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We revisit well-known protocols in quantum metrology using collective spins and propose a unifying
picture for optimal state preparation based on a semiclassical description in phase space. We show how
this framework allows for quantitative predictions of the timescales required to prepare various metrologi-
cally useful states, and that these predictions remain accurate even for moderate system sizes, surprisingly
far from the classical limit. Furthermore, this framework allows us to build a geometric picture that relates
optimal (exponentially fast) entangled probe preparation to the existence of separatrices connecting saddle
points in phase space. We illustrate our results with the paradigmatic examples of the two-axis coun-
tertwisting and twisting-and-turning Hamiltonians, where we provide analytical expressions for all the
relevant optimal timescales. Finally, we propose a generalization of these models to include p-body col-
lective interaction (or p-order twisting), beyond the usual case of p = 2. Using our geometric framework,
we prove a no-go theorem for the local optimality of these models for p > 2.
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I. INTRODUCTION

Quantum metrology employs nonclassical states as a
resource for estimating unknown parameters with a sen-
sitivity beyond that allowed by the standard quantum limit
[1-4]. Of particular interest are ensembles of qubits (real
or pseudospins) for use in clocks and magnetometers.
Typically, one considers collective spins of total angular
momentum components Ja. Examples of metrologically
useful quantum states of collective spins include spin
squeezed states of atoms [5—9], cat states or Greenberger-
Horne-Zeilinger states [10,11], and Dicke states [12],
among others. The aforementioned examples share the
common property of being entangled, and it is well known
that entanglement is essential, but not sufficient, to enable
sensitivity going beyond what can be achieved with classi-
cal resources (i.e., with separable states) [1,13].

The problem of local quantum metrology [14] can be
regarded as a problem of optimal state preparation whereby
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one seeks to prepare a metrologically useful state in the
shortest amount of time possible. For example, in their pio-
neering work Kitagawa and Ueda [5] studied the prepara-
tion of spin squeezed states, introducing one-axis twisting
(OAT) and two-axis countertwisting (2ACT) Hamiltoni-
ans. Here, the term “twisting” refers to generators that
are quadratic in the collective spin operators (fx,j y,f ).
While both Hamiltonians successfully generate squeez-
ing, the OAT (H ~ J?) does not saturate the fundamental
bound of sensitivity dictated by quantum metrology and
the maximum squeezing is reached at a time that scales
as J!'/7, where J is the size of the collective spin and 1 >
1. On the other hand, the 2ACT (H ~ J? — JB) reaches
peak spin squeezing in a time that is logarithmic in the
size of the collective spin, and saturates the fundamen-
tal limit of sensitivity imposed by quantum mechanics.
Later, Micheli et al. [15] studied a model in which the
OAT generator is combined with a transverse field, lead-
ing to twisting-and-turning (TaT) dynamics. They showed
that this new generator permits the preparation of highly
entangled metrologically relevant states, i.e., catlike states,
at times that are logarithmic in the size of the collective
spin, and that the best performance is obtained when the
ratio of twisting and external field strengths assumes a crit-
ical value. Related work by Sorelli ef al. [16] investigated
the twist-and-turn generator in the short time regime (com-
plementary to Ref. [15]), and argued for the optimality of
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this dynamics in the generation of spin squeezing. Further-
more, previous works by Yukawa et al. [17] and Kajtoch
et al. [18] have explored in detail the dynamics gener-
ated by the 2ACT Hamiltonian, emphasizing the different
types of metrologically relevant states that are generated
and verifying, either numerically or semianalytically, the
logarithmic dependence of their preparation times with the
size of the collective spin.

In this work we revisit these protocols and present a uni-
fied description of optimal state preparation for quantum
metrology in collective spin systems based on their semi-
classical dynamics. In our approach, we consider the evo-
lution of a state that is described as a distribution in phase
space and approximate the dynamics of that state at short
and intermediate times by evolving a point on a fixed con-
tour of such a distribution using the (mean-field) classical
equations of motion. When starting from an uncorrelated
state, e.g., a spin coherent state, the dynamics generates
a spin squeezed state that indeed displays quantum corre-
lations. These states are approximately described by our
framework as Gaussian states with unbalanced variances
along orthogonal directions. This is akin to the numeri-
cal sampling of the phase-space distribution employed in
solving for the quantum state using the truncated Wigner
approximation; see, for instance, Refs. [19,20]. We discuss
how optimal (i.e., exponentially fast) state preparation is
associated with the existence of saddle points in the classi-
cal flow defined by the collective spin Hamiltonian. Using
this picture, we develop a comprehensive analysis of the
geometry of the separatrix and identify the key proper-
ties that guarantee the local and global optimality for state
preparation in generic collective spin models. We revisit
the problems of 2ACT and TaT and use this semiclassi-
cal approach to derive new expressions for the timescales
required to achieve several types of useful states for
metrology. This establishes a solid theoretical foundation
to the timescales that were previously found numerically
[17,18]. We then apply this framework to the previously
unexplored problem of using higher-order twisting gen-
erated by Hamiltonians of the form Jf; , with p > 2, to
generate spin squeezing and metrologically useful states.
We show that, while p-body 2ACT is optimal only for
p = 2, a notion of optimality can be redefined for p-body
TaT in the case of p = 3.

The remainder of the manuscript is organized as fol-
lows. In Sec. II we give an overview of the semiclassical
description of collective spin systems and of basic aspects
of quantum metrology. In Sec. III we study the 2ACT
Hamiltonian, its phase-space structure and dynamics, and
derive analytical results for the preparation times of several
entangled states useful for quantum metrology. From this
analysis we distill the conditions of the separatrix geom-
etry that guarantee the local and global optimality of a
given collective spin Hamiltonian for state preparation.
In Sec. IV we turn our attention to the TaT Hamiltonian

and provide three different physical interpretations for the
“critical coupling” regime first identified in Ref. [15]. In
Sec. V we introduce generalizations of the 2ACT and
TaT Hamiltonians by adding higher-order twisting terms
and we prove several results that indicate that second-
order twisting is optimal. Finally, in Sec. VI we present
some concluding remarks and discuss potential avenues for
future work.

II. QUANTUM METROLOGY WITH
COLLECTIVE SPIN SYSTEMS

A. Collective spin systems and their classical limit
We consider systems of N spin—% particles described

by the set of collective angular momentum operators J =
(JAx,JAy,JAZ), where J, = %Zf\;l 6 and 6 is a Pauli
operator acting on particle i, « = x,y,z. Any Hamiltonian
of the form

A=Y ao+Y bapads+ > capySad pJ,
o 14753 afy

+---+Hec. (1)

describes a collective spin model, where particles inter-
act uniformly among themselves and with external fields.
By construction, Hamiltonian A commutes with the total
angular momentum operator J2, and so the total spin value
J is conserved. We focus on the subspace of J = N/2,
often called the symmetric subspace, which is composed
of all pure states that are invariant under permutation of
any two particles [21]. Two convenient choices of basis for
this subspace are the Dicke states {|/,m)}, m = —J, —J +
1,...,J, which are the eigenvectors of J., and the over-
complete basis of spin coherent states (SCSs) |6,¢) =
e gm0y ] J) = |T9,¢>®N, where |1¢,4) describes the
state of a single qubit pointing up along the (6, ¢) direction
on the Bloch sphere,and 0 <6 < 7,0 < ¢ < 27.

Any Hamiltonian of the form (1) admits a well-defined
classical description in the thermodynamic limit N — oo.
This description, in turn, coincides with the mean-field
limit of the model, making these models quantum mean-
field models [22], and can be obtained from the equations
of motion for the expected values of spin components,
d(Jo)/dt = —i([Jo, H]) with « =x,y,z (h=1). In the
thermodynamic limit this leads to equations of motion
for a phase-space flow for the classical variables R =
(X,Y,Z) =lim J_>oo<j> /J by neglecting correlations and
setting (4B) = (4)(B). This flow has the form dR/dt =
F[R] and describes the nonlinear motion of a “top” on
a unit sphere since X2 + Y + Z? = 1. The properties of
the flow can be studied locally by identifying the fixed
points, i.e., R* such that F[R*] = 0, and analyzing their
stability through calculation of the Jacobi matrix, M[R] =
dF/0R. If detM > 0, the fixed point is stable or elliptic,
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FIG. 1. (a) Phase-space portrait of the classical motion of a

collective spin system. Prominent phase-space structures include
stable orbits and saddle points. (b) Interferometric approach to
quantum metrology with collective spins. A product state p(0)
undergoes a state preparation procedure to yield the probe state
p(f), which is then used to sense an unknown parameter ji.

and if detM < 0, it is a saddle or hyperbolic fixed point.
In Fig. 1(a) we illustrate the local motion of each case.
In particular, the vicinity of a saddle point is described
by two directions in phase space, one unstable n, and
one stable n_, along which the motion is of the form
R.(f) = £AR.(¢) and so Ry () x e*R.(0). As a result,
local motion along an unstable branch leads to an expo-
nential stretching of trajectories in phase space. Globally,
a given flow may possess many hyperbolic fixed points,
and their stable and unstable branches are typically con-
nected by an isolated trajectory in phase space that is called
the separatrix. In Sec. III we illustrate how the geomet-
ric properties of the separatrix in the classical phase space
affect the motion of quantum states, and in particular we
study how to use this knowledge to study the generation of
metrologically useful states.

B. Basic aspects of quantum metrology

The goal of quantum metrology [1] is to estimate the
value of a weak signal encoded as an unknown physi-
cal parameter p in a quantum system, and to do so with
a precision beyond what is achievable with solely classi-
cal resources. There are many approaches to this problem,
including quantum critical metrology [23,24], the use of
chaotic sensors [25], nonlinear metrology [26—28], the use
of interaction-based readouts [29—32], or twist-and-untwist
protocols [33]. In this work, we focus on the interfer-
ometric approach [3], which is schematically depicted
in Fig. 1(b). In this scheme, a probe state is prepared
through evolution under a chosen Hamiltonian acting on

an easy to prepare initial state, 5(f) = e~ iHprent 5(0) e loren,

The resulting probe state then undergoes another trans-
formation that imprints the unknown parameter w into
the state, typically as in 5, (f) = e %5 (¢)eC. Finally,
measurements are performed on p, () according to a well-
chosen positive operator-valued measurement (POVM),
from which an (unbiased) estimator (i of the parameter u
is constructed. The variance of such an estimator, denoted
Apu, has a fundamental limit that is given by the quantum
Cramer-Rao bound,

1
Ap > A,LLQCR = >
vV VFQ[Iou]

where v is the number of independent measurements and
Folp,] is the quantum Fisher information (QFT). For the
present scheme, assuming that o(¢) = [ (1)) (¥ (¢)| is pure
and in the absence of noise or decoherence, the QFI takes
the simple form

@

Foll¥), Gl = 4AG®))? = 4(G1D?) — (G1)),  (3)

where (4(2)) = (w(t)lzzl [¥ (). The maximum sensitivity
predicted by the quantum Cramer-Rao bound is achieved
only if one can implement the optimal measurement
(POVM), which is problem dependent and often challeng-
ing in practice. Nevertheless, we consider the QFI as one of
the figures of merit to quantify metrological performance.

For the purposes of this work, we consider the unknown
parameter 1 to be a small angle of rotation of the col-
lective spin around a known axis n such that G=J
If the probe state |y (7)) is a SCS, the maximum QFI
gives Fp[p,] o< N. This is often referred to as the standard
quantum limit (SQL), and provides a reference point to
gauge the usefulness of a proposed quantum metrological
strategy. Any strategy making use of quantum resources
that permits a sensitivity of the estimator going above the
standard quantum limit is advantageous. When entangled
states are allowed, the maximum possible QFI can scale as
Folp,] o< N2, which is referred to as the Heisenberg limit.

In this work we focus on how the semiclassical picture
ascribed to I:Iprep can be used to understand the preparation
of metrologically useful states, and to make predictions
about the times required to reach them. To quantify this,
one figure of merit is the metrological gain based on the
QFI, defined as

N

[P=
Folly),Ji]

“
where any value of 2 < 1 will indicate improvement over
the SQL. In addition, we also consider metrology proto-
cols in which the POVM is not necessarily optimal, but
restricted to a specific type. In particular, for a Ramsey-
type interferometer, as is used in clocks and magnetome-
ters, the metrological gain is quantified by the Wineland
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squeezing parameter [9]

N (AJ )2
= —— =2]— . 5
: N 1(J) 2 ®

Here, A¢ is the uncertainty in the measurement of the
desired phase in the interferometer and Agscs is the corre-
sponding uncertainty when the input probe state is a SCS.
This can be reexpressed in terms of the collective spin
variables, where (AJ |) is the projection noise of the col-
lective spin perpendicular to the direction of rotation in
the sensor, and |(j)| is the length of the collective spin.
For an input SCS, (AJ ) = T /2, |(J)| =J, and £2 = 1.
For a spin squeezed state of the sort originally consid-
ered by Kitagawa and Ueda, one can have £2 < 1 and
thus sensitivity in Ramsey interferometry beyond the SQL.
Furthermore, with sufficient squeezing one can attain scal-
ing in improved sensitivity associated with the Heisenberg
limit, £2 oc 1/N. In the next sections we analyze these
metrological figures of merit for different state prepara-
tion protocols by leveraging the semiclassical picture of
collective spin systems.

III. PHASE-SPACE GEOMETRY AND QUANTUM
METROLOGY WITH THE TWO-AXIS
COUNTERTWISTING HAMILTONIAN

Two-axis countertwisting was introduced by Kitagawa
and Ueda as the mechanism to obtain the optimal spin
squeezed states, leading to Heisenberg scaling in the sensi-
tivity [5]. Our goal in this section is to understand this fact
based on the geometrical properties of its classical phase
space. The 2ACT Hamiltonian describes the dynamics of
a collective spin J under the action of two twisting opera-
tions, i.e., quadratic nonlinearities, along the perpendicular
axis. As originally written in Ref. [5], this Hamiltonian is
given by

N o o X o
Her = X(Jyzr/z,ﬂ/4 - Jyzr/z’—ﬂ/é‘) = Z(Ji_—JZ_), (6)

where x is the countertwisting strength, and we have
chosen the two axes as the £45° directions in the x-
y plane, such that J x)2 w4 = JyxJ )/ V2. Using the
latter expression, Eq. (6) can be written as

A

]:ICT = X(ijy +jij) (7)

To investigate the phase-space geometry of the model in
Eq. (7), we proceed as described in Sec. Il A to compute
its associated classical flow (further details can be found
in Appendix A). The equations of motion for the classical

variables R = (X, Y, Z) read

dx .

E = XXZ, (83)
day .

o = X (8b)
az "2 ’

i —XX° =7, (8c)

where y = N x and the fixed points are given by

(X,Y,Z2) =(0,0,%£1), (%a)
1 1
XY )D)=—.F—.0 9b
( b 9 ) (\/55:':\/57 )3 ( )
1 1
X,9,2) = - —,+—,0]), 9
( ) ( V2T V2 ) ()

which correspond to the north and south poles of the unit
sphere, and the poles of each of the twisting axis. Their sta-
bility is deduced from the Jacobi matrix M[[R] = 0F/dR,
which in this case takes the form

5z 0 X
M[R]=| o© -3%Z  —-iY (10)
—43X  4xY 0

When evaluated at the fixed point (X, Y, Z) = (0,0, £1),
Eq. (10) is diagonal with eigenvalues (%, Fx,0). As the
nonzero eigenvalues are real and come in pairs My =
=+, the fixed point is a saddle point, and here the prin-
cipal directions of the separatrix curve are orthogonal and
aligned with the x and y axes. In other words, they define
great circles in the x-z and y-z planes, respectively. Fur-
thermore, as discussed in the previous section, we know
that an initial condition placed on one of the separatrix
branches will evolve according to dP /dt = +x Py, where
Py = X, Y. The other four fixed points in Egs. (9) are sta-
ble centers. This can be easily verified by looking at the
eigenvalues of the Jacobi matrix evaluated at the fixed
points, which are given by A = £i2). This most basic
information about the fixed points of 2ACT classical flow
allows us to produce an accurate picture of the global struc-
ture of its phase-space trajectories, whose exact form is
shown in Fig. 2(a).

The local and global geometries of the separatrices pro-
vide useful information about the quantum evolution of an
initial SCS placed at either of the two poles, |/, +J). With-
out loss of generality, consider the case with m = +J. As
depicted in Fig. 2(b), while evolving under Hcr, the cen-
ter of the distribution is fixed and the quantum projection
noise will be initially squeezed exponentially fast, as the
distribution will get stretched out along the great circle
in the x-z plane and squeezed in along the great circle in
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(a) Phase-space portrait of the 2ACT phase-space flow in the thermodynamic limit; cf. Egs. (8). The red trajectory shows

the separatrix. (b) Semiclassical picture for the dynamics of a spin coherent state located at the saddle point of the corresponding
classical phase-space flow. (c) Metrological gains based on spin squeezing (solid blue) and QFI (solid red) for the 2ACT dynamics.
The dashed lines show the time to the peak of each metrological gain computed in the main text. The results shown are for N = 100.
(d) Comparison between analytical estimates and exact numerical simulations of the time required to peak QFI and spin squeezing for
the 2ACT dynamics. (¢) Time scales to different metrologically relevant quantum states prepared with 2ACT dynamics as a function

of N. For the Yurke state, we consider & = 0.678.

the y-z plane. As a result, the motion along the separa-
trix branches leads to spin squeezing and thus governs the
generation of metrologically useful quantum states.

This qualitative picture can be made rigorous and used
to estimate the timescales required to generate optimal
spin squeezing and other metrologically relevant quan-
tum states. To do this, we calculate the time required for
points to travel along sections of the separatrix lines. When
restricted to the unstable branch of the separatrix, ¥ =0
and thus X? = 1 — Z°. From Egs. (8) we have

dz
T 11
7 x( ), (11)
which is solved by
) dz
Xt= —/ . (12)
Z(0) 1— Z2

We can then compute how long it takes for a point start-
ing at a contour of the SCS uncertainty patch, Z(0) =
/1 —1/N, to travel along the separatrix to some final
point Z(tr) < Z(0) with ¢, > 0,

fit =

In [(1 —Z)WN+VN=T1)
VT=22)
Finding the time to the different metrologically relevant

quantum states is then translated into the problem of
finding the appropriate value of Z(¢r).

}. (13)

A. Time to optimal spin squeezing and the first peak of
the quantum Fisher information

Given our choice of initial state, one can readily see
that the length of the mean spin is given by = (..
Furthermore, we know that the antisqueezed projection
is J,, the direction determined by the unstable separatrix
branch. Thus, at any later time ¢ > 0 we can write these
two quantities as

|J] = J cos(6), AJ, = J sin(9), (14)
where 6 = 6(¥) is the polar angle of spherical coordinates.
In this setting the variance being squeezed is that of J e
To compute its value, we proceed as follows. At the ini-
tial time, ¢t = 0, the area of the uncertainty patch of the
SCS is that of a circle with radius AJ, = AJ, = /J /2.
At any later time, ¢ > 0, this area is that of an ellipse with
semimajor axis equal to AJ, and semiminor axis equal
to AJ,. Hamiltonian dynamics preserves the areas and
thus, after equating these two areas and solving for AJ,,
we obtain AJ y = 1/2sin(0). The squeezing parameter in
Eq. (5) generated by this countertwisting is thus

4

2 _
51 = N (20)

s)
This expression has a minimum at 6 = 7 /4, the value at
which the optimal spin squeezing is achieved, £2; = 4/N
[34]. We can see immediately that Z(¢,) = 1/ V2 gives the
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timescale to optimal squeezing. Substituting this value into
Eq. (13) we obtain a principal result of this analysis:

GO =I[(V2 - DN ++V/N =D  (16)

We note that this straightforward geometric analysis per-
mits the exact identification of the numerical factor inside
the logarithm, improving over the numerical or semiana-
lytical approaches of Refs. [17,18].

Let us now turn our attention to the evolution of the
QFIL. In our setting, time evolution leads to squeezing of
J , and so we consider the QFI with respect to small rota-
tions around the x axis. This has a maximum whenever the
variance of J + has a maximum, and the latter is guaranteed
to happen at the time at which the edges of the uncertainty
patch are as far from each other as is allowed by the phase-
space geometry. This occurs when the state reaches points
on the separatrix that are diametrically opposed. Given our
choice of initial state, this happens when Z(#;) = 0. Thus,
substituting this value of Z(#,) into Eq. (13) we obtain the
time to the first peak of the QFI, and consequently the time
to the first peak of the metrological gain,

(17)

where the rightmost side of Eq. (17) is valid in the limit of
N — oo.

The expressions in Egs. (16) and (17), albeit computed
from a completely classical perspective, give quantitative
predictions of the time required for a quantum system of
system size N evolving according to the 2ACT Hamilto-
nian to optimize metrological gain, be it measured by the
QFTI or spin squeezing. In order to test this prediction, we
numerically simulate the quantum dynamics for various
values of N and compute the time-dependent metrologi-
cal gains for each case. The case of N = 100 is shown
as an example in Fig. 2(c), where it can be seen that the
peaks of both quantities coincide with the predictions pro-
vided by our expressions. Furthermore, Fig. 2(d) shows a
systematic comparison between the exact numerical results
and the analytical predictions as a function of the system
size N. We find excellent agreement between both, even
for system sizes as small as N >~ 30, which is far from the
classical limit.

Finally, we point out that exploiting information about
the classical motion of points along sections of the sepa-
ratrix allows us to also write explicit expressions for the
spin-squeezing parameter and quantum Fisher information
as a function of time. Further details of this analysis are
discussed in Appendix A 3.

& = In(/N + VN = 1) ~ L n@n),

B. Time to other quantum states relevant for quantum
metrology

Previous works [17,18] showed that starting from the
state [1)®N = |J,J), namely, the stretched up state, one

can employ the dynamics of the 2ACT to prepare several
other quantum states that are useful for quantum metrology
with almost unit fidelity, that is, [(W]|e~cT |, J)|?> ~ 1,
where |W) is one of the following: the Berry-Wiseman
state (BWS) [35], the equally weighted superposition state
(EWSS) [17], some Yurke states (YUSs) [36], and the
twin-Fock state [17]. Following our previous discussion,
here we use our semiclassical framework to derive expres-
sions for the timescales required to prepare each of the first
three states mentioned above, as these are the ones whose
fidelity peaks before the first peak of the QFI. In these
short timescales a Gaussian description suffices. Given
our choice of initial state, we only need to consider the
variance in order to compute the state overlap. For the
interested reader, we discuss the details in Appendix A 4.

As before, the time to the peaks of fidelity to each of
these three states can be estimated using Eq. (13), and thus
we only need an appropriate value of Z(#r). Recognizing
that, under the current setting, the variance of the time-
evolved state goes as A, =J sin(@), then Z(#r) can be
obtained from the variance of each of the states; see the
detailed discussion in Appendix A. Here we only list the
final results.

For the BWS, we can find lower and upper bounds for
the timescale, given by

GOSN =In[(v8 — VT)(WN + N =1, (18a)
(Z0er® = I[(v7 = VO)(WN + VN —=D]. (18b)

For the EWSS, we find that
FONS =[(V3-V)WN+VN =D, (19

where the second line in Eq. (19) which holds in the limit
of N > 1. For the family of Yurke states, we find that

N 2 — V2 +sin®(«)
NS =1 [( )\/ﬁ+«/1v—1],
(X )CT n \/m ( )

(20)

an expression that is valid in the limit of N >> 1. The full
expression is given in Appendix A. Furthermore, we note
that only Yurke states with relatively small values of « are
prepared by the 2ACT dynamics (see Ref. [18] for a more
detailed discussion).

From the results above, one might ask why the classi-
cal picture allows us to predict the timescales fairly well.
To answer this, we can directly compare them with the
Ehrenfest time. For systems with exponential instabilities
originating at a saddle point, which can be characterized
with a positive Lyapunov exponent [37,38], this time is
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given by

1 1
terft = —— In | — |, 21
- 2Asdn(heﬁ) 1)

where Ay is the Lyapunov exponent of the saddle and A
is the effective Plank constant. For collective spin systems,
one has h.r = 1/N, and for the 2ACT Hamiltonian, we
know that AS] = X; thus, the Ehrenfest time is given by

i InQY)
Xoer = ——

(22)
We show the different timescales computed in this section,
including the Ehrenfest time, in Fig. 2(e). Excluding the
timescale to that peak QFI, all of the timescales with
the 2ACT correspond to times shorter than the Ehren-
fest time, and thus one expects a semiclassical treatment
to yield accurate predictions. Note that our approach still
provides accurate results for timescales that are longer
than the Ehrenfest time, as illustrated by the validity of
the expression for ( )Zt)gil. At this timescale most of the
support of the time-evolved state is still concentrated on
the eigenstate that overlaps considerably with the classical
separatrix [37], and thus our semiclassical approach based
on the separatrix geometry retains validity.

C. Summary

The analysis presented in this section provides us with
an intuitive picture of how collective spin Hamiltonians
generate metrologically useful states. The first important
aspect is that one wants to construct a Hamiltonian hav-
ing, in the classical limit, a saddle point, which is always
accompanied by a separatrix line. Then the geometrical
arrangement of the separatrix branches completely dictates
the evolution and metrological utility of states generated
from a SCS centered at the saddle point through Hamil-
tonian evolution. It is in this sense that the two-axis
countertwisting represents the optimal choice of Hamil-
tonian. The geometry of its separatrix is locally optimal,
since the branches are orthogonal, and it is globally opti-
mal, since its branches defined great circles on the unit
sphere, i.e., geodesics on the surface defining phase space.
In the remainder of this work we use these lessons to study
other collective spin Hamiltonians and their potential for
the generation of metrologically useful quantum states.

IV. PHASE-SPACE GEOMETRY AND QUANTUM
METROLOGY WITH A
TWISTING-AND-TURNING HAMILTONIAN

While locally and globally optimal for preparation of
metrologically useful quantum states, the 2ACT Hamil-
tonian requires the use of two twisting operations along
the perpendicular axis, which is difficult to implement

experimentally. An alternative approach is to use a single
twisting operation complemented with a linear term, i.e., a
rotation term, resulting in a Hamiltonian of the form

IA_]TaT = ij + Xjfa (23)

where €2 is the rate of turning and x the twisting strength.
This model is often referred to as twisting and turning
in the quantum metrology literature [3,15,16,39—41], and
it has been implemented in spinor Bose-Einstein conden-
sates [40], and could be readily implemented in certain
cavity QED setups [42,43]. One also recognizes this as
the Lipkin-Meshkov-Glick (LMG) model, describing a
transverse Ising model with all-to-all coupling [44—50].

In an early pioneering work [15] it was recognized that
the TaT dynamics generated by Eq. (23) prepares highly
entangled states at times that are logarithmic in the system
size N when starting from a spin coherent state centered at
the point (X, 7, Z) = (1,0,0), that is, |6, o) = |7/2,0).
This presents a significant improvement over what is
achievable with the use of only a single twisting operation,
the so-called one-axis twisting Hamiltonian [3], and posi-
tions the TaT Hamiltonian on similar footing as the 2ACT
Hamiltonian. Our goal is to use the phase-space dynam-
ics and separatrix geometry of this model to quantitatively
explain this fact. We point out that the phase-space descrip-
tion of this model has a direct connection to ground-state,
excited state, and dynamical quantum phase transitions of
the LMG model; we discuss this connection in Sec. IV D.
At the same time, it is directly connected to the rate of
entanglement generation, as was explored in Ref. [51].

Introducing ¥ = N as before, the phase-space flow
associated with the classical TaT dynamics is given by (see
Appendix B for further details)

X _ sy (24a)
- = — s a
a X

ay

=07+ X2, (24b)
2 _ oy (24¢)
— = . C
dr

The solutions of dX/dt = 0, leading to the fixed points of
the flow, depend on the system parameters. For Q/x > 1,
there are only two fixed points at (X, Y,Z) = (£1,0,0),
i.e., the poles with respect to the turning axis. These are
stable, and so phase space is filed with trajectories rep-
resenting Larmor precession of the mean spin. On the
other hand, for Q/x < 1, there are four fixed points, two
given by (X, Y,Z) = (£1,0,0), where the one at X = —1
is stable and the one at X = 1 is a saddle point. The two
additional fixed points are at

(B ()
x.v,2y=(=,0,£/1-(=) ). (25)
X X
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The two parameter regimes are connected through a pitch-
fork bifurcation of the stable point at (X, Y,Z) = (1,0,0)
that occurs at the critical point, Q/x = 1. The stability of
the fixed points in these two parameter regimes can be
investigated using the Jacobi matrix associated with the
flow in Egs. (24), and it is given by

0 [ 74 5Y
MX]=[3z o0 —Q+ jX (26)
0 Q 0

As before, we focus on the motion around the saddle
point. The separatrix branches emerge from this point, and
conservation of energy guarantees that all points on the
separatrix have the same energy as the saddle. By evalu-
ating the eigenvalues of the Jacobi matrix in Eq. (26) at
this saddle, one obtains its local Lyapunov exponent

@7

Equation (27) dictates the exponential rate at which points
move away from the saddle point. This rate is maxi-
mum when Q/x = 1/2, and the corresponding Lyapunov
exponent is given by AT|cc = x/2. In Ref. [15] this
parameter regimes was denoted “critical coupling,” and it
was shown to provide the fastest preparation time towards
a catlike state. Furthermore, Sorelli ez al. [16] studied the
dynamics of TaT in the short time regime and it was argued
that the same parameter regime, i.e., critical coupling, was
locally optimal. The maximum of Eq. (27) already extends
the results of Refs. [15,16], as it shows that at critical
coupling, a point on the separatrix line travels with the
maximum velocity allowed by I:ITaT. We present a formal
result of this statement in Sec. IV C.

A. Separatrix geometry and the physical meaning of
critical coupling

The importance of the separatrix geometry was already
recognized in Ref. [15]. In fact, they defined critical
coupling as the parameter regime at which the distance
between opposite ends of the separatrix was maximal, i.e.,
equal to one diameter of the unit sphere [52]. We illustrate
the structure of the TaT phase-space flow and separatrix
line at critical coupling in Fig. 3(a).

From our previous discussion, we learned that critical
coupling is also the parameter regime at which the Lya-
punov exponent of the saddle point is maximum. One can
also show that at critical coupling the branches of the sep-
aratrix in the vicinity of the saddle point are orthogonal. In
Appendix B we show that, for an arbitrary value of Q/y,

(a)

% 15-
R= !
S10- E
1
5- 1
: : —— squeezing opt. quadrature
0- : : —— squeezing @45° quadrature
1 | — QFI
i 1 1 I T I
0.0 0.5 1.0 1.5 2.0 2.5
F1
t/(xt) Far
FIG. 3. (a) Phase portrait of the phase-space flow of the TaT

Hamiltonian at critical coupling. The separatrix is shown in solid
red. (b) Metrological gains, at critical coupling, based on the
squeezing (solid blue) and the QFTI (solid red) for an initial SCS
along the positive x direction. The dashed lines show our result
for the time to peak of each metrological gain. Results are for a
system with N = 1024.

the angle between separatrix branches is

2—3/Q+ (X/29)°2° _ 2Q .
i/Q- Gz Tz

cos(v) = (28)

where v is the angle between separatrix branches, and
the far right holds in the vicinity of the saddle point, i.e.,
Z,Y — 0. Thus, when y = 2€, at critical coupling, we
have v = 7 /2 and the separatrix branches are orthogonal.

Qualitatively, the result in Eq. (28) tells us that, locally
in the vicinity of the saddle point and at critical coupling,
the TaT Hamiltonian is, effectively, a 2ACT Hamiltonian.
One can formalize this statement by an appropriate choice
of the collective spin axis. In particular, if we consider

Jy+J. .

o _Jd,
\/z > 2 =

7

Ji=

(29)

with J 1 and J » representing two orthogonal directions in
the y-z plane at 45° and —45°, respectively. Furthermore,
we are only interested in dynamics taking place within the
vicinity of the saddle point, and exploit this fact to write
J. =J — b, its mean-field minus fluctuations, with & an
operator representing the fluctuations. Using Eq. (29), we
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can rewrite Eq. (23) as
Freff X\a X7 7 ;o2
Hip = QJ — (Q — 5)0 + E(JIJZ +J2J1),  (30)

where we have ignored terms O(6%); see Appendix B for
details.
At critical coupling Eq. (30) becomes

N X a A I
H?fTZE(JIJZ +J2J1), (1)

which is a 2ACT Hamiltonian, as that in Eq. (7). The form
of the Hamiltonian in Eq. (31) points at a general result.
Any collective spin Hamiltonian whose associated phase-
space flow has a saddle point with orthogonal separatrix
branches can always be mapped locally to an effective
2ACT Hamiltonian under the appropriate choice of axis.

In summary, the different properties that define criti-
cal coupling, x =2€, for the TaT Hamiltonian are as
follows.

1. The distance between the separatrix branches is
maximal, and equal to the diameter in the unit
sphere.

2. The Lyapunov exponent of the saddle point is max-
imal, and equal to A3T|cc = /2.

3. The separatrix branches are orthogonal in the vicin-
ity of the saddle point, and thus, locally, the TaT
Hamiltonian is effectively a 2ACT Hamiltonian.

4. Also, the local wells of the classical energy sur-
face to the left and right sides of the saddle point
have the same depth, and thus time evolution hap-
pens symmetrically around the saddle point (see
Appendix B).

Condition 4 above is fundamental to the validity of our
semiclassical approach. Up to now we did not require it
explicitly, as both 2ACT and TaT satisfy it for all parame-
ter ranges. However, it will be essential in generalizations
of TaT, and we comment further on its importance in
Sec. V.

B. Time scales to peak spin squeezing and to the first
peak of the QFI

In this subsection we focus on the special case of critical
coupling and compute the timescales to peak spin squeez-
ing and the first peak of the QFI using the traveling time
of points along some sections of the separatrix branches.
Following Refs. [15,16] we consider an initial SCS cen-
tered at the positive x direction, that is, |6y, o) = |7/2,0).
In a similar fashion to the 2ACT analysis, the center of
the uncertainty patch is fixed, and the TaT dynamics only
stretches and squeezes the uncertainty patch. As before, we
can approximate the desired timescales by the time it takes

for a point at the border of the uncertainty patch, which
now takes the form Z(0) = 1/4/2N, to travel to some
final location Z(#,) along the separatrix. This timescale is
given by

Dt :2ln[z<zf><M+ V2N - 1)]. (32)
—20)

The details of its derivation are given in Appendix B. The
problem now becomes how to find the appropriate value of
Z(ty) for a given timescale.

1. Time scale to peak spin squeezing

The third bullet point at the end of Sec. IV A points at
the fact that, locally, the separatrix branches of TaT must
be aligned with great circles. Here we exploit this fact in
order to estimate the appropriate value of Z(#,) for the peak
squeezing timescale. The key ingredient in this analysis is
the fundamental theorem of the local theory of paramet-
ric curves (see Chapter 1 of Ref. [53]). This result tells us
that, up to rigid motions (displacements and rotations), a
curve is completely characterized by its values of curva-
ture « and torsion t. Hence, given two curves of interest,
one can investigate their local equivalence by finding the
range of parameter values for which they both have the
same curvature and torsion.

A great circle on the unit sphere has curvature and
torsion given by

Kct = 1, TcT = 0. (33)
We estimate Z(#;) as the limit value for which the cur-
vature k1, and torsion tr,t of the TaT separatrix at crit-
ical coupling give the same values as those in Eq. (33).
This value is given by Z*(t7) = cos(6*) ~ 0.132 684 (see
Appendix B). In order to obtain an analytical expres-
sion of the value of Z(#/) recall that at critical coupling
the two stable fixed points emerging at 2/ = 0 have Z
coordinate given by Z, = +./1 — (/%) = /3/2, where
the last equality holds at critical coupling. It immediately
follows that

Z) < 1-2, (34)

is a tight bound. We then approximate Z(tr) as Z(t;) =

1—-Z, =1—+/3/2, and substituting the latter into
Eq. (32), we obtain the timescale to peak spin squeezing as

2-43

(~t)s‘2l =2ln[<—
XOTar 2 /—m_3

)(«/WJr V2N — 1)}.
(35
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2. Time scale to the first peak of the QFI

As discussed in Ref. [15], the first peak of the QFI
occurs when the quantum uncertainty patch has been
stretched all the way to opposite ends of the separatrix.
Because of our choice of axis in Eq. (23) and our choice
of initial state, we know that at the first peak of the QFI
the state is stretched along the z direction; thus, we con-
sider the QFT associated with the generator G = J.. This
conditions then tell us that the appropriate value of Z(#)
for this timescale is given by Z(#r) = 1. Substituting this
value into Eq. (32) we obtain

(GO =2In[v2N + V2N — 1]~ In[8N],  (36)
where the rightmost side of Eq. (36) holds in the limit of
N > 1. We illustrate how well the expressions in Egs. (35)
and (36) give the timescales to peak spin squeezing and
peak QFI, respectively, in Fig. 3(b).

3. Time to the first peak of the QFI: 2ACT versus TaT at
critical coupling

The timescales to the first peak of the QFI in Eq. (17)
and in Eq. (36) look deceptively similar. In fact, in the
limit of large N > 1, they only differ by a constant factor,
whose origin is purely geometrical. In order to show this,
we assume that there is only a finite amount of twisting
strength that can be achieved in a given implementation,
and thus, if one is required to twist along two different
axes, the strength of each twist will be halved compared
to that of a Hamiltonian that twists along a single axis.
Given that the Lyapunov exponents of the 2ACT sad-
dle and the TaT saddle at critical coupling are A = ¥
and AT|cc = X /2, this assumption implies that the expo-
nents are equal. In other words, we take A = ATiT|cc =
A4, and measure timescales in terms of this exponent.

Then, in the limit of large N >> 1, we can write

(Aady = L In[4N], (AahSir = L In[8N].  (37)

The difference between these two timescales is given by

In(2)
(A& = (APt = o

(38)

The origin of this can be traced back to the additional
length that a point has to travel along the separatrix
between Z(0) and Z(#;). At critical coupling, and in the
limit N — oo, the length difference between the 2ACT and
TaT separatrices is given by

In(2
Itar — lor = E(i) — % ~ 03393 ~ n; ).

(39)

where E (i) is the complete elliptic integral of the second
kind. We give the details of this result in Appendix B. We

see then that the small difference in timescale in the limit of
large N >> 1 is only due to the additional length of the TaT
separatrix at critical coupling with respect to the length of
a great circle.

C. Local optimality of twisting and turning at critical
coupling as a quantum speed limit

In the previous section we showed that the Lyapunov
exponent of the saddle point of the TaT phase-space flow
is maximum at critical coupling. This implies that in the
classical limit, a point traveling along the separatrix moves
with the maximum allowed velocity. This has direct con-
sequences for the quantum dynamics, and it can be recast
as the saturation of a quantum speed limit [54,55]. To this
end, we use recent results derived in Ref. [56] for quantum
speed limits in Gaussian-preserving bosonic dynamics.

We are interested in a quantum speed limit constrained
to local dynamics, i.e., times such that the quantum state
remains mostly in the vicinity of the saddle point. The first
step to show that at critical coupling the speed of evo-
lution saturates the quantum speed limit is to write the
TaT Hamiltonian using the Holsten-Primakoff approxima-
tion [57]. We define it with the fixed component of angular
momentum relative to the position of the saddle point, i.e.,
the positive x direction, and fluctuations in the orthogo-
nal directions, and thus J, ~ J, fy ~ Jq, J,~ VIp,
where g, p are two bosonic quadrature operators. After this
procedure the TaT Hamiltonian takes the form

. Q., 1 _ s
Hrar = X + E(X — Q)p-, (40)

Details of this derivation are discussed in Appendix C.
Equation (40) can be written as

Hrr = 127G 2, (41)

where Z = (g, p) is a vector of quadratures and G isa 2 x
2 matrix given by

1 0
G:—Q(O 1—)?/52>' (42)

From this last expression we see that at critical coupling,
locally, the TaT Hamiltonian is a perfect squeezer, i.e.,
it is phase matched [58]. In this context we consider the
quantum speed limit as the maximum speed of evolution
allowed by this Hamiltonian. The quantum speed V; is
defined as the rate of change of the fidelity between |v;)
and [Viqar),

F(WisYirar) = 1 — V2ar, (43)

and for pure states, F (Y1, V) = |(¥1]¥2)|*. Using results
from Ref. [56], we can compute the speed for a generic
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FIG. 4. Behavior of the ratio in Eq. (46) between the actual
quantum speed of the initial state and the maximum possible
one, as a function of x /2, for different values of the squeez-
ing . Note how the quantum speed limit is saturated at critical
coupling, independently of the amount of squeezing.

Gaussian state with a fixed level of squeezing r (see
Appendix C for details). With these constraints, the maxi-
mum speed of evolution given the TaT Hamiltonian is

2o =2+ —%lx — 29l

X 2
e (44)

Bl

On the other hand, the speed of evolution for our initial
state is given by

=2
A X

Vi = (A*Hryr)o = e (45)
In order to explore if there is a parameter regime where the

quantum speed limit is saturated, we study the ratio
=2
2 X
s Q2

= . 46
Vi X2/22 4+ Qx/Dlx/ 2 —2Ir (40

This expression has a maximum equal to one at x/Q = 2,
i.e., critical coupling. Notably, this fact is independent of
the value of the squeezing », which we illustrate in Fig. 4.

D. Quantum metrology and phase diagrams in
many-body systems: twisting and turning and the
Lipkin-Meshkov-Glick model

Throughout this work, we have discussed the promi-
nent role played by the classical phase-space structures of
collective spin models in the preparation of probe states
for quantum metrology. In particular, we have shown that
the geometric and dynamical properties of the separatrix
dictate the parameter regimes leading to the exponential
increase of spin squeezing and QFI. In this context it is

<«— optimal (critical coupling)

metrology = exponential gain ¢%, &2 ~e M exponential

gain
<«— dynamical critical point
dynamical ordered : =
phases 7 >0 disordered Z ., =0
equilibrium critical point —»
ground- aramagnetic
state ferromagnetic Zgg > 0 o 7 8 0
phases GS —
orthogonal branches
maximum \ —> «— bifurcation
classical
phase separatrix no separatrix
space 1 1
n L] L]
0 1 1 Q/x
2
FIG. 5. Schematic of the different parameter regimes of the

TaT (LMG) Hamiltonian of Eq. (23) as a function of /.
Depicted are aspects related to metrological state preparation,
dynamical quantum phase transitions, ground-state phase quan-
tum phase transitions, and classical phase-space structures.

instructive to recall that the separatrix also plays a major
role in the descriptions of equilibrium and nonequilibrium
phases in collective spin models. The case of the TaT
Hamiltonian, Eq. (23), is paradigmatic in this sense, since
it also corresponds to a special case of the LMG model,
which has been extensively investigated in the context of
quantum phase transitions [44—48,50,59]. In fact, there is a
one-to-one correspondence between the phase diagram of
the LMG and the regimes of optimal probe state prepara-
tion with TaT dynamics, which are schematically depicted
in Fig. 5 and analyzed in the following.

We can define an equilibrium order parameter describ-
ing the character of the ground state as

1 N s
Zas = — (pas|J: Ibas)  (equilibrium),  (47)

where |¢gs) is the ground state of the Hamiltonian in
Eq. (23). Similarly, we define a nonequilibrium or dynam-
ical order parameter

1T - :
Zoo = TILHQOT/O dtj (OIJ: ¥ (@)  (dynamical),
(43)

where | (1)) = e "]y (0)) and the initial state is the
spin coherent state [y (0)) = [1)®". As discussed previ-
ously, analysis of the TaT (LMG) model classical flow
reveals a bifurcation at Q/x = 1. For Q < , all trajec-
tories revolve around the stable fixed points at (£1,0,0).
As a result, in this regime we have both Zgs = 0 and
Z+ = 0. At the bifurcation (where the separatrix is born)
the ground state of the system, identified with trajecto-
ries of minimal classical energy, begins shifting towards
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the Z axis, and Zgg > 0. This then corresponds to the
ground-state critical point. However, the dynamical order
parameter still vanishes, Z, = 0, since the initial condi-
tion still revolves around the x axis. As we decrease the
value of the external field and 2 < x < 1, the stable fixed
points get closer to the z axis and the separatrix grows big-
ger. Eventually, this trajectory will pass through (0,0, 1).
At this stage, the initial condition in Eq. (48) gets trapped
inside the separatrix, and rotates around the stable fixed
point, leading to Z,, > 0. This is the dynamical critical
point, Q/x = %, which coincides with the critical coupling
regime discussed previously.

Furthermore, the separatrix line has been recognized
as the classical origin of a certain type of excited state
quantum phase transition (ESQPT) [60,61]. In particular,
for a system whose thermodynamic limit is described by
a single degree of freedom, this ESQPT is given as a
logarithmic divergence of the density of states as a con-
sequence of the clustering of eigenstates whose energy is
inside a small energy window centered at the separatrix
energy. As such, as we sweep €2/ towards zero and, for
Q/x < 1, different excited states undergo ESQPT as their
energy becomes equal to the energy of the separatrix. Since
this type of quantum phase transition refers to macroscopic
changes in the structure of excited states, its consequences
are observable in the dynamics of appropriately chosen ini-
tial states. In fact, there is a direct correspondence between
ESQPT in a group of excited states and the type of dynam-
ical quantum phase transition (DQPT) discussed above
(see, for instance, Refs. [62,63]) that has implications for
quantum enhanced metrology [64].

Finally, the connection depicted in Fig. 5 goes beyond
just the TaT (LMG) model, and its applicable to generic
collective spin models. In the next section we introduce
and study two additional examples.

V. BEYOND HAMILTONIANS WITH TWO-BODY
INTERACTIONS: p-ORDER TWISTING

So far, we have considered the paradigmatic examples
of 2ACT and TaT to analyze the preparation of metrolog-
ically useful states of collective spins. However, the tools
we have employed in their analysis are agnostic to the spe-
cific model under study, and the geometry of phase-space
flows and separatrices allows us to study any collective
spin Hamiltonian. In this section we turn our attention
to generalizations of the 2ACT and TaT models studied
before, to account for higher-order many-body twisting
operations. In particular, we consider interactions such as
J?, associated with a p-body collective coupling between
p spin—% particles.

A. Two-axis countertwisting with a p-order twist

Consider a generalization of the Hamiltonian in Eq. (6)
to include p-order twisting (p > 2 throughout),

A ) A A
HE = xJz - Jo), (49)
where, for convenience, we have rotated the axis so that the
twisting directions correspond with x and y. Proceeding as
in Sec. 111, we can derive the equations of motion for the
classical flow, which read

X

— =—yrlz 50
o X , (50a)
dy

— = —3xr1z, 50b
o X (50b)
dz

— = FXPly 4 yr-lx). (50c)

The fixed points of the flow can be readily computed from
Eqgs. (50) and turn out to be independent of p and located,
as before, on the north and south poles (0, 0, £1) and along
the twisting directions (+1,0,0) and (0, %1, 0). The sta-
bility analysis (see Appendix D) reveals that the equatorial
fixed points are stable for all values of p. For the polar
ones, however, we find that the eigenvalues of the Jacobi
matrix M are +1 (leading to saddle points) only for p = 2.
For p > 2, we find that M = 0 when evaluated at these
fixed points and thus the standard linear stability analysis
is insufficient to classify the local motion of the system.
We can still study the behavior in this regime by consid-
ering the dynamics near Z >~ 1, and looking at the motion
along the branches x = y = v and u = x = —y, for which
we obtain

dv . ~ p—1 du _ ~ p—1 p—1

i X’ and i XD (5])
We focus on the case of p even, for which the local motion
clearly shows saddle-point-like behavior, with a stable (v)
and an unstable (u) branch. For p = 2, we get exponential
motion u,_(f) ~ eX! as described in Sec. III, while for
p > 2, we obtain upon direct integration

| ~1/(p-2)
up(t) = <F (e 2))@) > (52)
0

which grows more slowly. Thus, while the p-2ACT Hamil-
tonian will produce spin squeezing, it will not do so
exponentially in time unless p = 2.

B. Twisting and turning with a p-spin

Consider now a generalization of the TaT Hamiltonian,
which we refer to as pTaT, given by
Hytar = QF + xJ? (53)

with  the turning rate and x the p-twisting strength. The
Hamiltonian in Eq. (53) is an unnormalized version of the
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p-spin models, largely studied in the context of quantum
annealing [22,65,66], and equilibrium and nonequilibrium
quantum phase transitions [67—70].

Our first goal is to explore whether a notion of “criti-
cal coupling” exists for the family of p TaT Hamiltonians.
From our discussion of 2TaT in Sec. IV we saw that critical
coupling is given by the parameter regime at which condi-
tions 14 in Sec. IV A are satisfied simultaneously. In this
subsection we study each of these conditions for the whole
family of pTaT Hamiltonians. We see that such a strong
notion of critical coupling cannot be extended to the other
pTaT models with p > 2. However, a less stringent notion
can still be satisfied by at least one more pTaT Hamilto-
nian: we show that the only other case for which more
than one of the conditions can be satisfied simultaneously
isp =3.

Condition 1 defines critical coupling as the parameter
choice such that opposite ends of the separatrix are diamet-
rically opposed. This statement holds only for the pTaT
with even values of p. This can be seen in the follow-
ing way. Recall that p TaT Hamiltonians with even p have
a parity symmetry, given by the operator I1 = ¢/ and
[ﬁpTaT, I1] = 0. Thus, pairs of points that are diametrically
opposed can have the same energy, as, for instance, the
north and south poles with respect to the twisting axis, rep-
resented by the two stretched states |J, £J), with mean
energy (I:IpTaT) = x/pJ. Given that the separatrix is an
isoenergetic curve, the classical flow associated with the
pTaT Hamiltonian for even values of p admits a regime of
parameters where the separatrix has points diametrically
opposed. On the contrary, the lack of parity symmetry for
the models with odd values of p rules out this possibility.

We now turn to condition 3. We find that there is no
parameter regime for which the separatrix branches are
orthogonal in the vicinity of the saddle point, for any p TaT
with p > 2. This is formalized in the following theorem,
whose proof we give in Appendix D.

Theorem 1 (Absence of local optimality in pTaT). Given
the real-valued control parameter Q/x > 0, there is no
value of this parameter for which the p TaT dynamics, with
p > 2, is locally optimal.

Let us now consider the other two conditions. Condition
4 demands that the energy wells on both sides of the saddle
point have equal depth [71]. This property can be investi-
gated using the classical energy E(X) = (I:II,TaT) /J, where
the expectation value is taken in a spin coherent state, in
the limit J — oo. All the pTaT models have a parame-
ter regime where the classical energy is a single well, and
a parameter regime where the classical energy has a dou-
ble (p =2, p > 2, and odd) or triple well structure (p > 2
and even). These different regimes are separated by bifur-
cation points and ground-state critical points (for a detailed
discussion, see Refs. [22,69]). For 2TaT, parity symmetry

guarantees that the individual wells of the double well have
equal depth for all parameter regimes. For pTaT with odd
values of p, the condition of having wells with the same
depth defines the ground-state critical point; as such, this
condition is satisfied only at one specific parameter value,
X/ |gs. For pTaT with p > 2 and even, parity symme-
try guarantees that the two outermost wells have the same
depth for all parameter regimes. However, these lie at the
right and left sides of two different saddle points. Similar
to the case of odd values of p, the outer and central wells
will have the same depth at a single parameter value, also
given by x/Q|gs. An immediate consequence is that, for
pTaT withp > 2 and even, conditions 1 and 4 in Sec. IV A
are satisfied at two completely different parameter regimes,
and thus they cannot be considered to define a notion of
critical coupling.

The previous analysis implies that, for pTaT withp > 2,
there is no parameter regime for which at least three of
the conditions in Sec. [V A are satisfied simultaneously. In
fact, we will see that, for the models with p > 2 and even,
all four conditions occur at different parameter values, and
thus a notion of critical coupling cannot be introduced. We
are then left with the question of whether, for models with
p > 2 and odd, conditions 2 and 4 in Sec. IV A can be
satisfied simultaneously. In the following we show that this
is true only for p = 3, and thus this is the only other p TaT
Hamiltonian admitting a notion of critical coupling.

In order to show this, we need explicit expressions
for x/2|gs, the ground-state critical point, and ¥/ 2|Lg,
the maximum of the saddle point Lyapunov exponent,
both as a function of p. An explicit computation of the
ground-state critical point for this family of models was
presented in Appendix B of Ref. [72]. Here, we only men-
tion the explicit expression. The ground-state critical point

is given by
(p — P!

Zas = *IL_Z) X . wv—J
Ve-0 Qs Jep-2p2

where Zgs is the z coordinate of the new global minimum
of the classical energy density. An explicit expression for
the maximum of the saddle point Lyapunov exponent is
given by

(54

Zig = p_—2, (55a)
p—1
X p—1r!
AT - , 55b
Qg @-2r2/p-1)2—(p-2)72 (53b)

where Z; g is the z coordinate of the saddle point for the
parameter values at which the Lyapunov exponent is max-
imum. We give the explicit derivations of Egs. (55) in
Appendix D.
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The forms of Egs. (54) and (55) imply that

x

< (56)

> X
as Sl
with equality only when p = 3. Hence, the only other
pTaT Hamiltonian that admits a notion of critical cou-
pling, similar to that of TaT, is 3TaT, with critical coupling
defined as the ground-state critical point.

Before closing this subsection let us mention that the
different coupling regimes of the pTaT family, defining
the bifurcation (spinodal) point, ground-state critical point,
dynamical critical point, and maximum of the saddle point
Lyapunov exponent, establish a classification of this fam-
ily of models. In fact, one encounters four different types of
inequality chains. If p = 2, these parameter values satisfy

X
DQPT Q

£ X , (57)
Qles @

D>

spino LE

where (¥/2)|pgpr indicates the critical point of the
dynamical quantum phase transition. If p =3, these
parameter values satisfy

X X

LY .S I S (58)
Q spino Q GS Q LE DQPT

If p = 4, these parameter values satisfy
X < X < X < X 59)
Q spino Q LE Q GS Q DQPT

For all other values of p > 4, these parameter values
satisfy

X
< —_—
€ Ipopr

X
< —
g

(60)

X
<_

X
Q spino GS

We gave explicit expressions for the spinodal, ground-
state critical, and dynamical critical points of this family

of models in Appendix B of Ref. [72].

C. Time scale to the first peak of the QFI with 3TaT

Our second goal in this section is to give an explicit
expression for the timescale to the first peak of the QFI,
for the dynamics with 3TaT. The fact that at critical cou-
pling the semiclassical energy is a double well with wells
of equal depth indicates that one can prepare a “catlike”
state where the peaks of each lobe lie at the bottom of each
of the wells, and the timescale to this state is estimated
similarly to that of TaT in Sec. IV. We show the separatrix
of 3TaT at critical coupling in Fig. 6(a).

Given that the position of the saddle at critical cou-
pling is Zy = %, we consider an initial SCS centered at

00 05 1.0 15 20 25 3.0
~,\ QFI
(©) t/(Xt)star
—— Ehrenfest time
—— first peak QFI

I
N

FIG. 6. (a) Phase portrait of the phase-space flow of the 3TaT
Hamiltonian at critical coupling. The separatrix is shown in solid
red. (b) Metrological gain based on the QFI (solid red), at critical
coupling, for an initial SCS centered at the position of the saddle
point. The dashed line shows our result for the time to the first
peak. Results are for a system with N = 1024. (c) Time scale to
the first peak of the QFI with 3TaT at critical coupling, contrasted
against the Ehrenfest time.

the saddle, that is, |6y, @) = |7/3,0). Since the separa-
trix is extended in the z direction, the catlike state being
prepared will be extend in this direction as well. We then
consider G = J., and will look at the QFI FQ[H//),jZ]. We
then approximate the desired time scale as the traveling
time of a point starting at the border of the SCS uncer-
tainty patch and moving, along the separatrix, all the way
to its end. This procedure can be tracked analytically, but
we include details in Appendix D. The initial point Z(0)
turns out to be

ﬂm=%+ ! (61)

2/ (1 + [cos ' (/3/5)] 2/3)N

and the end point is given by one of the two points at the
intersection of the great circle in the x-z plane and the sep-
aratrix, which has the same energy as the saddle point.
This leads to Z(#r) ~ 0.96. The desired timescale is then
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given by

. QFI 24 12dZ
(XD31ar = > "
200 27(1 — Z2) — (5 — 423)

(62)

We compare this timescale with the respective Ehrenfest
time in Fig. 6(c). In this case the saddle point Lyapunov
exponent at critical coupling is given by

V7.
Ao = 5%, (63)
and thus, following from Eq. (21), the Ehrenfest time for
3TaT at critical coupling is given by

(X t)ErfSt _ i

3TaT — \/7

The time to the first peak of the QFI and the Ehrenfest time
for the 3TAT at critical coupling are compared in Fig. 6(c).
We immediately see that (x t)3QTF /iT > (% t)g}zf% for all values
of N. As such, one would have expected a semiclassical
analysis to give inaccurate predictions. However, we see
that this is not the case, pointing at a deeper connection
between the geometry of separatrices and the generation
of nonclassical states.

In[N]. (64)

VI. SUMMARY AND OUTLOOK

In this work we have studied the preparation of nonclas-
sical states for use in quantum metrology with collective
spin systems based on the geometry of classical phase
space. This picture is completely general for states gen-
erated by an arbitrary collective spin Hamiltonian. Using
this, we have framed the quantum dynamics problem of
state preparation as a problem involving the geometry of
curves on the surface of the unit sphere. We have estab-
lished a notion of local optimality for state preparation,
which is given by the existence of a saddle point together
with the orthogonality of separatrix branches in its vicin-
ity, giving a geometrical interpretation to a pure squeezing
Hamiltonian. Correspondingly, this framework also leads
to a natural notion of global optimality, given by sep-
aratrix branches that are aligned with geodesics on the
phase space, which, for collective spins, correspond to
great circles on the unit sphere.

With these geometric tools in hand, we analyzed two
paradigmatic examples of collective spin Hamiltonians
that generate metrologically relevant quantum states at
an exponential rate: the two-axis countertwisting and the
twisting-and-turning Hamiltonians. We gave a geometrical
interpretation to the parameter regime known as “critical
coupling” in the TaT Hamiltonian composed of four main
properties, and proved the local optimality of this parame-
ter regime. Furthermore, we extended the TaT Hamiltonian

to a large family of models, the p-twisting-and-turning
Hamiltonians, by allowing ourselves to consider arbitrary
p-body collective interaction terms. We proved a no-go
theorem for the local optimality of pTaT dynamics with
p > 2, and showed that the only model that still admits a
notion of critical coupling involving more than one of its
geometric properties is 3TaT.

It is thus the geometry of the classical separatrix that
controls these exponentially short time scales. We focused
on initial spin coherent states centered at the saddle points,
but our conclusions are general, in the sense that any ini-
tial spin coherent state with considerable overlap with the
separatrix line will have an exponentially short evolution
time to a metrologically relevant state. The physical reason
behind this fact can be traced back to the structure of the
eigenstates that in the classical limit correspond to trajec-
tories within a small neighborhood of the separatrix [73].
It is known that these states live at the border of the prin-
ciple of correspondence and behave as WKB states [37],
thus leading to a dynamics of wave packed spreading that
inherits many of the characteristics of the underlying clas-
sical dynamics. Furthermore, it was noted that these states
lead to “saddle point scrambling” [74,75], a process where
out-of-time-order correlators grow exponentially but the
system does not equilibrate, pointing at an interesting con-
nection between this type of scrambling and metrological
advantage.

The analysis done here is not only restricted to the stan-
dard approach to local quantum metrology involving state
preparation, sensing, and then measurement, but can, in
fact, be readily applied to other quantum metrology proto-
cols. For example, consider the spin amplification protocol
studied in Ref. [76]. The key mechanism behind the ampli-
fication procedure in this protocol can be understood by
considering the phase-space flow associated with collec-
tive dissipative dynamics, that is, by Lindbladian dynamics
with the jump operator L = /T'J _. The motion described
by its phase-space flow is that of an overdamped pendu-
lum (see, for instance, Ref. [77]), given by the classical
equations

@ _y

7 (65)

do
T = ksin(0),

with & some positive number and (6, ¢) the two angular
coordinates on the unit sphere. As discussed in Ref. [76],
one has k = I'. Note that canonical equations of motion
for the 2ACT in Egs. (A8) map exactly to those in Eq. (65)
when we take £ = ), use angular variables, and constrain
to the separatrices. In other words, the separatrices of the
2ACT are spin amplifiers, and the protocol in Ref. [76] can
be executed in a fully coherent manner by replacing the
collective dissipation with the 2ACT dynamics. A more
detailed study of this latter fact is the object of ongoing
work.
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Beyond its application to spin amplification, the present
analysis can be used in other types of quantum metrology
protocols, where one expects the separatrix line to play a
role. For instance, in certain tasks of critical metrology, or
in situations where one is interested in refining the knowl-
edge about some Hamiltonian parameter. In the latter case,
the best strategy will always be to choose an initial spin
coherent state placed on top of the separatrix. Further-
more, some types of dynamical sensors might be described
with the tools presented in this work, as for instance Flo-
quet time crystals [72], or chaotic sensors [25]. There, the
idea of a separatrix generalizes to that of a classical bor-
der between regions of distinct macroscopic motion, and
spin coherent states placed at these borders are known to
provide the best strategy [25].
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APPENDIX A: DERIVATIONS OF SOME RESULTS
WITH THE TWO-AXIS COUNTERTWISTING
HAMILTONIAN

1. Derivation of phase-space flow, fixed points, and
their stability

In order to compute the phase-space flow, we need to
introduce a rescaled version of Eq. (7), so that its energy
will be extensive in the thermodynamic limit. This can
be achieved by introducing the rescaled countertwisting
strength x = x/N; then

A X A A A A
Her = 2 J, +J,J)).

s (A

Using the Hamiltonian in Eq. (Al), we can write the
Heisenberg equations of motion, dJ, /dt = i[H,J,] with
y = X,y,z, for the components of the collective spin. They
are

dJ,

= =(JJ: +J:J,), A2
ar = I (Aa22)
aJ, T oaa .

= :——J z JZJ . A2b
= L+ ) (A2)

A

dJ.
dt

2% A N
= —W(Ji - J). (A2¢)
In the thermodynamic limit, J — oo, Egs. (A2) lead
to the phase-space flow of the classical variables X =
(J)/J, which after neglecting correlations (4B) = (4)(B),
is given by

ax

dY

— =AYz, (A3b)
dz "2 ’

Fixed points of a phase-space flow are those initial condi-
tions with a trivial evolution, that is, solutions of dX/dt =
0. The phase-space flow in Egs. (8) has six different fixed
points given by

X,Y,Z2) =(0,0,%£1), (Ada)
1 1
X,Y,2) = —,F—.0), Adb
( ) <ﬁ :Fﬁ) (A40)
1 1
X,Y,2) = - —,+—.0). A4
( ) < V2 ﬁ) (Ade)

Thus, the phase-space flow has fixed points in the north
and south poles of the unit sphere, and in the poles of each
of the twisting axes.

The stability of fixed points can be analyzed using the
eigenvalues of the Jacobi matrix, M[X] = (3/0X) (dX/dt),
evaluated at the fixed point. For the phase-space flow in
Egs. (8), this matrix is given by

3z 0 X
M[X]=| o —RZ  —3Y (A5)
45X 4xY 0

When evaluated at the fixed point (X, Y, Z) = (0,0, £1),
Eq. (A5) is diagonal, with the diagonal equal to
Diag[M] = (£, Fx,0). Thus, the two eigenvalues are
real and equal to My = £%. This implies that the fixed
point is a saddle point, and that the principal directions of
the separatrix emerging from it are orthogonal and aligned
with the x and y axes, respectively. In other words, they
define great circles in the x-z and y-z planes, respectively.
Furthermore, we know that in the vicinity of the saddle
point, an initial condition on one of the separatrix branches
evolves according to dP. /dt = +x P+, where PL = X, Y.

The other four fixed points in Eqs. (A4) are stable
centers. This can be easily verified by looking at the eigen-
values of the Jacobi matrix evaluated at the fixed points,
which are given by M = +i2.
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2. Classical energy and the separatrix

Using the form of the 2ACT Hamiltonian in Eq. (A1),
we can write down an expression for the classical energy
by taking the thermodynamic limit of (Hcr)/J, then,
after neglecting correlation and in terms of the classical
variables X, the classical energy density reads

H,
Eman@=(jﬂ=xxx (A6)
Introducing spherical coordinates (X, Y, Z) = (sin(f)

cos(¢), sin(f) sin(¢), cos &) and noting that the variables
¢ and Z are classical conjugate variables playing the role
of “position” and “momentum,” respectively, we can write
Eq. (A6) as

E(Z,¢:%) = §<1 — 7%)sin(2¢). (A7)

We can use the expression of the classical energy in
Eq. (A7) to compute an equation for the classical separa-
trix and, subsequently, the time required for points to travel
along sections of this curve.

First of all, recall that the separatrix connects the two
saddles at (0, 0, ==1); thus, conservation of energy says that
any point along the curve has energy Egp, = 0. Thus, the
separatrix equation is E(Z,¢; x) = 0; this is true if Z =
41, and also for the range of allowed values of ¢ € [0, 27].
Then the separatrix is defined by all the pairs (Z, ¢) with
¢ = 0,7 /2, defining the two great circles in the x-z plane
and the y-z plane, respectively.

The equations of motion for the classical conjugate
variables are given by

dZ—_aE——Nl—Zz 2 A8
T x( ) cos(2¢), (A8a)
dgzb_BE__~ .

T b XZsin(2¢). (A8Db)

For the saddle at (X,Y,Z) = (0,0, 1), the x direction is
the unstable manifold of the separatrix, thus, motion of
points along the separatrix satisfy ¢ () = 0 for all times.
Constrained to the separatrix, we then have

<=2, (A9)
and the desired timescale is given by
20 dz

Xt= _./2(0) 11— (A10)

After solving this integral, and recalling that Z(0) =
/1 —1/N, as explained in the main text, we obtain

(1= Z(t; )N+ /N =1)
VT=22)

which is the same as Eq. (13) in the main text.

f(t:ln[ } (All)

3. Explicit expressions for the spin-squeezing
parameter and quantum Fisher information
Our starting point in this section is the fact that the solu-

tion to the integral in Eq. (12) allows us to write an explicit
expression for Z(¢). It is given by

—sinh(xt) + Z(0) cosh(x1?) _Z(0) — tanh(x 1)

cosh(¥1) — Z(0)sinh(37) 1 — Z(0) tanh(37)
(A12)

Z(t) =

With this expression at hand we can go forward and
write explicit expressions for the squeezing parameter and
quantum Fisher information.

a. Explicit expression for the squeezing parameter

Let us write Eq. (15) of the main text in terms of Z
instead of the polar angle 6. It is given by

1
NZX(O(1 = Z2 (1)

E21(Z) = (A13)

Then, by substituting Eq. (A12) into Eq. (A13), we obtain

(1 — Z(0) tanh(}£))*

N(1 — 22(0)(1 — tanh?(5#))(Z(0) — tanh(77))2
(A14)

2
SCT =

recalling that our initial state of interest provides Z(0) =
VT—=T1/N, and thus N(1 — Z%(0)) = 1. Substituting these
into the last expression we obtain the explicit form of
the squeezing parameter under evolution with the two-axis
countertwisting:

[VN — /N — Ltanh(30]*

N(1 — tanh(38)[«/N — I — /N tanh(3)]*
(A15)

2
§CT =

b. Explicit expression for the quantum Fisher
information

Recall that the metrological gain based on the QFI is
defined as

(A16)

Furthermore, recall that the variance in the x direction goes
as AJ, = J sin(9). Thus, after taking J, as the generator,
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we can write the QFI as

Fp = N?sin*(0) = N*(1 — Z*(1)); (A17)

after substituting Eq. (A12) into Eq. (A17) we obtain

Nz(l — tanh?(31))(1 — Z(0)?)
(1 — Z(0)tanh(30)* ~

(A18)

= 4/1 —1/N. Then we

recalling that in our setting Z(0)

can write
1 — tanh?(¥)
Fp = N? . A19
77 (UN — VN — Ttanh(30)? (A19)

This last expression allows us to write the classical esti-
mate for the metrological gain based on the QFI as

f VN — 1tanh(31))?
N(1 — tanh?(%)) ’

&2t (A20)

4. Some other quantum states relevant for metrology
accessible with two-axis countertwisting

In this section we illustrate how the timescales for the
BWS, EWSS, and YUS are computed using the traveling
time for motion of points along sections of the separatrix.

This calculation is based on the values of the variances
of the states of interest. In order to obtain them, we need
explicit expressions for these states. Let us start with the
Berry-Wiseman state. Initially introduced by Berry and
Wiseman [35], as the optimal state for phase encoding
in an interferometric setting, it was latter considered by
Combes and Wiseman [36] as the optimal state for phase
estimation. It is given by

IBW) = ]u M) (A21)

e [

with variance, for N > 1, equal to (AJ.)?> &~ 0.13J2.

The EWSS is the pure state version of the maximally
mixed state, that is, a superposition of all Dicke states with
equal weight:

[IEWSS) = (A22)

with variance equal to (AJ.)? =J(J + 1)/3.

For the family of Yurke states,
sin(«) in(o)
L, 1) + cos(@)1, 0) + e |7, —1)
NG

[Yu) = 7
(A23)

with variance equal to

(AL)? = %[(J + 1)(2 — sin?(a)) — 2sin(@)].  (A24)

We note, however, that only Yurke states with relatively
small values of « are prepared by the 2ACT dynamics.

Now that we know the structures of the states in the
Dicke basis and their respective variance values, let us
illustrate how the timescales are calculated.

a. Timescale to the Berry-Wiseman state

In the limit of large N > 1, the variance of the
state goes approximately as 0.13J2; thus, the two val-
ues AJ™ =J/v/8 and AJ= = J/+/7 are good lower and
upper bounds, respectively. From the above observation
we have

) 1
sin(0”) = —

NG sin(6~) =

1
7 (A25)

Hence, we get the values of Z(#r) for the timescale to a
BWS as

y 7 ) 6
z (zf>=\/;, z (rf>=ﬁ,

giving the following lower and upper bounds for the
timescale to the peak of the fidelity to the BWS state:

(A26)

(%07 = In[(V8 = VDN + VN =1,  (A27a)
(7AD&= In[(vVT = VO (N ++/N =Dl  (A27b)

These bounds are the same as those in Egs. (18) in the main
text.

b. Timescale to the equally weighted superposition
state

The variance of this state is AJ = +/J(J + 1)/3. Thus,
at the time at which the fidelity to this state peaks, 0 is
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given by
in(6) ! 1+ : (A28)
sin(9) = — -,
BV
giving the value
V2J =1
Z(ty) = cos(f) = ——. A29
! V37 (A29)

From here, it is easy to get the timescale

(X0er > =In [(‘fﬁ fz;]j/N>(ﬁ +VN -1 1)}

=In[(v3 =vV2)(WN++/N=1)],  (A30)
which is the same as Eq. (19) in the main text.
c¢. Timescale to some Yurke states
Using the expression for the variance, we get
1 4 — 6sin’(a)
in(@) = /2 — sin’ - A3l
sin(69) 2\/ sin“ (o) + N ( )
from which we obtain
1 4 — 6 sin’(a)
Z(t;) = cos(0) = =2 + sin’(a) — ——,
(tr) = cos(0) 2\/ + sin“(«) I
(A32)

leading to a timescale to Yurke states of

~vUs 2 — /2 +sin’(a) — [4 — 6sin*(@)]/N
(Xt)CT =In |:< ) ) )
V2 —sin’ () + [4 — 6sin®(a)]/N

x (JJV+ m)} (A33)

where Eq. (20) is recovered from Eq. (A33) in the limit
N — oo.

APPENDIX B: DERIVATION OF SOME RESULTS
WITH THE TWISTING-AND-TURNING
HAMILTONIAN AT CRITICAL COUPLING

1. Derivation of the phase-space flow, fixed points, and
their stability

In order to construct the phase-space flow in the thermo-
dynamic limit, we need to rescale the TaT Hamiltonian in
Eq. (23) so that in the thermodynamic limit, we can guar-
antee the extensivity of the energy density. This is achieved

by introducing the normalized twisting strength x = x /N;
we write
. s A
HTaT:QJx'i'ﬁJz' (B1)

With this Hamiltonian we write the Heisenberg equations
for the components of the collective spin; they are given by

dJ, PN

== ), (B2a)
dJ, N PP

2= Q).+ L.+, B2b
= + N + ) (B2b)
dJ. .

=9, (B2¢)

In the thermodynamic limit, J — oo, Egs. (B2) lead
to the phase-space flow of the classical variables X =
(j) /J, which after neglecting correlations (1&3) = (2)(@),
is given by

X _ sy, (B3a)
- = — R a
a - X

Ay

=07+ 32, (B3b)
az

— =QY. B3
7 (B3c)

The fixed points of the phase-space flow in Egs. (B3),
which are solutions of dX/dt = 0, define two different type
of sets, depending on whether Q/x > 1 or Q/x < 1. In
the case of the former there are only two fixed points at
X,Y,Z) = (£1,0,0), i.e., the poles with respect to the
turning axis, and phase space is filled with trajectories
representing Larmor precessions of the mean spin. In the
case of the latter parameter regime, there are four fixed
points, two given by (X, Y, Z) = (£1,0,0), where the one
at X = —1 is stable and the one at X = 1 is a saddle. The
two additional fixed points are at

(Fos1-(3))
X.,.,2)=—=,0,=/1—-(—=) ). (B4)
X X

The two parameter regimes are connected through a pitch-
fork bifurcation of the stable point at (X, Y,Z) = (1,0,0)
happening at 2/x = 1. The stability of the fixed points in
these two parameter regimes can be investigated using the
Jacobi matrix associated with the flow in Egs. (B3), and it
is given by

0 %z 5Y
MX]=|%z 0 —Q+ 3X (B3)
0 Q 0

The saddle point at (X,Y,Z) = (1,0,0) existing for
parameters such that Q/x < 1 is of key importance for our
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analysis. We know that separatrix branches emerge from it
and conservation of energy guarantees that all points on
the separatrix have the same energy as the saddle. Further-
more, by evaluating the eigenvalues of the Jacobi matrix at
this saddle, one obtains its Lyapunov exponent as

Q Q
ART =3 7<1 —T).
X X

(B6)

Importantly, the Lyapunov exponent in Eq. (27) has, as a
function of the ratio /), a maximum when Q/x = %, a
parameter regime that defines critical coupling.

2. Classical energy and the separatrix

Similarly to how we obtained the classical energy den-
sity of the 2ACT Hamiltonian, we can obtain the energy
density of the TaT Hamiltonian by computing (Hrr)/J
for Eq. (B1) in the thermodynamic limit. After neglecting
correlations and in terms of the classical variables X, this
energy density reads

Hry 7
m:QX_i_lZa

EX.,Z;Q, %) =
(7 > :X) J 2

(B7)

which we can write in terms of the classical conjugated
variables Z and ¢ as

E(Z,¢:Q, %) = QV1 — Z%cos(¢) + %Z? (B8)

The separatrix equation can be constructed by noting that
conservation of energy guarantees that points on the sep-
aratrix have the same energy as the energy of the saddle,
which is given by £(0,0; x, ) = 2, and thus the separa-
trix is defined by E(Z, ¢; x,2) = Q. We can use this last
expression to write the following explicit equation for the
separatrix line of the TaT phase-space flow:

1 — cos?(0)/w

cos(d) = —31 @)

(B9)

Here we have explicitly written Z = cos(0) and defined
w=2Q2/x.

a. Angle between separatrix branches

Let us now use Eq. (B9) to derive the result in Eq. (28)
of the main text. The first step is to write a parametric
equation for the separatrix. Equation (B9) allows us to

write X and Y in terms of Z as

2
x=1-2X72  y=xz/(L£ 1) (L) 2
20 Q 20

(B10)

then the parametric equation for the separatrix is given by

2
Xr2az (£ 1) (X)) 2.2).
20 Q 2Q

(B11)

S+(Z; 7%, 9)
_ (1 _

where “£” denotes the two different separatrix branches.
From Eq. (B11) we take its projection onto the y-z plane,
given by

SY(Z: 7.9

-(-en(5)-G) )

(B12)

From this last expression, the angle between the (4) and
(—) separatrix branches can be readily computed, giving

S07.5Y7 2y 4 (x/29)°22
159211897 X/ Q= (x/29)%2>
(B13)

cos(v) =

which recovers Eq. (28) in the main text.

b. Effective 2ATC Hamiltonian at critical coupling

Let us now turn our attention to the derivation of the
effective 2ACT Hamiltonian for the TaT Hamiltonian. Our
starting point is to write the TaT Hamiltonian in Eq. (B1)
using the new collective operators defined in Eq. (29).
After this procedure we find that

reft S X s s a s X .
H%aT:QJx‘l‘ﬁ(JlJz +J2J1)+E(J2—J§).
(B14)

We then write fx =J — 0, that is, its mean-field minus
fluctuations, and keep terms up to linear in the fluctuations
0, to obtain

Al = - (Q - §>6+ %(jljz ). (BIS)

This last expression recovers, at critical coupling ¥ = 2€2,
Eq. (31) in the main text.
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c¢. Details of the computation of timescales at critical
coupling
Let us now look into the details of the calculation of the
timescales to the peak spin squeezing and the first peak
of the QFI for the TaT dynamics at critical coupling. Our
starting point is the equation of motion for the classical
conjugated variables Z and ¢, which are

dz oE
_ = _ 72 ¢
=58 " QY1 — 22 sin(¢), (B16a)
dp IE _ QZ .
@z o p @ txz. (Bl

Noting that at critical coupling Eq. (B9) simplifies to
cos(¢p) = sin(#), and thus sin(¢) = | cos(f)|, we can write
the equation for Z in Egs. (B16) constrained to motion
along the separatrix as

dz

=z 1—Z2=§Z 1— 22, (B17)
and thus the desired timescale is given by
. 26r) dz
Xt:z/m . (B18)

recalling that our initial state is a SCS along the positive x
direction, and thus Z(0) &~ 1/+/2N. Using this value, and
after solving the integral, we find that

)Zt=2ln[z(tf)(m+ “ZN_I)}. (B19)
1= 22(17)

For the timescale to peak spin squeezing, we use the fact
that, locally, the TaT separatrices at critical coupling must
be aligned with great circles on the unit sphere. We then
identify Z(tr) as the limit value for which this statement
holds.

We then exploit the fundamental theorem of the local
theory of curves [53], and compute the curvature « and
torsion t for both the 2ACT separatrices and the TaT sep-
aratrices at critical coupling. For a great circle in the unit
sphere, the values of these two quantities are

KcT = 1, TcT = 0. (B20)

To compute the curvature and torsion of the TaT separatrix,

we consider the following parametric expression for the
separatrix:

3’+(0) = (sin®(), sin(#) cos(9), cos(6)) (B21)

with 6 the polar angle of spherical coordinates; we only

need to consider the positive branch. The curvature and

torsion for this curve are given by

24/13 — 3 cos(26)
(3 — cos(26))3/2°
3 12 sin(0)

gy = > _ S8
@) = 7 T 133 c0s020)

KTaT(0) = (B22a)

(B22b)

where we have translated the “origin” to the position of
the saddle point. We look for the value of 6 in [0,7/2]
such that these two quantities differ from those of the CT
dynamics by at most 1%. For the curvature, we solve the
equation

krar(0) = 1.01 (B23)

in the desired range. Equation (B23) has the solution 6* ~
1.43772; thus, Z*(t;) = cos(6*) ~ 0.132 684. At the same
time 6* gives a torsion Tr,r(8*) ~ 1073 & 0. Value which
satisfies our requirement and provide the right-hand side of
Eq. (34) in the main text.

d. Length difference between the separatrices of 2ACT
and TaT at critical coupling

For the separatrix length of the 2ACT dynamics, we
have

7T/2 T
ler = / de\/sinz(e) + cos2(0) = 5 o, (B29)
[

0

where 6y = cos™! (/T = 1/N).
For TaT at critical coupling, the separatrix length is
given by

o
It =/ do/ 1+ sin*(9) = E(6y,i),
0

where 6, = cos ' (1/+/2N), E(gp,k) is the incomplete
elliptic integral of the second kind, and i is the imaginary
unit.

Finally, in the limit N — oo, we find the difference in
lengths to be

(B25)

In(2
Itar — let = E(i) — % ~ 03393 ~ n; ).

which recovers Eq. (39) in the main text.

APPENDIX C: DETAILS OF THE QUANTUM
SPEED LIMIT SECTION

We introduced the Holstein-Primakoff approximation
with respect to the positive x direction, that is,

J, =74, Jy, =Jp,

where a' (@) is the creation (annihilation) operator for
a single bosonic mode, and ¢, p are bosonic quadrature

Je=J—a'a, (C1)
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operators. Using Eq. (C1), we can write Eq. (B1) as

Hryr = —Qn + éﬁza

: (&)

where 7 = a'a is the bosonic number operator. Recalling
that > + p> = 7 + §, we can rewrite Eq. (C2) as

fr=a(s+1) - 22 it (©)
TaT = ) 2‘1 2X )

which, after dropping a constant factor, recovers Eq. (40)
in the main text.

We want to compare the speed of evolution of our initial
state under unitary dynamics generated by ﬁTaT, Vg, with
the maximum speed of evolution optimized over all quan-
tum states, V2. Restricted to Gaussian initial states, the

speed is giveg1 i;(y [56]
Vs = 1(MIGEP+ TI(GT)2D,  (C4)

which holds for undisplaced states, where G is defined in
Eq. (42), J is the symplectic form matrix given by

0 1

and ¥ is the covariance matrix, which, for a single-mode
Gaussian state, is given by

(C5)

¥ = RDRT, (C6)

where matrices R and D are given by

_ [ cos(B) sin(B) (e 0
R—( cos(ﬂ))’ D‘(o e") (€7

—sin(B)
with B an angle of rotation and » € R the squeezing
parameter.

0

MIX]=7 | —@p—Dxr—z

(@ — DXP2Y + Y-

We focus on the case of p even for this model, with the
case p = 2 covered before. For p > 2, the Jacobi matrix
evaluated at the equatorial fixed points is

M[(£1,0,0)] = %

S OO

0 0
0 I (D2)
1 0

The speed in Eq. (C4) is in general unbounded, and

SO anax — 00. We then restrict ourselves to consider the

speed of evolution under the Gaussian optimized over all
states with a given squeezing . Under this consideration,
Eq. (C4) can be written as

~2
Vs = % + lm —2Q) cos(2B)r + O@?).  (C8)

L

By noting that, when x < 22, one has cos(28) = —1,

and when x > 2, one has cos(28) = 1, we can write
Eq. (C8) as

X1x —29|r. (C9)

5y —

=2
X
1% =2
max(r) 8 +

On the other hand, the speed of unitary evolution for our
initial state is given by

. 32

Vo = (A*Hrer)o = - (C10)

Thus, we can explore the parameter regime where the

quantum speed limit is saturated by considering the ratio
of Egs. (C10) and (C9), given by

=2
i L
V2 X224+ Qx/lx/Q -2l

(C11)

which recovers Eq. (46) in the main text.

APPENDIX D: DERIVATION OF SOME RESULTS
WITH p-TWISTING HAMILTONIANS

1. 2ACT with p-order twisting

Starting from the classical flow given in Egs. (50), we
can compute the Jacobi matrix, which reads

—(p-Hy—2z —y!
0 —Xxr-! (D1)
- DHYP2x +xr-! 0
[
and
0 0 1
M[©0,£1,0)]=%x| 0 0 0 (D3)
+1 0 0

All these cases lead to purely imaginary eigenvalues +iy,
meaning that the fixed points are elliptic or stable. For
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the fixed points at the pole (0,0, +1) however, we obtain
M = 0, meaning that we need to study the system beyond
linearization, as done in the main text.

2. Phase-space flow and classical energy for pTaT

In order to construct the phase-space flow in the thermo-
dynamic limit, we need to rescale the p TaT Hamiltonian in
Eq. (53) so that in the thermodynamic limit, we can guar-
antee the extensivity of the energy density. This is achieved
by introducing the normalized p-twisting strength x =
% /pJP~1; we write

Hyr = @4+ L.

(D4
Using the Heisenberg equations of motion for the col-
lective angular momentum J, and defining the classical
variables X = (J)/J, in the thermodynamic limit, we can
write the p TaT phase-space flow as

dx

— =Yz D5
7 =X , (D5a)
dy

- = QZ — 3 X272, (D5b)
dz

— =-Qr. (D5¢)
dt

Fixed points of this flow are defined as solutions of
dX/dt = 0. Then, solving for the fixed points of Egs. (D5)
gives the conditions

Q\ 1
Y=0, and X:(T)
X

Tt (D6)

These conditions, together with |X|?> = 1, give the same
algebraic equation

2
VARV AGES <9> =0,
X

(D7)

whose solution is the Z coordinate of the fixed points.
The Jacobi matrix associated with the phase-space flow
in Egs. (D5) is given by

0 5z~ @ — Dxz°-'Y
M[X] = [ —52z°! 0 Q-@-hzz X
0 ~-Q 0

(D8)

We can obtain the energy density of the p TaT Hamiltonian

A

by computing (H,t,r)/J for Eq. (D4) in the thermody-
namic limit. After neglecting correlations and in terms of

the classical variables X, this energy density reads

A

H
EX,z;9,7) = Lt

—ox+ %7, (DY)
p

which we can write in terms of the classical conjugated
variables Z and ¢ as

E(Z,¢;Q,%) = Q 1—chos(¢)+§Z”. (D10)

3. Proof of Theorem 1

The proof of Theorem 1 follows from the results in the
previous subsection. To see this, we need to rewrite the
statement of the theorem. Local optimality is a geometric
statement; it implies that the phase-space flow has a sad-
dle point, and that the separatrix branches are orthogonal
in the vicinity of the saddle. As such, lack of local opti-
mality implies that there is no parameter regime for which
the separatrix branches are orthogonal. Furthermore, this
implies that there is no parameter regime for which the
principal directions of the saddle point are orthogonal. This
last statement is the one we use to build the proof.

Proving the theorem then reduces to studying the prin-
cipal directions of the Jacobi matrix in Eq. (D8) evaluated
at the saddle point. Furthermore, we know that these prin-
cipal directions will be described by orthogonal vectors if
and only if the Jacobi matrix evaluated at the saddle point
is real and symmetric. Noting that the saddle point is a
fixed point of Egs. (DY), it is true that it should satisfy the
condition in Eq. (D6).

We then evaluate the Jacobi matrix, Eq. (DS), at the sad-
dle via the condition in Eq. (D6), recognizing two different
scenarios. First, if p = 2, i.e., TaT, then one has

0 0 0
M[Xy] = [0 0 -z, (D11)
0 -9 0

which is real and symmetric whenever y = 2%, i.e., at
critical coupling. Second, for all p > 2, one has

0 120! 0
M[Xul = [ —52;" 0 —p -2
0 -Q 0

(D12)

which is only real and symmetric when p = 3 and Zy —
0. The latter only happens in the limit  / 2 — o0, and thus
there is no parameter regime at which pTaT, with p > 2,
is locally optimal.
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4. Maximum saddle point Lyapunov exponent for the
pTaT family
The first step in this calculation is to consider a
reduced form of the classical energy density, obtained from
Eq. (D10) by setting ¢ = 0, given by

Ezon=o/1-2+%7. (D13
p

This reduced energy only looks at the great circle on the x-
z plane, along which extreme points of the classical energy,
i.e., fixed points of the phase-space flow, might emerge. In
order to find the value of x /<2 at which the saddle point
Lyapunov exponent is maximum, we need an auxiliary
equation, such that the system of equations can be solved

for the pair
max[Asd]>

To find this auxiliary equation, we solve for the eigenval-
ues of Eq. (D12), and write an expression for the Lyapunov
exponent of the saddle point

. -2 _
ASd:X\/(pl]z )_ szf 2:

where U = x /. In order to proceed further, we use the
fact that the saddle point is an extreme point of the classical
energy density, and thus it satisfies

ED) _ o 7= uzr='y1 - 272,

—F =0
az

where E(Z) is defined in Eq. (D13). From this expression

we can write the ratio x /2 as

1
=2 1-72

By substituting Eq. (D17) into Eq. (D15), we obtain

Agl X
<Z§§ma"[ dl S (D14)

(D15)

(D16)

U= (D17)

A =R - 1) — (0 — 2)Z%

then, by solving dAsq/dZ = 0, we obtain the position of
the saddle point when the Lyapunov exponent is maxi-
mum, given by

(D18)

Zmax[Asd] — P — 2

¢ o1 (D19)
By substituting Eq. (D19) into Eq. (D17), we obtain
~ _ 1 p—l
x - =D . (D20)
Unatag) @ =272/ =12 = @ -2

Together, Egs. (D19) and (D20) recover Egs. (55) in the
main text.

5. Angle between separatrix branches at critical
coupling for 3TaT

For 3TaT at critical coupling, the positions of the saddle
and control parameters are given by

1
@max[A ]
Z@mathsal —

_ (D21)
2’ /3

max[Agq] \/§

Given these two values, it is easy to see that the energy
of the saddle and thus the energy of the separatrix is
Eep =5/ 34/3. With this we can write an equation for
the separatrix line of 3TaT at critical coupling, by writ-
ing E(Z,¢;%,Q) =5Q/3v/3. In terms of the angular
variables we find that

D>

(4 — 5cos(0)).

cos(¢p) = (D22)

34/3 sin(0)

We can use Eq. (D22) to write the separatrix in parametric
form as

$:(0) = (X (0), Y(6),2()), (D23)
whose components are given by
X)) = %(4 — 5cos°(9)), (D24a)

Y. (0) = :I:\/ sin?(0) — %(4 —5¢083(0))2, (D24b)

Z(0) = cos(0). (D24c¢)
To compute the angle between separatrix branches, we
take the projection of the separatrix onto the y-z plane
and translate the saddle to the origin, that is, we take
Z(0) = cos(0) — %; then the angle is calculated as the dot
product between the two branches, i.e.,

giYZ) 502

COS(U) = Sy S v (DZS)
1S¢2 11897

where

S'gZ) = (:I:\/sinz(e) — %(4 — 5¢0s3(0))2, cos(0) — %)
(D26)

In the vicinity of the saddle point, we find that cos(v) = %

6. Time scale to the first peak of the QFI with 3TaT

The fact that at critical coupling the semiclassical energy
is a double well with wells of equal depth indicates that one
can prepare a “catlike” state where the peaks of each lobe
lie at the bottom of each of the wells, and the timescale
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to this state can, in principle, be estimated via a similar
argument to that used for the p = 2 spin.

Our starting point is the canonical equations of motion
obtained from the classical energy density in Eq. (D10),
given by

dz E
2 S T= Zsing), (D27a)
dt ¢

E Z
¢ — i — _QM + 322 (D27b)
dt 7 V1 =22

Using the equation of the separatrix at critical coupling,
we can write an equation of motion for Z constrained to
the separatrix branches; it reads

dz
— = 227(1 — Z2) — (5 — 47°)? D28
= oV270 =22 —( )2, (D28)
and thus the desired timescale is given by
2@t 12dZ
Xt= / . (D29)
20) 27(1 — Z2) — (5 — 423)2

In order to complete this computation, we need to specify
the limits of integration in Eq. (D29). Specifying these lim-
its of integration requires us to think a little bit more about
the separatrix geometry.

The value of Z(#) is either one of the two “end” points
of the separatrix, that is, either of the two points at the
intersection of the separatrix with the great circle in the
x-z plane having the same energy as the saddle point. We
can find them by equating the energy of the saddle with
the semiclassical energy and solving for the roots of the
resulting algebraic equation. Such an algebraic equation is
given by

162° — 407° 4272 —2 =0, (D30)
which has three solutions, Z = 1/2, i.e., the saddle point,
and
Z, =0.9590789, Z; = —0.23433406 (D31)
for the “upper” and “lower” end points, respectively. For
the timescale calculation, we assume that Z(¢;) = Z,, that
is, motion from the saddle to the “upper” end point (note
that motion happens symmetrically towards Z; as well).

For the initial condition, it is not hard to see that it should
have the form

Zy =1 +d, (D32)
that is, the position of the saddle plus a small increment
dgp. The latter is the distance from the center of the SCS
distribution to the edge measured along the separatrix and

projected back to the z axis. Given that the angle between
separatrix branches is cos(v) = 1/5, we can get the angle
between the separatrix branch and the z axis. It is given by

. 3
cos(v) = \/;

From Eq. (D33) we can compute dg, in the following
way. Consider the initial uncertainty patch of the SCS pro-
jected onto the y-z plane. It corresponds with an ellipse
whose semimajor and semiminor axes, on the y and z axes,
respectively, are given by

(D33)

3 1
= —\/_ , = —, (D34)
2VN 2VN
and thus the ellipse is described by the equation
4N
4NZ? + TY2 =1. (D35)

On the other hand, the point at the intersection between the
ellipse and the separatrix branch satisfies

Z, in(v 2
mG%:m@z-ﬁ (D36)
Yo cos(v) 3
thus,
Z, 2
Yo = —2 =tan™! \/j D37
D 5 an ( 3> (D37)
Substituting Eq. (D37) into Eq. (D35) gives
1
Zyp = — , (D38)
2/ +1/30%)N
and, thus,
1 1
Z(0) = -+ (D39)

2 2/ +1/305)N

After which the timescale is completely determined, and it
completes the derivation of Eq. (62) in the main text.
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