond resonance causes a further depletion in the average
population on longer timescales of t|J4,3|2/U � 1.

(a) (b)

FIG. 9. (a) Dominant resonant processes for an n = 4 system
at the � = U/2 resonance for our initial state with all atoms in
the highest-energy dressed state ν = 4. The typical rates for each
process are shown. Other processes with similar rates can also
occur, although they require additional moves to become allowed
starting from this initial state. (b) Time evolution of the dressed
state population. System size is L = 7, parameters are U/J = 30,
�/J = 15, φ = 2.0. The system first saturates to an average of
approximately 0.7 (dotted red line to guide the eye; not a the-
ory prediction), which is close to the prediction of 2

3 from the
first-order resonant process. At later times there is a further satu-
ration to a different average of approximately 0.54 (dotted purple
line to guide the eye). The associated timescales t|J4,2| = 1 and
t|J4,3|2/U = 1 are shown by the dashed red and purple lines,
respectively.

In Fig. 9(b) we plot the population’s time evolution
across a wide temporal range. Two plateaus for the two
processes described above are observed to be established
on the predicted timescales. The first plateau saturates to a
value of approximately 0.7, close to the thermal prediction
of 2

3 for the n = 2 system because the process is identical
in nature. The second plateau saturates to a lower value
of approximately 0.54. This latter average is not yet con-
verged in terms of finite size L (see Appendix A) and may
require the inclusion of other processes that kick in once
the allowed ones in Fig. 9(a) have occurred. For example,
the ν = 3 singlons formed from a second-order resonant
process can subsequently undergo first-order resonant tun-
neling on their own. We expect that, for L → ∞, the
system settles to an infinite temperature state described by
a microcanonical average over all energetically accessible
states via both first- and second-order resonant processes.

We note that much of the above discussion does not
require a drive with equally spaced eigenenergies Eν . Each
distinct energy difference 
Eν,ν′ = Eν − Eν′ will have an
associated tunneling process (and hence first-order reso-
nance) provided that the flux φ does not cause the associ-
ated matrix element Jν,ν′ to vanish. Higher-order processes
can be constructed by composing multiple energetically
allowed moves. Having unequally spaced energies can
even help with avoiding different processes acting simul-
taneously, if one wishes to isolate a specific type of
correlated motion.

IV. EXPERIMENTAL IMPLEMENTATION

A. Drive implementation

In this section we describe how the models we study can
be implemented in optical lattice experiments using ultra-
cold alkaline-earth atoms. Such systems feature long-lived
ground and metastable excited states with zero electronic
angular momentum, rendering them robust to perturbations
such as stray magnetic fields. Experiments with alkaline-
earth atoms loaded in 3D optical lattices have also shown
coherence times longer than 10 s [58], which enables the
resolution of long-time average behavior.

For the simplest n = 2 case, the spin states m ∈ e, g can
be represented by long-lived clock states in a magic wave-
length lattice. The laser drive can be realized with a direct
optical transition [12–14]. The flux arises from the pro-
jection of the clock laser wavevector �kc onto the lattice,
φ = a|�kc| cos(θ) with a the lattice spacing and θ the angle
of the laser to the tunneling direction. We consider lat-
tice depths of about 10Er along the tunneling direction and
about 100Er along transverse directions (with Er the recoil
energy), leading to interactions of the order of U ∼ 1 kHz
and tunneling of the order of J ∼ 10–100 Hz for typical
candidate AEAs such as 87Sr. The laser drive Rabi fre-
quency would need to be comparable to the interactions,
� ∼ 1 kHz.
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For generic n ≥ 2, the spin states m ∈ {−S, . . . , S} can
also be realized as the levels of a hyperfine manifold, for
which the drive can be implemented using Raman lasers
[11,15–18]. The lattice depth, tunneling and interaction
strengths should be on the same scales as listed above;
for the drive, the two-photon Rabi frequency of the Raman
couplings would need to be of the order of about 1 kHz to
match the interactions. The specific form of the couplings
depends on the beam configuration. We first discuss a sim-
ple scheme realizing “nearest-neighbor” couplings �m,m+1
along the synthetic dimension. Afterwards, we show a
more complex scheme generating the Ŝx drive with equally
spaced eigenenergies that we studied in preceding sections.

We show a sample configuration of Raman beams in
Fig. 10(a). Our proposed drive schemes will use some
or all of these beams. There is a linear polarized beam
(labeled �0) orthogonal to the lattice direction, and a pair
of right-circular- (�+) and left-circular- (�−) polarized
beams pointed in equal and opposite directions at an angle
θ to the lattice direction, along the quantization axis of
the system. The beams couple a ground electronic hyper-
fine manifold of n states with total angular momentum
S = (n − 1)/2 and projection m ∈ {−S, . . . , S}, which will
be used as the synthetic dimension, to an excited electronic
hyperfine manifold with total angular momentum S′. Each
beam has wavevector magnitude |�kL| and a detuning 
.
The onsite single-particle Hamiltonian describing this laser
configuration is

ĤRaman = Ĥ
 + Ĥ�0 + Ĥ�+ + Ĥ�− , (32)

where Ĥ
 is the detuning,

Ĥ
 = 

∑

m

|S′,m〉 〈S′,m| , (33)

while the other terms are the laser couplings,

Ĥ�0 =
∑

m

(
�0

m |S,m〉 〈S′,m| + H.c.
)
, (34a)

Ĥ�+ =
∑

m

(
�+

m |S,m〉 〈S′,m + 1| + H.c.
)
, (34b)

Ĥ�− =
∑

m

(
�−

m |S,m〉 〈S′,m − 1| + H.c.
)
. (34c)

The single-photon coupling matrix elements are

�0
m = �0〈S,m; 1, 0|S′,m〉,

�±
m = �±〈S,m; 1, ±1|S′,m ± 1〉e±ijφ ,

(35)

where �0, �± are overall strengths set by the laser power
and 〈S,m; 1, 0|S′,m〉, 〈S,m; 1, ±1|S′,m ± 1〉 are Clebsch-
Gordan coefficients. The right- and left-circular-polarized
lasers also have spin-orbit coupling phases e+ijφ and e−ijφ ,
respectively. The flux is φ = a|�kL| cos θ . In principle, each
beam can have an independent angle to the lattice direc-
tion (and hence spin-orbit coupling phase); we choose the
configuration in Fig. 10(a) because it is simpler while still
allowing implementation of the desired schemes.

We show how to generate simple nearest-neighbor cou-
plings along the synthetic dimension in Fig. 10(b). This

(a) (b) (c)

Lattice
Linear 

Right
circular

Left
circular

Time

FIG. 10. (a) General schematic for realizing the SU(n) system using a Raman coupling in a lattice with alkaline-earth atoms. Far-
detuned Raman beams with different polarizations illuminate the lattice. The one-photon couplings �0

m, �±
m are all m dependent due to

Clebsch-Gordan coefficients, but proportional to overall magnitudes �0, �±. The linearly polarized �0 beam propagates perpendicular
to the lattice direction, while the right- and left-circular beams �+, �− point in equal and opposite directions at an angle θ to the lattice
direction. (b) Protocol for generating a “nearest-neighbor” drive coupling along the synthetic dimension. The linear and right-circular
beams are used to realize effective two-photon couplings �m,m+1. The overall intensity of the couplings is set by � = �0�+/
.
The bottom plot shows the energies of the onsite drive eigenstates as a function of �+/�0, demonstrating that the dressed state
spectrum can be tuned. (c) Protocol for generating a spin-S Ŝx-type coupling. Two different laser configurations Ĥ�(1) and Ĥ�(2) are
stroboscopically alternated. They realize effective drives of (Ŝx)2 and −(Ŝx)2 + Ŝx, respectively, yielding the desired Ŝx provided the
stroboscopic rate is faster than the tunneling and interactions.
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scheme uses the linear and right-circular-polarized beams
Ĥ�0 , Ĥ�+ . For large detuning |
| � |�0

m|, |�+
m |, we adi-

abatically eliminate the excited manifold S′ and obtain an
effective two-photon coupling between the ground hyper-
fine states given by �m,m+1 = �0

m+1�
+
m/
 (in the gauged

frame). Each state also experiences Stark shifts given by
�m,m = (|�0

m|2 + |�+
m |2)/
. While these couplings are not

the same as those we studied in the previous sections, sim-
ilar resonant physics can still be obtained because the main
factor determining the resonances is the eigenspectrum Eν

of the drive. The overall energy scale of Eν can be defined
as � = �0�+/
. The splitting between the drive eigen-
states can be tuned by controlling the ratio of the overall
laser intensities �+/�0. Figure 10(b) shows the spectrum
for a sample system with n = 4 levels in both the ground
and excited manifolds (S = S′ = 3/2). By tuning the inten-
sity ratio, one can change the dressed state energies and
thus the permitted resonances.

We can also realize the Ŝx drive that has equally
spaced eigenenergies and couplings �m,m+1 = �m+1,m =
(�/2)

√
(S − m)(S + m + 1), with a stroboscopic proto-

col as discussed in Ref. [56]. We depict this scheme in
Fig. 10(c). The scheme employs two beam configurations
that are alternated for equal time intervals dt much shorter
than the timescales of the lattice dynamics. Specifically, we

use Ĥ�(1) and Ĥ�(2) (still with a large detuning throughout),
given by

Ĥ�(1) = ĤRaman with �0 = 0, �+ = −�−,

Ĥ�(2) = ĤRaman with �+ = �− = −
√

2�0.
(36)

These effectively implement (after adiabatically eliminat-
ing the excited manifold) the following drive couplings:

Ĥ�(1) ≈ +�(Ŝx)2, (37a)

Ĥ�(2) ≈ −�(Ŝx)2 + �Ŝx, (37b)

� = 8(�+)2

15

. (37c)

Here � is the effective two-photon Rabi frequency for this
implementation, and the flux is still set by φ = a|�kL| cos θ .
Stroboscopically alternating these two Hamiltonians yields
an effective drive �Ŝx, as desired.

B. State preparation and measurement

Preparing the initial state |ψ0〉 is possible with either a
single-particle adiabatic ramp, or a pulse sequence. The

(a)

(b)

(c)

FIG. 11. (a) State preparation using a single-particle adiabatic ramp for n = 2 (spin S = 1/2). Atoms are initialized in the lab frame
spin state g, and a laser coupling is turned on with a large negative detuning −δ � �. Ramping δ → 0 sweeps the system into the
desired initial state |ψ0〉 with every lattice site in the highest-energy eigenstate ↑ of the drive. (b) Similar adiabatic preparation for an
n > 2 system (S > 1/2). The detuning is replaced by, e.g., a magnetic field splitting of hyperfine states proportional to a field strength
B, which is ramped to zero. The plot shows a numerical simulation of such a ramp for an n = 4 system, using the coupling scheme
in Fig. 10(b) for sample parameters of �+/�0 = 3, �/J = 2, and U/J = 30. The inset shows the ramp profile. The highest-energy
drive eigenstate ν = 4 is prepared with > 99% fidelity. (c) State preparation protocol using a pulse and phase skip sequence, which
works for a system with a Ŝx drive and any n ≥ 2. Blue arrows denote the spin direction of each atom, while purple arrows denote the
laser drive direction. Atoms are first prepared in a single lab frame spin state m = −S without any detuning or field splitting. The laser
drive is turned on and used to implement a π/2 pulse, rotating the spins onto the equator of the Bloch sphere (or the generalized Bloch
sphere of the fully symmetric manifold for n > 2). The drive phase is then skipped ahead by π/2 with, e.g., a fast detuning pulse,
which advances its axis of rotation to be aligned with the spin state. This prepares the desired |ψ0〉.
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ramp protocol is shown for the simplest n = 2 case in
Fig. 11(a). The system is initialized with all atoms in the
lab frame spin state g. Then, the drive laser is turned on,
with an initially large negative detuning δ < 0 correspond-
ing to a Hamiltonian term Ĥδ = (δ/2)

∑
j (n̂j ,e − n̂j ,g),

which is subsequently ramped to δ = 0. This adiabatically
transfers every atom to the dressed state ↑, realizing the
required spiral state (in the lab frame). To prevent tunnel-
ing dynamics during state preparation, one can start with a
very deep lattice such that J is negligible on the timescale
of the ramp, and reduce the depth after preparation is done.

For n > 2, state preparation is still possible with a
single-particle adiabatic ramp. To do so, all of the n hyper-
fine levels must be split in energy, which is not possible
with a single laser detuning, as was shown for n = 2, but
can be realized with, for example, a magnetic field ramp,

ĤB(t) = B(t)
∑

j ,m

mn̂j ,m. (38)

The scheme starts with a spin-polarized state with all atoms
in a single hyperfine level m = +S [the highest-energy
state provided B(0) > 0] and a large field |B(0)| � |�|.
The field is then ramped down to B = 0, yielding an eigen-
state of the drive with the highest energy ν = n. To test
this numerically, we use the sample coupling scheme in
Fig. 10(b). We fix the amplitudes �0, �+ and numerically
simulate an adiabatic ramp of Ĥ + ĤB(t) for a candidate
ramp profile in Fig. 11(b), showing that one can initialize
most atoms in a single drive eigenstate as required.

As an alternative to an adiabatic ramp, for a Ŝx drive
[realized using a direct laser coupling for n = 2 or the stro-
boscopic scheme in Fig. 10(c) for n > 2], one can prepare
the initial state |ψ0〉 with a single laser pulse followed by
a phase skip. This preparation is shown in Fig. 11(c) in
the lab frame. One initializes all atoms in a single m = −S
state, without any detuning or field splitting. The laser
drive is then turned on for a time t� = π/2, realizing a
π/2 pulse that rotates each spin onto the equator of the
spin-S Bloch sphere. The phase of the laser drive is finally
skipped ahead by π/2, which aligns its axis of rotation with
the spin. This realizes the desired state |ψ0〉 with each atom
in the highest-energy drive eigenstate.

For either preparation scheme, measurements of the
initially populated dressed state can be performed by
reversing the state preparation and measuring the popula-
tion of the initially loaded hyperfine state using standard
spectroscopy protocols. Measuring the currents is possi-
ble using spin-resolved time-of-flight measurements [11],
exploiting that the current of a given leg m is given by∑

k sin(ka)n̂k,m.

C. Imperfections

Here we provide a discussion of possible experimen-
tal imperfections, considering non-unit-filling, external

trapping potentials, imperfect alignment of the lasers, and
unequal tunneling rates.

One potential source of error is an imperfect filling frac-
tion N/L < 1 at finite temperatures. However, the presence
of holes in the initial state is not a major concern for the
dynamical signals we study. Holes will allow for more
tunneling (thus broadening the resonances), but will not
inhibit the interaction-enabled processes completely. We
verify this in Figs. 12(a) and 12(b), which plots the aver-
age chiral current and dressed state population for n = 2
in the presence of one or more holes in the initial state
(assuming that the atoms that are present still get prepared
in the highest-energy dressed state). The higher-order reso-
nant features become weaker and broader, while the � = 0
resonance (corresponding to the noninteracting resonance)
becomes stronger; however, all of the features discussed
previously can still be resolved.

Another physical mechanism that affects the resonances
is harmonic trapping due to a finite laser beam waist, which
can be captured by a simple quadratic spin-independent
potential:

Ĥtrap = ωtrap

∑

j

(j − j0)2
∑

m

n̂j ,m (39)

with ωtrap the trap energy and j0 = (L + 1)/2 the center
of the lattice. A harmonic trap will also cause broadening
since the energy cost for resonant processes will become

(a)

(c) (d)

(b)

FIG. 12. (a) Average chiral current for the n = 2 system with
holes in the initial state. The parameters are L = 9, U/J = 30,
φ = π/2. Time averaging is done out to tJ = 500. The N/L =
8/9 curves have a single hole initially at lattice site j = 1, while
the N/L = 7/9 curves have holes initially at sites j = 1, 3. (b)
Average dressed state population for the same setup. (c) Average
chiral current for the n = 2 system in the presence of a harmonic
trap Ĥtrap. We use the same parameters as (a), except with open
boundaries and no holes. (d) Average dressed state population for
the same setup.
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site dependent, but should not destroy the predicted reso-
nances provided that the site-to-site trap energy differences
near the center of the lattice are weak compared to the tun-
neling rates. This is confirmed in Figs. 12(c) and 12(d) that
show the chiral current and dressed state population for
different trap energies.

Yet another potential error source is imperfect con-
trol over the laser alignment angles. However, such mis-
alignment will only cause small discrepancies in the flux
φ, which should not significantly change the long-time
dynamical behavior so long as the dressed state tunneling
rates Jν,ν′ relevant to a desired resonance do not completely
vanish if φ is perturbed.

Finally, we have assumed equal tunneling rates J for
all of the bare spin states m. Any deviation from this
regime due to, e.g., nonmagic lattices does not significantly
alter our results even if the shifts are non-negligible. The
dressed state tunneling rates Jν,ν′ are already sums over
the independent tunneling matrix elements of the bare spin
states in Eq. (26). An m-dependent tunneling rate would
enter into the sum and modify the dressed state matrix ele-
ments Jν,ν′ , but will not qualitatively alter the physics that
we describe provided that the relevant Jν,ν′ do not vanish.

V. CONCLUSIONS AND OUTLOOK

We investigated the quench dynamics of driven and
strongly interacting SU(n) fermions with one atom per
site in synthetic flux ladders. We showed the emergence
of rich interaction-induced multibody resonances at spe-
cific values of the Rabi drive, which induce particle flow
and generate chiral currents with nontrivial patterns. Lad-
ders involving a larger number of internal levels exhibit
more prolific spectra of resonances that manifest on shorter
timescales (set by the tunneling rate) because of the pres-
ence of more types of energetically favorable processes.
The resonances exhibit kinetically constrained quantum
dynamics determined by the allowed types of tunneling,
which can be intuitively understood in the diagonal frame.
One advantage in this setup is that the atoms are highly
mobile while still being subject to nontrivial density-
dependent effects, which can allow the natural generation
of exotic correlated states through dynamical evolution
without needing to reach ultracold temperatures to pre-
pare ground states or to engineer complicated many-body
Hamiltonians or initial conditions.

An interesting future direction is to compare our the-
ory results to systems that emulate more conventional 2D
materials. Such systems would have a synthetic dimen-
sion coupling that is homogeneous rather than m depen-
dent (i.e., treating the synthetic dimension as a proper
lattice dimension in its own right). Furthermore, unlike
the all-to-all interactions in the synthetic direction due to
SU(n) symmetry in our system, the interactions in real

materials will be short ranged in both directions. Theoret-
ical comparisons to such systems are relevant to studies
of the fractional quantum Hall effect. It is likely that
the fractional resonances we see will still survive with
shorter-range interactions because we work in a basis of
dressed states determined by diagonalizing the couplings
along the synthetic dimension. These dressed states are
delocalized along that dimension, which will cause even
short-range interactions to effectively become long range
when the interaction Hamiltonian is written in the dressed
basis.

The ability to isolate special types of resonant processes
with this system also opens pathways to several other gen-
eral applications in quantum simulation. For example, the
ability to exclusively form triplons without creating dou-
blons enables the clean study of higher-order collisional
interactions. By bringing the system to the correspond-
ing resonance one can measure the effect of coherent
three-body interactions [22] (which would shift the posi-
tion of the resonance), or the associated incoherent loss
rates (which would lead to faster atom number decay at
the resonance). Such correlated processes are also integral
to the simulation of dynamical gauge theories. One can
understand the restriction of only forming triplons as an
effective symmetry constraint on the permitted site occu-
pancy. As a further extension, if the drive spectrum Eν

exhibits degeneracies, one can have resonantly coupled
subspaces with more than one state per site. This can lead
to effective non-Abelian extensions of density-dependent
tunneling models, where the mobile particles themselves
have effective spin degrees of freedom within their dynam-
ically constrained Hilbert space. Generating such a system
is possible with a drive that resembles a (Ŝx)2 operator for
example, which can be realized using the beam configura-
tions discussed in the previous section following Ref. [56].
However, we delegate the study of such systems to future
work.

Another avenue for future work is the study of these
systems in higher spatial dimensions. We considered
1D chains (hence 2D ladders when including the syn-
thetic dimension) for numerical simplicity. However, it is
straightforward to extend these types of schemes to 2D
or even 3D lattice configurations using 3D optical lat-
tice experiments, simply by reducing lattice depth along
more than one dimension. Conventional Raman coupling
schemes translate in a straightforward manner; depending
on the angle of the beams, each lattice direction will have
its own associated flux φx, φy , etc. All of the method-
ology that we have used will remain applicable, with
separate spin-flip tunneling matrix elements along each
dimension in the diagonal frame. Moreover, one can even
tune the fluxes to allow certain types of resonant processes
along one dimension but not another by tuning the associ-
ated tunneling matrix elements by the corresponding flux.
Finally, all of the physics we have considered has been
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focused on measuring collective observables of the sys-
tem (in the appropriate frame). State-of-the-art tools like
optical tweezers and quantum gas microscopes for AEAs
allow for the preparation and site-resolved measurement
of quench dynamics for nonuniform initial states [59–62].
A particularly promising aspect is hybrid systems using
both tweezers and lattices, which can allow the preparation
of specific multiatom configurations that undergo resonant
dynamics (like the leapfrog doublons). This possibility
opens the avenue to study their propagation, transport, col-
lisional properties, and relaxation in a spatially resolved
fashion.
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APPENDIX A: NUMERICAL CONVERGENCE

In this appendix we provide numerical scaling with sys-
tem size L for some of the results presented in the paper.
Figure 13(a) shows the long-time average population for
the n = 2 system near the � = U/2 resonance, in analogy
with the middle panel of Fig. 4(a). The profile of the peak
becomes more smooth and the height increases for larger L.
In Fig. 13(b) we plot the scaling of the peak height with L,
showing that it saturates towards a finite value. This value
is in good agreement with the predicted thermal average
of 1/2, as derived in Appendix C. Figure 13(c) shows the
scaling of the peak height for the � = U resonance instead,
for which the agreement with the prediction of 2/3 is also
reasonable.

In Fig. 13(d) we show scaling of the transient evolution
for the excited state population of the n = 4 system, same
as Fig. 9(b). The average of the first plateau in these pro-
files is in good agreement with the value of 〈n̂4〉∞/L =
2/3. The average of the second plateau does not yet look
converged for the accessible system sizes, although it also
appears to be saturating towards a thermal average. The
main text figure does not use the largest system size (L =
7 instead of L = 8) so that the two plateaus are clearly
visible.

APPENDIX B: DIFFERENT INITIAL STATE

For the n = 2 system, we study dynamics of an initial
state with all atoms in the ↑ dressed state, correspond-
ing to a delocalized superposition of the spin states e, g
on every site, |ψ0〉 = ∏

j â
†
j ,↑ |0〉 = ∏

j (1/
√

2)(eijφ/2ĉ†
j ,e +

(a)

(b) (c)

(d)

FIG. 13. (a) Long-time average population 〈n̂↑〉∞ for the n =
2 system near the � = U/2 resonance, for different system
sizes L. The parameters are U/J = 30, φ = π/2, time evolu-
tion is done to tJ = 1500, and averaging is done over the second
half of the evolution, tJ = 750 to 1500. (b) Long-time average
population at the � = U/2 resonance in terms of system size,
fixing �/J = 15.15 (where the peak appears to be centered).
The orange dashed line is the thermal prediction of 1/2. (c)
Same as (b) but for the � = U resonance, fixing �/J = 30.15.
(d) Long-time average population for the n = 4 system at the
� = U/2 resonance for different system sizes L. The parameters
are U/J = 30, φ = 2.0.

e−ijφ/2ĉ†
j ,g) |0〉 in the lab frame. The resonances we see are

not exclusive to this state. Every initial condition can be
written in the diagonal frame as a superposition of Fock
states {|n1,↑, n1,↓, n2,↑, n2,↓, . . .〉} with nj ,ν the number of
ν ∈ {↑, ↓} dressed atoms on site j . Our initial condition is
|ψ0〉 = |1, 0, 1, 0, 1, 0, . . .〉. A different initial condition can
also undergo resonant dynamics, provided that at least one
of its Fock state components has some allowed moves as
shown in Fig. 3(a).

To demonstrate this property, in Fig. 14 we plot the long-
time average population 〈n̂↑〉∞ for a different initial state,

|ψ̃0〉 =
∏

j

ĉ†
j ,e |0〉 , (B1)

corresponding to all atoms starting in the e spin state (thus
one leg of the ladder). We see that the resonances are still
present, just reduced in magnitude. The reduction happens
because only some components of the state can undergo
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FIG. 14. Long-time average population 〈n̂↑〉∞ for the n = 2
system with the different initial state |ψ̃0〉 from Eq. (B2). The
parameters are L = 9, U/J = 30, φ = π/2, and time averaging
is done out to tJ = 500.

dynamics. For example, if we have L = 2, this initial state
can be written in the diagonal frame Fock basis as

|ψ̃0〉 |L=2 =
2∏

j=1

1√
2

(
â†
j ,↑ + â†

j ,↓
) |0〉

= 1
2
(|1, 0, 1, 0〉 + |1, 0, 0, 1〉 + |0, 1, 1, 0〉

+ |0, 1, 0, 1〉). (B2)

At the � = U resonance the |1, 0, 1, 0〉 state can undergo
dynamics via resonant tunneling while the rest will remain
frozen due to the constraints. Larger systems and higher-
order resonances will lead to different fractions of states
that are “allowed” to move, but the system will have a
response provided that this fraction is non-negligible.

APPENDIX C: THERMAL AVERAGE

Here we show how the thermal average of the 〈n̂↑〉
observable for the n = 2 system can be predicted for res-
onances of the form � = U/q with q ∈ {1, 2, 3, . . .}. At
resonance, the full Hilbert space of the system has a
subspace of nres Fock states {|φn〉} that have the same
energy as the initial state, 〈φn| Ĥ |φn〉 = 〈ψ0| Ĥ |ψ0〉 =
L�/2. During dynamics the system equilibrates by explor-
ing this subspace. Upon equilibrating, it reaches a ther-
mal state described by a microcanonical ensemble within
the subspace. Since this ensemble is effectively at infi-
nite temperature, the equivalent density matrix is given
by ρth = P̂res/nres, where P̂res = ∑

n |φn〉 〈φn| projects onto
the accessible subspace. The thermal value of the observ-
able is then 〈n̂↑〉∞ = tr(P̂resn̂↑)/nres.

Both the trace and the number of states in the subspace
grow exponentially with the size of the system L. One must
use combinatorics to find 〈n̂↑〉∞ as a function of L, then
take L → ∞. We do this below, although in general it is a
challenging problem. Before doing so, we first show that a

much more simple approach can be taken by using a rate
equation formalism.

Assume that out of all the lattice sites, a fraction N↑ have
an ↑ single atom, N↓ have a ↓ single atom, Nd have a dou-
blon, and Nh have a hole. This has the obvious constraint
that

N↑ + N↓ + Nd + Nh = 1. (C1)

For a filling of 1 atom per site, there is a doublon for every
hole,

Nd = Nh. (C2)

Finally, for our initial state of all atoms in ↑ with energy
�/2, energy conservation gives

�

2
N↑ − �

2
N↓ + UNd = �

2
. (C3)

Combining the above three equations yields

N↑ +
(

1 + U
�

)
Nd = 1. (C4)

For a resonance � = U/q, we then have

N↑ + (1 + q)Nd = 1. (C5)

The resonant process creates one doublon from q + 1
adjacent ↑ singlons. We can write this relation as a rate
equation

d
dt

(
N↑
Nd

)
∼

(−(q + 1) (q + 1)

1 −1

) (
N↑
Nd

)
, (C6)

where the rate prefactor will be given by the respective
resonant process (J⊥ for q = 1, 4J 2

⊥/U for q = 2, etc.). At
time t = 0 we have N↑ = 1 and Nd = 0. In the limit of t →
∞ where the system is at equilibrium, the time derivative
is equal to zero, which yields the solution

N↑(t → ∞) = Nd(t → ∞) = 1
q + 2

. (C7)

Since both an ↑ singlon and a doublon contain an ↑
atom, the equilibrium value of the 〈n̂↑〉 observable can be
predicted as

〈n̂↑〉∞
L

= N↑(t → ∞) + Nd(t → ∞) = 2
q + 2

. (C8)

For resonances � = U, U/2, U/3, this yields 2/3, 1/2,
2/5, respectively, as discussed in the main text. The val-
ues of other observables like 〈n̂↓〉∞ can be predicted using
the conservation relations above.
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We note that this simple, coarse-grained approach relies
on the assumption that the entire accessible subspace can
be reached with resonantly allowed moves. This assump-
tion is true for our simple initial state of all-↑ singlons.
However, it may not hold for a generic initial state, espe-
cially in special regimes such as φ = π for which tun-
neling is more constrained, or for n > 2 systems. A local
rate equation approach would be needed in such a case to
account for the local constraints, and quantum interference
effects may become more relevant.

Having shown a simple way to predict the thermal aver-
age, we now directly compute the microcanonical ensem-
ble average by counting the accessible many-body states of
the system. A many-body state has a total number N↑ =
LN↑ of ↑ singlons, N↓ = LN↓ of ↓ singlons, Nd = LNd
doublons, and Nh = LNh holes. For any given set of num-
bers {N↑,N↓,Nd,Nh}, there are L!/(N↑!N↓!Nd!Nh!)
ways to permute them among the lattice sites, and hence
that many different many-body states. However, using the
conservation relations, we can reduce these numbers to just
the number of doublons,

N↑ = L − (q + 1)Nd, (C9a)

Nh = Nd, (C9b)

N↓ = (q − 1)Nd. (C9c)

To ensure that N↑,Nh,N↓ ≥ 0, the number of doublons
Nd can take on values of Nd = {0, 1, . . . , [L/(1 + q)]}.
The total number of states in the accessible subspace is
then

nres =
∑

N↑,N↓,Nd ,Nh

L!
N↑!N↓!Nd!Nh!

=
L/(1+q)∑

Nd=0

L!
Nd!2[(q − 1)Nd]![L − (q + 1)Nd]!

.

(C10)

Furthermore, the trace of the observable can also be
obtained since the expected number of ↑ atoms for each
state with a given N↑ is (N↑ + Nd)/L = (L − qNd)/L

tr(P̂resn̂↑) =
L/(1+q)∑

Nd=0

L!
Nd!2[(q − 1)Nd]![L − (q + 1)Nd]!

× L − qNd

L
. (C11)

The sums in Eqs. (C10) and (C11) can be explicitly eval-
uated, and tend to involve generalized hypergeometric
functions. For example, nres = 2F1[(1 − L)/2, −L/2, 1; 4]
for q = 1. However, a much simpler way to approximate
the ratio of the sums in the L → ∞ limit is to replace

the sums by the maximum values of their respective sum-
mands, which occur at Nd = L/(2 + q) for both sums.
Replacing the sums by the summand at Nd = L/(2 + q)
gives

〈n̂↑〉∞
L

= tr(P̂resn̂↑)

nres
≈ L − qNd

L
= 2

q + 2
. (C12)

This value of 〈n̂↑〉∞/L agrees with the value we predicted
from the rate equations in Eq. (C8).
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