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Machine learning algorithms are increasingly used for inference and decision-making in embedded systems.
Data from sensors are used to train machine learning models for various smart functions of embedded and
cyber-physical systems ranging from applications in healthcare, autonomous vehicles, and national security.
However, recent studies have shown that machine learning models can be fooled by adding adversarial noise
to their inputs. The perturbed inputs are called adversarial examples. Furthermore, adversarial examples de-
signed to fool one machine learning system are also often effective against another system. This property
of adversarial examples is called adversarial transferability and has not been explored in wearable systems
to date. In this work, we take the first stride in studying adversarial transferability in wearable sensor sys-
tems from four viewpoints: (1) transferability between machine learning models; (2) transferability across
users/subjects of the embedded system; (3) transferability across sensor body locations; and (4) transferabil-
ity across datasets used for model training. We present a set of carefully designed experiments to investigate
these transferability scenarios. We also propose a threat model describing the interactions of an adversary
with the source and target sensor systems in different transferability settings. In most cases, we found high
untargeted transferability, whereas targeted transferability success scores varied from 0% to 80%. The trans-
ferability of adversarial examples depends on many factors such as the inclusion of data from all subjects,
sensor body position, number of samples in the dataset, type of learning algorithm, and the distribution of
source and target system dataset. The transferability of adversarial examples decreased sharply when the
data distribution of the source and target system became more distinct. We also provide guidelines and sug-
gestions for the community for designing robust sensor systems. Code and dataset used in our analysis is
publicly available here.!
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1 INTRODUCTION

Machine learning (ML) algorithms have increasingly become an integral part of embedded and
cyber-physical systems. In the context of embedded systems, ML models are used to drive the
inference and smart decision-making capabilities of embedded and wearable sensor systems. For
example, data from sensors such as accelerometer and gyroscope are used for human activity
recognition [34], images from camera are used to detect stop signs in self-driving cars [37], and
sound signals are used for person detection in smart home applications [20]. Advances in sensor
and computation technologies now allows for real-time continuous use of ML algorithms for smart
functionalities inherent in modern embedded systems.

However, recent studies have found that an adversary can easily fool ML models with the ad-
dition of carefully computed perturbations to their inputs [7, 14, 33, 35]. These perturbed inputs
are referred to as adversarial examples. Even the addition of a small but carefully computed per-
turbation to benign inputs, as shown in Figure 1, can degrade the performance of ML systems
significantly [3, 21, 29, 33, 35]. What distinguishes adversarial perturbations from random noise is
that adversarial examples are misclassified far more often than samples that have been perturbed
by random noise, even if the magnitude of random noise is much larger compared to the adversar-
ial perturbation [35]. The problem is further exacerbated by the fact that adversarial examples are
highly transferable and adversarial examples computed to attack one ML system are often success-
ful in fooling another ML system. The issue of adversarial examples raise serious concern about
the security and reliability of ML algorithms and in-turn on embedded systems because of their
reliance on ML algorithms for important functions. Studying adversarial examples and their prop-
erties in the context of embedded system is an important topic to safeguard and invent measures
to make these systems secure and robust against adversarial attacks.

1.1 Motivation

First we establish the threat model used in this work and answer why the transferability of adver-
sarial examples is crucial to the discussion of robustness in ML powered embedded sensor systems.
Assume Bob, an adversary, has complete access to source system S; with ML model M; trained
using dataset D;. Alice is a system administrator who wants to protect the target system S, with
ML model M, trained on dataset D, as shown in Figure 2. The dataset D, available freely can be
accessed by anyone and dataset D, can be the same as D; or some private dataset only available
to Alice. Also, models M; and M, can be of same or different types or architectures and have same
or different hyper-parameter values. Bob has access to Alice’s system via an oracle, and hence can
submit inputs and observe outputs. Bob being an adversary wants to attack Alice’s system, such
that M, is fooled in classifying inputs into wrong classes. Bob can attack Alice’s system in one of
two ways. Bob can either compute adversarial examples using M; and D; and transfer them to M,
in the hope of fooling M, or train a substitute model Mg on dataset Ds generated using the oracle
and then use the substitute model to compute adversarial examples to fool M,. In both cases, Bob
tries to exploit the transferability property of adversarial examples to attack target system S,. In
this work, we explore different types of adversarial transferability inherent to embedded sensor
systems Bob can exploit to attack Alice’s system. In the discussion, that follows we recognize Bob’s
system as Source System and Alice’s system as Target System. For all four adversarial transferability
modes we have discussed in this work, Bob has complete access to source system Sy, but can only
query target system S, on inputs and observe outputs.

Adversarial transferability captures the ability of an adversarial attack against an ML system to
be effective against other independently trained systems [11]. The transferability of adversarial
examples was first examined in [35], in which the authors studied adversarial transferability
(1) between different ML models trained over the same dataset, and (2) between same or
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Fig. 1. 3-axial graphs for a benign sample take from the dataset, a targeted adversarial sample computed
using the BIM, and a benign sample for the target class.
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Fig. 2. The operating scenario for transferability of adversarial examples. Bob is an adversary with complete
access to source system (S1) and wants to attack Alice’s system (Sz) by computing adversarial examples
using the source system and transferring them to Alice’s system.

different machine learning models trained over disjoint subsets of a dataset. Motivated by the
results of [11], numerous studies have explored adversarial transferability for both test-time
evasion attacks and training-time poisoning attacks [11, 25, 29, 33]. Furthermore, prior research
has shown that adversarial examples can be generated in wearable sensor systems for human
activity recognition [33]. However, the transferability of adversarial examples that take into
account characteristics of embedded systems has not been studied yet, leaving a gap in the
research, which we believe has significant and novel consequences. Because in addition to the
traditional notion of transferability—between different models trained on the same or disjoint
subsets of a dataset—we also need to consider new dimensions when exploring adversarial
transferability in wearable sensor systems.

Embedded systems are dynamic in nature with properties impacting their operation. For exam-
ple, consider the placement of a wearable device on the human body to detect human daily living
activities. There are many devices available in the market today that can be worn on the body in
various ways. Some are worn as a watch, others can be clipped onto clothes or shoes, strapped
around the chest, and so forth. Furthermore, depending on the body location of the device, the
sensor readings are very different, and consequently, ML algorithms trained on these sensor data
learn unique mappings between inputs and outputs. Therefore an adversary who is planning to
attack these types of ML systems must also take into account the different properties associated
with them. These properties are well discussed in the literature [26, 41] for the case of building
inference models. But to the best of our knowledge, there has not been any work that had dis-
cussed these properties of embedded systems from an adversarial point of view. All these lead to
the fact that adversarial transferability in sensor systems is not simple and straightforward and
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has many nuances. We believe an extensive study of the adversarial transferability will not only
show the strength of adversarial attacks but also mark their shortcomings and help us understand
this unexplored problem space.

1.2 Contributions

In this article, we present the first comprehensive evaluation of the transferability of adversarial
examples in the context of embedded sensor systems with wearable-based activity recognition
as our pilot application. We not only consider the traditional notion of transferability but extend
that with novel transferability directions unique to sensor systems. In particular, we discuss the
transferability of adversarial examples from the following four perspectives:

— Adversarial transferability between ML models.

— Adversarial transferability across users.

— Adversarial transferability across sensor body locations.
— Adversarial transferability between datasets.

To this end, we make the following contributions to this work. We for the first time introduce
and define novel types of adversarial transferability in the context of embedded sensor systems
with a particular focus on wearable computing systems. Second, we conduct an extensive set of ex-
periments that highlight vulnerabilities and strengths of embedded systems under different trans-
ferability cases for both targeted and untargeted evasion attacks. Third, we discuss and validate our
results with theoretical and graphical interpretations that take into account the properties of both
models and data distribution. Finally, we discuss open problems and possible research directions
for adversarial transferability in general for sensor systems.

2 BACKGROUND
2.1 Human Activity Recognition Pipeline

The problem of human activity recognition can be defined as: Given a set W = {W,, ..., W,,,_1} of
m equally sized temporal window of sensor readings, such that each window W; contains a set of
sensor reading S = {S;,...,Si k-1}, and a set A = {ay, . .. a, — 1} of n activity labels, the goal is
to find a mapping function f : S; — A that can be evaluated for all possible values of S; [22]. Raw
data from sensors, such as accelerometer, gyroscope, and magnetometer, are collected and passed
into the processing stage for filtering and noise removal. The next stage is segmentation, where a
continuous stream of the sensor values is divided into temporal windows. After segmentation, sta-
tistical and structural features are extracted from each window segment and are used to train ML
algorithms for activity classification. Another very successful approach to human activity classi-
fication uses Convolutional Neural Network (CNN) with raw sensor segments as inputs. CNN
model learns the features and the classifier simultaneously during the training process from raw
sensor data.

2.2 Adversarial Machine Learning

Given an ML classifier fy(x) characterized by the parameters 0 and trained on dataset D = {(x, y)},
an adversary tries to find inputs that are formed by applying small but intentional perturbations
(8) to the original samples x such that the perturbed inputs X = x + § are almost indistinguishable
from the original samples and result in the classifier predicting an incorrect label § with high confi-
dence. These perturbed input samples are called adversarial examples. The objective of adversarial
learning is to find perturbation § which when added to the original inputs x changes the output
of the classifier f»(x) # y. In general, an adversary can attack an ML system in three ways.
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(1) Poisoning Attacks: In poisoning attacks, an adversary attempts to degrade the performance
of an ML classifier by injecting adversarial examples during the training process to force
the classifier to learn false connections between input and outputs.

(2) Evasion Attacks: Evasion attack is the most common type of adversarial attack carried out
during test time and involves getting the target model to make mistakes on input samples.
Evasion attack is sub-divided into two types: (1) untargeted attack, and (2) targeted attack.
In an untargeted attack, an adversary intends to misclassify % into any class other than
its true class i.e., fy(x) # y such that fy(x) = y. For a targeted adversarial example %, the
adversary defines the target class § in which it wants to have the target model classify the
adversarial example.

(3) Exploratory Attacks: In exploratory attacks, the adversary tries to gain as much knowledge
as possible about the learning algorithm of the target system and patterns in the training
data.

We only consider evasion attack methods in our analysis, because we evaluate adversarial trans-
ferability at inference time. The difficulty in mounting evasion attacks against a target system is
heavily influenced by the knowledge an adversary has about the target system. The extent of an
adversary’s knowledge about the target system dictates the setting in which it operates.

(1) White-box Setting: A white-box setting assumes that the adversary has complete knowl-
edge about the target system. It includes anything related to the target system such as
dataset, model architectures, hyper-parameters values, activation functions, number of
layers, and model weight. This comprehensive knowledge about the target system makes
it easier for the adversary to mount successful evasion attacks. In this mode, the adversary
can compute adversarial examples using the target system and does not have to rely on
the transferability property of adversarial examples.

(2) Black-box Setting: In the black-box setting, the adversary has no knowledge of the tar-
get system. The adversary only has access to an oracle to the target system to submit
inputs and observe outputs. Evasion attacks in a black-box setting exploit the transfer-
ability properties of adversarial examples to mislead the target system.

The difficulty of operating in a black-box setting is mitigated by exploiting the transferability
property of adversarial examples. In our threat model, adversary Bob operates in the white-box
setting with respect to source system S; and black-box setting with respect to the target system
S2. Hence, Bob depends on the transferability property of adversarial examples computed using S;
to fool the target system S,.

2.3 Methods of Generating Adversarial Examples

The fundamental condition when computing adversarial example is that the perturbation § =
{61,925 ...,0,} added to the benign samples x = {x1,x,...,%,} to get adversarial samples X =
{x1, %2, ..., %, } cannot be large. This requirement is satisfied by bounding the adversarial pertur-
bation § with some adversarial budget € using [,—norms, where p € {0, 1, 2, co}. For a model fp,
adversarial examples x are defined as the solution to the following optimization problem:

% = x + argmin{||6] : f(x +5) # f(x)}S. (1)

s
Here, ||.|| is a type of [,—norm defined by the method used to compute adversarial examples. For
two vectors x and %, I, counts the number of elements in % that has changed its values compared

to x, I, measure the Euclidean distance between the two vectors, and [, denotes the maximum
changes for all elements in the vector x.
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2.3.1 Fast Gradient Sign Method (FGSM). FGSM was proposed in [14] and is one of the simplest
and computationally efficient method to compute adversarial examples. FGSM computes the ad-
versarial perturbation by calculating the gradient of the loss function of the model with respect to
the input. This method solves the following optimization problem to maximize the loss such that
adversarial perturbations are bounded by € subject to I, norm.

% = x + € * sign(Vy Jo(x, y)). (2)

Here, Jp is the loss function, and V, denotes the gradient of the loss function with respect to
the input x, and y is the actual label [9]. For targeted examples, FGSM minimizes the loss function
with respect to input x such that the modified input is classified into the target class 7 specified
by the adversary.

x =x — € *sign(VyJo(x, 7). (3)
Notice the change in sign and also the presence of the target class 7 in the optimization Equa-
tion (3). For targeted case, we are trying to find adversarial perturbations § that decrease the loss

of the model for the target class  and for untargeted case we find adversarial perturbations which
increase the loss of the model in general.

2.3.2  Basic lterative Method (BIM). BIM is an extension to the fast gradient sign method and
runs FGSM n number of times with a small step size. Iteratively running FGSM allows the adversary
to search the model input space thoroughly to find optimal perturbations.

Xo = X,

¥n+1 = Clip, A%y + o * sign(Vy Jo(x,y))} “)

Here, « is the step size and is usually defined as @ = €/n. Clip, (A) denotes the element-wise
clipping of A, such that the range of A; ; after clipping is in the interval [x; ; — €,x; ; + €]. The
BIM can also be used to compute targeted adversarial examples by the simple modification of sign
reversal and the introduction of the target class in Equation (4).

2.3.3 Jacobian-based Saliency Map Attack (SMM). Jacobian-based saliency map attack (SMM)
[30] finds features of input x that cause the most significant changes to the output of the model.
SMM computes perturbations that induce significant output variations such that a change in a
small portion of features of x foold the target model [39]. SMM computes the Jacobian matrix of
the given input x to determine adversarial perturbations.

OF(x) [ﬁFj(x)
dx | Ox;

Jr(x) = ()

ixj
Here, F is the second-to-last layer logits of the neural network.

2.3.4  Carlini-Wagner (CW) Attack. The CW attack solves the following optimization problem
to find adversarial perturbations.

min ||§]],
subjectto C(x+d6)=t, x+6¢€]0,1]"

(6)

where C(x) is the class label returned for input x and the noise level is measured using either
ly, I, or I, norm. CW attack is considered one of the best evasion attack method and computes
adversarial examples by finding the smallest noise § € R™*" that changes the classification of the
model to a class t.
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2.3.5 Momentum lterative Attack (MIM). Momentum iterative attack method [12] integrates the
concept of momentum into the BIM to generate adversarial examples for targeted and untargeted
cases using I, and [, norms respectively. The momentum is a technique for accelerating gradient
descent algorithms by accumulating a velocity vector in the gradient direction of the loss function
across iterations [12]. The introduction of momentum helps the method achieve optimum results
faster by stabilizing update directions and escaping from poor local maxima.

3 APPROACH

We use human activity recognition as an example case for demonstration and validation of our
experiments. Human activity classification involves some type of sensor system such as a smart-
watch, smartphone, smart shoes, chest band, or fitness band to detect and measure physical ac-
tivities. The underlying ML algorithms use the data from sensors to learn the characteristics of
different activities. But depending on the properties of the sensors, the sensor reading can differ
significantly even though the sensors are trying to measure and detect the same physical phenom-
ena. This is because human activities are highly complex and dynamic processes dependent upon
various factors. The sensor readings for an activity vary significantly even if the same person per-
forms the same activity under similar conditions compared to say image classification where an
image of a dog is always a dog independent of the presentation and context. These variations in
the sensor reading result in the trained ML algorithms learning unique mappings between inputs
and outputs, creating newer challenges and opportunities for an adversary that wants to attack
these systems.

3.1 Adversarial Transferability

From differences in the electrical properties of the sensor to the location of sensor on the hu-
man body, there are numerous ways in which different aspects of the sensor systems can affect
adversarial transferability. Therefore, in this work, we study adversarial transferability from the
following four perspectives:

— Adversarial transferability between ML models: The transferability between differ-
ent ML models trained on the whole or subset of the same dataset is the default and the
most discussed variety of adversarial transferability. To exploit this mode of transferabil-
ity, the adversary computes adversarial examples using one ML model and then performs
adversarial attacks on other models using the generated adversarial examples.

— Adversarial transferability across users: In sensor systems, the dataset used to train
ML algorithms is collected using human subjects. This is similar to an image dataset where
images of various objects are captured using different types of cameras. But what separates
human subjects from the optical sensor in cameras is that human subjects inject biases in
the data that are personalized to each individual and are hard to eliminate with preprocess-
ing. Attributes associated with individuals give the problem of adversarial transferability
in sensor systems a new direction. The adversary can leverage the biases injected by indi-
viduals to design better attack methods or suffer from this when trying to attack a target
system. Hence, evaluating adversarial transferability between ML systems trained on data
from different individuals becomes crucial.

— Adversarial transferability across sensor body locations: Another important attribute
of wearable sensor systems is the body location of the sensor. For example, activity trackers
can be worn in many different ways. Some can be worn as a wristwatch or wristband, others
can be clipped onto clothes and shoes or placed inside pockets, and some can be even worn
as jewelry. For two sensors of the same type—one wrapped around the subject’s chest and
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Fig. 3. Threat model in which an adversary operates with complete access to the source system S but only
oracle access to the target system T. The adversary has no knowledge about the target system and its prop-
erties, such as dataset used for training, type of learning algorithm, and hyper-parameters of the model.

other worn on the wrist—the sensor readings depend heavily on the orientation of the
sensor and placement. These differences in the sensor readings affect the mapping learned
by ML model and consequently transferability of adversarial examples.

— Adversarial transferability between datasets: The final and most complex type of
adversarial transferability is transferability between ML systems—same or of different
architectures—trained on different datasets. For example, in human activity recognition
different manufacturers use different types of sensors and collect proprietary datasets to
train ML algorithms. Now for an adversary which has access to system from one company,
it is challenging to attack a system from another manufacturer. The challenges can stem
from subject bias, sensors position, types of sensors, and data processing routines.

3.2 Threat Model

Depending on the type of adversarial transferability the adversary wants to exploit to attack the
target system, the adversary operates in different settings. In general, the threat model has two
main components. The first part concerns the target system T, which the adversary wants to attack
and the second part takes into account the source system S. The adversary can only send inputs
to the target system and observe the class prediction, and hence operates in the black-box setting
with respect to the target system T. The adversary has white-box access to the source system S and
can compute adversarial examples using the source model S,,,. Here the objective of the adversary
is to fool the target system T on the adversarial examples computed using the source model S,,.
Figure 3 shows the graphical representation of the threat model. In all four cases of adversarial
transferability, the adversary computes adversarial examples using the source model S, trained
on source dataset Dg and attacks the target system T with target model S; trained on dataset Dr.
In transferability between ML models Ds and D7 are same and for remaining cases of adversarial
transferability datasets Ds and Dt are different. In adversarial transferability across users, the
source dataset contains samples from a group of subjects and the target dataset contains samples
from the remaining subjects. In adversarial transferability across sensor body locations, the source
dataset contains sensor reading from sensor placed at one body position, for example right-wrist,
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Table 1. Characteristics of the Three Datasets Used in the Analysis (# Denotes “Number of”)

Dataset # Subject  # Activities Frequency =~ Window Size (Seconds)  # Devices  # Samples

UCI 30 6 50 Hz 2.56 1 10,299
MHEALTH 10 12 50 Hz 2.56 3 5,133
DL 7 6 50 Hz 2.56 2 16,434

and the target dataset contains sensor values from sensor placed at another body position, say
chest. Finally, in adversarial transferability between datasets, the source and target dataset are
completely different and have different distributions.

3.3 Measuring Adversarial Transferability

Measuring adversarial transferability means we want to determine how many adversarial exam-
ples designed for the source system can fool the target system. For untargeted attacks, we want to
quantify how many input samples were classified into any class other than the ground truth class
and for targeted attack we want to measure how many samples were classified into the target class.
We introduce a new metric called Success Score (SC) to measure adversarial transferability in both
untargeted and targeted cases. Success score defined in percentage is the ratio of the number of
adversarial examples that were able to fool the target system (N;) to the total number of samples
(N)

N,
Success Score (SC) = Ft # 100. (7)

For untargeted case, N; is equal to the number of adversarial examples that are misclassified and
for targeted case N; equals the number of adversarial examples that are classified into the target
class. Misclassification means the output label assigned to adversarial examples is different from
label assigned to clean samples used to generate adversarial examples. In the targeted case, success
score is computed for adversarial examples generated from clean samples which are not already
classified into the target class. Furthermore, in both targeted and untargeted cases success score
is only computed for samples that failed to fool the target model without addition of adversarial
perturbation.

3.4 Datasets

In our experiments, we have used three real-world human activity recognition datasets Table 1.
We have conducted our experiments with 3-axial accelerometer data.

—UCI dataset? [2] was compiled from a group of 30 participants, each wearing a smartphone
on their waist and performing six different activities in a lab setting. Data from 3-axial ac-
celerometer and gyroscope sensors were sampled at a frequency of 50 Hz and pre-processed
to remove noise.

—MHEALTH dataset® [5] consists of body motion and vital signs recording of 10 volunteers
of different profiles while performing 12 different physical activities in an out-of-lab envi-
ronment without any constraint, with the exception that the subject should try their best
when executing them. Shimmer2 wearable device placed on the subject’s chest, right wrist,
and left ankle were used to measure the motion experienced by the diverse body parts
using a 3-axial accelerometer at a frequency of 50 Hz. The class jump Front and Back has

Zhttps://archive.ics.uci.edu/ml/datasets/human-+activity +recognition+using+smartphones
Shttps://archive.ics.uci.edu/ml/datasets/ MHEALTH+Dataset
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fewer number of samples compared to other classes. Therefore, to balance the dataset, we
have removed the samples from the Jump Front and Back class from our analysis.

—Daily Log (DL) dataset? [36] has accelerometer, orientation, and GPS sensor data collected
from 7 individuals using a smartphone and smartwatch with a self-developed sensor data
collector and labeling framework. Acceleration and orientation sensors were sampled at 50
Hz and GPS data was collected every 10 minutes. The data was collected when participants
were doing their daily routine and it was up the participants where the device should be
positioned on the body. We randomly select subset of the data to use in our experiments
such that each activity class has the same number of samples.

Now we establish some conditions so that the analysis of different types adversarial transfer-
ability across the datasets is possible and sound.

(1) Sampling Frequency: One of the criteria we used to select datasets for our experiments
is the sampling frequency of the sensor. For all real-world datasets used in this article, the
sampling frequency is 50 Hz, which is considered adequate for human activity recognition
[24].

(2) Input Size: The length of the input window segment in all datasets must be the same
because we cannot train ML algorithms with variable input sizes. In our experiments, we
have set the length of the raw sensor segment to 128, which corresponds to the window
size of 2.56 seconds at a sampling frequency of 50 Hz. Setting the window size to 128 was
motivated by the fact that a window size of 1-2 seconds with 50% overlap is considered a
good choice for activity classification [4].

(3) Data Scaling: The range of values in the three datasets are very different. We used the
MinMaxScaler with range set to [-1.0, 1.0] from the sklearn library [31] to standardize all
three datasets. MinMaxScaler is the least disruptive to the information in the original data
and preserves the shape of the data and does not reduce the importance of outliers.

(4) Activity Classes: Another important factor when choosing datasets for our experiments
was the activity classes. The baseline condition was that there should be some activity
classes that are common for all datasets allowing us to analyze targeted adversarial trans-
ferability between datasets. The activities walking, sitting, standing, and climbing stairs
(walking up) are common to all three datasets. Also, having activities classes that are not
common between the datasets further helps us analyze transferability with generalization.

4 EXPERIMENTAL RESULTS

In this section, we discuss our experiments and results. We discuss four cases of adversarial trans-
ferability, and for each case, we present results for both targeted and untargeted evasion attacks.
The CleverHans [27] library was used to compute adversarial examples with the following param-
eters: (1) adversarial perturbation budget from the set € € [0.1,0.25,0.5,0.9], (2) range clipping of
adversarial examples set to [—1.0, 1.0], (3) number of iterations for BIM and momentum iterative
method set to 50. Also, for iterative methods, the perturbation budget per iteration is €/50.

4.1 Adversarial Transferability Between Machine Learning Models

To analyze the adversarial transferability between ML models, we trained six different ML algo-
rithms for a common dataset and computed adversarial examples using one of the trained model.
We used the feature data of all three datasets for training the ML algorithms. Using the feature

“https://sensor.informatik.uni-mannheim.de/#dataset_dailylog
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Table 2. Classification Accuracy of Different ML Algorithms on the Training and
Test Set of all Three Datasets

ML UCI MHEALTH DL
Algorithms Train Set  Test Set Train Set  Test Set Train Set  Test Set
svC 76.20% 76.38% 90.40% 90.46% 87.79% 87.61%
RFC 100.0% 84.85% 100.0% 96.39% 100.0% 89.87%
KNN 84.85% 79.10% 97.56% 96.07% 91.96% 87.90%
DTC 100.0% 72.93% 100.0% 92.22% 100.0% 85.08%
LRC 75.49% 76.54% 91.15% 89.90% 86.12% 85.66%
DNN 84.90% 82.05% 99.25% 97.19% 94.75% 89.82%

data enabled us to train different kinds of ML algorithms, which is not possible using the raw
sensor data. We computed 45 statistical features commonly used in HAR [40], from sensor seg-
ments of all three datasets. We selected the following algorithms to evaluate adversarial transfer-
ability between ML models: (1) Support Vector Classifier (SVC), (2) Random Forest Classifier
(RFC), (3) K-Nearest Neighbor (KNN) Classifier, (4) Decision Tree Classifier (DTC), (5) Lo-
gistic Regression Classifier (LRC), and (6) Deep Neural Network (DNN). The DNN has three
layers with 64, and 32 neurons in the first and second layers. In the last layer the number of neu-
rons is equal to the number of activity classes for the respective dataset. [2-regularization with
coefficient 0.001 and ReLU activation is used in the first and second layers, and the output layer
has Softmax activation. TensorFlow [1] was used to train the DNN with hyper-parameters: 200
epoch, mini-batch size of 32, Adam [18] optimizer with learning rate 0.001, and sparse categorical
cross-entropy loss. All other classifiers were trained using the sklearn library [31]. The maximum
iteration for SVC was set to 5,000 with scaled gamma, and the number of estimators for RFC was
set to 100. For logistic regression, the LBFGS solver was used with 5,000 maximum iterations and
for KNNs the number of components was set to 5. All other parameters of classifiers were left to
their default values.

Table 2 shows the classification accuracy of all trained models on the training and test set for
the three datasets. In general, all trained models have very high classification accuracy on training
and test sets. To evaluate these classifiers for adversarial transferability between ML models, we
computed targeted and untargeted adversarial examples using the DNN model—the source model.
We choose the DNN model, because evasion attacks methods based on gradient optimization are
more mature and there are large number of successful attack methods available for neural networks
[8, 14]. There are some adversarial attack methods that can compute adversarial examples with
non-parametric models such as decision trees and KNNs [29, 38] and we explore these attacks later
in our discussion section. For targeted attacks, we selected the “Sitting” activity class as the target
class because it is common across all three datasets.

Figures 4 and 5 show the success score of untargeted and targeted adversarial examples for the
UCI and DL datasets. Different adversarial attack methods were used to generate adversarial ex-
amples for the perturbation budget of € = 0.5 using the DNN model. Each number in the heatmap,
shows the success score of adversarial examples computed using the attack method specified by
the column index on the ML model denoted by the row index. For example, in Figure 4 the suc-
cess score of untargeted adversarial examples computed with adversarial attack BIM on the SVC
model is 84.78% and the success score of targeted adversarial examples is 35%. The results for the
MHEALTH dataset was found to be very similar to the UCI dataset, and is presented in supple-
mentary section.
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Untargeted Success Score (%) Targeted Success Score (%)

DNN 100.00 DNN 99.32 99.95 36.97 96.30 86.83

DTC DTC 25.01 14.43 16.77 21.41 12.04

KNN KNN 27.56 3.67 22.27 30.95 7.77

LRC LRC | 40.02 3.25 39.24 17.17

RFC 35.22 REC | 4159 1429 & 39.75 5.19
ISVe 38.14 SVC | 38500 141 = 2864 7.67
BIM CW FGSM MIM SMM BIM CW FGSM MIM SMM

Fig. 4. Success score of adversarial examples computed with the UCI dataset for transferability between
models.

Untargeted Success Score (%) Targeted Success Score (%)

DNN 99.98 61.91 BNV 9229 9851 QEKKEN 5164 [PWX

DTC 50.79 38.82 DTC 6.11 1.34 4.94 6.75 0.23

KNN 25.72 KNN 4.03 0.06 2.95 9.61 0.18

LRC 31.35 LRC 4.32 0.00 8.69 27.01 0.06

RFC 25.12 RFC 441 0.00 5.05 5.90 0.00

3SVC 23.39 SVC  0.09 0.00 0.09 0.55 0.00

BIM CW FGSM MIM SMM BIM CW FGSM MIM SMM

Fig. 5. Success score of adversarial examples computed with the DL dataset for transferability between
models.

In general, we found high adversarial transferability between ML models for untargeted ad-
versarial examples. For targeted attacks, adversarial examples were less transferable for all three
datasets. In particular, we found DTC, KNN, and RFC classifiers to be more robust towards targeted
adversarial examples for UCI and MHEALTH datasets. We also found that the level of adversarial
transferability between ML systems differed greatly across the three datasets. For the DL dataset,
both targeted and untargeted adversarial examples were less likely to be transferable with targeted
transferability success score values of 0.0% in many cases. We believe the lower success score of
targeted adversarial examples in general is due to fundamental differences between the targeted
and untargeted attacks. An untargeted attacks is considered successful if an input is classified into
any class other than its actual class but for the targeted attack to be successful the input must be
classified into the target class by the target system. Hence, targeted attack are much more diffi-
cult and an adversary will have higher success score for untargeted attack compared to targeted
attack at the same level of perturbation budget and source and target models attributes. Also, we
suspect the lower success score for the DL dataset is due to nature of the dataset. The DL dataset
was collected in daily-living conditions while participants were following their daily routine with
greater degree if flexibility compared to the MHEALTH and UCI dataset. Collecting sensor data
in daily-living conditions can induces noise and artifacts in the sensor data and as a result dif-
ferent learning algorithms will learn different mappings between input and output. Furthermore,
no data preprocessing is applied to the DL dataset but both UCI and MHEALTH dataset undergo
noise removal and filtering. Consequently, adversarial transferability which aims to capitalize on
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Table 3. Details about the Source and Target Dataset Fashioned by Randomly Selecting Subjects Data
for the UCI, MHEALTH, and DL Datasets

Dataset  # Samples # Subjects # Source Subjects # Source Samples # Target Subjects # Target Samples

UCI 10,299 30 15 5,138 15 5,161
MHEALTH 5,133 10 5 2,464 5 2,527
DL 16,434 7 3 9,918 4 6,516

Here, # means “number of”.

Table 4. The Classification Accuracy of Source and Target Models on the Training and
Test Set of all Three Datasets

Machine Learning UCI MHEALTH DL
System Source Set Target Set Source Set Target Set Source Set Target Set
Source 81.49% 61.42% 99.66% 66.55% 81.74% 25.28%
Target 62.43% 85.58% 81.37% 99.72% 34.09% 86.05%

the common input-output mappings shared by different ML algorithms to fool a target system on
adversarial examples computed using the source system suffers greatly.

4.2 Adversarial Transferability Across Users

All three datasets have subject ID associated with each row of sensor readings or data files. We
randomly selected data from half the subjects to create the dataset for the source system (source
dataset) and the data from the remaining half subjects is used in the target system (target dataset).
Table 3 shows the properties of source and target sets for all three datasets. We also decided to use
1-D CNN for both source and target system ML algorithm because of its simplicity and superior
performance. CNN allows us to use the raw sensor data directly to train the model without needing
to compute features from the sensor segments. The input CNN layer has 100 filters, kernel size of
10, and strides of 2. The second CNN layer layer has 50 filters and kernel size of 5. The third layer
is a 1-D Global Max Pooling, which is followed by a fully-connected layers with 64 neurons and
drop-out coefficient of 0.3. The last layer is also a fully-connected layer with the number of neurons
equal to the number of activity class defined by the dataset. ReLU activation is used in all layers
except the output layer, which uses Softmax activation function. The CNN model is trained using
the Adam [18] optimizer with a learning rate of 0.001. The loss of the model is computed using the
categorical cross-entropy loss function.

Table 4 shows the classification performance of the source and target system of UCI, MHEALTH,
and DL datasets on their respective source and target sets. For UCI and MHEALTH datasets, the
source and target models have high classification accuracy on both source and target datasets. High
classification accuracy between source and target systems demonstrates high level of generaliza-
tion between source and target systems. Therefore, in theory cross user adversarial transferability
should be high for the UCI and MHEALTH datasets because source and target systems share com-
mon knowledge and an adversary should be able to exploit these common mappings to fool the
target system using adversarial examples computed using source system. On the other hand, the
classification accuracy is low for the DL dataset implying less shared knowledge between source
and target systems and consequently predicting poor adversarial transferability.

Figures 6 and 7 show the success score of untargeted and targeted adversarial examples for
UCI and DL datasets computed using five attack methods at four values of adversarial perturba-
tion budgets € € {0.1,0.25,0.5,0.9}. For targeted attacks, the activity class “Sitting” is used as the
target class. Untargeted adversarial examples were highly transferable to the target system in all
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Fig. 6. Success score of adversarial examples on source and target systems with the UCI dataset for trans-
ferability across users.
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Fig. 7. Success score of adversarial examples on source and target systems with the DL dataset for transfer-
ability across users.

three cases. But untargeted success score for the DL dataset was lower compared to the UCI and
MHEALTH dataset, indicating consequent of low generalization we observed between the source
and target system for the DL dataset. Targeted adversarial examples were unsuccessful in all three
cases, confirming that the individual characteristics encoded in the sensor data from each subject
can greatly affect the adversarial transferability. The results for MHEALTH dataset is available in
the supplementary materials.

4.3 Adversarial Transferability Across Sensor Body Locations

The MHEALTH dataset has readings from accelerometers placed at three different body positions.
The first sensor is wrapped around the subject chest, the second is worn by the subject on the
right wrist, and the last one is worn on the left ankle. All sensors have same physical and electrical
characteristics. To evaluate adversarial transferability across sensor body locations, we perform
experiments with different choice of sensor locations for the source and target systems. In the first
case, the data from the chest sensor is used to train the source system and the data from the ankle
sensor is used to train the target system. In the second case, the data from the wrist sensor is used
to train the source system and the data from the chest sensor is used in the target system. Finally,
we have data from ankle sensor used in the source system and data from wrist sensor is used to
train the target system. Also, we use the same architecture of CNN used for transferability across
subjects for the source and target models.
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Table 5. The Classification Accuracy of Source and Target Systems on the Source and Target Datasets
for all Three Cases of Sensor Body Positions

Machine Learning Chest Vs. Left-Ankle Right-Wrist Vs. Chest Left-Ankle Vs. Wrist
System Source Set Target Set Source Set Target Set Source Set Target Set
Source 98.81% 12.20% 99.67% 18.69% 98.55% 22.06%
Target 18.75% 96.75% 23.58% 99.17% 19.89% 99.43%

For example, the table for Chest - Ankle shows the classification accuracy of the Chest source system and Left-Ankle
target system on both chest and left-ankle datasets.

Untargeted adversarial examples Targeted adversarial examples
100 100

R 80 80 —— Chest — BIM
o R - N
8 60 60 Left-Ankle CW
n —— FGSM
§ 40 40 '/0—0\. — MIM
[$]
a2 20 \'\‘ — SMM

0 i b e

0.10 0.25 0.50 0.90 0.10 0.25 0.50 0.90
Perturbation Budget (g) Perturbation Budget (g)

Fig. 8. Success score of adversarial examples computed using the source system (Chest) on source and target
(Left-Ankle) systems.

After training the source and target model on their respective datasets obtained from sensors
placed at different body locations, we evaluate the trained source and target models on both
datasets. Table 5 shows the classification accuracy of these models on both datasets. In all cases,
the classification accuracy of the source model on the target dataset and the target model on the
source dataset is low, indicating low generalization between the source and target systems.

4.3.1 Chest Vs. Left-Ankle. Figure 8 shows the success score of untargeted and targeted ad-
versarial examples computed using the chest (source) system on the chest and left-ankle (target)
system. We found good transferability for untargeted attacks and very low transferability for tar-
geted attacks for the target activity class of “Sitting”. Untargeted adversarial examples with success
score upto 100% on the source model performed fairly well, success score in the range 0%—40%, on
the target model. The adversarial transferability further decreased for targeted attacks with suc-
cess score of almost 0% on the target system while the success score was in the range of 20%—100%
on the source system.

4.3.2  Right-Wrist Vs. Chest. Figure 9 shows the success score of untargeted and targeted ad-
versarial examples computed using the right-wrist (source) system on the right-wrist and chest
(target) system. We found high adversarial transferability for both untargeted and targeted at-
tacks, with untargeted success score upto >90% and targeted success score upto 80% for the target
class of “Sitting” on the target system.

The above results show that adversarial transferability differs greatly with the sensor body lo-
cations for source and target systems. If the sensors for the source and target system are located
near each other, for example, in the case of Right-Wrist Vs. Chest, adversarial examples were able
to fool the target system fairly well. But for source and target sensors placed far-apart on the body,
in the case of Chest Vs. Left-Ankle and Left-Ankle Vs. Right-Wrist, the transferability of adversarial
examples was low. Specifically, the success score of targeted adversarial examples was almost 0%
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Fig. 9. Success score of examples computed using the source system (Right-Wrist) on source and target
(Chest) systems.

Table 6. Success Score of Adversarial Examples Computed Using the Source (UCI) System on the
Source and Target (MHEALTH) Systems

Evasion Untargeted Attack Perturbation Budget (¢)

Attack 0.1 0.25 0.5 0.9
Methods Source Target | Source Target | Source Target | Source Target
FGSM 74.09 0.11 84.15 0.85 87.65 11.96 89.74 36.15

BIM 86.91 0.19 96.89 0.62 97.86 8.03 97.94 25.78

MIM 86.79 0.19 96.07 0.97 96.50 13.09 96.07 40.23

SMM 51.84 0.11 78.17 0.11 92.73 0.11 96.07 0.11

CwW 100.0 0.03 100.0 0.03 100.0 0.03 100.0 0.03
Evasion Targeted Attack Perturbation Budget (¢)

Attack 0.1 0.25 0.5 0.9
Methods Source Target | Source Target | Source Target | Source Target
FGSM 8.62 0.0 3.82 0.0 1.02 0.0 0.55 0.0
BIM 64.83 0.0 92.39 0.0 99.02 0.0 99.95 0.0
MIM 58.58 0.0 91.18 0.0 99.95 0.0 100.0 0.0
SMM 45.10 0.0 49.02 0.0 52.0 0.0 35.68 0.0
CW 99.95 0.0 99.95 0.0 99.95 0.0 99.95 0.0

for all attack methods at all values of adversarial perturbation budgets. The results for the case
Left-Ankle Vs. Right-Wrist is provided in supplementary section.

4.4 Adversarial Transferability Between Datasets

Transferability between datasets includes all other types of transferability we have discussed so far
and augments that with new variables such as sensor types, electrical properties of the sensor, and
data processing steps. To evaluate adversarial transferability between datasets, we train source
and target CNN models of same architecture and hyperparameters on different datasets. Since,
we have three different datasets to evaluate adversarial transferability we have three different
combinations for evaluation. Each of the combination assigns different dataset to the target and
source systems. In the first experiment, we assigned the UCI dataset to the source system and the
MHEALTH dataset to the target system. Table 6 shows the success score of untargeted and targeted
adversarial examples for this case. In the second case, the DL dataset was assigned to the source
system and the target system was trained on the UCI dataset. Table 7 shows the success score of
untargeted and targeted adversarial examples for the second case. Finally, in the third case the
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Table 7. Success Score of Adversarial Examples Computed Using the Source (DL) System on the
Source and Target (UCI) Systems

Evasion Untargeted Attack Perturbation Budget (¢)

Attack 0.1 0.25 0.5 0.9
Methods Source Target | Source Target | Source Target | Source Target
FGSM 69.53 11.80 91.92 27.88 94.42 51.20 90.84 82.52

BIM 91.92 7.08 99.48 13.75 99.48 33.43 99.48 55.09

MIM 93.01 8.51 99.48 20.32 99.48 41.32 99.48 74.73

SMM 51.47 25.28 83.96 38.69 93.59 41.98 95.27 48.50

CwW 100.0 5.47 100.0 5.59 100.0 5.84 100.0 6.01
Evasion Targeted Attack Perturbation Budget (¢)

Attack 0.1 0.25 0.5 0.9
Methods Source Target | Source Target | Source Target | Source Target
FGSM 0.43 11.51 0.17 4.03 0.0 4.34 0.0 2.04
BIM 52.24 11.70 67.64 9.32 90.62 5.81 97.02 4.17
MIM 56.22 7.41 71.52 3.90 98.30 5.09 99.97 5.25
SMM 4.05 2.26 3.73 1.07 1.92 0.11 0.67 0.05

CwW 99.85 1.43 99.85 1.46 99.82 1.41 99.82 1.46

source system was trained on the MHEALTH dataset and the target system was trained on the DL
dataset. The result for the third case can be found in the supplementary section. The success score
were very similar to results for the first case of UCI source dataset and MHEALTH target dataset.
We found poor adversarial transferability in the first case with highest untargeted success score of
40.23% at highest perturbation budget. The targeted success scores was 0% for all configurations.
In the second case, we found untargeted success score up to 82% and highest targeted success score
0f 11.70%. The low adversarial transferability observed in this case demonstrates that with greater
distinction between source and target systems the adversarial transferability decreases sharply.
One interesting thing to note here is that targeted adversarial examples were more transferable at
lowest adversarial perturbation budget (¢ = 0.1) and untargeted adversarial examples were most
transferable at highest value of adversarial perturbation budget (e = 0.9).

5 DISCUSSION

In this section, we discuss our results and provide theoretical and graphical explanations. We gen-
erate adversarial examples using non-parametric ML algorithms such as DTC and KNN classifier
and measure adversarial transferability. We also discuss adversarial transferability through the
lens of non-robust features and manifold learning to provide explanation for our results and estab-
lish ideas for future research. Discussion on manifold learning is presented in the supplementary
section.

5.1

In our analysis, we found KNN and DTC classifiers to be robust against targeted adversarial ex-
amples computed using a DNN compared to other learning algorithms such as SVC and LRC. To
further evaluate the robustness KNN and DTC algorithms, we computed targeted and untargeted
adversarial examples using the KNN and DTC at the adversarial perturbation budget of € = 0.5.
We used the Region-based Attack (RBA) [38] and heuristic decision tree attack (Papernot) [28]
to compute adversarial examples using the decision tree classifier. The RBA finds the closet poly-
hedron to an input where the classifier predicts a label other than the actual label and outputs

Adversarial Attacks with Decision Trees and K-Nearest Neighbors
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Fig. 10. Success score of adversarial examples computed using the DTC on different ML models.
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Fig. 11. Success score of adversarial examples computed using the DTC and DNN on different ML models.

the closest point in this region as an adversarial example. RBA is optimal and can find highly
successful adversarial examples but suffer from high computational load. Heuristic decision tree
attack searches for leaves in the decision tree with different class in the neighborhood of the leaf
corresponding to the decision tree’s original prediction for an input. The path from the original
leaf to the adversarial leaf is used to modify the input sample to create an adversarial example.
We used the Kernel Substitution Attack [28], which uses the FGSM, to craft adversarial examples
misclassified by nearest neighbors with the KNN model.

Similar to the case of adversarial transferability between ML models, we trained six different ML
algorithms on the feature data of the UCI dataset, and computed adversarial examples using DTC
and KNN models. Figure 10, shows the success score of untargeted and targeted adversarial exam-
ples computed using the DTC model on all six ML models. Adversarial examples were able to fool
the DTC model with good success score (40%), but performed poorly on other models, indicating
poor adversarial transferability in both targeted and untargeted cases. We also want to highlight
the difference in the success score of adversarial examples computed using the DNN model in Sec-
tion 4 and adversarial examples computed using the DTC model here. Figure 11 shows the success
score of adversarial examples computed using the DTC with RBA method and DNN model with
BIM on all six ML models. As we can see, adversarial examples computed using the DNN model
are more successful on the DTC, compared to adversarial examples computed using the DTC for
the same adversarial perturbation budget. Furthermore, adversarial examples computed using the
DNN model are more transferable than adversarial examples computed using the DTC.

Table 8 shows the success score of untargeted adversarial examples computed using the KNN
model on all six ML models. The adversarial examples are highly transferable and the success
scores are similar to those obtained with adversarial examples generated using the DNN as shown
in Section 4. Therefore, KNN model is more vulnerable compared to the DTC model at the
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Table 8. Success Score of Untargeted Adversarial Examples Computed
Using the KNN Model on Different ML Models

Machine Learning Models
SVC RFC KNN DTC LRC DNN
Success Score (%) 85.74 89.82 86.01 8532 86.40 77.35

same level of adversarial perturbation budget and adversarial examples computed using the KNN
model is more transferable than DTC. However, adversarial attack methods that works with non-
parametric learning algorithms such as DTC and KNN are much more computational intensive
compared to gradient-based adversarial attack method and computed adversarial examples are
also less successful and transferable. Hence, for sensor systems with computation and resource
limitations, a direct attack on non-parametric learning algorithms might not be feasible. An at-
tacker is better off using gradient-based attack methods to compute adversarial examples using
the source systems and then attack the target system by exploiting the transferability of adversar-
ial examples.

5.2 Feature Overlap

Authors in [17], have argued that neural networks trained on independent samples from a dis-
tribution tend to learn similar “non-robust” or brittle features making adversarial transferability
possible. The central thesis is that data samples used to train ML model and used by an adversary
belong to the same distribution. Therefore, models trained on similar data distributions have strong
transferability between them, and models trained on distinct data distributions have weak trans-
ferability. This is because similar data distributions facilitate the learning of similar non-robust fea-
tures and different data distribution has minimal overlap between the corresponding non-robust
features. In adversarial transferability cases we have analyzed in this work, the data distribution
of source and target systems have varying degree of overlap. In transferability between models,
all models are trained on the same dataset. This allows the models to learn similar non-robust
features resulting in excellent adversarial transferability. On the other hand, in transferability be-
tween datasets, source and target models are trained on datasets from different distributions. In
this case, trained models have minimal overlap between learned non-robust features and conse-
quently the adversarial transferability is poor. To verify this, we evaluated the target model on the
test set of the source model. The performance of the target model on the source model’s test set in
theory is correlated with learned features shared between them. Higher classification accuracy of
the target model on the source model test set implies learning of similar features, and lower clas-
sification accuracy demonstrates learning of different features between the source and the target
model. The degree to which the target and source model share learned features is proportional
to the performance of the target model on the adversarial examples computed using the source
model.

Figure 12 shows the classification accuracy and success score of the target model on the source
model test set and targeted adversarial examples computed using the source model with the Ba-
sic Iterative Attack (BIM). The performance of the target model on the source model test set was
found to be directly proportional to the target model’s success score on adversarial examples.
Higher classification accuracy on the test set corresponded to a higher success score on adversar-
ial examples and vice-versa. Hence, the degree to which features are shared between target and
source models is directly related to the effectiveness of adversarial examples on the target model.
Learning of similar features by target and source models facilitates better adversarial transferabil-
ity, as demonstrated in transferability between models and transferability across subjects. On the
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Classification accuracy versus adversarial success score.
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Fig. 12. The classification accuracy of the target model for different cases of transferability on the test set
of the source model Vs. the success score of targeted adversarial examples computed using the BIM on the
target model.

other hand, when target and source models have less overlap between learned features, the adver-
sarial transferability is poor as found in transferability across sensor locations and transferability
between datasets.

6 CONCLUSIONS

Adversarial examples are shown to be transferable across ML models trained on the whole or
subset of the same dataset. However, the problem of adversarial transferability does not end there.
For the first time in literature, we have investigated novel types of adversarial transferability in
the context of wearable sensor systems with an extensive set of experiments. These new aspects of
adversarial transferability show how an adversary can exploit sensor systems properties to craft
adversarial examples in ways not discussed before. Our results not only demonstrate that there
exist many new types of adversarial transferability but also show where and how these newer
modes of transferability excel and fail.

We first evaluated the general case of transferability between ML models. Using the feature
data from three real-world datasets, we found high untargeted transferability between different
types of ML models with five attack methods. For targeted attacks, adversarial examples were less
transferable for all three datasets with highest success score of 76%. We also found non-parametric
learning algorithms such as DTC and KNNs to be more robust compared to other types of learn-
ing algorithms. The level of targeted transferability differed greatly across the three datasets. For
Daily-Living (DL) dataset, both targeted and untargeted adversarial examples were much less likely
to be transferable compared to UCI and MHEALTH datasets. The underlying reasons behind the
low adversarial transferability for the DL dataset is due to the large number of samples, data col-
lection in daily living condition, and no preprocessing steps for sensor data. These properties make
adversarial examples less transferable because different learning algorithms learn different map-
pings between input and outputs.

For cross user transferability, we randomly selected data from half the subjects to create the
source dataset and the data from the remaining half subjects was used as the target dataset. We
separated all three datasets in this way and evaluated adversarial transferability across users. We
discovered that the level of generalization between the source and target systems greatly affected
the transferability of adversarial examples. For UCI and MHEALTH datasets, we found high level
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of generalization as indicated by the high classification accuracy of the source model on the target
dataset and the target model on the source data. Consequently untargeted adversarial examples
were highly transferable. For the DL dataset, we found low level of generalization between the
source and target systems and as a result low levels of untargeted adversarial transferability. Tar-
geted transferability was low for all three datasets and for the DL dataset success score of targeted
adversarial examples was 0% at all levels of perturbation budget. Low targeted adversarial trans-
ferability performance indicates that the individual characteristics of users have significant bear-
ings on adversarial transferability. Personalizing a model for a user will not only make the model
achieve high performance on the user data but also make the model secure against adversarial
transferability attacks.

Next, we evaluated the transferability across sensor body positions using the data from sensors
placed at chest, left-ankle, and right-wrist. The adversarial transferability differed greatly based
on source and target systems sensor body locations. For source and target systems sensors that
were located near to each other, for examples right-wrist and chest, adversarial examples gener-
ated using the source system were highly transferable to the target system for both targeted and
untargeted attacks. But for source and target systems sensor that were placed far-part, for exam-
ple left-ankle and chest, the transferability of targeted adversarial examples was low. In the last
experiment, we analyzed transferability across datasets. All three datasets have some common ac-
tivity classes between them and some unique activity classes. For different combinations of source
and target datasets, we found very low untargeted and targeted adversarial transferability for the
entire spectrum of analysis.

In this work, we explored novel directions of adversarial transferability in the context of wear-
able sensor systems and showed how an adversary’s performance varies in different transferability
settings. In general untargeted attacks were more successful than targeted attacks. Untargeted at-
tacks are considered successful as long as they can achieve random misclassification, which is
much easier to achieve. The nature of the time-series input to sensor systems makes them more
vulnerable to random misclassification because the data they operate on have properties that are
easier to exploit. However, the complexity of adversarial attacks increases significantly in the tar-
geted case. For targeted attacks, the attack methods have to find adversarial perturbations that
need to conform to the temporal and spatial properties present in the dataset for the chosen tar-
get class. Due to this, the targeted transferability was very poor in most cases. Also, the main
requirement of adversarial transferability is to have shared knowledge between the source and
target systems. Irrespective of the learning algorithm, shared learning is facilitated when source
and target datasets overlap along some dimensions such as processing routines, sensor type, sen-
sor location, and population group. Hence, for an adversary to be successful it should take into
consideration common attributes between the source and target systems and create adversarial ex-
amples that exploit these common attributes to have a higher chance of fooling the target system.
In particular, our findings can be summarized as follows.

(1) The traditional notion of transferability across ML models showed excellent results which
is consistent with the literature. But we also discovered that the properties of the under-
lying data distribution and properties of sensor system design such as the number of sam-
ples, context (in-lab or real-world) in which the dataset was collected, and preprocessing
steps greatly affects adversarial transferability.

(2) We found gradient-based attack methods to be more competent at finding transferable ad-
versarial perturbations compared to non-gradient based methods. Non-parametric learn-
ing algorithms such as decision tree and KNN were more robust against targeted and
untargeted adversarial examples computed using both gradient and non-gradient based
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attack methods. Furthermore, adversarial examples computed using DNN were more suc-
cessful on these algorithms than adversarial examples computed using them.

Individual characteristics of users greatly affect targeted adversarial transferability. Also,
if the source and target datasets are from the same population, then the sensor location
of source and target systems becomes important. Near source and target sensor locations
facilitate higher adversarial transferability and vice-versa.

In general, the extent to which the source and target systems properties overlap affects ad-
versarial transferability. The properties of source and target systems are mainly governed
by source and target datasets and models. Datasets encode several attributes of wear-
able sensor systems such as sensor type, subjective biases, preprocessing pipeline, sensor
placement and orientation. Models represent types of learning algorithms and attributes
of the algorithm. Adversarial transferability depends on the shared knowledge between
source and target systems, and depending on the extent to which both systems share com-
mon mapping between inputs and outputs adversarial transferability varies. In the case
of transferability between models, the distinction between source and target systems is
only for the learning algorithms and in this case we found high untargeted and targeted
transferability. On the other hand, in the case of transferability between datasets, source
and target systems learning algorithms are the same, but source and target datasets are
different. In this case, we observed low transferability for both untargeted and targeted
attacks. Therefore the main reason for adversarial transferability is the similarity between
source and target datasets. By increasing the distance between source and target datasets
using design principles or post-processing techniques, adversarial transferability can be
significantly reduced.

7 RECOMMENDATIONS

In this section, we provide recommendations aimed at a system designer for designing robust
embedded systems based on our results and findings. These recommendations can be considered
as design choices that can affect the adversarial robustness of a sensor system.

(1)

The fundamental reason for the robustness of the target system against adversarial trans-
ferability was the distance between the source and target data distributions. With the
increasing level of distance between the source and target data distribution as shown in
Section 5.1, the adversarial transferability decreased and reached a success score of 0%.
Hence, when designing and developing embedded sensor systems it is recommended to
use proprietary or private datasets. If it is not possible to use private datasets, data process-
ing techniques such as Principal Component Analysis [6], removing non-robust samples
from the dataset [38] and noise addition should be used as preprocessing steps on the
dataset to learn a robust classifier.

Personalizing ML models for a user, often needed in sensor system applications, shows
the potential of not only improving the model performance for the user but also make the
model robust against adversarial attacks.

Sensor system trained on a large real-world dataset was discovered to be more robust to
adversarial transferability compared to a system trained with smaller lab-setting datasets.
In our analysis, target systems that used the Daily Living (DL) dataset (sample size 16,434)
were more robust towards both untargeted and targeted adversarial examples than target
systems that used the UCI dataset (sample size 10,299) and the MHEALTH dataset (sample
5,133). Hence, it is better to have a large dataset for a robust system from an adversarial
transferability point of view.
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Finally, we want to draw the reader’s attention to the argument that ML systems can be protected
by access control, and very few cases of adversarial attacks can happen in real-world wearable sys-
tems. However, by limiting our understanding of vulnerabilities that exists in sensor systems by
operating on the default setting that adversarial attacks on embedded systems have a low chance
of occurrence is not prudent. If we ignore the discussion of adversarial attacks and transferability
by operating on the default setting, we will be blind to the inherent shortcomings of our systems,
which can be detrimental to the overall health of our systems. For example, consider a fall detection
system used to dispatch help when the system detects falls. If an adversary can influence any as-
pect of this system, then the effect can have life-altering consequences. Furthermore, recent works
have shown that adversarial attacks are possible in real-world conditions, and the transferability
of adversarial examples dramatically enhances the chances of success for an adversary [13, 15, 16,
23]. Also, the decision-making model needs not to be present locally on the device. The model can
be in the cloud, and the system operates by querying the cloud model with sensor readings for
classification [10, 32]. This mode of operation is becoming more mainstream as it provides many
benefits, such as life-long learning, active learning, and data analytics. Therefore, acknowledging
and understanding the adversarial nature of ML algorithms used in embedded sensor systems al-
low us to build measures and adapt the design process to thwart and limit the impact of adversarial
attacks. This is precisely what we aimed to achieve in this work. By making the connection be-
tween adversarial transferability and different aspects of embedded sensor systems, we showed
where the strengths and limitations of an adversary lie and how a system designer can use this
information to design and build robust and reliable embedded systems.

8 LIMITATIONS AND FUTURE WORK

In this work, we have tried to cover the topic of adversarial transferability in embedded systems
in a broad manner. Nonetheless, our work does have some limitations, which we have highlighted
below.

—In our experiments, we have used five different adversarial attack methods to evaluate
adversarial transferability in embedded sensor systems. However, there are many more
attack methods in the literature that we have left out of our discussion. Unexplored attack
methods with better optimization strategies may be able to find adversarial perturbation
with better transferability properties and succeed where the discussed attack methods have
failed.

—The discussion of adversarial ML is not complete without talking about defense against
adversarial attacks. Attack and defense form the two faces of the adversarial ML coin, and
hence should be given equal importance and attention in research. Our discussion in this
work does not discuss defense mechanisms, and we aim to explore the effects of defense
methods against adversarial transferability in our future works.

—In this work, we have only discussed the level of performance of different attack methods
in terms of transferability. One interesting question that we can ask based on our results
is, “What makes some attack methods to have higher or lower rates transferability than
others?”. This is one of the fundamental questions that need to be investigated to better
understand the results obtained in this work.

Finally, we want to touch upon the indistinguishability of signals and the requirement of ad-
versarial perturbation budget in the case of sensor systems. We know that adversarial examples
are computationally created inputs not significantly different from samples in the target data dis-
tribution. However, signals lack the observational understanding present in samples from domain
such as computer vision. It is difficult and almost impossible to understand a signal by observa-
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tion without some operation to quantify its properties. Hence, in signal domain adversarial exam-
ples extends the traditional definition and encompasses a broad spectrum of generation schemes.
For example, an attacker can send any signal conforming to the characteristics of the target class
without any other consideration and any good target model will be fooled. Also, the lack of under-
standing of signals makes it almost impossible to determine whether an input signal is adversarial
or not just by observation without knowing the actual ground truth label. Perturbation budget also
plays a role in defining the extent to which an adversarial example can differ from actual samples
from the data distribution. Therefore, in signal domain, the requirements of perturbation budget
need further analysis.

APPENDICES
A DATASETS ACTIVITY DISTRIBUTION

Figure 13 shows the class distribution of all three datasets used in the analyses. The class distribu-
tion is fairly balanced for all three datasets.
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Fig. 13. Activity distribution of the three datasets (best viewed in color).

B TRANSFERABILITY BETWEEN ML MODELS—MHEALTH DATASET

Figure 14 shows the success scores of untargeted and targeted transferability between models for
the MHEALTH dataset. We found high level of untargeted transferability with all attack methods
except the CW attack. Also, targeted transferability was high reaching success scores up to 76.77%.
Untargeted Success Score (%)

DNN 100.00  87.10 DNN

Targeted Success Score (%)
9850 100.00 = 82.80 97.53 (5150

DTC 89.50 DTC 18.94 6.96 0.53 8.11 1.32

KNN : 73.64 3798  KNN 2648 204 3.54
LRC 74.52 40.79 LRC LRIl 6800 7677 [EZRE
RFC 84.86 3397 RFC 518 105 088 097 035
SVC . 75.88 4423  SYC 3146 384 | 3870 11.71

BIM CW FGSM MIM SMM BIM CW FGSM MIM SMM

Fig. 14. Success score of untargeted and targeted adversarial examples for the MHEALTH dataset.

C TRANSFERABILITY ACROSS USERS—MHEALTH DATASET

Figure 15 shows the success scores of untargeted and targeted transferability across users for the
MHEALTH dataset. The activity class “Walking” was used as the target class. We found high level of
untargeted transferability, but targeted transferability was low at all level of perturbation budgets.
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Fig. 15. Success score of adversarial examples on source and target systems with the MHEALTH dataset for
transferability across users.

D TRANSFERABILITY ACROSS SENSOR BODY LOCATIONS—LEFT-ANKLE VS.
RIGHT-WRIST

Figure 16 shows the success score of untargeted and targeted adversarial examples computed using
the left-ankle (source) system on the left-ankle and right-wrist (target) systems. Similar to Chest
Vs. Left-Ankle case, we found high untargeted transferability, success score upto 98%, and very
low (0%) targeted transferability for the target class of “Sitting*.

Untargeted adversarial examples Targeted adversarial examples
100 100
2 g 80 —— Left-Ankle  —— BIM
s -—-- Right-Wrist —— CW
3 60 60
2] —— FGSM
@ 40 —
§ 40 MIM
S 20 — SMM
ZIPN -
0 f ) 2
0.10 0.25 0.50 0.90 0.10 0.25 0.50 0.90
Perturbation Budget (€) Perturbation Budget (€)

Fig. 16. Success score of adversarial examples computed using the source system (Left-Ankle) on source
and target (Right-Wrist) systems.
E TRANSFERABILITY BETWEEN DATASETS—DL VS. MHEALTH

Tables 9 and 10 show untargeted and targeted transferability for the case of source MHEALTH
dataset and target DL dataset. Similar to UCI Vs. MHEALTH case, we found good level of untar-
geted transferability but no targeted transferability at all of perturbation budgets.
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Table 9. Success Score of Untargeted Adversarial Examples Computed Using the Source
(MHEALTH) System on the Source and Target (DL) Systems

Evasion Untargeted Attack Perturbation Budget (¢)

Attack 0.1 0.25 0.5 0.9
Methods Source Target | Source Target | Source Target | Source Target
FGSM 64.58 24.35 83.33 30.84 90.30 30.60 92.54  31.25
BIM 80.76 21.47 99.83 33.89 99.91 36.21 100.0 38.46
MIM 82.69 25.56 99.43 32.37 99.91 35.25 100.0 39.98
SMM 40.46 20.99 67.06 35.33 81.00 38.38 86.21 38.46
CW 100.0 12.58 100.0 12.41 100.0 12.66 100.0 13.14

Table 10. Success Score of Targeted Adversarial Examples Computed Using the Source
(MHEALTH) System on the Source and Target (DL) Systems

Evasion Targeted Attack Perturbation Budget (¢)

Attack 0.1 0.25 0.5 0.9
Methods Source Target | Source Target | Source Target | Source Target
FGSM 0.70 0.0 0.26 0.0 0.0 0.0 0.0 0.0
BIM 23.43 0.0 68.16 0.0 88.85 0.0 98.14 0.0
MIM 30.50 0.0 64.98 0.0 86.38 0.0 93.81 0.0
SMM 17.41 0.0 24.49 0.0 15.29 0.0 5.39 0.0
CW 100.0 0.0 100.00 0.0 100.0 0.0 100.0 0.0

F MANIFOLD LEARNING

Manifold learning methods seek to describe high-dimensional data in low dimensional space. We
used Multidimensional Scaling (MDS) [19] to generate low-dimensional representations of ad-
versarial examples and clean samples. MDS uses a pair-wise distance matrix as inputs and places
each data point in an n-dimensional space such that the distance between the points is preserved as
well as possible. Albeit, the Euclidean distance suffers from the curse of dimensionality when used
to compute the distance between objects in high-dimensional space, it can still be used to com-
pute the similarity matrix between adversarial and clean samples. This similarity matrix is used by
multidimensional scaling to get the low-dimensional representation of the adversarial and clean
samples. To compute the low dimensional embedding, we used all samples from the target model’s
training set for the target class and the top-k samples from the targeted adversarial set that was
classified into the target class by the target model. Here, k is the number of samples selected from
the target model training set, and we sort the prediction confidence of the adversarial examples
for the target class to determine the top-k examples. In cases where adversarial examples fail to
fool the target model, we take k random samples from the adversarial set.

Figure 17 shows the multidimensional scaling of adversarial examples and benign samples from
the target model’s training set for different cases of adversarial transferability. For transferability
between models, the 2-dimensional representation of clean and adversarial samples share a signif-
icant overlap region, which corresponds to the high targeted transferability we observed in this
case. The region of overlap for transferability across subjects is not significant, but the spatial dis-
tribution of adversarial and benign samples share shape and organization, which demonstrate the
fair transferability in this case. For transferability across sensor body locations and datasets, the
representation of benign and adversarial samples shares neither region nor organization and con-
sequently we observed poor targeted adversarial transferability for these cases in our results. The
representation of clean and adversarial samples in 2—dimensional space gives us insights about the
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Multidimensional scaling of adversarial examples and clean samples for different types of transferability.
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Fig. 17. MDS of clean and adversarial samples for different cases of targeted adversarial transferability. Ex-
cept for transferability between models which was evaluated with 1D feature data, other types of adversarial
transferability uses 3—axial accelerometer data and hence we have plots of Y axis and Z axis for these modes

of adversarial transferability.

transferability results we obtained in our experiments. Our aim here was to demonstrate how the
spatial distribution of adversarial and benign samples looks like for different cases of adversarial
transferability and explain the results we obtained from our experiments. The degree to which
adversarial samples can conform to benign samples from the target model’s training set is directly
proportional to adversarial examples success score on the target system.

G PERTURBATION SIZE AND ATTACK METHODS

Given that data in our experiments are scaled in the range [1, —1] and we have used adversarial
perturbation budgets up to 0.9, it is natural to assume that adversarial examples computed at higher
perturbation budgets will be significantly different from benign samples used to create such ad-
versarial examples. However, this is only true for the FGSM attack method because FGSM uses 1-co
norm and every entry in the input vector can be modified by half the perturbation budget value.
Other attack methods, for example BIM which is an iterative version of FGSM, behaves in a dif-
ferent way and find adversarial perturbation which are limited to perturbation budget allowed for
each iteration. In our experiments, the number of iteration is set to 50, and consequently the per-
turbation budget for all iterative methods per iteration will be 0.9/50 = 0.018. We have presented
a visual demonstration in Figures 18 and 19. We computed untargeted and targeted adversarial
examples using the FGSM and BIM attacks at different level of adversarial perturbation budget.
As expected, adversarial examples computed using the FGSM is very different compared to the in-
put and at higher perturbation budget this difference is significant. On the other hand, adversarial
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Fig. 19. Targeted adversarial examples computed at different perturbation budgets with FGSM and BIM
attacks. Image best viewed in color.

examples computed using the BIM is very similar to the input even at high level of perturbation
budgets.
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