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Machine learning algorithms are increasingly used for inference and decision-making in embedded systems. 

Data from sensors are used to train machine learning models for various smart functions of embedded and 

cyber-physical systems ranging from applications in healthcare, autonomous vehicles, and national security. 

However, recent studies have shown that machine learning models can be fooled by adding adversarial noise 

to their inputs. The perturbed inputs are called adversarial examples. Furthermore, adversarial examples de- 

signed to fool one machine learning system are also often effective against another system. This property 

of adversarial examples is called adversarial transferability and has not been explored in wearable systems 

to date. In this work, we take the first stride in studying adversarial transferability in wearable sensor sys- 

tems from four viewpoints: (1) transferability between machine learning models; (2) transferability across 

users/subjects of the embedded system; (3) transferability across sensor body locations; and (4) transferabil- 

ity across datasets used for model training. We present a set of carefully designed experiments to investigate 

these transferability scenarios. We also propose a threat model describing the interactions of an adversary 

with the source and target sensor systems in different transferability settings. In most cases, we found high 

untargeted transferability, whereas targeted transferability success scores varied from 0% to 80% . The trans- 

ferability of adversarial examples depends on many factors such as the inclusion of data from all subjects, 

sensor body position, number of samples in the dataset, type of learning algorithm, and the distribution of 

source and target system dataset. The transferability of adversarial examples decreased sharply when the 

data distribution of the source and target system became more distinct. We also provide guidelines and sug- 

gestions for the community for designing robust sensor systems. Code and dataset used in our analysis is 

publicly available here. 1 
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 INTRODUCTION 

achine learning ( ML ) algorithms have increasingly become an integral part of embedded and
yber-physical systems. In the context of embedded systems, ML models are used to drive the
nference and smart decision-making capabilities of embedded and wearable sensor systems. For
xample, data from sensors such as accelerometer and gyroscope are used for human activity
ecognition [ 34 ], images from camera are used to detect stop signs in self-driving cars [ 37 ], and
ound signals are used for person detection in smart home applications [ 20 ]. Advances in sensor
nd computation technologies now allows for real-time continuous use of ML algorithms for smart
unctionalities inherent in modern embedded systems. 
However, recent studies have found that an adversary can easily fool ML models with the ad-
ition of carefully computed perturbations to their inputs [ 7 , 14 , 33 , 35 ]. These perturbed inputs
re referred to as adversarial examples . Even the addition of a small but carefully computed per-
urbation to benign inputs, as shown in Figure 1 , can degrade the performance of ML systems
ignificantly [ 3 , 21 , 29 , 33 , 35 ]. What distinguishes adversarial perturbations from random noise is
hat adversarial examples are misclassified far more often than samples that have been perturbed
y random noise, even if the magnitude of random noise is much larger compared to the adversar-
al perturbation [ 35 ]. The problem is further exacerbated by the fact that adversarial examples are
ighly transferable and adversarial examples computed to attack one ML system are often success-
ul in fooling another ML system. The issue of adversarial examples raise serious concern about
he security and reliability of ML algorithms and in-turn on embedded systems because of their
eliance on ML algorithms for important functions. Studying adversarial examples and their prop-
rties in the context of embedded system is an important topic to safeguard and invent measures
o make these systems secure and robust against adversarial attacks. 

.1 Motivation 

irst we establish the threat model used in this work and answer why the transferability of adver-
arial examples is crucial to the discussion of robustness in ML powered embedded sensor systems.
ssume Bob, an adversary, has complete access to source system S 1 with ML model M 1 trained
sing dataset D 1 . Alice is a system administrator who wants to protect the target system S 2 with
L model M 2 trained on dataset D 2 as shown in Figure 2 . The dataset D 1 available freely can be
ccessed by anyone and dataset D 2 can be the same as D 1 or some private dataset only available
o Alice. Also, models M 1 and M 2 can be of same or different types or architectures and have same
r different hyper-parameter values. Bob has access to Alice’s system via an oracle, and hence can
ubmit inputs and observe outputs. Bob being an adversary wants to attack Alice’s system, such
hat M 2 is fooled in classifying inputs into wrong classes. Bob can attack Alice’s system in one of
wo ways. Bob can either compute adversarial examples using M 1 and D 1 and transfer them to M 2

n the hope of fooling M 2 or train a substitute model M S on dataset D S generated using the oracle
nd then use the substitute model to compute adversarial examples to fool M 2 . In both cases, Bob
ries to exploit the transferability property of adversarial examples to attack target system S 2 . In
his work, we explore different types of adversarial transferability inherent to embedded sensor
ystems Bob can exploit to attack Alice’s system. In the discussion, that follows we recognize Bob’s
ystem as Source System and Alice’s system as Target System . For all four adversarial transferability
odes we have discussed in this work, Bob has complete access to source system S 1 , but can only
uery target system S 2 on inputs and observe outputs. 
Adversarial transferability captures the ability of an adversarial attack against an ML system to
e effective against other independently trained systems [ 11 ]. The transferability of adversarial
xamples was first examined in [ 35 ], in which the authors studied adversarial transferability
1) between different ML models trained over the same dataset, and (2) between same or
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 1. 3-axial graphs for a benign sample take from the dataset, a targeted adversarial sample computed 
using the BIM, and a benign sample for the target class. 

Fig. 2. The operating scenario for transferability of adversarial examples. Bob is an adversary with complete 
access to source system (S 1 ) and wants to attack Alice’s system (S 2 ) by computing adversarial examples 
using the source system and transferring them to Alice’s system. 
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ifferent machine learning models trained over disjoint subsets of a dataset. Motivated by the
esults of [ 11 ], numerous studies have explored adversarial transferability for both test-time
vasion attacks and training-time poisoning attacks [ 11 , 25 , 29 , 33 ]. Furthermore, prior research
as shown that adversarial examples can be generated in wearable sensor systems for human
ctivity recognition [ 33 ]. However, the transferability of adversarial examples that take into
ccount characteristics of embedded systems has not been studied yet, leaving a gap in the
esearch, which we believe has significant and novel consequences. Because in addition to the
raditional notion of transferability—between different models trained on the same or disjoint
ubsets of a dataset—we also need to consider new dimensions when exploring adversarial
ransferability in wearable sensor systems. 
Embedded systems are dynamic in nature with properties impacting their operation. For exam-
le, consider the placement of a wearable device on the human body to detect human daily living
ctivities. There are many devices available in the market today that can be worn on the body in
arious ways. Some are worn as a watch, others can be clipped onto clothes or shoes, strapped
round the chest, and so forth. Furthermore, depending on the body location of the device, the
ensor readings are very different, and consequently, ML algorithms trained on these sensor data
earn unique mappings between inputs and outputs. Therefore an adversary who is planning to
ttack these types of ML systems must also take into account the different properties associated
ith them. These properties are well discussed in the literature [ 26 , 41 ] for the case of building
nference models. But to the best of our knowledge, there has not been any work that had dis-
ussed these properties of embedded systems from an adversarial point of view. All these lead to
he fact that adversarial transferability in sensor systems is not simple and straightforward and
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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as many nuances. We believe an extensive study of the adversarial transferability will not only
how the strength of adversarial attacks but also mark their shortcomings and help us understand
his unexplored problem space. 

.2 Contributions 

n this article, we present the first comprehensive evaluation of the transferability of adversarial
xamples in the context of embedded sensor systems with wearable-based activity recognition
s our pilot application. We not only consider the traditional notion of transferability but extend
hat with novel transferability directions unique to sensor systems. In particular, we discuss the
ransferability of adversarial examples from the following four perspectives: 

—Adversarial transferability between ML models. 
—Adversarial transferability across users. 
—Adversarial transferability across sensor body locations. 
—Adversarial transferability between datasets. 

To this end, we make the following contributions to this work. We for the first time introduce
nd define novel types of adversarial transferability in the context of embedded sensor systems
ith a particular focus on wearable computing systems. Second, we conduct an extensive set of ex-
eriments that highlight vulnerabilities and strengths of embedded systems under different trans-
erability cases for both targeted and untargeted evasion attacks. Third, we discuss and validate our
esults with theoretical and graphical interpretations that take into account the properties of both
odels and data distribution. Finally, we discuss open problems and possible research directions
or adversarial transferability in general for sensor systems. 

 BACKGROUND 

.1 Human Activity Recognition Pipeline 

he problem of human activity recognition can be defined as: Given a set W = { W 0 , . . . , W m−1 } of
equally sized temporal window of sensor readings, such that each window W i contains a set of

ensor reading S = { S i,0 , . . . , S i,k−1 } , and a set A = { a 0 , . . . a n − 1 } of n activity labels, the goal is
o find a mapping function f : S i → A that can be evaluated for all possible values of S i [ 22 ]. Raw
ata from sensors, such as accelerometer, gyroscope, and magnetometer, are collected and passed
nto the processing stage for filtering and noise removal. The next stage is segmentation, where a
ontinuous stream of the sensor values is divided into temporal windows. After segmentation, sta-
istical and structural features are extracted from each window segment and are used to train ML
lgorithms for activity classification. Another very successful approach to human activity classi-
cation uses Convolutional Neural Network ( CNN ) with raw sensor segments as inputs. CNN
odel learns the features and the classifier simultaneously during the training process from raw
ensor data. 

.2 Adversarial Machine Learning 

iven an ML classifier f θ (x) characterized by the parameters θ and trained on dataset D = { (x , y )} ,
n adversary tries to find inputs that are formed by applying small but intentional perturbations
δ ) to the original samples x such that the perturbed inputs x̄ = x + δ are almost indistinguishable
rom the original samples and result in the classifier predicting an incorrect label ȳ with high confi-
ence. These perturbed input samples are called adversarial examples . The objective of adversarial
earning is to find perturbation δ which when added to the original inputs x changes the output
f the classifier f θ (x̄ ) � y. In general, an adversary can attack an ML system in three ways. 
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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(1) Poisoning Attacks : In poisoning attacks, an adversary attempts to degrade the performance
of an ML classifier by injecting adversarial examples during the training process to force
the classifier to learn false connections between input and outputs. 

(2) Evasion Attacks : Evasion attack is the most common type of adversarial attack carried out
during test time and involves getting the target model to make mistakes on input samples.
Evasion attack is sub-divided into two types: (1) untargeted attack, and (2) targeted attack.
In an untargeted attack, an adversary intends to misclassify x̄ into any class other than
its true class i.e., f θ (x̄ ) � y such that f θ (x) = y. For a targeted adversarial example x̄ , the
adversary defines the target class ȳ in which it wants to have the target model classify the
adversarial example. 

(3) Exploratory Attacks : In exploratory attacks, the adversary tries to gain as much knowledge
as possible about the learning algorithm of the target system and patterns in the training
data. 

We only consider evasion attack methods in our analysis, because we evaluate adversarial trans-
erability at inference time. The difficulty in mounting evasion attacks against a target system is
eavily influenced by the knowledge an adversary has about the target system. The extent of an
dversary’s knowledge about the target system dictates the setting in which it operates. 

(1) White-box Setting : A white-box setting assumes that the adversary has complete knowl-
edge about the target system. It includes anything related to the target system such as
dataset, model architectures, hyper-parameters values, activation functions, number of
layers, and model weight. This comprehensive knowledge about the target system makes
it easier for the adversary to mount successful evasion attacks. In this mode, the adversary
can compute adversarial examples using the target system and does not have to rely on
the transferability property of adversarial examples. 

(2) Black-box Setting : In the black-box setting, the adversary has no knowledge of the tar-
get system. The adversary only has access to an oracle to the target system to submit
inputs and observe outputs. Evasion attacks in a black-box setting exploit the transfer-
ability properties of adversarial examples to mislead the target system. 

The difficulty of operating in a black-box setting is mitigated by exploiting the transferability
roperty of adversarial examples. In our threat model, adversary Bob operates in the white-box
etting with respect to source system S 1 and black-box setting with respect to the target system
 2 . Hence, Bob depends on the transferability property of adversarial examples computed using S 1
o fool the target system S 2 . 

.3 Methods of Generating Adversarial Examples 

he fundamental condition when computing adversarial example is that the perturbation δ =
{δ1 , δ2 , . . . , δn } added to the benign samples x = {x 1 , x 2 , . . . , x n } to get adversarial samples x̄ =
{ ̄x 1 , x̄ 2 , . . . , x̄ n } cannot be large. This requirement is satisfied by bounding the adversarial pertur-
ation δ with some adversarial budget ϵ using l p −norms, where p ∈ {0 , 1 , 2 , ∞}. For a model f θ ,
dversarial examples x̄ are defined as the solution to the following optimization problem: 

x̄ = x + arg min 
δ

{‖δ ‖ : f (x + δ ) � f (x)}S . (1)

Here, ‖ . ‖ is a type of l p −norm defined by the method used to compute adversarial examples. For
wo vectors x and x̄ , l 0 counts the number of elements in x̄ that has changed its values compared
o x , l 2 measure the Euclidean distance between the two vectors, and l ∞ denotes the maximum
hanges for all elements in the vector x̄ . 
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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2.3.1 Fast Gradient Sign Method (FGSM). FGSM was proposed in [ 14 ] and is one of the simplest
nd computationally efficient method to compute adversarial examples. FGSM computes the ad-
ersarial perturbation by calculating the gradient of the loss function of the model with respect to
he input. This method solves the following optimization problem to maximize the loss such that
dversarial perturbations are bounded by ϵ subject to l ∞ norm. 

x̄ = x + ϵ ∗ sign (∇ x J θ (x , y)). (2)

Here, J θ is the loss function, and ∇ x denotes the gradient of the loss function with respect to
he input x , and y is the actual label [ 9 ]. For targeted examples, FGSM minimizes the loss function
ith respect to input x such that the modified input is classified into the target class ȳ specified
y the adversary. 

x̄ = x − ϵ ∗ sign (∇ x J θ (x , ̄y )). (3)

otice the change in sign and also the presence of the target class ȳ in the optimization Equa-
ion ( 3 ). For targeted case, we are trying to find adversarial perturbations δ that decrease the loss
f the model for the target class ȳ and for untargeted case we find adversarial perturbations which
ncrease the loss of the model in general. 

2.3.2 Basic Iterative Method (BIM). BIM is an extension to the fast gradient sign method and
uns FGSM n number of times with a small step size. Iteratively running FGSM allows the adversary
o search the model input space thoroughly to find optimal perturbations. 

x̄ 0 = x , 

x̄ n+1 = Clip x,ϵ { ̄x n + α ∗ sign (∇ x J θ (x , y ))} . 
(4)

ere, α is the step size and is usually defined as α = ϵ/n. Clip x,ϵ (A) denotes the element-wise
lipping of A, such that the range of A i, j after clipping is in the interval [x i, j − ϵ, x i, j + ϵ]. The
IM can also be used to compute targeted adversarial examples by the simple modification of sign
eversal and the introduction of the target class in Equation ( 4 ). 

2.3.3 Jacobian-based Saliency Map Attack (SMM). Jacobian-based saliency map attack (SMM)
 30 ] finds features of input x that cause the most significant changes to the output of the model.
MM computes perturbations that induce significant output variations such that a change in a
mall portion of features of x foold the target model [ 39 ]. SMM computes the Jacobian matrix of
he given input x to determine adversarial perturbations. 

J F (x ) = 
∂F (x )

∂x 
= 

[
∂F j (x )

∂x i 

]
ix j 

. (5)

ere, F is the second-to-last layer logits of the neural network. 

2.3.4 Carlini-Wagner (CW) Attack. The CW attack solves the following optimization problem
o find adversarial perturbations. 

min ‖δ ‖ p 

subject to C(x + δ ) = t , x + δ ∈ [0 , 1 ]n 
(6)

here C(x) is the class label returned for input x and the noise level is measured using either
 0 , l 2 or l ∞ norm. CW attack is considered one of the best evasion attack method and computes
dversarial examples by finding the smallest noise δ ∈ R 

nxn that changes the classification of the

odel to a class t . 

CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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2.3.5 Momentum Iterative Attack (MIM). Momentum iterative attack method [ 12 ] integrates the
oncept of momentum into the BIM to generate adversarial examples for targeted and untargeted
ases using l 2 and l ∞ norms respectively. The momentum is a technique for accelerating gradient
escent algorithms by accumulating a velocity vector in the gradient direction of the loss function
cross iterations [ 12 ]. The introduction of momentum helps the method achieve optimum results
aster by stabilizing update directions and escaping from poor local maxima. 

 APPROACH 

e use human activity recognition as an example case for demonstration and validation of our
xperiments. Human activity classification involves some type of sensor system such as a smart-
atch, smartphone, smart shoes, chest band, or fitness band to detect and measure physical ac-
ivities. The underlying ML algorithms use the data from sensors to learn the characteristics of
ifferent activities. But depending on the properties of the sensors, the sensor reading can differ
ignificantly even though the sensors are trying to measure and detect the same physical phenom-
na. This is because human activities are highly complex and dynamic processes dependent upon
arious factors. The sensor readings for an activity vary significantly even if the same person per-
orms the same activity under similar conditions compared to say image classification where an
mage of a dog is always a dog independent of the presentation and context. These variations in
he sensor reading result in the trained ML algorithms learning unique mappings between inputs
nd outputs, creating newer challenges and opportunities for an adversary that wants to attack
hese systems. 

.1 Adversarial Transferability 

rom differences in the electrical properties of the sensor to the location of sensor on the hu-
an body, there are numerous ways in which different aspects of the sensor systems can affect
dversarial transferability. Therefore, in this work, we study adversarial transferability from the
ollowing four perspectives: 

—Adversarial transferability between ML models: The transferability between differ-
ent ML models trained on the whole or subset of the same dataset is the default and the
most discussed variety of adversarial transferability. To exploit this mode of transferabil-
ity, the adversary computes adversarial examples using one ML model and then performs
adversarial attacks on other models using the generated adversarial examples. 

—Adversarial transferability across users: In sensor systems, the dataset used to train
ML algorithms is collected using human subjects. This is similar to an image dataset where
images of various objects are captured using different types of cameras. But what separates
human subjects from the optical sensor in cameras is that human subjects inject biases in
the data that are personalized to each individual and are hard to eliminate with preprocess-
ing. Attributes associated with individuals give the problem of adversarial transferability
in sensor systems a new direction. The adversary can leverage the biases injected by indi-
viduals to design better attack methods or suffer from this when trying to attack a target
system. Hence, evaluating adversarial transferability between ML systems trained on data
from different individuals becomes crucial. 

—Adversarial transferability across sensor body locations: Another important attribute
of wearable sensor systems is the body location of the sensor. For example, activity trackers
can be worn in many different ways. Some can be worn as a wristwatch or wristband, others
can be clipped onto clothes and shoes or placed inside pockets, and some can be even worn
as jewelry. For two sensors of the same type—one wrapped around the subject’s chest and
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 3. Threat model in which an adversary operates with complete access to the source system S but only 
oracle access to the target system T . The adversary has no knowledge about the target system and its prop- 
erties, such as dataset used for training, type of learning algorithm, and hyper-parameters of the model. 
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other worn on the wrist—the sensor readings depend heavily on the orientation of the
sensor and placement. These differences in the sensor readings affect the mapping learned
by ML model and consequently transferability of adversarial examples. 

—Adversarial transferability between datasets: The final and most complex type of
adversarial transferability is transferability between ML systems—same or of different
architectures—trained on different datasets. For example, in human activity recognition
different manufacturers use different types of sensors and collect proprietary datasets to
train ML algorithms. Now for an adversary which has access to system from one company,
it is challenging to attack a system from another manufacturer. The challenges can stem
from subject bias, sensors position, types of sensors, and data processing routines. 

.2 Threat Model 

epending on the type of adversarial transferability the adversary wants to exploit to attack the
arget system, the adversary operates in different settings. In general, the threat model has two
ain components. The first part concerns the target system T , which the adversary wants to attack
nd the second part takes into account the source system S . The adversary can only send inputs
o the target system and observe the class prediction, and hence operates in the black-box setting
ith respect to the target system T . The adversary has white-box access to the source system S and
an compute adversarial examples using the source model S m . Here the objective of the adversary
s to fool the target system T on the adversarial examples computed using the source model S m .
igure 3 shows the graphical representation of the threat model. In all four cases of adversarial
ransferability, the adversary computes adversarial examples using the source model S m trained
n source dataset D S and attacks the target system T with target model S t trained on dataset D T .
n transferability between ML models D S and D T are same and for remaining cases of adversarial
ransferability datasets D S and D T are different. In adversarial transferability across users, the
ource dataset contains samples from a group of subjects and the target dataset contains samples
rom the remaining subjects. In adversarial transferability across sensor body locations, the source
ataset contains sensor reading from sensor placed at one body position, for example right-wrist,
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Table 1. Characteristics of the Three Datasets Used in the Analysis ( # Denotes “Number of”) 

Dataset # Subject # Activities Frequency Window Size (Seconds) # Devices # Samples 

UCI 30 6 50 Hz 2.56 1 10,299 

MHEALTH 10 12 50 Hz 2.56 3 5,133 

DL 7 6 50 Hz 2.56 2 16,434 
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nd the target dataset contains sensor values from sensor placed at another body position, say
hest. Finally, in adversarial transferability between datasets, the source and target dataset are
ompletely different and have different distributions. 

.3 Measuring Adversarial Transferability 

easuring adversarial transferability means we want to determine how many adversarial exam-
les designed for the source system can fool the target system. For untargeted attacks, we want to
uantify how many input samples were classified into any class other than the ground truth class
nd for targeted attack we want to measure how many samples were classified into the target class.
e introduce a new metric called Success Score (SC) to measure adversarial transferability in both
ntargeted and targeted cases. Success score defined in percentage is the ratio of the number of
dversarial examples that were able to fool the target system (N t ) to the total number of samples
N )

Success Score (SC) = 
N t 

N 

∗ 100 . (7)

or untargeted case, N t is equal to the number of adversarial examples that are misclassified and
or targeted case N t equals the number of adversarial examples that are classified into the target
lass. Misclassification means the output label assigned to adversarial examples is different from
abel assigned to clean samples used to generate adversarial examples. In the targeted case, success
core is computed for adversarial examples generated from clean samples which are not already
lassified into the target class. Furthermore, in both targeted and untargeted cases success score
s only computed for samples that failed to fool the target model without addition of adversarial
erturbation. 

.4 Datasets 

n our experiments, we have used three real-world human activity recognition datasets Table 1 .
e have conducted our experiments with 3-axial accelerometer data. 

—UCI dataset 2 [ 2 ] was compiled from a group of 30 participants, each wearing a smartphone
on their waist and performing six different activities in a lab setting. Data from 3-axial ac-
celerometer and gyroscope sensors were sampled at a frequency of 50 Hz and pre-processed
to remove noise. 

—MHEALTH dataset 3 [ 5 ] consists of body motion and vital signs recording of 10 volunteers
of different profiles while performing 12 different physical activities in an out-of-lab envi-
ronment without any constraint, with the exception that the subject should try their best
when executing them. Shimmer2 wearable device placed on the subject’s chest, right wrist,
and left ankle were used to measure the motion experienced by the diverse body parts
using a 3-axial accelerometer at a frequency of 50 Hz. The class Jump Front and Back has
 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones 
 https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset 
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fewer number of samples compared to other classes. Therefore, to balance the dataset, we
have removed the samples from the Jump Front and Back class from our analysis. 

—Daily Log ( DL ) dataset 4 [ 36 ] has accelerometer, orientation, and GPS sensor data collected
from 7 individuals using a smartphone and smartwatch with a self-developed sensor data
collector and labeling framework. Acceleration and orientation sensors were sampled at 50
Hz and GPS data was collected every 10 minutes. The data was collected when participants
were doing their daily routine and it was up the participants where the device should be
positioned on the body. We randomly select subset of the data to use in our experiments
such that each activity class has the same number of samples. 

Now we establish some conditions so that the analysis of different types adversarial transfer-
bility across the datasets is possible and sound. 

(1) Sampling Frequency: One of the criteria we used to select datasets for our experiments
is the sampling frequency of the sensor. For all real-world datasets used in this article, the
sampling frequency is 50 Hz, which is considered adequate for human activity recognition
[ 24 ]. 

(2) Input Size: The length of the input window segment in all datasets must be the same
because we cannot train ML algorithms with variable input sizes. In our experiments, we
have set the length of the raw sensor segment to 128, which corresponds to the window
size of 2.56 seconds at a sampling frequency of 50 Hz. Setting the window size to 128 was
motivated by the fact that a window size of 1–2 seconds with 50% overlap is considered a
good choice for activity classification [ 4 ]. 

(3) Data Scaling: The range of values in the three datasets are very different. We used the
MinMaxScaler with range set to [–1.0, 1.0] from the sklearn library [ 31 ] to standardize all
three datasets. MinMaxScaler is the least disruptive to the information in the original data
and preserves the shape of the data and does not reduce the importance of outliers. 

(4) Activity Classes: Another important factor when choosing datasets for our experiments
was the activity classes. The baseline condition was that there should be some activity
classes that are common for all datasets allowing us to analyze targeted adversarial trans-
ferability between datasets. The activities walking, sitting, standing, and climbing stairs

(walking up) are common to all three datasets. Also, having activities classes that are not
common between the datasets further helps us analyze transferability with generalization.

 EXPERIMENTAL RESULTS 

n this section, we discuss our experiments and results. We discuss four cases of adversarial trans-
erability, and for each case, we present results for both targeted and untargeted evasion attacks.
he CleverHans [ 27 ] library was used to compute adversarial examples with the following param-
ters: (1) adversarial perturbation budget from the set ϵ ∈ [0 . 1 , 0 . 25 , 0 . 5 , 0 . 9 ], (2) range clipping of
dversarial examples set to [−1 . 0 , 1 . 0 ], (3) number of iterations for BIM and momentum iterative
ethod set to 50. Also, for iterative methods, the perturbation budget per iteration is ϵ/50 . 

.1 Adversarial Transferability Between Machine Learning Models 

o analyze the adversarial transferability between ML models, we trained six different ML algo-
ithms for a common dataset and computed adversarial examples using one of the trained model.
e used the feature data of all three datasets for training the ML algorithms. Using the feature
 https://sensor.informatik.uni-mannheim.de/#dataset _ dailylog 
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Table 2. Classification Accuracy of Different ML Algorithms on the Training and 
Test Set of all Three Datasets 

ML UCI MHEALTH DL 
Algorithms Train Set Test Set Train Set Test Set Train Set Test Set 

SVC 76.20% 76.38% 90.40% 90.46% 87.79% 87.61% 

RFC 100.0% 84.85% 100.0% 96.39% 100.0% 89.87% 

KNN 84.85% 79.10% 97.56% 96.07% 91.96% 87.90% 

DTC 100.0% 72.93% 100.0% 92.22% 100.0% 85.08%
LRC 75.49% 76.54% 91.15% 89.90% 86.12% 85.66%
DNN 84.90% 82.05% 99.25% 97.19% 94.75% 89.82%
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ata enabled us to train different kinds of ML algorithms, which is not possible using the raw
ensor data. We computed 45 statistical features commonly used in HAR [ 40 ], from sensor seg-
ents of all three datasets. We selected the following algorithms to evaluate adversarial transfer-
bility between ML models: (1) Support Vector Classifier ( SVC ), (2) Random Forest Classifier

 RFC ), (3) K-Nearest Neighbor ( KNN ) Classifier, (4) Decision Tree Classifier ( DTC ), (5) Lo-
istic Regression Classifier ( LRC ), and (6) Deep Neural Network ( DNN ). The DNN has three
ayers with 64, and 32 neurons in the first and second layers. In the last layer the number of neu-
ons is equal to the number of activity classes for the respective dataset. l2 -regularization with
oefficient 0.001 and ReLU activation is used in the first and second layers, and the output layer
as Softmax activation. TensorFlow [ 1 ] was used to train the DNN with hyper-parameters: 200
poch, mini-batch size of 32, Adam [ 18 ] optimizer with learning rate 0.001, and sparse categorical
ross-entropy loss. All other classifiers were trained using the sklearn library [ 31 ]. The maximum
teration for SVC was set to 5,000 with scaled gamma, and the number of estimators for RFC was
et to 100. For logistic regression, the LBFGS solver was used with 5,000 maximum iterations and
or KNNs the number of components was set to 5. All other parameters of classifiers were left to
heir default values. 
Table 2 shows the classification accuracy of all trained models on the training and test set for

he three datasets. In general, all trained models have very high classification accuracy on training
nd test sets. To evaluate these classifiers for adversarial transferability between ML models, we
omputed targeted and untargeted adversarial examples using the DNN model—the source model.
e choose the DNN model, because evasion attacks methods based on gradient optimization are
ore mature and there are large number of successful attack methods available for neural networks

 8 , 14 ]. There are some adversarial attack methods that can compute adversarial examples with
on-parametric models such as decision trees and KNNs [ 29 , 38 ] and we explore these attacks later
n our discussion section. For targeted attacks, we selected the “Sitting ” activity class as the target
lass because it is common across all three datasets. 
Figures 4 and 5 show the success score of untargeted and targeted adversarial examples for the
CI and DL datasets. Different adversarial attack methods were used to generate adversarial ex-
mples for the perturbation budget of ϵ = 0 . 5 using the DNN model. Each number in the heatmap,
hows the success score of adversarial examples computed using the attack method specified by
he column index on the ML model denoted by the row index. For example, in Figure 4 the suc-
ess score of untargeted adversarial examples computed with adversarial attack BIM on the SVC
odel is 84 . 78% and the success score of targeted adversarial examples is 35% . The results for the
HEALTH dataset was found to be very similar to the UCI dataset, and is presented in supple-
entary section. 
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 4. Success score of adversarial examples computed with the UCI dataset for transferability between 
models. 

Fig. 5. Success score of adversarial examples computed with the DL dataset for transferability between 
models. 
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In general, we found high adversarial transferability between ML models for untargeted ad-
ersarial examples. For targeted attacks, adversarial examples were less transferable for all three
atasets. In particular, we found DTC, KNN, and RFC classifiers to be more robust towards targeted
dversarial examples for UCI and MHEALTH datasets. We also found that the level of adversarial
ransferability between ML systems differed greatly across the three datasets. For the DL dataset,
oth targeted and untargeted adversarial examples were less likely to be transferable with targeted
ransferability success score values of 0 . 0% in many cases. We believe the lower success score of
argeted adversarial examples in general is due to fundamental differences between the targeted
nd untargeted attacks. An untargeted attacks is considered successful if an input is classified into
ny class other than its actual class but for the targeted attack to be successful the input must be
lassified into the target class by the target system. Hence, targeted attack are much more diffi-
ult and an adversary will have higher success score for untargeted attack compared to targeted
ttack at the same level of perturbation budget and source and target models attributes. Also, we
uspect the lower success score for the DL dataset is due to nature of the dataset. The DL dataset
as collected in daily-living conditions while participants were following their daily routine with
reater degree if flexibility compared to the MHEALTH and UCI dataset. Collecting sensor data
n daily-living conditions can induces noise and artifacts in the sensor data and as a result dif-
erent learning algorithms will learn different mappings between input and output. Furthermore,
o data preprocessing is applied to the DL dataset but both UCI and MHEALTH dataset undergo
oise removal and filtering. Consequently, adversarial transferability which aims to capitalize on
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Table 3. Details about the Source and Target Dataset Fashioned by Randomly Selecting Subjects Data 
for the UCI, MHEALTH, and DL Datasets 

Dataset # Samples # Subjects # Source Subjects # Source Samples # Target Subjects # Target Samples 

UCI 10,299 30 15 5,138 15 5,161 

MHEALTH 5,133 10 5 2,464 5 2,527 

DL 16,434 7 3 9,918 4 6,516 

Here, # means “number of”. 

Table 4. The Classification Accuracy of Source and Target Models on the Training and 
Test Set of all Three Datasets 

Machine Learning UCI MHEALTH DL 

System Source Set Target Set Source Set Target Set Source Set Target Set 

Source 81.49% 61.42% 99.66% 66.55% 81.74% 25.28% 

Target 62.43% 85.58% 81.37% 99.72% 34.09% 86.05% 
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he common input-output mappings shared by different ML algorithms to fool a target system on
dversarial examples computed using the source system suffers greatly. 

.2 Adversarial Transferability Across Users 

ll three datasets have subject ID associated with each row of sensor readings or data files. We
andomly selected data from half the subjects to create the dataset for the source system (source
ataset) and the data from the remaining half subjects is used in the target system (target dataset).
able 3 shows the properties of source and target sets for all three datasets. We also decided to use
 −D CNN for both source and target system ML algorithm because of its simplicity and superior
erformance. CNN allows us to use the raw sensor data directly to train the model without needing
o compute features from the sensor segments. The input CNN layer has 100 filters, kernel size of
0, and strides of 2. The second CNN layer layer has 50 filters and kernel size of 5. The third layer
s a 1 −D Global Max Pooling, which is followed by a fully-connected layers with 64 neurons and
rop-out coefficient of 0.3. The last layer is also a fully-connected layer with the number of neurons
qual to the number of activity class defined by the dataset. ReLU activation is used in all layers
xcept the output layer, which uses Softmax activation function. The CNN model is trained using
he Adam [ 18 ] optimizer with a learning rate of 0.001. The loss of the model is computed using the
ategorical cross-entropy loss function. 
Table 4 shows the classification performance of the source and target system of UCI, MHEALTH,

nd DL datasets on their respective source and target sets. For UCI and MHEALTH datasets, the
ource and target models have high classification accuracy on both source and target datasets. High
lassification accuracy between source and target systems demonstrates high level of generaliza-
ion between source and target systems. Therefore, in theory cross user adversarial transferability
hould be high for the UCI and MHEALTH datasets because source and target systems share com-
on knowledge and an adversary should be able to exploit these common mappings to fool the
arget system using adversarial examples computed using source system. On the other hand, the
lassification accuracy is low for the DL dataset implying less shared knowledge between source
nd target systems and consequently predicting poor adversarial transferability. 
Figures 6 and 7 show the success score of untargeted and targeted adversarial examples for
CI and DL datasets computed using five attack methods at four values of adversarial perturba-
ion budgets ϵ ∈ {0 . 1 , 0 . 25 , 0 . 5 , 0 . 9 }. For targeted attacks, the activity class “Sitting ” is used as the
arget class. Untargeted adversarial examples were highly transferable to the target system in all
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 6. Success score of adversarial examples on source and target systems with the UCI dataset for trans- 
ferability across users. 

Fig. 7. Success score of adversarial examples on source and target systems with the DL dataset for transfer- 
ability across users. 
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hree cases. But untargeted success score for the DL dataset was lower compared to the UCI and
HEALTH dataset, indicating consequent of low generalization we observed between the source
nd target system for the DL dataset. Targeted adversarial examples were unsuccessful in all three
ases, confirming that the individual characteristics encoded in the sensor data from each subject
an greatly affect the adversarial transferability. The results for MHEALTH dataset is available in
he supplementary materials. 

.3 Adversarial Transferability Across Sensor Body Locations 

he MHEALTH dataset has readings from accelerometers placed at three different body positions.
he first sensor is wrapped around the subject chest, the second is worn by the subject on the
ight wrist, and the last one is worn on the left ankle. All sensors have same physical and electrical
haracteristics. To evaluate adversarial transferability across sensor body locations, we perform
xperiments with different choice of sensor locations for the source and target systems. In the first
ase, the data from the chest sensor is used to train the source system and the data from the ankle
ensor is used to train the target system. In the second case, the data from the wrist sensor is used
o train the source system and the data from the chest sensor is used in the target system. Finally,
e have data from ankle sensor used in the source system and data from wrist sensor is used to
rain the target system. Also, we use the same architecture of CNN used for transferability across
ubjects for the source and target models. 
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Table 5. The Classification Accuracy of Source and Target Systems on the Source and Target Datasets 
for all Three Cases of Sensor Body Positions 

Machine Learning Chest Vs. Left-Ankle Right-Wrist Vs. Chest Left-Ankle Vs. Wrist 

System Source Set Target Set Source Set Target Set Source Set Target Set 

Source 98.81% 12.20% 99.67% 18.69% 98.55% 22.06% 

Target 18.75% 96.75% 23.58% 99.17% 19.89% 99.43% 

For example, the table for Chest - Ankle shows the classification accuracy of the Chest source system and Left-Ankle 

target system on both chest and left-ankle datasets. 

Fig. 8. Success score of adversarial examples computed using the source system ( Chest ) on source and target 
( Left-Ankle ) systems. 
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After training the source and target model on their respective datasets obtained from sensors
laced at different body locations, we evaluate the trained source and target models on both
atasets. Table 5 shows the classification accuracy of these models on both datasets. In all cases,
he classification accuracy of the source model on the target dataset and the target model on the
ource dataset is low, indicating low generalization between the source and target systems. 

4.3.1 Chest Vs. Left-Ankle. Figure 8 shows the success score of untargeted and targeted ad-
ersarial examples computed using the chest (source) system on the chest and left-ankle (target)
ystem. We found good transferability for untargeted attacks and very low transferability for tar-
eted attacks for the target activity class of “Sitting”. Untargeted adversarial examples with success
core upto 100% on the source model performed fairly well, success score in the range 0% −40% , on
he target model. The adversarial transferability further decreased for targeted attacks with suc-
ess score of almost 0% on the target system while the success score was in the range of 20% −100%
n the source system. 

4.3.2 Right-Wrist Vs. Chest. Figure 9 shows the success score of untargeted and targeted ad-
ersarial examples computed using the right-wrist (source) system on the right-wrist and chest
target) system. We found high adversarial transferability for both untargeted and targeted at-
acks, with untargeted success score upto >90% and targeted success score upto 80% for the target
lass of “Sitting” on the target system. 
The above results show that adversarial transferability differs greatly with the sensor body lo-

ations for source and target systems. If the sensors for the source and target system are located
ear each other, for example, in the case of Right-Wrist Vs. Chest , adversarial examples were able
o fool the target system fairly well. But for source and target sensors placed far-apart on the body,
n the case of Chest Vs. Left-Ankle and Left-Ankle Vs. Right-Wrist , the transferability of adversarial
xamples was low. Specifically, the success score of targeted adversarial examples was almost 0%
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 9. Success score of examples computed using the source system ( Right-Wrist ) on source and target 
( Chest ) systems. 

Table 6. Success Score of Adversarial Examples Computed Using the Source (UCI) System on the 
Source and Target (MHEALTH) Systems 

Evasion Untargeted Attack Perturbation Budget ( ϵ) 
Attack 0.1 0.25 0.5 0.9 
Methods Source Target Source Target Source Target Source Target 
FGSM 74.09 0.11 84.15 0.85 87.65 11.96 89.74 36.15 
BIM 86.91 0.19 96.89 0.62 97.86 8.03 97.94 25.78 
MIM 86.79 0.19 96.07 0.97 96.50 13.09 96.07 40.23 
SMM 51.84 0.11 78.17 0.11 92.73 0.11 96.07 0.11 
CW 100.0 0.03 100.0 0.03 100.0 0.03 100.0 0.03 

Evasion Targeted Attack Perturbation Budget ( ϵ) 
Attack 0.1 0.25 0.5 0.9 
Methods Source Target Source Target Source Target Source Target 
FGSM 8.62 0.0 3.82 0.0 1.02 0.0 0.55 0.0 
BIM 64.83 0.0 92.39 0.0 99.02 0.0 99.95 0.0 
MIM 58.58 0.0 91.18 0.0 99.95 0.0 100.0 0.0 
SMM 45.10 0.0 49.02 0.0 52.0 0.0 35.68 0.0 
CW 99.95 0.0 99.95 0.0 99.95 0.0 99.95 0.0 
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or all attack methods at all values of adversarial perturbation budgets. The results for the case
eft-Ankle Vs. Right-Wrist is provided in supplementary section. 

.4 Adversarial Transferability Between Datasets 

ransferability between datasets includes all other types of transferability we have discussed so far
nd augments that with new variables such as sensor types, electrical properties of the sensor, and
ata processing steps. To evaluate adversarial transferability between datasets, we train source
nd target CNN models of same architecture and hyperparameters on different datasets. Since,
e have three different datasets to evaluate adversarial transferability we have three different
ombinations for evaluation. Each of the combination assigns different dataset to the target and
ource systems. In the first experiment, we assigned the UCI dataset to the source system and the
HEALTH dataset to the target system. Table 6 shows the success score of untargeted and targeted
dversarial examples for this case. In the second case, the DL dataset was assigned to the source
ystem and the target system was trained on the UCI dataset. Table 7 shows the success score of
ntargeted and targeted adversarial examples for the second case. Finally, in the third case the
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Table 7. Success Score of Adversarial Examples Computed Using the Source (DL) System on the 
Source and Target (UCI) Systems 

Evasion Untargeted Attack Perturbation Budget ( ϵ) 
Attack 0.1 0.25 0.5 0.9 
Methods Source Target Source Target Source Target Source Target 
FGSM 69.53 11.80 91.92 27.88 94.42 51.20 90.84 82.52 
BIM 91.92 7.08 99.48 13.75 99.48 33.43 99.48 55.09 
MIM 93.01 8.51 99.48 20.32 99.48 41.32 99.48 74.73 
SMM 51.47 25.28 83.96 38.69 93.59 41.98 95.27 48.50 
CW 100.0 5.47 100.0 5.59 100.0 5.84 100.0 6.01 

Evasion Targeted Attack Perturbation Budget ( ϵ) 
Attack 0.1 0.25 0.5 0.9 
Methods Source Target Source Target Source Target Source Target 
FGSM 0.43 11.51 0.17 4.03 0.0 4.34 0.0 2.04 
BIM 52.24 11.70 67.64 9.32 90.62 5.81 97.02 4.17 
MIM 56.22 7.41 71.52 3.90 98.30 5.09 99.97 5.25 
SMM 4.05 2.26 3.73 1.07 1.92 0.11 0.67 0.05 
CW 99.85 1.43 99.85 1.46 99.82 1.41 99.82 1.46 
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ource system was trained on the MHEALTH dataset and the target system was trained on the DL
ataset. The result for the third case can be found in the supplementary section. The success score
ere very similar to results for the first case of UCI source dataset and MHEALTH target dataset.
e found poor adversarial transferability in the first case with highest untargeted success score of
0 . 23% at highest perturbation budget. The targeted success scores was 0% for all configurations.
n the second case, we found untargeted success score up to 82% and highest targeted success score
f 11 . 70% . The low adversarial transferability observed in this case demonstrates that with greater
istinction between source and target systems the adversarial transferability decreases sharply.
ne interesting thing to note here is that targeted adversarial examples were more transferable at
owest adversarial perturbation budget (ϵ = 0 . 1 ) and untargeted adversarial examples were most
ransferable at highest value of adversarial perturbation budget (ϵ = 0 . 9 ). 

 DISCUSSION 

n this section, we discuss our results and provide theoretical and graphical explanations. We gen-
rate adversarial examples using non-parametric ML algorithms such as DTC and KNN classifier
nd measure adversarial transferability. We also discuss adversarial transferability through the
ens of non-robust features and manifold learning to provide explanation for our results and estab-
ish ideas for future research. Discussion on manifold learning is presented in the supplementary
ection. 

.1 Adversarial Attacks with Decision Trees and K-Nearest Neighbors 

n our analysis, we found KNN and DTC classifiers to be robust against targeted adversarial ex-
mples computed using a DNN compared to other learning algorithms such as SVC and LRC. To
urther evaluate the robustness KNN and DTC algorithms, we computed targeted and untargeted
dversarial examples using the KNN and DTC at the adversarial perturbation budget of ϵ = 0 . 5 .
e used the Region-based Attack ( RBA ) [ 38 ] and heuristic decision tree attack (Papernot) [ 28 ]

o compute adversarial examples using the decision tree classifier. The RBA finds the closet poly-
edron to an input where the classifier predicts a label other than the actual label and outputs
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 10. Success score of adversarial examples computed using the DTC on different ML models. 

Fig. 11. Success score of adversarial examples computed using the DTC and DNN on different ML models. 
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he closest point in this region as an adversarial example. RBA is optimal and can find highly
uccessful adversarial examples but suffer from high computational load. Heuristic decision tree
ttack searches for leaves in the decision tree with different class in the neighborhood of the leaf
orresponding to the decision tree’s original prediction for an input. The path from the original
eaf to the adversarial leaf is used to modify the input sample to create an adversarial example.
e used the Kernel Substitution Attack [ 28 ], which uses the FGSM, to craft adversarial examples
isclassified by nearest neighbors with the KNN model. 
Similar to the case of adversarial transferability between ML models, we trained six different ML

lgorithms on the feature data of the UCI dataset, and computed adversarial examples using DTC
nd KNN models. Figure 10 , shows the success score of untargeted and targeted adversarial exam-
les computed using the DTC model on all six ML models. Adversarial examples were able to fool
he DTC model with good success score (40% ), but performed poorly on other models, indicating
oor adversarial transferability in both targeted and untargeted cases. We also want to highlight
he difference in the success score of adversarial examples computed using the DNN model in Sec-
ion 4 and adversarial examples computed using the DTC model here. Figure 11 shows the success
core of adversarial examples computed using the DTC with RBA method and DNN model with
IM on all six ML models. As we can see, adversarial examples computed using the DNN model
re more successful on the DTC, compared to adversarial examples computed using the DTC for
he same adversarial perturbation budget. Furthermore, adversarial examples computed using the
NN model are more transferable than adversarial examples computed using the DTC. 
Table 8 shows the success score of untargeted adversarial examples computed using the KNN
odel on all six ML models. The adversarial examples are highly transferable and the success
cores are similar to those obtained with adversarial examples generated using the DNN as shown
n Section 4 . Therefore, KNN model is more vulnerable compared to the DTC model at the
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Table 8. Success Score of Untargeted Adversarial Examples Computed 
Using the KNN Model on Different ML Models 

Machine Learning Models 
SVC RFC KNN DTC LRC DNN 

Success Score (%) 85.74 89.82 86.01 85.32 86.40 77.35 
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ame level of adversarial perturbation budget and adversarial examples computed using the KNN
odel is more transferable than DTC. However, adversarial attack methods that works with non-
arametric learning algorithms such as DTC and KNN are much more computational intensive
ompared to gradient-based adversarial attack method and computed adversarial examples are
lso less successful and transferable. Hence, for sensor systems with computation and resource
imitations, a direct attack on non-parametric learning algorithms might not be feasible. An at-
acker is better off using gradient-based attack methods to compute adversarial examples using
he source systems and then attack the target system by exploiting the transferability of adversar-
al examples. 

.2 Feature Overlap 

uthors in [ 17 ], have argued that neural networks trained on independent samples from a dis-
ribution tend to learn similar “non-robust ” or brittle features making adversarial transferability
ossible. The central thesis is that data samples used to train ML model and used by an adversary
elong to the same distribution. Therefore, models trained on similar data distributions have strong
ransferability between them, and models trained on distinct data distributions have weak trans-
erability. This is because similar data distributions facilitate the learning of similar non-robust fea-
ures and different data distribution has minimal overlap between the corresponding non-robust
eatures. In adversarial transferability cases we have analyzed in this work, the data distribution
f source and target systems have varying degree of overlap. In transferability between models,
ll models are trained on the same dataset. This allows the models to learn similar non-robust
eatures resulting in excellent adversarial transferability. On the other hand, in transferability be-
ween datasets, source and target models are trained on datasets from different distributions. In
his case, trained models have minimal overlap between learned non-robust features and conse-
uently the adversarial transferability is poor. To verify this, we evaluated the target model on the
est set of the source model. The performance of the target model on the source model’s test set in
heory is correlated with learned features shared between them. Higher classification accuracy of
he target model on the source model test set implies learning of similar features, and lower clas-
ification accuracy demonstrates learning of different features between the source and the target
odel. The degree to which the target and source model share learned features is proportional
o the performance of the target model on the adversarial examples computed using the source
odel. 
Figure 12 shows the classification accuracy and success score of the target model on the source
odel test set and targeted adversarial examples computed using the source model with the Ba-
ic Iterative Attack (BIM). The performance of the target model on the source model test set was
ound to be directly proportional to the target model’s success score on adversarial examples.
igher classification accuracy on the test set corresponded to a higher success score on adversar-
al examples and vice-versa. Hence, the degree to which features are shared between target and
ource models is directly related to the effectiveness of adversarial examples on the target model.
earning of similar features by target and source models facilitates better adversarial transferabil-
ty, as demonstrated in transferability between models and transferability across subjects. On the
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 12. The classification accuracy of the target model for different cases of transferability on the test set 
of the source model Vs. the success score of targeted adversarial examples computed using the BIM on the 
target model. 
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ther hand, when target and source models have less overlap between learned features, the adver-
arial transferability is poor as found in transferability across sensor locations and transferability
etween datasets. 

 CONCLUSIONS 

dversarial examples are shown to be transferable across ML models trained on the whole or
ubset of the same dataset. However, the problem of adversarial transferability does not end there.
or the first time in literature, we have investigated novel types of adversarial transferability in
he context of wearable sensor systems with an extensive set of experiments. These new aspects of
dversarial transferability show how an adversary can exploit sensor systems properties to craft
dversarial examples in ways not discussed before. Our results not only demonstrate that there
xist many new types of adversarial transferability but also show where and how these newer
odes of transferability excel and fail. 
We first evaluated the general case of transferability between ML models. Using the feature
ata from three real-world datasets, we found high untargeted transferability between different
ypes of ML models with five attack methods. For targeted attacks, adversarial examples were less
ransferable for all three datasets with highest success score of 76% . We also found non-parametric
earning algorithms such as DTC and KNNs to be more robust compared to other types of learn-
ng algorithms. The level of targeted transferability differed greatly across the three datasets. For
aily-Living (DL) dataset, both targeted and untargeted adversarial examples were much less likely
o be transferable compared to UCI and MHEALTH datasets. The underlying reasons behind the
ow adversarial transferability for the DL dataset is due to the large number of samples, data col-
ection in daily living condition, and no preprocessing steps for sensor data. These properties make
dversarial examples less transferable because different learning algorithms learn different map-
ings between input and outputs. 
For cross user transferability, we randomly selected data from half the subjects to create the

ource dataset and the data from the remaining half subjects was used as the target dataset. We
eparated all three datasets in this way and evaluated adversarial transferability across users. We
iscovered that the level of generalization between the source and target systems greatly affected
he transferability of adversarial examples. For UCI and MHEALTH datasets, we found high level
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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f generalization as indicated by the high classification accuracy of the source model on the target
ataset and the target model on the source data. Consequently untargeted adversarial examples
ere highly transferable. For the DL dataset, we found low level of generalization between the
ource and target systems and as a result low levels of untargeted adversarial transferability. Tar-
eted transferability was low for all three datasets and for the DL dataset success score of targeted
dversarial examples was 0% at all levels of perturbation budget. Low targeted adversarial trans-
erability performance indicates that the individual characteristics of users have significant bear-
ngs on adversarial transferability. Personalizing a model for a user will not only make the model
chieve high performance on the user data but also make the model secure against adversarial
ransferability attacks. 
Next, we evaluated the transferability across sensor body positions using the data from sensors
laced at chest, left-ankle, and right-wrist. The adversarial transferability differed greatly based
n source and target systems sensor body locations. For source and target systems sensors that
ere located near to each other, for examples right-wrist and chest, adversarial examples gener-
ted using the source system were highly transferable to the target system for both targeted and
ntargeted attacks. But for source and target systems sensor that were placed far-part, for exam-
le left-ankle and chest, the transferability of targeted adversarial examples was low. In the last
xperiment, we analyzed transferability across datasets. All three datasets have some common ac-
ivity classes between them and some unique activity classes. For different combinations of source
nd target datasets, we found very low untargeted and targeted adversarial transferability for the
ntire spectrum of analysis. 
In this work, we explored novel directions of adversarial transferability in the context of wear-

ble sensor systems and showed how an adversary’s performance varies in different transferability
ettings. In general untargeted attacks were more successful than targeted attacks. Untargeted at-
acks are considered successful as long as they can achieve random misclassification, which is
uch easier to achieve. The nature of the time-series input to sensor systems makes them more
ulnerable to random misclassification because the data they operate on have properties that are
asier to exploit. However, the complexity of adversarial attacks increases significantly in the tar-
eted case. For targeted attacks, the attack methods have to find adversarial perturbations that
eed to conform to the temporal and spatial properties present in the dataset for the chosen tar-
et class. Due to this, the targeted transferability was very poor in most cases. Also, the main
equirement of adversarial transferability is to have shared knowledge between the source and
arget systems. Irrespective of the learning algorithm, shared learning is facilitated when source
nd target datasets overlap along some dimensions such as processing routines, sensor type, sen-
or location, and population group. Hence, for an adversary to be successful it should take into
onsideration common attributes between the source and target systems and create adversarial ex-
mples that exploit these common attributes to have a higher chance of fooling the target system.
n particular, our findings can be summarized as follows. 

(1) The traditional notion of transferability across ML models showed excellent results which
is consistent with the literature. But we also discovered that the properties of the under-
lying data distribution and properties of sensor system design such as the number of sam-
ples, context (in-lab or real-world) in which the dataset was collected, and preprocessing
steps greatly affects adversarial transferability. 

(2) We found gradient-based attack methods to be more competent at finding transferable ad-
versarial perturbations compared to non-gradient based methods. Non-parametric learn-
ing algorithms such as decision tree and KNN were more robust against targeted and
untargeted adversarial examples computed using both gradient and non-gradient based
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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attack methods. Furthermore, adversarial examples computed using DNN were more suc-
cessful on these algorithms than adversarial examples computed using them. 

(3) Individual characteristics of users greatly affect targeted adversarial transferability. Also,
if the source and target datasets are from the same population, then the sensor location
of source and target systems becomes important. Near source and target sensor locations
facilitate higher adversarial transferability and vice-versa. 

(4) In general, the extent to which the source and target systems properties overlap affects ad-
versarial transferability. The properties of source and target systems are mainly governed
by source and target datasets and models. Datasets encode several attributes of wear-
able sensor systems such as sensor type, subjective biases, preprocessing pipeline, sensor
placement and orientation. Models represent types of learning algorithms and attributes
of the algorithm. Adversarial transferability depends on the shared knowledge between
source and target systems, and depending on the extent to which both systems share com-
mon mapping between inputs and outputs adversarial transferability varies. In the case
of transferability between models, the distinction between source and target systems is
only for the learning algorithms and in this case we found high untargeted and targeted
transferability. On the other hand, in the case of transferability between datasets, source
and target systems learning algorithms are the same, but source and target datasets are
different. In this case, we observed low transferability for both untargeted and targeted
attacks. Therefore the main reason for adversarial transferability is the similarity between
source and target datasets. By increasing the distance between source and target datasets
using design principles or post-processing techniques, adversarial transferability can be
significantly reduced. 

 RECOMMENDATIONS 

n this section, we provide recommendations aimed at a system designer for designing robust
mbedded systems based on our results and findings. These recommendations can be considered
s design choices that can affect the adversarial robustness of a sensor system. 

(1) The fundamental reason for the robustness of the target system against adversarial trans-
ferability was the distance between the source and target data distributions. With the
increasing level of distance between the source and target data distribution as shown in
Section 5.1 , the adversarial transferability decreased and reached a success score of 0% .
Hence, when designing and developing embedded sensor systems it is recommended to
use proprietary or private datasets. If it is not possible to use private datasets, data process-
ing techniques such as Principal Component Analysis [ 6 ], removing non-robust samples
from the dataset [ 38 ] and noise addition should be used as preprocessing steps on the
dataset to learn a robust classifier. 

(2) Personalizing ML models for a user, often needed in sensor system applications, shows
the potential of not only improving the model performance for the user but also make the
model robust against adversarial attacks. 

(3) Sensor system trained on a large real-world dataset was discovered to be more robust to
adversarial transferability compared to a system trained with smaller lab-setting datasets.
In our analysis, target systems that used the Daily Living (DL) dataset (sample size 16,434)
were more robust towards both untargeted and targeted adversarial examples than target
systems that used the UCI dataset (sample size 10,299) and the MHEALTH dataset (sample
5,133). Hence, it is better to have a large dataset for a robust system from an adversarial
transferability point of view. 
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Finally, we want to draw the reader’s attention to the argument that ML systems can be protected
y access control, and very few cases of adversarial attacks can happen in real-world wearable sys-
ems. However, by limiting our understanding of vulnerabilities that exists in sensor systems by
perating on the default setting that adversarial attacks on embedded systems have a low chance
f occurrence is not prudent. If we ignore the discussion of adversarial attacks and transferability
y operating on the default setting, we will be blind to the inherent shortcomings of our systems,
hich can be detrimental to the overall health of our systems. For example, consider a fall detection
ystem used to dispatch help when the system detects falls. If an adversary can influence any as-
ect of this system, then the effect can have life-altering consequences. Furthermore, recent works
ave shown that adversarial attacks are possible in real-world conditions, and the transferability
f adversarial examples dramatically enhances the chances of success for an adversary [ 13 , 15 , 16 ,
3 ]. Also, the decision-making model needs not to be present locally on the device. The model can
e in the cloud, and the system operates by querying the cloud model with sensor readings for
lassification [ 10 , 32 ]. This mode of operation is becoming more mainstream as it provides many
enefits, such as life-long learning, active learning, and data analytics. Therefore, acknowledging
nd understanding the adversarial nature of ML algorithms used in embedded sensor systems al-
ow us to build measures and adapt the design process to thwart and limit the impact of adversarial
ttacks. This is precisely what we aimed to achieve in this work. By making the connection be-
ween adversarial transferability and different aspects of embedded sensor systems, we showed
here the strengths and limitations of an adversary lie and how a system designer can use this
nformation to design and build robust and reliable embedded systems. 

 LIMITATIONS AND FU T URE WORK 

n this work, we have tried to cover the topic of adversarial transferability in embedded systems
n a broad manner. Nonetheless, our work does have some limitations, which we have highlighted
elow. 

—In our experiments, we have used five different adversarial attack methods to evaluate
adversarial transferability in embedded sensor systems. However, there are many more
attack methods in the literature that we have left out of our discussion. Unexplored attack
methods with better optimization strategies may be able to find adversarial perturbation
with better transferability properties and succeed where the discussed attack methods have
failed. 

—The discussion of adversarial ML is not complete without talking about defense against
adversarial attacks. Attack and defense form the two faces of the adversarial ML coin, and
hence should be given equal importance and attention in research. Our discussion in this
work does not discuss defense mechanisms, and we aim to explore the effects of defense
methods against adversarial transferability in our future works. 

—In this work, we have only discussed the level of performance of different attack methods
in terms of transferability. One interesting question that we can ask based on our results
is, “What makes some attack methods to have higher or lower rates transferability than
others?”. This is one of the fundamental questions that need to be investigated to better
understand the results obtained in this work. 

Finally, we want to touch upon the indistinguishability of signals and the requirement of ad-
ersarial perturbation budget in the case of sensor systems. We know that adversarial examples
re computationally created inputs not significantly different from samples in the target data dis-
ribution. However, signals lack the observational understanding present in samples from domain
uch as computer vision. It is difficult and almost impossible to understand a signal by observa-
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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ion without some operation to quantify its properties. Hence, in signal domain adversarial exam-
les extends the traditional definition and encompasses a broad spectrum of generation schemes.
or example, an attacker can send any signal conforming to the characteristics of the target class
ithout any other consideration and any good target model will be fooled. Also, the lack of under-
tanding of signals makes it almost impossible to determine whether an input signal is adversarial
r not just by observation without knowing the actual ground truth label. Perturbation budget also
lays a role in defining the extent to which an adversarial example can differ from actual samples
rom the data distribution. Therefore, in signal domain, the requirements of perturbation budget
eed further analysis. 

PPENDICES 

 DATASETS ACTI VIT Y DISTRIBUTION 

igure 13 shows the class distribution of all three datasets used in the analyses. The class distribu-
ion is fairly balanced for all three datasets. 

Fig. 13. Activity distribution of the three datasets (best viewed in color). 

 TRANSFERABILIT Y BET WEEN ML MODELS—MHEALTH DATASET 

igure 14 shows the success scores of untargeted and targeted transferability between models for
he MHEALTH dataset. We found high level of untargeted transferability with all attack methods
xcept the CW attack. Also, targeted transferability was high reaching success scores up to 76 . 77% .

Fig. 14. Success score of untargeted and targeted adversarial examples for the MHEALTH dataset. 

 TRANSFERABILITY ACROSS USERS—MHEALTH DATASET 

igure 15 shows the success scores of untargeted and targeted transferability across users for the
HEALTH dataset. The activity class “Walking ”was used as the target class. We found high level of
ntargeted transferability, but targeted transferability was low at all level of perturbation budgets.
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 15. Success score of adversarial examples on source and target systems with the MHEALTH dataset for 
transferability across users. 
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 TRANSFERABILITY ACROSS SENSOR BODY LOCATIONS—LEFT-ANKLE VS. 

RIGHT-WRIST 

igure 16 shows the success score of untargeted and targeted adversarial examples computed using
he left-ankle (source) system on the left-ankle and right-wrist (target) systems. Similar to Chest
s. Left-Ankle case, we found high untargeted transferability, success score upto 98% , and very
ow (0% ) targeted transferability for the target class of “Sitting“. 

ig. 16. Success score of adversarial examples computed using the source system ( Left-Ankle ) on source
nd target ( Right-Wrist ) systems. 

 TRANSFERABILIT Y BET WEEN DATASETS—DL VS. MHEALTH 

ables 9 and 10 show untargeted and targeted transferability for the case of source MHEALTH
ataset and target DL dataset. Similar to UCI Vs. MHEALTH case, we found good level of untar-
eted transferability but no targeted transferability at all of perturbation budgets. 
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Table 9. Success Score of Untargeted Adversarial Examples Computed Using the Source 
(MHEALTH) System on the Source and Target (DL) Systems 

Evasion Untargeted Attack Perturbation Budget ( ϵ) 
Attack 0.1 0.25 0.5 0.9 
Methods Source Target Source Target Source Target Source Target 
FGSM 64.58 24.35 83.33 30.84 90.30 30.60 92.54 31.25 
BIM 80.76 21.47 99.83 33.89 99.91 36.21 100.0 38.46 
MIM 82.69 25.56 99.43 32.37 99.91 35.25 100.0 39.98 
SMM 40.46 20.99 67.06 35.33 81.00 38.38 86.21 38.46 
CW 100.0 12.58 100.0 12.41 100.0 12.66 100.0 13.14 

Table 10. Success Score of Targeted Adversarial Examples Computed Using the Source 
(MHEALTH) System on the Source and Target (DL) Systems 

Evasion Targeted Attack Perturbation Budget ( ϵ) 
Attack 0.1 0.25 0.5 0.9 
Methods Source Target Source Target Source Target Source Target 
FGSM 0.70 0.0 0.26 0.0 0.0 0.0 0.0 0.0 
BIM 23.43 0.0 68.16 0.0 88.85 0.0 98.14 0.0 
MIM 30.50 0.0 64.98 0.0 86.38 0.0 93.81 0.0 
SMM 17.41 0.0 24.49 0.0 15.29 0.0 5.39 0.0 
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CW 100.0 0.0 100.00 0.0 100.0 0.0 100.0 0.0 

 MANIFOLD LEARNING 

anifold learning methods seek to describe high-dimensional data in low dimensional space. We
sed Multidimensional Scaling ( MDS ) [ 19 ] to generate low-dimensional representations of ad-
ersarial examples and clean samples. MDS uses a pair-wise distance matrix as inputs and places
ach data point in an n-dimensional space such that the distance between the points is preserved as
ell as possible. Albeit, the Euclidean distance suffers from the curse of dimensionality when used
o compute the distance between objects in high-dimensional space, it can still be used to com-
ute the similarity matrix between adversarial and clean samples. This similarity matrix is used by
ultidimensional scaling to get the low-dimensional representation of the adversarial and clean
amples. To compute the low dimensional embedding, we used all samples from the target model’s
raining set for the target class and the top- k samples from the targeted adversarial set that was
lassified into the target class by the target model. Here, k is the number of samples selected from
he target model training set, and we sort the prediction confidence of the adversarial examples
or the target class to determine the top- k examples. In cases where adversarial examples fail to
ool the target model, we take k random samples from the adversarial set. 
Figure 17 shows the multidimensional scaling of adversarial examples and benign samples from

he target model’s training set for different cases of adversarial transferability. For transferability
etween models, the 2-dimensional representation of clean and adversarial samples share a signif-
cant overlap region, which corresponds to the high targeted transferability we observed in this
ase. The region of overlap for transferability across subjects is not significant, but the spatial dis-
ribution of adversarial and benign samples share shape and organization, which demonstrate the
air transferability in this case. For transferability across sensor body locations and datasets, the
epresentation of benign and adversarial samples shares neither region nor organization and con-
equently we observed poor targeted adversarial transferability for these cases in our results. The
epresentation of clean and adversarial samples in 2 −dimensional space gives us insights about the
CM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 17. MDS of clean and adversarial samples for different cases of targeted adversarial transferability. Ex- 
cept for transferability between models which was evaluated with 1D feature data, other types of adversarial 
transferability uses 3 −axial accelerometer data and hence we have plots of Y axis and Z axis for these modes 
of adversarial transferability. 
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ransferability results we obtained in our experiments. Our aim here was to demonstrate how the
patial distribution of adversarial and benign samples looks like for different cases of adversarial
ransferability and explain the results we obtained from our experiments. The degree to which
dversarial samples can conform to benign samples from the target model’s training set is directly
roportional to adversarial examples success score on the target system. 

 PERTURBATION SIZE AND ATTACK METHODS 

iven that data in our experiments are scaled in the range [1 , −1 ] and we have used adversarial
erturbation budgets up to 0.9, it is natural to assume that adversarial examples computed at higher
erturbation budgets will be significantly different from benign samples used to create such ad-
ersarial examples. However, this is only true for the FGSM attack method because FGSM uses l- ∞
orm and every entry in the input vector can be modified by half the perturbation budget value.
ther attack methods, for example BIM which is an iterative version of FGSM, behaves in a dif-
erent way and find adversarial perturbation which are limited to perturbation budget allowed for
ach iteration. In our experiments, the number of iteration is set to 50, and consequently the per-
urbation budget for all iterative methods per iteration will be 0 . 9 /50 = 0 . 018 . We have presented
 visual demonstration in Figures 18 and 19 . We computed untargeted and targeted adversarial
xamples using the FGSM and BIM attacks at different level of adversarial perturbation budget.
s expected, adversarial examples computed using the FGSM is very different compared to the in-
ut and at higher perturbation budget this difference is significant. On the other hand, adversarial
ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 20. Publication date: March 2024. 
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Fig. 18. Untargeted adversarial examples computed at different perturbation budgets with FGSM and BIM 

attacks. Image best viewed in color. 

Fig. 19. Targeted adversarial examples computed at different perturbation budgets with FGSM and BIM 

attacks. Image best viewed in color. 
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xamples computed using the BIM is very similar to the input even at high level of perturbation
udgets. 
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