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We study the generation of two-qudit entangling quantum logic gates using two techniques in quantum
optimal control. We take advantage of both continuous, Lie algebraic control and digital, Lie group control.
In both cases, the key is access to a time-dependent Hamiltonian, which can generate an arbitrary unitary
matrix in the group SU(d?). We find efficient protocols for creating high-fidelity entangling gates. As a
test of our theory, we study the case of qudits robustly encoded in nuclear spins of alkaline earth atoms
and manipulated with magnetic and optical fields, with entangling interactions arising from the well-
known Rydberg blockade. We applied this in a case study based on a d = 10 dimensional qudit encoded
in the 7 = 9/2 nuclear spin in ¥’Sr, controlled through a combination of nuclear spin resonance, a tensor
ac-Stark shift, and Rydberg dressing, which allows us to generate an arbitrary symmetric entangling two-
qudit gate, such as CPhase. Our techniques can be used to implement qudit entangling gates for any
2 <d < 10 encoded in the nuclear spin. We also studied how decoherence due to the finite lifetime of the
Rydberg states affects the creation of the CPhase gate and found, through numerical optimization, a fidelity
of 0.9985, 0.9980, 0.9942, and 0.9800 for d =2, d =3, d =5, and d = 7, respectively. This provides
a powerful platform to explore the various applications of quantum information processing of qudits,
including metrological enhancement with qudits, quantum simulation, universal quantum computation,

and quantum error correction.
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I. INTRODUCTION

In the standard paradigm of quantum information pro-
cessing (QIP) one encodes information in qubits, the
quantum analog of classical bits, by isolating two well-
chosen energy levels of the system. In many platforms,
one has access and control over multiple levels, which
can enhance our ability to do QIP in a variety of ways
[1-5]. In particular, one can encode information in base-
d > 2 using d-level qudits [1]. With a larger state space
per subsystem, qudits offer potential advantages for quan-
tum communication [6], quantum algorithms [7—10], and
topological quantum systems [11—13]. Quantum computa-
tion with qudits can also reduce circuit complexity and can
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be advantageous in a variety of noisy intermediate-scale
quantum (NISQ)-era applications [8—10,14—17].

Qudits may also provide significant advantages in quan-
tum error correction and fault-tolerant quantum compu-
tation [18-22]. Of particular importance is reducing the
physical resources needed to encode logical qubits. In the
standard paradigm, logical qubits are encoded in multi-
ple physical qubits, such as in the well-known surface
code [23], which has a substantial overhead. An alternative
approach is to encode a logical qubit in a single qudit. This
has been a powerful tool, e.g., in encoding a logical qubit
in the multiple harmonic levels of a bosonic mode [5], and
has been theoretically considered in high-dimensional spin
qudits in atoms [3,24], molecules [25], and in solid-state
devices [26]. Developing general methods for quantum
control and entanglement of qudits would greatly expand
the tools at our disposal.

In the gate-based approach to quantum computation
with qubits, a universal gate set consists of single-qubit
gates that generate the group SU(2) and one entangling
two-qubit gate, such as CNOT [27]. This generalizes simply
for qudits. The universal gate set consists of the generators
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of single-qudit gates in SU(d) and an entangling two-qudit
gate [28-30]. Unlike qubits, where native Hamiltonians
can be used to naturally implement the desired gate set,
qudits require more complex protocols. The gates that are
necessary for the implementation of the universal gate
set have been recently implemented for qudits in super-
conducting transmon [2,31,32] as well as in trapped ions
[33,34] up to dimension d = 7. In these experiments,
one implements qudit gates using constructive methods
through a prescribed set of Givens rotations [30,35]. While
there has been substantial progress, much work remains to
be done to efficiently implement a high-fidelity universal
qudit gate set.

In this paper, we study an alternative approach based
on quantum optimal control. Quantum optimal control was
originally developed in NMR [36] and for coherent con-
trol of chemistry [37,38], and has been extensively used
in quantum information processing [39]. We consider both
continuous Hamiltonian control (Lie algebraic) and digital
gate-based control (Lie group). Quantum optimal control
has been experimentally implemented in a wide range of
platforms ranging from ion traps [40], neutral atoms [41—
43], superconductors [44,45], and nitrogen vacancy (N-V)
centers [46,47]. Its use in implementing single-qudit gates
was demonstrated in the seminal experiments of Jessen
[48] with information encoded in the hyperfine states of
cesium and studied in Ref. [49] for qudits encoded in
the nuclear spin of alkaline-earth atoms. In this work, we
extend these techniques to the implementation of entan-
gling gates between two qudits. We study qudit entangling
gates for any £ < d within the d-dimensional Hilbert space
of each subsystem.

As a concrete example that demonstrates the power of
the method, we present here an optimal control scheme
to implement entangling gates in qudits encoded in the
nuclear spin of 3’Sr atoms. The nuclear spin is a good
memory for use in quantum information processing given
its weak coupling to the environment and resilience to
other background noise [50—52]. The ground state of the
87Sr is also studied in a recent paper as a possible candi-
date for qudit encoding with entangling interaction enabled
by the Rydberg blockade [53] Also, the recent significant
achievements of quantum information processing using the
Rydberg blockade [54—56] make this an ideal platform for
exploring quantum computation. Using a combination of
a tunable radio-frequency magnetic field and interactions
that arise when atoms are excited to high-lying Rydberg
states, the atomic qudit is fully controllable. We find that
one can use quantum optimal control to implement high-
fidelity entangling qudit gates even in the presence of
decoherence arising from the finite Rydberg-state lifetime.

The remainder of this paper is organized as follows.
In Sec. II we review the fundamentals of quantum
control and define two approaches: Lie algebraic and
Lie group theoretic protocols for the generation of any

arbitrary qudit entangling gates. In Sec. III, we study how
control is achieved using numerical optimization based on
the well-known GRAPE algorithm [57] and obtain con-
trol waveforms using the Lie algebraic method. We also
use a gradient-based approach to find a digital sequence
of unitary maps that achieves the desired gate using a Lie
group theoretic method. Finally, we study how decoher-
ence affects the fidelity of these gates. We give conclusions
and outlook of our approach in Sec. I'V.

II. CONTROLLABILITY

A complete universal gate set for qudits requires one
entangling gate. A standard choice is the CPhase gate,
which is the generalization of CZ gate for qubits, defined

CPhase |j) [k) = & |j) |k), (1

where w = exp(27i/d), the dth primitive root of identity
for a subsystem of dimension d. We can see that for d = 2
we recover the CZ gate. This gate is locally equivalent to
the qudit-analog of the CNOT gate, known as the CSUM gate,

Csum i) [f) = i} i @ (mod d)) 2

by the Hadamard gate for qudits, H; |j) = 1/+/d > ol i),
Previous works have studied how to implement these gates
through a well-defined sequence of maps generated by
one-qudit and two-qudit Hamiltonians [28,30,58,59]. We
study here the use of numerical optimization and the theory
of optimal control.

A. Lie algebraic approach

In the Lie algebraic approach to quantum control,
we consider a Hamiltonian of the form H[e(?)] = Hy +
S ¢ (DH;, where ¢(f) = {¢;()} is the set of time-
dependent classical control waveforms, and H, is called
the drift Hamiltonian. The system is said to be “control-
lable” if the set of Hamiltonians, {Hy, H,,H>, ..., H}}, are
generators of the desired Lie algebra, e.g., su(d). Then
Je(r) such that Ule,T] =T [exp (—i fOTH[c(z)]dz)] =
Uy, for any target unitary in desired Lie Group, e.g., Uy, €
SU(d). In addition, we require T > T, where T is known
as the “quantum speed limit time,” which sets the minimal
time needed for the system to be fully controllable.

We consider here open-loop control determined by a
well-defined Hamiltonian of the general form,

H(t) = HY(#) + H?(¢) + He, A3)

where H® (f) are time-dependent Hamiltonians acting on
the individual subsystems, and H. is the interaction that
entangles them. Here we include the time dependence in
the Hamiltonian that acts on the individual system as these
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will be generally easier to implement experimentally. In
this formulation, H.,: = H, is the drift Hamiltonian. How-
ever, one could in principle include time dependence in the
entangling Hamiltonian as well and this may achieve faster
gates.

B. Lie group approach

In the digital, Lie group approach to quantum control,
we consider a family of unitary maps in the desired group
that are easily implementable, U(};), where {A;} are the
parameters that specify the unitary matrices at our disposal.
The relevant Lie group of interest here is SU(d?), the group
of two-qudit unitary matrices in d* dimensions, where the
overall phase is removed. The system is controllable if
VUi € SU(?), 3{;} such that []_; U(;) = Usyr. Sim-
ilar to the Lie algebraic quantum control approach, the
goal is to find {A; } through numeric optimization, e.g., via
gradient-based methods.

For the case of two-qudit gates, a controllable Lie group
structure is given as,

U)LJ- = Uent * (Ul 02y UZ), (4)
where U, € SU(d) and Uy = exp(—iHen?) ¢ SU) ®
SU(d). Thus, we can achieve the target gate to the desired
fidelity by intertwining a sequence of local SU(d) gates
and the available entangling interaction in alternating lay-
ers of single-qudit gates and entangling gates, as shown in
Fig. 1(b). This approach is similar to the construction based

(@ Input System
Hamiltonian,

Classical control functions,

on Givens rotation [33]. Here, the possibility of accessing
arbitrary local SU(d) gates makes this protocol very pow-
erful. A schematic comparison of both these approaches is
shown in Fig. 1.

C. Physical platform: Rydberg atoms

To make these ideas concrete, we consider the imple-
mentation of entangling gates in neutral atoms using
the strong van der Waals interactions between atoms in
high-lying Rydberg states. We use the Rydberg dressing
paradigm in which one adiabatically superposes the Ryd-
berg state into the ground states to introduce interactions
between dressed ground states [60—65]. Rydberg dress-
ing has been studied with multiple applications including
the dynamics of interacting spin models [63—65] as well
as to prepare metrologically useful states [66]. Entangle-
ment between neutral atoms via Rydberg dressing has been
theoretically proposed for creating qubit entangling gates
[61,67,68] and experimentally implemented [62,69,70].
The dressing approach has a potential advantage in that it
exhibits reduced sensitivity to some noise sources [61,67,
70]. For the specific protocol based on optimal control, the
utilization of Rydberg dressing confines our operations to
the qudit subspace. This restriction effectively reduces the
dimension of the Hilbert space for optimization from (2d)?
to d” for a d-dimensional qudit. This dimension reduction
significantly accelerates the numerical optimization of the
pulses required for quantum control.

Output

Unitary gate,

> k — T
{c;(8) ¥4} Hlo(t)] = How + S c;(0H;  Ule,T] =T |exp [ —i /o Hic®)dt ) | = Ui
j=1

(b)

3 Layer 1 3 Layer 2 3 i Layer N i
— v (@) H i (@) H - U @E™) -
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oy HeeyH 1 deeo) - -

FIG. 1. Comparison of Lie algebra versus Lie group approach for quantum control. (a) Schematic of the continuous-time Lie

algebraic approach for quantum control. The physical systems are governed by the time-dependent Hamiltonian, H[c(f)] =

Hel’lt +

Z;‘:l ¢j (HH;, here with a time-dependent entangling Hamiltonian, Hy. The time-dependent waveforms {c; (#)} are found through
numerical optimization, and this defines the target unitary map of interest through the solution to the time-dependent Schrédinger
equation. (b) Schematic for a digital, Lie group approach to quantum control of entangling two-qudit gates. The target unitary is
achieved through a discrete series of layers consisting of unitary maps from a given family. One layer of the scheme consists of
single-qudit gates on each subsystem and an entangling interaction between them, applied for a given time #;. Through numerical
optimization, one finds the parameters of the local SU(d) gates and the entangling time ¢ in each layer.
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We study here encoding a qudit in the spin of 3’Sr. In
the ground state, there is neither orbital nor spin angu-
lar momentum in the electrons, J = 0, and only nuclear
spin, I = 9/2, giving us ten possible levels in which to
encode our qudit, labeled from |0) = |m; =9/2),|1) =
lm; =7/2),...,19) = |m; = —9/2). The nuclear spin is
highly isolated from the environment and thus serves as
a robust memory for quantum information. In Ref. [49]
we studied how we could implement single-qudit gates in
these systems through a combination of a laser-induced
tensor light shift and rf-induced Larmor precession. We
generalize to the two-qudit case here.

To implement entangling two-qudit control, we will
make use of the excitation to the 5sns3S; Rydberg series
from one of the metastable 5s5p°P; first excited states
in the triplet series. For optimal control based on the
combination of rf-driven Larmor precession and Rydberg
dressing one can compare different choices of metastable
states. One natural choice is the 3P clock state, whose spin
is essentially solely nuclear, and thus robust in the presence
of magnetic field noise. By contrast, the 3P, state involves
electronic angular momentum with a large magnetic dipole
moment and commensurate sensitivity to noise, including
possible tensor light shifts induced by the trapping laser.
However, within the specific approach addressed in this
study, access to a large magnetic dipole moment enables
faster gate operations compared to the Rydberg lifetime.
For the 3P, states, the strength of the rf-Larmor preces-
sion frequency is closer to that of the available Rydberg
dressing interaction. In this regime, the quantum speed
limit (i.e., the minimum time required to implement gates)
is more favorable compared to the situation that the rf
interaction is much weaker than the Rydberg interaction,
as would be the case for the 3P, states. This regime,
characterized by similar strengths of competing Hamilto-
nians, is known to be optimal for achieving the quantum
speed limit [49,71]. We consider here coherently trans-
ferring qudits from the 'Sy ground state to the F = 9,2
state hyperfine states of the 3P, manifold, which provides
for faster and more flexible control [72], putting technical
noise aside.

To achieve the entangling interaction, we consider Ryd-
berg dressing, generalizing the mechanism discussed in
Refs. [61,62,67]. The ac Stark shift (light shift) associated
with a dressed state when a laser is tuned near a Rydberg
resonance is modified for two atoms because of the Ryd-
berg blockade. The deficit between the two-atom light shift
and twice the one-atom light shift determines the entan-
gling energy [61]. For the case of qudits, the same physics
holds, but now with a multilevel structure and a spectrum
of entangling energies. When the spectrum is nonlinear, the
system is controllable.

Figure 2 depicts the basic scheme. Those levels of
the qudit that we chose to participate in the gate are
excited from the ground 'S to the first excited >P; state.

The Rydberg states in 8’Sr have well-resolved hyperfine
splitting. We consider UV dressing laser near the reso-
nance between the *P,, F = 9/2 hyperfine manifold and
the 38, F' = 11/2 Rydberg hyperfine states. In the pres-
ence of a bias magnetic field, due to the difference in
the g factors, the two manifolds will be differently Zee-
man shifted. The different magnetic sublevels that define
the qudit will thus be differently detuned to the Rydberg
magnetic sublevels. Due to this and the Clebsch-Gordan
coefficients associated with the different transitions, each
sublevel will be differently dressed (equivalently, there is
a tensor light shift). When two atoms are dressed, the
effect of the Rydberg blockade modifies the spectrum as
discussed above.

An example of two sublevels (one from each atom) is
shown in Fig. 2(b). Diagonializing this atom-laser Hamil-
tonian under the approximation of a perfect Rydberg
blockade yields the representation

Hew =Y E" [i)(if |, (5)
ij
where the tilde indicates dressed states,
|i7) = Cy lij) + Coy Irg) + Cay, iry), (6)

and EV are the light shifts originating from these interac-
tions. The spectrum of the entangling Hamiltonian shown
in Fig. 2(c) gives us insight into the controllability of the
system. In the chosen order, the spectrum reveals the struc-
ture of ten quadratic potentials arising from a combination
of the tensor light shift and Rydberg blockade. This nonlin-
earity makes the Hamiltonian controllable; further details
are discussed in Appendix B.

The time-dependent Hamiltonian necessary for the
Lie algebraic control can be chosen as phase-modulated
Larmor precession, Hm,, = —p - B(f), with u = grupF
the magnetic dipole vector operator, and where B(¢) =
Bje: + BrRe | (e + ie,)e " @+?O)]  Defining the auxi-
lary subspace, a, for the levels in hyperfine manifold
{(5s5p 3P, F = 9/2} and the subspace, r, for the levels
{5sns3Sy, F' = 11/2} in the Rydberg hyperfine manifold,
we have gr(r)/gr(a) = 2. Thus defining the Zeeman shift
wo = gr(a)By, the Larmor precession frequency Qi =
gr(a)Br, and choosing rf drive on resonance in the a
manifold, w,;s = wy, in the co-rotating frame at wy, the
Hamiltonian is

Hin (0 = ¢ [cos p (OFE +sin (0F2 ],
(7)
HO,(0) = 2Q4 [cos S(OF! + sin ¢ (z)Fy’] + woF”,
where F', F7 are the spin angular momentum operators in
the respective subspaces along axis i € {x,y,z}.

040333-4



QUDIT ENTANGLERS USING QUANTUM... PRX QUANTUM 4, 040333 (2023)

? 11/2) (0) ©
19/2)
—1
o = Ml
1-9/2)
)
B 15/2 7
(22 '
So, I =9/2
‘7%> ..... |5/_2> |72> |T2>

FIG. 2. Schematic for designing two-qudit entangling interactions in 37Sr neutral atoms. (a) A k < d-dimensional qudit is encoded in
memory in the nuclear spin with d = 10 magnetic sublevels in the electronic ground state (5s2) 'S;. When the gate is to be performed,
the & levels (here k = 3) are transferred coherently to the metastable clock states (5s5p) *P,, F = 11/2 in the presence of a bias
magnetic field. The system becomes controllable by adiabatically dressing the 3P, with Rydberg character through the application
of a near-resonant laser with Rabi frequency €; and detuning A; with respect to the hyperfine manifold (5sns) 3S;, F/ = 9/2 in the
Rydberg series. Control is then achieved through the application of a phase-modulated rf field with Rabi rate 2., which acts on the
dressed states to generate a nonlinear Larmor precession. The entanglement arises due to the Rydberg blockade. The coupling of the
state of two qudits for a perfect blockade as depicted in (b), where i is a state from the first qudit and j is from the second qudit, excited
by two Rabi frequencies and detunings determined by the Clebsch-Gordan coefficients and Zeeman shifts. The state |ij ) — |1] > is the
dressed state given in Eq. (6). The spectrum of eigenvalues of the entangling Hamiltonian Eq. (5) is given in (c) as a function of i and j
where the function chosen is f (i,j) = 10i +;0 < i,j < 10. The spectrum indicates ten parabolas, where each parabola corresponds
to the effect of a single state in the first atom sees due to all the states in the second atom. This nonlinear spectrum arises through
a combination of the tensor ac Stark shift and the Rydberg blockade, making the system controllable, allowing us to implement any
symmetric two-qudit gate in this system of interest.

As the Hp,g acts on the laser-dressed states defined in
Eq. (6), which are superpositions of a and r states that
have different g factors, one needs to find the action of
the magnetic interaction in the dressed basis. Due to the
nonlinearity, the action of the rf-magnetic driving on the
dressed states is no longer simple Larmor precession. Con-
sidering a global rf-magnetic interaction, the Hy,, acts on
both qudits as

(Hiag () @ 1 + 1 ® Hnag(0)]) |77)
= ¢y [H9, 0 © 1,0 1)
+ Cry [H, (0 ® Ho 0 | 1)
+ Ciy [0 @ HO, 0] i) ®)
Thus in the dressed basis, the Hamiltonian is H(f) =

H [¢(©)] 4+ Hent, where the action of the magnetic field in
the dressed basis is given by the Hamiltonian,

Hlp®0] = (| Huag(®) @ 1+ 1 @ Hrnag (0] K1) 57 ) k1)
ikl

)

By modulating the phase ¢ () one can generate any target
unitary gate.

III. NUMERICAL METHODS

We consider encoding a k-dimensional qudit in the d =
10 dimensional Hilbert space associated with ten magnetic
sublevels of the nuclear spin of 8’Sr. To implement gates
based on optimal control for £ < 10, we use techniques
based on the structure of partial isometries. A partial isom-
etry of dimension £ < d in a physical system of dimension
d is defined as,

k
Vir = Y ) (eil, (10)
i=1

where {|e;)}, {|f;)} are two orthonormal bases for the qudit.
The unitary of maps of interest then has the form,

(]tar = Vtar + VJ_, (11)
where V| acts on the orthogonal subspace, with dimension
d — k. To find the control waveform, one then optimizes
the fidelity between the target isometry and the isometry
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generated using quantum control [73]

Flen =t (Ve[ 2. a2

A. Numerical results for Lie algebraic approach

As discussed in Sec. IIC, one can implement an arbi-
trary entangling gate through a combination of Rydberg
dressing and phase-modulated Larmor precession driven
by rf fields. Because our control Hamiltonian is sym-
metric with respect to the exchange of the qudits, we
consider here symmetric gates, with global control. We
seek, through numerical optimization, the time-dependent
rf phase, ¢ (¢). To achieve this we employ the well-known
GRAPE algorithm [57]. To implement GRAPE, we dis-
cretize the control waveform, ¢ (#), and numerically max-
imize the fidelity by gradient ascent. We choose here a
piecewise constant parameterization (as in Ref. [48]) and
write the control waveform as a vector ¢ = {¢p(t;) /7 |j =
1,...,n} where t = j At and n = T/At. The waveform is
thus a series of square rf pulses with constant amplitude
and phase over the duration Atz.

The minimum number of elements in the control vec-
tor ¢ is determined by the number of parameters needed to
specify the target isometry. A K-dimensional partial isom-
etry is defined by the K columns in a D x D-dimensional
unitary matrix. Hence, to find the number of free param-
eters for a K-dimensional isometry one can count the
number of parameters needed to specify K orthonormal
vectors uniquely in a D-dimensional vector space. This is
given by

K
Main(K,D) = Y "2(D—j) —1+K — 1

j=1

KKK +1
=2[KD—%}+K—1
=2KD —K* -1, (13)

where in the first line, we subtracted one from the
parameter count since the overall phase of the isometry
is neglected. Equation (13) recovers well-known limits.
When K = 1 and D = d, nyin = 2d — 2, which is the num-
ber of free parameters needed to specify a pure state in
a d-dimensional Hilbert space. When K = D = d, ny, =
d*> — 1, which is the number of free parameters needed to
specify a special unitary map in d dimensions.

In the Lie algebraic protocol for designing entangling
gates, the control Hamiltonian, as well as the target unitary
matrices, are symmetric under the exchange of qudits. In
this case, one can work in the symmetric subspace for two
qudits. Using the hook length formula [74], the dimension
of the symmetric subspace of the total vector space and

TABLE I. The minimum number of parameters required for
encoding a partial isometry of dimension k£ in the d =10
dimensional Hilbert space according to Eq. (13) for the prime
dimensions & < 10 with K and D given by Eq. (14).

k Nmin (K, D)
2 320

3 623

5 1424

7 2295

isometry is,

_dd+1) . k(k+1)

D ,
2 2

(14)

Thus, using Eq. (13), we find the number of free parame-
ters required for the two-qubit entangling unitary given in
Table 1.

Proof-of-principle numerical examples of waveforms
that generate the CPhase gate are given in Fig. 3. The
figure gives the ¢ (#) as a piecewise constant function of
time, obtained using the GRAPE algorithm. We consider
prime-dimensional qudits, the cases of most interest in
quantum algorithms. Figure 3(a) shows the case of the
k =3, a qutrit encoded in d = 10. The total time is 7 =
507/ 2, which is divided into 700 intervals for the quan-
tum control. Figure 3(b) shows an example waveform for
the case of k = 5. Here, the total time is 7 = 2407w/ 2,4,
divided into 1600 intervals. Similarly, Fig. 3(c) shows
the case of k=7 in our d = 10 level system. The total
time is 7 = 4007/ Q2;¢, divided into 2500 time intervals.
This controllable Hamiltonian can also be used to gener-
ate other two-qudit gates. The qudit generalization of the
Mpolmer-Serensen gate, as is given in Appendix C.

The waveforms found here are a proof-of-principle set
of square pulses and are not intended to be taken as the best
choice for experimental implementation. In practice, one
can design and optimize for much smoother waveforms
using well-known techniques by imposing additional con-
straints on bandwidth and slew rate. Alternatively, one
can optimize in the Fourier domain or in any other com-
plete basis of functions using the techniques of gradient
optimization of analytic controls (GOAT) [75].

B. Numerical results for Lie group approach

In the Lie group control protocol discussed in Sec. 11 C
we parameterize the target unitary map as

Uar = [ [ Uy,
J

=T 1@ ® BED).  15)
J
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Waveforms of the CPhase gate. Quantum control is achieved by modulating the phase of an rf field as a function of time,

¢ (1). We parameterize this by a piecewise constant waveform. The figure shows proof-of-principle examples of ¢ (¢) that generate
the CPhase gate, optimized using the GRAPE algorithm for different qudit dimensions. (a) The case of the d = 3 for a total time of
T = 507/ 2,¢ with 700 piecewise constant steps. (b) The case of the d = 5 for a total time of 7 = 240/ Q¢ with 1600 piecewise
constant steps. (c¢) The case of the d = 7 for a total time of 7 = 4007/ ;¢ with 2500 piecewise constant steps. For all of these
calculations, the rf field is on resonance with the Zeeman splitting w,s = wy and we choose the rf-Larmor frequency ;s = w,s. Control
is achieved by Rydberg dressing with laser Rabi frequency 2, = 6.

The control parameters {A;} consist of the set of times
{t;} and the 2(d? — 1) parameters @), B9, which specify
each of the local SU(d) unitary maps. We can parameterize
these according to

d>-1
U@ =exp| —i ) e ). (16)

i=1

where A is the generalized Gell-Mann matrices that span
the Lie algebra su(d). The matrices can be categorized as,

symmetric: A = ) (k| + k) (|,

antisymmetric: Ay = —ilj ) (k| +ilk) /|,
(17)

1
diagonal: A = Y "[j){j| — [+ 1)([ + 1].
j=l1

The task of the numerical optimization, thus, is to find
the set of times of the entangling interaction {#;}, and the
expansion coefficients of the Gell-Mann matrices {oel.(’ )}
and { /3,-(’ ) }. We denote this whole set of parameter as {A;} =
(4,69, B0).

We define one layer of the control as consisting of a pair
of local SU(d) gates followed by the entangling Hamilto-
nian for a time #;. The total number of free parameters for a
CPhase gate is d*>(d* + 1)/2, as follows from Eq. (14) for
a symmetric gate in SU(d?). Thus, the minimum number
of layers required to obtain the CPhase gate is given by

P +1)
2

&+ 1)

Nin =5 0@ — 1y

Niin (2(d*> = 1) + 1) =
(18)
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TABLE II. The number of layers of primitive gates in the Lie
group approach required to achieve the CPhase gate. The theoret-
ical minimum is Ny, according to Eq. (18). If we allow locally
addressable single-qudit gates, the number of layers required is
MNiocal- If we have only global control but allow for a sign change
in the entangling Hamiltonian, the number of layers required is
N, global -

d Nmin ]Vlocal N, global
3 3 6 7
5 7 10 12
7 13 14 15

The numerical results for the minimum number of layers
needed in the system are given in Table II for the cases
of d = 3,5, and d = 7. In practice, we find that one needs
more than this minimum number of layers to implement
the target unitary gate with high fidelity. This improves the
optimization landscape for gradient ascent [76].

For our case under study, we choose the same entan-
gling Hamiltonian as we used in the Lie algebraic approach
given in Eq. (5). However, unlike that approach, we inter-
leave the entangling interaction with local single-qudit
SU(d) gates. Implementation of this requires another layer
of optimization. As we do not have access to native Hamil-
tonians proportional to the Gell-Mann matrices, to imple-
ment local qudit gates we can employ local SU(d) optimal
control [49]. From a practical perspective, this might be
implemented directly in the 3P, manifold, either through a
combination of tensor-light shift and rf-driven Larmor pre-
cession similar to Ref. [49], or alternatively through a com-
bination of microwave-driven Rabi oscillations between
different hyperfine levels in *P, and rf-driven Larmor pro-
cession as in Ref. [48]. In either case, optimal control can
be used to find the relevant experimental waveform that
generates the desired local SU(d) gates.

In this analysis, we included locally addressable control
on each qudit. Though the CPhase gate is symmetric under
exchange, we find that this symmetry breaking is necessary
for effective optimization of this parameterization, simi-
lar to that seen in Ref. [77]. An alternative protocol is
to employ symmetric global control of the local unitaries,
a) = BY, but to reverse the sign of the entangling Hamil-
tonian Hey — —Hepe in alternating layers. This allows
for effective optimization, and the corresponding result is
given in Table II.

C. Decoherence

In a closed quantum system, quantum optimal con-
trol employing either the Lie algebraic or the Lie group
approaches can be used in principle to implement any qudit
entangling gate to any desired fidelity. In our numerical
optimization, we took the target infidelity to be 1073, In
the absence of decoherence, we could achieve that target

in a reasonable time for d < 5. For d = 7, more time is
required. However, the fundamentally achievable fidelity
is limited by decoherence associated with the particular
physical platform. For the system at hand, decoherence
occurs due to the finite lifetime of the Rydberg states,
which predominantly leads to leakage and loss outside the
computational basis. In that case, we can model the gate
as generated by a non-Hermitian effective Hamiltonian,
Heglc(t)], where the Hermitian part is the control Hamil-
tonian and the anti-Hermitian represents decay out of the
Rydberg states. The fidelity of interest is given by

File, T] = ‘Tr (V;rVeﬁ[c, 7]) ‘2 /&2, (19)

where Vegle, T =7 [exp (—i fOTHeff[c(t)]dt)]. Here the

decay amplitude from a dressed state is Y., =
|Cpy I°T; + |C,-r].|2F,j, which in turn gives the effective
Hamiltonian as

Heetg = Z <E€S2 - iyg:cay/z) |17)<l7| : (20)

i

With this model for decoherence in hand, the numeri-
cal results for the Lie algebraic approach are given in
Fig. 4, which shows the infidelity as a function of time
for a CPhase gate for different dimension isometries. We
focus here on the case of the prime dimensional qudits. In
contrast to closed-system control, in the presence of deco-
herence, infidelity decreases at first and then increases.
This is due to the fact there is an optimal time of evo-
lution, larger than the quantum speed limit, but not too
large when compared to the coherence time of the system.
As expected, one needs more time as the qudit dimension
increases, which in turn results in an increase in the mini-
mum infidelity one could achieve in each of these cases as
shown in Fig. 4. We obtain a maximum fidelity of 0.9985,
0.9980, 0.9942, and 0.9800 for d =2,d =3,d =5, and
d =7, respectively, for the CPhase gate. Note, the values
of fidelity for different dimensional qudits should be con-
sidered in the context of a particular application. For exam-
ple, the threshold for fault tolerance for qudits, in general,
is larger for larger d [78,79]. For the particular scheme
considered in Ref. [78], the threshold for d = 2, d = 3,
d=25, and d = 7 are close to 0.008, 0.012, 0.0135, and
0.015, respectively. Hence, the proof-of-principle fidelity
obtained here is promising and can be further optimized.
In the Lie group approach, we can use the effective
Hamiltonian to describe the evolution when the Rydberg
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10 20 30 40 50 60
QuT/(d x )

FIG. 4. Infidelity as a function of time. Simulated infidelity
with and without decoherence as a function of control time
divided by the dimension d for CPhase gate with different prime
dimensions with d < 10, as found using Lie algebraic quantum
control and the GRAPE algorithm. Decoherence due to Rydberg
decay outside the computational basis is included through an
imaginary part of the Hamiltonian. We take the Rydberg lifetime
to be 140 s and choose the rf-Larmor frequency to be Q,¢/27 =
10 MHz. In the absence of decoherence (dashed lines), for a
time greater than the “quantum speed limit” (the time required
to obtain ideal fidelity) we achieve a minimal error (infidelity) of
1073 due to our threshold in the numerics for d < 5. This speed-
limit time increases as we increase the qudit dimension, which in
turn results in an increased decay in maximum fidelity. For the
CPhase gate, we obtain a fidelity of 0.9985, 0.9980, 0.9942, and
0.9800 for d =2,d = 3,d = 5, and d = 7, respectively. For all
of these calculations, we have taken the dressing laser Rabi fre-
quency to be Q; = 62, and the lifetime of the Rydberg states to
be 140 ps.

dressing is employed. In this case, we have,
ff
Utear = 1_[ U)Lj >
J

=[Te™ v v@ e v @D
J

We neglect here any decoherence associated with the local
SU(d) gates. Thus the fidelity including the decoherence
effects is given as,

For = ‘Tr (vhuem) 9 22)

tar ™~ tar

A comparison of the fidelities achieved based on the Lie
algebraic and Lie group approaches is given in Fig. 5
for d = 3,5, and d = 7. The results suggest that the Lie
algebraic protocol slightly outperforms the Lie group pro-
tocol in the presence of decoherence. This difference in
the performance can be attributed to the time spent in the

1.00
—#— Lie algebra
—oe— Lie group(local)
—a&— Lie group(global)
0.99
& 098+ ¥
0.97 ]
D
0.96 — ‘ ‘ ‘
10 20 30 40
d2
FIG. 5. A comparison of the optimized fidelity, F of the

CPhase gate achieved for the Lie algebraic and Lie group
approaches (including both local single-qudit control and only
global control) is plotted as a function of the total Hilbert space
dimension 42, for the qudits of dimension d = 3,5, and d = 7.
For all of these simulations, we have taken the parameters given
in Fig. 4.

Rydberg state for these two approaches, as shown in Fig.
6. Fundamentally, we can understand this from the fact
that the Lie algebraic approach has more control param-
eters as compared to the Lie group protocol. Thus, based
on the Magnus expansion [80—82], the nested commu-
tators, which are at the heart of controllability, become
easier to achieve. Both approaches yield high fidelities
in large dimensional qudits. Nevertheless, the Lie group
approach may be preferable when considering the com-
plexity necessary for experimental control. The difference
in the behavior of Lie group (local) to Lie group (global)
is due to the fact that for the global approach we allow
Hept — —Hey n alternating layers.

In general, a key experimental consideration for the
successful implementation of open-loop quantum control
is the effect of uncertainties in Hamiltonian parameters.
These can be mitigated to some degree using the tools
of robust quantum control [83—86]. Such techniques are
generalizations of spin-echo type composite pulses, which
can be useful when there is sufficient coherence time.
With a detailed understanding of the dominant inhomo-
geneities, robust optimal control can be used to implement
suitable composite waveforms for qudit entanglers on any
platform.

The specific experimental foundation of this proposal is
well motivated by the existing literature, particularly the
work of the Jessen group [48]. One particular issue dis-
cussed above is the trap-induced differential light shifts
between the ground state and excited state *P, manifold
[87]. It will be necessary to mitigate motional dephas-
ing arising from vector and tensor shifts, which induce an
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FIG. 6. A comparison of the minimum time spent in the Ryd-

berg state to implement the CPhase gate achieved for the Lie
algebraic and Lie group approaches (including both local single-
qudit control and only global control) is plotted as a function of
the total Hilbert space dimension ¢, for the qudits of dimension
d=3,5,and d = 7. For all of these simulations, we have taken
the parameters given in Fig. 4. Thus the time required for the Lie
algebraic control is smaller than the Lie group control, which in
turn contributes to the fidelity.

myp dependence on polarizability, thus inducing possible
motional dephasing between mp levels. The easiest way
around this problem is to operate with a linearly polarized
optical trap, with polarization vector aligned at the “magic
angle” [88] and corresponding magic wavelength [89] for
the 'Sy — 3P, transition. This allows intrastate coherence
within the 3P, F = 9/2 (and other F levels) manifold, and
interstate (i.e., optical qubit) coherence between the 'S
and 3P, F = 9/2. We can also mitigate motional effects
via high-fidelity ground-state cooling [90-92].

IV. CONCLUSION AND OUTLOOK

Quantum computation with qudits has potential advan-
tages when compared with architectures employing qubits.
Implementing gates for qudit-based quantum computation
is fundamentally more challenging, as the generators for
these gates are not native Hamiltonians on physical plat-
forms. One way to overcome this challenge is to use the
tools of quantum optimal control, whereby we combine
native Hamiltonians with time-dependent waveforms that
drive the system in order to implement a universal gate set
with high fidelity.

In this work, we introduced two classes of numerical
methods of quantum optimal control for implementing the
qudit entangling gates, an essential component of the uni-
versal gate set. The first approach is based on continuous-
time driving given a controllable Hamiltonian with tunable
parameters and uses the Lie algebraic structure of the con-
trol problem. The second approach is more “digital,” using

the Lie group structure to design a family of unitary maps
that can be applied in sequence to achieve any nontrivial
entangling gate of interest.

As a specific example, we studied encoding a qudit in
the nuclear spin of ¥’Sr, a species of atoms that is partic-
ularly important in quantum information processing. The
nuclear spin can accommodate a qudit of dimension d <
10. We have previously studied protocols for implement-
ing single-qudit gates in SU(d). To implement entangling
gates we studied how we make two atoms interact using
the well-known Rydberg blockade mechanism, and in par-
ticular, we studied Rydberg dressing schemes. Using this
we are able to generate any two-qudit entangling gate, both
using the Lie algebraic and Lie-group-based approaches.

We also studied how the fundamental effects of deco-
herence introduced by the finite lifetime of the Rydberg
states reduce the gate fidelity. To model this we used
a non-Hermitian Hamiltonian and found that even when
including decoherence, one could achieve high fidelity for
these qudit entanglers. Given the flexibility of arbitrary
control, we can seek the best approach to encoding qudits
and mitigating errors.

Finally, while we have studied a particular case study in
the context of neutral-atom quantum computing, the gen-
eral methods we have developed here can be applied in
other platforms, including trap ions, transmon qudits, and
nanomagnets [93,94], which also have natural encoding
and control Hamiltonians.
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APPENDIX A: HYPERFINE STRUCTURE OF
RYDBERG STATES AND CLEBSCH-GORDAN
COEFFICIENTS

As described in Sec. IIC, to create entanglement we
promote the population from the ground state 'Sy to the
first excited 3P, state, with the hyperfine quantum num-
ber F = 9/2, and then consider a UV laser to excite the
atoms to the S| Rydberg series to implement the interac-
tion between atoms with adiabatic dressing (see Fig. 2).
The Rabi frequency characterizing the coupling of the dif-
ferent my levels in the P, hyperfine manifold to the 3S;
Rydberg states will be different due to the Clebsch-Gordon
coefficients for these transitions. Let €2; be the Rabi fre-
quency on the |0,) — |0,) (mp = —9/2 transition). The
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FIG. 7. Relative Rabi frequency, €2,/ 2, plotted as a func-

tion of mp for m polarized light for the (5s5p)’P,F =
9/2 — (5sns)*S|F’ = 11/2 transition to the Rydberg state. The
quadratic function arises due to the tensor polarizability.

Rabi frequency experienced by the other levels is then

o _ (Fomp =—=9/2+i|1,0,F',mp = —9/2 + )

' (F.mp = —9/2|1,0, F',mp = —9/2)  ©

(AT)

-5 .
-2 -1 0 1 2
A/,
FIG. 8. Autler-Townes splitting of the three dressed states

as a function of detuning for the Hamiltonian in Eq. (A2),
where i = 0, j = 1, such that [0) = [*P,, mp = 9/2) and |1) =
|3P2, mp = 7/2). Here « = 4/7/16 and 8 = /9/16. The dashed
line shows the ac Stark shift (light shift) in the absence of a per-
fect Rydberg blockade. The blue curve adiabatically connects to
the clock states for large blue detuning and the red curve for large
red detuning. The black curve is a dressed superposition that does
not adiabatically connect to the clock states. The dashed lines
show the light shifts in the absence of van der Waals interac-
tions between the atoms. The difference between the solid line
and the dashed line is the entangling power of the Hamiltonian
Hz12 defined in Eq. (A2).

1]
[ [ [ I, o ,
0 J,Irr"I'IJH'L"iI'F'I""J||‘J 7 "i'|"'r"|-| re ‘-'1'.-'-“'-,- Smmmmmmmmmm

I
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FIG. 9. The decomposition the entangling Hamiltonian Hep,
Eq. (5) in different orders of spherical tensors, 73, forj = 99/2,
an operator basis of dimension D = 2j 4+ 1 = 100, spanning the
two-qudit space for d = 10. The expansion coefficients are given

L2
by CfIK ) = | Tr(Heyt T;K)') . We have ordered the expansion coef-

ficients according to g(K,q) = (k+ 1)> — 1 4+ g, where 0 < k <
Jj,and —k < g < k. The existence of contributions from higher-
rank tensors makes the system controllable when combined with
time-dependent rf fields that act locally on the atoms.

where we have chosen F =9/2 and F' =11/2, and a
mw-polarized light. In Fig. 7 the Rabi frequencies of the
different levels are given as a function of mp, whose
parabolic shape describes the tensor light shift, thus giv-
ing a natural nonlinearity, which arises solely due to
well-defined hyperfine structure of *7Sr.

Consider the Rydberg dressing scheme in Fig. 2. In the
perfect blockade regime, the two-atom Hamiltonian cou-
pling of two magnetic sublevels labeled i and j is described
by a three-level system, governed by the Hamiltonian,

[-12]:—Ailri])(l”i]|+7(|”i]><l]|+|U><ri/|)

Q,.

= & Jirg)irg | + =+ (Jirg) @71+ 1) (i ) .- (A2)
where A; determines the detunings due to the differential
Zeeman shit. Figure 8 shows the resulting ac Stark shifts
on the three dressed states after diagonalizing this Hamil-
tonian. The dressed ground state is shown in red; the other
two dressed states represent Autler-Townes splitting. In the
absence of the van der Waals interaction the ac Stark shift
(light shift) is the sum of the light shifts of each atom inde-
pendently (dashed line in Fig. 8. The difference between
these is the entangling energy.

One can understand the entangling power of the Hamil-
tonian by studying the properties of the dressed energy
levels as a function of detuning. Figure 8 shows the par-
ticular case of i =0, j =1 for the Hamiltonian in Eq.
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FIG. 10. The figure gives the ¢ (¢) that generates the Moelmer-Serenson gate as a function of time for 6 = 7 /2 using the piecewise
constant quantum control approach for the Hamiltonian given in Eq. (5). In (a) the case of the d = 3 for a total time of Q7 = 507
with 700 piecewise constant steps. In (b) the case of the d = 5 for a total time of Q7T = 2407 with 1600 piecewise constant steps.
And in (c) the case of the d = 7 for a total time of Q7 = 2407 with 2500 piecewise constant steps. For all of these calculations we

have taken Q; = 6Q2;s.

(A2), where |0) = |mp = 9/2) and |1) = |mp = 7/2). On
the red side of detuning and for large detuning, as we start
with the bare state and we adiabatically sweep through
resonance, the state maps to the superposition of the two
Rydberg states. Note, this is not an equal superposition
as seen in Ref. [67] due to the fact that the states |0)
and |1) couple with different Rydberg Rabi frequency and
detuning to the Rydberg states.

APPENDIX B: CONTROLLABILITY

The quantum system is said to be controllable if, given
a time-dependent Hamiltonian H[c(7)], there exist a time-
dependent set of waveforms ¢(#), such that the one can
generate an arbitrary unitary map. Here we consider those
two-qudit unitary maps generated by an entangling Hamil-
tonian that is symmetric under the exchange of the qudits
and thus does not require local addressing. To show that a
Hamiltonian is controllable, we use the operator basis of

irreducible spherical tensors on spin j defined as [95,96],

70 _ 2k+1
4 2 +1

D k4 qlh,gjom)|j.m+q)j,ml.

(BI)
These satisfy the fundamental commutation relations,
[jZ’ T;k)] = qT‘((Ik)s

(B2)
e T | = VR + D = g(g = DI,

The set of operators 7 form a complete orthonormal
operator basis. Merkel et al. [80] showed that given a
generating set of Hamiltonians {4}, if

Tr{h;, Th} # 0 (B3)
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for k£ > 2, the system is fully controllable. That is, the set
generates the whole Lie algebra of interest, which thus
allows us to implement an arbitrary unitary map on the spin
of the system using quantum control.

We consider two-qudit systems, where the relevant Lie
group is SU(d?); here d*> = 100. We expand the entangling
Hamiltonian in the operator basis of spherical tensors with
Jj = 99/2, spanning the space of dimension D =2j + 1 =
100. Figure 9 shows operator decomposition of the entan-
gling Hamiltonian H, in different orders of spherical
tensors. One can see in this figure that there are con-
tributions from higher-rank tensors, making the system
controllable.

APPENDIX C: CREATING OTHER SYMMETRIC
QUDIT ENTANGLERS FOR THE LIE ALGEBRAIC
APPROACH

Since the Hamiltonian described in Eq. (3) can be used
to create any symmetric two-qudit Hamiltonian, we can
also generate the Malmer-Serenson gate for qudits defined
as,

J2
Unis(0) = exp<—i9 7) (C1)

where the total angular momentum operator for the two
qudits is

L=1Q)+j .1 (C2)
We employ the same procedure for optimal control as
we discussed in the main text in designing the wave-
forms to implement the CPhase gate. Numerical examples
of the waveforms that create the Molmer-Serenson gate
for 0 = 7/2 are given in Fig. 10. The figure shows ¢ (),
the piecewise constant of the control waveform, obtained
using the GRAPE algorithm. Figure 3(a) shows the case of
the £ = 3 the qutrit encoded in d = 10. The total time is
T = 507/ Q2 and we divide the time into 700 time steps
for the quantum control. In Fig. 3(b) we plot an exam-
ple waveform for the case of the d = 5 into our ten-level
system. We have a total time of 7 = 2407/ and we
divide the time into 1600 time steps for the quantum con-
trol. In Fig. 3(c) we plot an example for the case of the
d =7 into our ten- level system. We have a total time of
T = 4007 / Q,r and we divide the time into 2500 time steps
for the quantum control.
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