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Abstract— Anticipating possible future deployment of con-
nected and automated vehicles (CAVs), cooperative autonomous
driving at intersections has been studied by many works in
control theory and intelligent transportation across decades.
Simultaneously, recent parallel works in robotics have devised
efficient algorithms for multi-agent path finding (MAPF),
though often in environments with simplified kinematics. In
this work, we hybridize insights and algorithms from MAPF
with the structure and heuristics of optimizing the crossing
order of CAVs at signal-free intersections. We devise an optimal
and complete algorithm, Order-based Search with Kinematics
Arrival Time Scheduling (OBS-KATS), which significantly out-
performs existing algorithms, fixed heuristics, and prioritized
planning with KATS. The performance is maintained under
different vehicle arrival rates, lane lengths, crossing speeds, and
control horizon. Through ablations and dissections, we offer in-
sight on the contributing factors to OBS-KATS’s performance.
Our work is directly applicable to many similarly scaled traffic
and multi-robot scenarios with directed lanes.

I. INTRODUCTION

The development of autonomous driving technology raises
the possibility of intelligent coordination of connected and
automated vehicles (CAVs) towards societal objectives, such
as reducing congestion and fuel consumption, as well as
improving safety. Therefore, many works on intelligent
transportation systems [4], [27], [28], [30] have studied
potential positive impacts of cooperative driving of CAVs.
In particular, signal-free intersections are regions where co-
ordination of CAVs is critical to safety and efficiency. These
intersections are not restricted to intelligent transportation
systems, but also are commonly found in real-world robotic
warehouses at crossings between directed lanes [16]. In this
work, we adapt insights and algorithms from multi-agent
path finding (MAPF) for the coordination of a cooperative
driving intersection with rich vehicle kinematics. Like [28],
we divide the overall task of coordinating CAVs into two
sequential phases, first optimizing the CAV crossing order
then computing order-conditioned vehicle trajectories. To
define the crossing order, we divide the intersection into
a reservation system where the arrival and departure times
at subzones are planned by our low-level Kinematic Arrival
Time Scheduling (KATS), which substitutes for a low-level
path planning algorithm. While existing works optimize the
crossing order with First-In-First-Out (FIFO) heuristics [4]
and Monte Carlo Tree Search (MCTS) [29], we demonstrate
that our MAPF-inspired high-level prioritized planning [5]
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and Order-based Search (OBS) algorithms obtain signifi-
cantly superior solution quality. We obtain order-conditioned
vehicles trajectories with trajectory optimization rather than
single agent path planning algorithms like A* search [6] or
SIPP [21], allowing us to bypass kinematics limitations.

In summary, our main contributions are:
1) Incorporating insights from MAPF, we design an al-

gorithm for ordering vehicle crossings at a signal-
free intersection and translating the crossing order to
vehicle trajectories within a kinematic bicycle model.

2) We empirically characterize the OBS-KATS’s signif-
icant improvement of vehicle delays over baselines
under a wide range of intersection settings.

3) We prove the soundness, completeness, and optimality
of OBS-KATS for finding vehicle crossing orders.

We provide full source code for reproducibility on GitHub.

II. RELATED WORK

A. Cooperative Driving at Intersections

Cooperative driving of connected and automated vehicles
(CAVs) has been studied in intelligent transportation set-
tings ranging from adaptive cruise control [26] to traffic
networks with diverse structures [30]. In particular, several
recent cooperative driving strategies have been proposed
for optimizing the crossing order of CAVs at signal-free
intersections [28]. The First-In-First-Out (FIFO) strategy has
been studied by [4] as a heuristic crossing order. Given an
existing crossing order, the Dynamic Resequencing method
[32] inserts a newly arriving vehicles into a suitable position,
but keeps the rest of the order unchanged. On the other hand,
[29] demonstrates that Monte Carlo Tree Search (MCTS) can
be used to obtain a more optimal crossing order by period-
ically replanning the existing order. Our work significantly
improves upon these previous methods in the cooperative
driving setting by leveraging insights and algorithms from
multi-agent path finding.

B. Multi-agent Path Finding

The classical multi-agent path finding (MAPF) problem
[25] is a NP-hard [31] problem which seeks to find the
shortest collision-avoiding paths for a set of agents in a
discrete graph. Since the space of joint agent trajectories
is intractably large to consider [23], nearly all MAPF algo-
rithms rely on repeatedly calling single-agent path planner
such as A* search [6] or SIPP [21], while holding paths of
some set of other agents as constraints.

Prioritized planning (PP) [5], [24] plans one agent tra-
jectory at a time in random agent order while avoiding
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collisions with all previously planned trajectories. Conflict-
based Search (CBS) [23] is a seminal solver which relies on
backtracking tree-search to resolve pairwise agent collisions,
and Priority-based Search (PBS) [17] is a scalable extension
of CBS, albeit suboptimal and incomplete. We derive signif-
icant algorithmic insights from these works.

Recent methods have aimed at improving the solution
quality [8], [13] and completeness [14], [18], [20] under
large-scale settings with up to thousands of agents.

C. Continuous MAPF and Multi-robot Motion Planning
As classical MAPF is discrete time and space, continuous

settings may be discretized for application of MAPF algo-
rithms [7]. Recent continuous MAPF works have investigated
planning with continuous time directly [1], [2], [9], gut
require simplified agent kinematics such as constant speed
along graph edges. Relatedly, [15] applies MAPF to inter-
section traffic settings with unbounded acceleration. Finally,
works in multi-robot motion planning [11], [19] have applied
sampling based methods like probabilistic roadmaps [10] to
plan over settings with continuous 2D space and time. As
traffic systems typically contain well-defined lanes, formu-
lating our problem with continuous 2D space is unnecessary.

III. PROBLEM FORMULATION

We formulate the cooperative driving problem at a single
intersection, though this formulation is applicable to any
single-junction traffic scenario (e.g. highway merging [30]).
Consider a four-way intersection with directions i 2 D =
{1, 2, 3, 4}; along each direction, a single entering lane (to-
wards intersection) and exiting lane has length `lane. Vehicle
routes r = (i, j) 2 R = D2 are considered, and a vehicle k
with length `k traveling along route r passes the intersection
from direction i to direction j, either heading straight or
making a left- or right-turn. If space is available, vehicle k
enters the system from an entering lane at a deterministic rate
�i (veh/hr/lane) with initial speed v0, its route is sampled
according to rk ⇠ P (r = (i, ·)) to account for different
turn probabilities. Towards collision avoidance, we design a
division of the intersection into 16 reservation subzones z 2
Z (Fig. 1), which may only be occupied by one vehicle at a
given time, based on geometries of crossing vehicle routes.
While the subzone design in [28], [29] does not permit
simultaneous left turns, our design permits four turning
vehicles (two left-turn and two right-turn) vehicles to pass
the intersection simultaneously. Longitudinal position along
route r is defined in the range [0, `r]. The position, speed, and
acceleration of a vehicle k at step t is denoted as xk(t), vk(t),
and ak(t), respectively. The start and end positions of each
subzone z along each passing route r are denoted as xz,r,0

and xz,r,1, respectively. Vehicles are subjected to maximum
straight speed v and maximum turning speed vr,z  v in
a subzone, as well as acceleration limits [a, a]. We assume
perfect sensing, inter-vehicle communication, and control.

Like works before us [28], the objective at each plan-
ning step is to find the ordering of vehicles crossing the
intersection which minimizes total vehicle delay, which is

(a) Intersection with reservation subzones

(b) Subzones for straight, right-, and left-turn routes

Fig. 1: Geometry of our studied intersection. Our algo-
rithms are applicable to junctions in general, e.g. merging, as
the exact geometry is encoded by the start and end positions
of subzones along vehicle routes, xz,r.

defined as the difference between travel time
P

k t(xk � `rk)
and minimum travel time

P
k t(xk � `rk) absent of other

vehicles; we use the notation t(xk � x) to denote the first
time such that xk � x. The crossing order is a partial
ordering which defines precedence relationships for vehicles
whose routes cross the same reservation subzone, but not
vehicles whose routes do not overlap. For vehicles k and
k0, let k � k0 denotes that k precedes k0 in the crossing
order. For a vehicle k, let �k denote the set of all vehicles
preceding k. Vehicles already passing through or moving
away from the intersection do not need to be ordered.

A. Kinematic Bicycle Model

While we plan with the longitudinal 1D model of vehicles
along their routes, all control inputs are translated to and
executed on a kinematic bicycle model [22]. Here, the front
wheels and rear wheels of the vehicle are laterally aggregated
into two wheels. The control inputs are acceleration a and
front wheel steering angle �. The distance from the center
of gravity to front and rear wheels is half of vehicle length
`k.  denotes the heading. � denotes the slip angle.

ẋx = v cos( + �) ẋy = v sin( + �) v̇ = a

 ̇ =
v cos(�)

`k
tan (�) � = tan�1

✓
tan �

2

◆

(1)
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IV. OPTIMAL CROSSING ORDER SEARCH WITH MAPF

We extract elements of previous works on cooperative
intersection crossing [28] and design algorithms for finding
the optimal crossing order from a MAPF perspective: for the
high-level crossing order search, our PP and OBS algorithms
integrate traffic structures. For low-level subzone reservation
(akin to single-agent path planning), our KATS technique
schedules arrival and departure times at reservations sub-
zones. We use the computed crossing order to plan vehicle
trajectories sequentially, with trajectory optimization. We
sketch our overall method in Algorithm 1.

A. Kinematic Arrival Time Scheduling (KATS)

MAPF algorithms rely on numerous calls to a single-agent
path planner (typically A* or SIPP, which are fast but often
require models with limited kinematics, like constant speed
[9]). On the other hand, general mixed-integer trajectory
optimization is expressive but cannot be directly used as
a single-agent path planner due to the high computational
overhead. Therefore, we refine the arrival times scheduling
technique sketched by [28] into a proxy for a single-agent
path planner: Kinematic Arrival Time Scheduling (KATS).
KATS can be efficiently invoked by high-level planners for
computing an optimal crossing order.

KATS plans the subzone arrival and departure times for
a vehicle k on route r. Let td(�k, z) be the latest time
that vehicles preceding k occupy subzone z. Let ta(k, z) =
t(xk � xz,r,0) be the arrival time of vehicle k at subzone
z 2 Z(r) ⇢ Z and td(k, z) = t(xk� `k � xz,r,1) be the de-
parture time. KATS computes the interval [ta(k, z), td(k, z)]
for all z 2 Z(r). The arrival time at the first subzone z0
along route r is computed by

ta(k, z0) = max

⇢
ta(k, z0), max

z2Z(r)
{td(�k, z)� �t(z0, z)}

�

(2)
where the first term ta(k, z0) is the minimum arrival time
to z0 (independent of other vehicles) and the second term is
the earliest crossing start time such that the vehicle travels
at constant speed within the intersection and reaches every
subzone after it becomes available. �t(z0, z) =

xz,r,0�xz0,r,0

vz0
is the travel time from z0 to z at the maximum attainable
crossing speed vz0  vr,z . To achieve the minimum time
to enter subzone z0, the vehicle accelerates at a for as long
as feasible, then travels at maximum speed v if feasible,
then decelerates at a if needed to vr,z . A crossing order
is infeasible if some vehicle has insufficient distance to
decelerate to v  vr,z . While KATS enforces collision-free
subzones, it does not detect rear-end collisions with other
vehicles along the approaching and departing lanes, and thus
may be overly optimistic, as discussed in Section IV-D. Thus,
a crossing ordering giving a following vehicle precedence
over a leading vehicle may be feasible but is unlikely to be
optimal and will be pruned by heuristics below.

Theorem 1: If a crossing order is feasible, calling KATS
in this order obtains the optimal constant-speed crossing
times for all vehicles consistent with the crossing order.

Proof: (Sketch) Consider the first vehicle k in the cross-
ing order. By construction, no other acceleration strategy
besides the one above allows k to arrive at z0 earlier than
ta(k, z0) or with greater speed than vz0 above. Therefore,
arriving earlier than ta(k, z0) either contradicts the minimum
arrival time or enters some z before �k has departed. Thus k
achieves the optimal delay. By induction on crossing order,
KATS obtains optimal delay for all vehicles.

B. Prioritized Planning (PP) with Traffic Heuristics

Naively optimizing the crossing order with PP [5] simply
samples norders random orders, evaluates the total delay of
each order with KATS, then return the best crossing order.
As naive PP does not leverage traffic structures and performs
poorly, we augment naive PP with the two pruning heuristics
introduced by [28] for their MCTS-based method: 1) When
sampling a random crossing order for PP, we constrain every
vehicle k to be sampled after its leader (vehicle in front
of k) in the lane. Sampling one by one from a space  of
 |D| = 4 vehicles at a time, the overall search space reduces
from O(|K|!) to O(4|K|) orderings. 2) We select k 2  if its
minimum arrival time ta(k, z) at each subzone z 2 Z(rk) is
earlier than that of all other vehicles; if no vehicle satisfies
this condition, we uniformly randomly sample a vehicle
whose minimum arrival time is not later than all other
vehicles at all subzones. We apply these intuitions to design
our order-based search next.

C. Order-based Search (OBS) with Traffic Heuristics

Inspired by the PBS algorithm [17] in MAPF, we design
the OBS algorithm (Algorithm 1) for searching for crossing
orders. While PBS searches the space of all partial orderings,
we search the space of all partial orderings consistent with
a total ordering of vehicles crossing each subzone.

Each node of the OBS depth-first search tree corresponds
to a set of vehicles K which are yet to be ordered and an
ordering � across all vehicles. We define  ✓ K as the
set of vehicles with no preceding vehicles in K. For two
vehicles k and k0, we define the operator k ⌧ k0 to denote
the following property: the subzone departure times of k
and all vehicles preceding k is less than the subzone arrival
times of k0 and all vehicles succeeding k0 for every subzone
z 2 (Z(rk) [ Z(r�k)) \ (Z(rk0) [ Z(r�k0)). Intuitively, if
k ⌧ k0 and  = {k, k0}, then k � k0 because k and �k
crossing earlier does not delay k0 or �k0. If k 6⌧ k0, even if k
departs all subzones earlier than k0 arrives, we cannot let k �
k0 because some vehicle preceding k departs some subzone
later than some vehicle succeeding k0. If 9k 2  8k0 2  6=k

such that k ⌧ k0, we assign precedences k �  6=k, remove
k from K, and update  with the new K. Otherwise, as in
PBS, we branch over the precedence of two vehicles in .
If  is empty, we read the crossing order from �.

We apply similar traffic heuristics to OBS as described
for PP. To control the search duration, we limit the number
of orders found to norders total by distributing a budget of
dnorders

2 e orders to the first child and the remaining to the
second child. This strategy allows exploration to be focused
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Algorithm 1 OBS-KATS
procedure COOPERATIVEDRIVING

for h = 0 to H do
K set of all current vehicles
for each newly entered vehicle k, with K � k do

arrival/departure times KATS(k, td(�k,Z))
TRAJOPT(k, �k, arrival/departure times)

execute next step along vehicle trajectories
if h mod Hc = 0 then

vehicles on entering lanes K ✓ K
crossing order  OBS(K, td(�K,Z), norders)
for each vehicle k in crossing order do

arr./depart. times  KATS(k, td(�k,Z))
TRAJOPT(k, �k, arrival/departure times)

procedure KATS(k, td(�k,Z)) # Section IV-A
# k: vehicle k to plan
# td(�k,Z): latest subzone departure times of �k

ta(k, z0) apply Equation 2
for z 2 Z(rk) do

ta(k, z) ta(k, z0) + �t(z0, z)
td(k, z) ta(k, z0) +

xz,rk,1+`k�xz0,rk,0

vrk,z

return {[ta(k, z), td(k, z)] | z 2 Z(rk)}

procedure OBS(K, td(�K,Z), norders) # Section IV-C
# K: set of vehicles to obtain a crossing order for
# td(�K,Z): latest subzone departure times of �K
# norders: number of orders to obtain

# heuristic rule 1
� initial ordering of vehicles along lanes
orders  empty list
procedure EXPAND(K, �, norders)

# expand a search node...
 {k 2 K | 8k0 2 K k0 6� k}
while 9k 2  8k0 2  6=k (k ⌧ k0) do

� � [ {k � k0 8k0 2  6=k}
let K  K \ {k}
update  {k 2 K | 8k0 2 K k0 6� k}

if  = ; then
construct order from �, append to orders
compute delay(order)
return 1

n 0
# heuristic rule 2: k is closer to the intersection
k, k0  two vehicles 2  s.t. k 6⌧ k0 and k0 6⌧ k
# 1st child

run KATS on k0 and any necessary k00 � k0

if schedules for k0 and any k00 are feasible then
n += EXPAND(K, � [ {k � k0}, dnorders

2 e)
if n = norders return n
# 2nd child: will be skipped if norders = 1

run KATS on k and any necessary k00 � k
if schedules for k and any k00 are feasible then

n += EXPAND(K, � [ {k0 � k}, norders � n)
return n

EXPAND(K, �, norders)
return argminorder2orders delay(order)

on the shallower nodes in the tree search, where decisions
are more influential than decisions deeper in the tree search.

We now prove several properties about OBS.
Theorem 2: All orders found by OBS are crossing orders,

i.e. OBS is sound.
Proof: First note that precedence is only ever assigned

between k, k0 2 , whose members contain no precedence
over each other by definition. Therefore, OBS never assigns
an inconsistent precedence and is consistent with any initial
precedence relations provided. As more precedences are as-
signed, some vehicle k must be removed from K eventually,
allowing some vehicle k0 � k to join  eventually. By
induction, every vehicle in K must eventually be added to
, and thus be removed from K eventually. Each vehicle
removed from K has precedence over all remaining vehicles
in K. Therefore, the removal order from K is a valid total
ordering. At the leaf node,  = ;, so K = ; and all vehicles
must be present in the total ordering returned.

Theorem 3: Given that a crossing order exists, OBS with
norders =1 finds the optimal constant-speed crossing order,
i.e. OBS is asymptotically optimal and complete.

Proof: We show that some branch of the OBS tree
must reach an optimal crossing order, if one exists. A node
in the OBS tree must add an optimal precedence relation
along some branch. There are two cases:

1) k � k0 is added 8k0 2  6=k. In this case, all vehicles
k00 2 K \  are already preceded by k or preceded by some
k0 2  6=k. For the former, k must cross earlier than k00

by definition. For the latter, k ⌧ k0 � k00 implies that,
at every subzone z, the latest subzone departure time of
k and all vehicles preceding k is already earlier than the
earliest subzone arrival time of k0 and k00. Thus, assigning k
to precede all other vehicles k00 2 K 6=k does not delay the
crossing of any k00, and giving k precedence is optimal.

2) k � k0 is added to one child branch and k0 � k to the
other. This case must be optimal because either k � k0 or
k0 � k is consistent with the optimal crossing order. Without
loss of generality, assume that k � k0 is consistent with
optimal, then KATS must find that replanning arrivals times
for k0 and k00 is feasible because � only has a subset of the
precedence constraints of the optimal crossing order.

As every non-leaf OBS node adds at least one optimal
precedence along some branch, OBS must reach the optimal
leaf node because there are at most |K|2 possible precedence
relations total. The leaf node corresponds to a sound crossing
order, as shown earlier. Thus OBS always finds the optimal
crossing order and is complete.

D. Trajectory Optimization
With the total crossing ordering of vehicles, we obtain

trajectories for each vehicle one-by-one, accounting for the
positions of all previously planned vehicles and obeying the
scheduled arrival times at subzones. KATS may be overly
optimistic and inconsistent with trajectory optimization as
KATS does not prevent collision between vehicles outside the
intersection. Thus, following the scheduled times precisely
may be infeasible. To ease infeasibility, we 1) incrementally
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delay the scheduled time constraint until feasible 2) allow
all vehicles to exceed the turning speed limit except at the
midpoint of a turn, which allows a vehicle to decelerate into
a turn and accelerate out of a turn. Given planning horizon
Tp, trajectory optimization for each vehicle is formulated as
follows and optimized with a discretization dt:

max
x(t),v(t)

Z Tp

0
v(t)dt s.t.

x(0) = 0 v(0) = v0 0  v(t)  v

a  v(t) + v(t+ dt)
dt

 a

x(t+ dt)� x(t) =
v(t) + v(t+ dt)

2
x  x(t)  x v(tmid)  vr,z

(3)

where v(tmid) is the speed at the midpoint crossing time,
x is the maximum safe position of a vehicle given its
subzone arrival times and leading vehicles trajectories on
both the entering and exiting lane, and the minimum position
constraint x ensures that the vehicle departs a subzone on
schedule. To obtain the steering angles along a route, we
utilize a PID controller tracking the center of the route.

E. Why is Crossing Order Useful?
We acknowledge that the optimal arrival times consistent

with an optimal crossing order does not necessarily im-
ply optimal arrival times in general for minimizing delay.
Indeed, similar to observed by [17], optimal arrival times
may not be consistent with any crossing order. An example
can be obtained by manipulating our vehicle and subzone
geometries. Let the intersection be a 10 by 10 grid of
square subzones, and let each vehicle be the size of one
subzone. One vehicle approaches the intersection along each
of the four directions, symmetrically. Clearly, the optimal
arrival times is obtained by simultaneously allowing all four
vehicles pass the intersection. However, these arrival times
are not consistent with any crossing order, because each
vehicle enters some subzone before another vehicle. With
an optimal crossing order of [up, right, down, left], only the
first three vehicles can enter at the same time, and left waits
for up to finish crossing before entering their shared subzone.

Nevertheless, since using trajectory optimization as a
single-agent path planner is not practical, MAPF algorithms
tend to use path planners on simplified kinematics instead,
as we do with KATS, resulting in a mismatch between
the trajectories planned with simplified kinematics and ones
planned with trajectory optimization. Obtaining a crossing
order allows us to plan trajectories with complex kinemat-
ics according to the crossing order, adding delays when
necessary to ease infeasibility due to the mismatch before
planning subsequent vehicles. On the other hand, while a
classical MAPF algorithm may find the optimal symmetric
solution for the described example in simplified kinematics,
a mismatch with trajectory optimization may occur resulting
in infeasibility, which cannot be resolved by adding delays

as doing so may conflict with other vehicles’ trajectories.
Therefore, crossing orders may be more robust to model
mismatch between the kinematics used in MAPF and the
kinematics used in trajectory optimization.

V. DEFAULT EXPERIMENTAL SETUP

We modify HighwayEnv [12] to simulate the system with
discretization dt = 0.1s for H = 1000 timesteps. Fig. 1
illustrates subzone geometries. We set arrival rate � =
1500veh/hr/lane with initial speed v0 = 5m/s. Crossing order
computation occurs every Hc = 100 steps. Each vehicle
is planned for a horizon Tp which is sufficient for it to
reach the end of its route. Maximum speed is v = 13m/s,
with vr,z = 6.5m/s on left turns and vr,z = 4.5m/s on
right turns. A vehicle goes straight, turns left, and turns
right with 60%, 20%, and 20% chance, respectively. Each
lane has width wlane = 4.5m and length `lane = 250m.
Each vehicle has length `k = 5m and width 2m. Each
intersection is a square with edge length 5wlane. The left turn
radius is 3wlane and the right turn radius is 2wlane. Vehicles
collide when their bounding boxes overlap; for verifying
algorithmic correctness, we do not add any temporal or
spatial padding around each vehicle. We run all settings
on 100 environment seeds, where we quantify the 95%
confidence interval of the mean with bootstrap sampling.
All methods are implemented in Python since KATS is very
fast (around 10000 calls/s), unlike single-agent path planners
for classical MAPF settings, which are often implemented in
C++ for efficiency. Trajectory optimization uses CVXPY [3].

VI. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of OBS against the FIFO
order [4], MCTS [28], [29], and our own PP on various
intersection configurations. All methods use KATS. As no
code was provided, we implement MCTS to the best of our
abilities, with the same traffic heuristics as PP and OBS.

A. Delay vs Crossing Order Computation Overhead
In Fig. 2, we measure the average vehicle delay as a

function of the computation overhead of norders 2 [20, 214]
for PP, norders 2 [20, 213] for OBS, and nsimulations 2 [20, 29]
for MCTS. We observe that OBS is significantly stronger
than PP, which is still significantly stronger than MCTS. We
note that 10s per crossing order computation is a very long
computation time and much longer than practical for deploy-
ment; the previous work in cooperative driving [28] plans
for around 0.1s, albeit with C++. With 10s of computation,
the corresponding throughputs for the FIFO, MCTS, PP, and
OBS configurations are 1740, 2050, 2080, and 2160veh/hr
with confidence interval of ±20veh/hr.

Interestingly, though the same traffic heuristics are used,
the best solution quality of PP and MCTS is similar to
the worst solution quality for OBS, obtained with norders =
1 and orders of magnitude less computation. We initially
conjectured that the early plateauing performance of PP
and MCTS may be due to the use of traffic heuristics,
which may prevent finding the optimal solution. As such,
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