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Momentum-exchange interactions in a Bragg atom
interferometer suppress Doppler dephasing
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Ana Maria Rey, James K. Thompson*

Large ensembles of laser-cooled atoms interacting through infinite-range photon-mediated
interactions are powerful platforms for quantum simulation and sensing. Here we realize
momentum-exchange interactions in which pairs of atoms exchange their momentum states by
collective emission and absorption of photons from a common cavity mode, a process equivalent
to a spin-exchange or XX collective Heisenberg interaction. The momentum-exchange interaction
leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer. A many-body
energy gap also emerges, effectively binding interferometer matter-wave packets together to suppress
Doppler dephasing in analogy to Mössbauer spectroscopy. The tunable momentum-exchange
interaction expands the capabilities of quantum interaction–enhanced matter-wave interferometry
and may enable the realization of exotic behaviors, including simulations of superconductors
and dynamical gauge fields.

M
any-body quantum states of laser-
cooled atoms can be exquisitely con-
trolled,making thempowerful platforms
for quantum simulation,metrology, and
computing. In particular, quantum sen-

sing andmetrology rely on understanding how
to engineer interatomic interactions to improve
the precision of quantum sensors and to emu-
late both complex quantum phases of matter
and nonequilibrium systems that are difficult
to access in real materials.
Optical cavities can be used to enhance the

interaction of atoms with light in quantum
many-body systems inwhich either the atomic
internal (1–5), motional (6–10), or both (11, 12)
degrees of freedom are coupled between dif-
ferent atoms. In addition, the strong light-atom
interaction has enabled large entanglement
generation (13, 14), with applications in quan-
tum sensing with matter-wave interferometers
(12) and clocks (14–17).
Here, we realize a unitary cavity-mediated

momentum-exchange interaction in amany-
body system in which pairs of atoms exchange
their momentum states (F1 Fig. 1, A and B). The
momentum-exchange interaction arises from
an atomic density grating creating sideband
tones on an applied dressing laser, similar to
what occurs in cavity optomechanical systems
(18–26) (Fig. 1, C toE). Themomentumexchange
can be modeled as an all-to-all pseudospin-
exchange interaction, analogous to that ob-
served for internal spin states (2–5, 27).Whereas
previous theoretical proposals have considered
the generation of suchmomentum exchange in
a ring cavity, as well as extensions to two-mode
squeezing involving additional spin degrees of
freedom (28, 29), here we experimentally real-

ize a momentum-exchange interaction in a
standing-wave cavity by exploiting the Doppler
shift of the falling atoms.
The observedmomentum-exchange interac-

tion allows for the realization of the collective
XX-Heisenberg model, an iconic model in
quantum magnetism and superconductivity
(30–32), in a momentum-only basis of states
with no internal atomic degrees of freedom
involved, as compared to previous (2–4, 27)
and contemporaneouswork (33). The exchange
interaction manifests first as a magnetization-
dependent global spin precession of the col-
lective pseudospin Bloch vector, referred to as
one-axis twisting (OAT). Second, it generates a
many-body energy gap that realizes a collec-
tive recoilmechanism that suppresses dephasing
owing toDoppler broadening (i.e., single-particle
dispersion); this mechanism is analogous to,
but distinct from, that employed inMössbauer
and Lamb-Dicke spectroscopy (34, 35).

Experimental setup

In the experiment, 87Rb atoms are laser-cooled
inside a two-mirror standing-wave cavity that
is vertically oriented along Ẑ (Fig. 1A) (12, 36).
The atoms are allowed to fall along the cavity
axis, guided by a blue detuned intracavity
optical dipole trap. A pair of laser beams with
different frequencies are injected nonresonant-
ly into the cavity to drive velocity-sensitive two-
photon Raman transitions between ground
hyperfine states (for state preparation and
readout) or Bragg transitions that only change
momentum states (for manipulating the super-
position of momentum states).
The atoms are prepared in the ground hyper-

fine state F ¼ 2;mF ¼ 2ij with momentum
along the cavity axis p0 � ħk and root mean
square (RMS) momentum spread sp < 0:1ħk
after Raman velocity selection from the laser-
cooled cloud (12), where ħ is the reduced

Planck constant, the wave number is k ¼ 2p=l,
and the wavelength is l ¼ 780 nm. As shown
in Fig. 1C, the Bragg lasers are then applied to
place the atoms in a superposition of twowave
packets withmomenta centered on p0Tħk and
separated by two-photon recoil momenta 2ħk.
The average momentum p0 continues to in-
crease owing to gravity, but we compensate
this by appropriate chirping of applied laser
frequencies (12, 37), such that one can consider
p0 to be constant in the following discussion
for simplicity. Inserting additional Bragg pulses,
we can realize a matter-wave interferometer,
in which the atomic wave packets move apart
and then reoverlap at a later time. Just after
the wave packet splitting and just before re-
overlapping, the two portions of the wave
packets interfere, leading to a spatially vary-
ing atomic density grating with periodicity
l=2 matching the periodicity of the standing-
wave cavity mode.
As shown in Fig. 1E, a cavity mode’s fre-

quency is detuned by about 500 MHz to the
blue of the D2 cycling transition F ¼ 2;mF ¼j
2i→ F ′ ¼ 3;mF ′ ¼ 3i�� . A dressing laser with
photon flux jadj2 (in units of photons per
second) drives the cavity at frequencywd that
is typically within a megahertz of the cavity
resonance frequency. The input coupling of
the cavity k1 is determined by the transmis-
sion of the input mirror. The detuning of the
dressing laser from the atomic transition,Da,
is large compared to all other relevant fre-
quency scales, including the excited-state
decay rate G ¼ 2p� 6 MHz and the cavity
power decay rate k ¼ 2p� 56 3ð ÞkHz. In this
far-detuned limit, an atom at position Z shifts
the cavity resonance by g20

Da
cos2 kZð Þ, where

g0 ¼ 2p� 0:48 MHz is the maximal Jaynes-
Cummings atom-cavity coupling at a cavity
antinode (38).

Modulation sidebands

As the atomic density grating moves along the
cavity axis at velocity v0 ¼ p0=m, with m the
mass of 87Rb, the density grating goes from
being aligned to misaligned with the cavity
standing wave (Fig. 1D, from left to right). This
leads to a modulation of the cavity resonance
frequency at the two-photon Doppler frequen-
cy wz ¼ 2kv0 (Fig. 1E). The modulation of the
cavity resonance frequency leads to optical
modulation sidebands on the dressing laser
inside the cavity at frequencies wdTwz, with the
closer-to-resonance sideband shown in Fig. 1E
(black wiggly line), in a direct analogy to cavity
optomechanical systems (24–26). The modula-
tion sidebands can also be understood as the
Doppler-shifted reflection of the dressing laser
from the moving matter-wave grating.
We directly observe that a modulation

sideband, combined with the dressing laser,
form a Bragg coupling that drives collective
population transfer from p0 � ħk to p0 þ ħk as
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shown by the solid points and lines inF2 Fig. 2A.
This occurs when we tune a modulation side-
band to be nominally on resonance with the
dressed cavity by setting the dressing laser
detuning from the average cavity resonance
frequency (Fig. 1E) toDd ¼ wz. In this regime,
the sideband light can escape from the cavity
before being reabsorbed by the atoms, such
that the collective population transfer can also
be understood as a superradiant decay be-
tween momentum states (18, 20, 21). To con-
firm the collective nature of the decay, in a
separate experiment, we prepare the initial
superposition of states using an initial Bragg
p=2-pulse 85 GHz detuned from the dressing
laser. The difference in wave numbers of the
dressing laser kd and the Bragg laser kBragg
causes a slip in the spatial alignment of the
cavity standing wave and the atomic density
grating by a phase 2 kd � kBraggj jLcloud ¼ 3:5
radians across the axial extent Lcloud ¼ 1mm
of the atomic cloud (Fig. 2B). In this case,
we observe no superradiant transfer of pop-
ulation in Fig. 2A (open circles and dashed
lines).
We now realize the momentum-exchange

interaction by tuning the dressing laser so that
the modulation sidebands are far from reso-
nancewith the cavity, i.e., DdTwzj j ≫ k=2. In this
limit, photons emitted at the sideband frequen-

cies are more likely to be reabsorbed by the
atoms than to escape from the cavity. This
process of emitting and absorbing sideband
photons leads to a momentum exchange as
illustrated in Fig. 1, A and B.

Effective Hamiltonian

To model the momentum exchange process,
we begin by defining ŷ† pð Þ and ŷ pð Þ as
creation and annihilation field operators of an
atom with momentum p that are related to
creation and annihilation operators in posi-
tion space by ŷ Zð Þ ¼ ∫ŷ pð ÞeipZ=ħdp. Because
the wave packets centered at p0 T ħk have a
narrow momentum spread ħk ≫ sp, we define
ŷ↑ pð Þ ¼ ŷ pþp0þħkð Þ, ŷ↓ pð Þ ¼ ŷ pþ p0�ħkð Þ
operators that annihilate atoms at momen-
tum pþ p0 T ħk within a momentum range
p ∈ �ħk;þħk½ �. Doing this will support under-
standing in terms of both wave packets and an
effective pseudospin language.
We divide the differential kinetic energy be-

tween the two momentum states pþ p0 T ħk
into two terms: a homogeneous or com-
mon kinetic energy difference Ĥ z pð Þ ¼ ħwz

2
ŷ†

↑ pð Þŷ↑ pð Þ � ŷ↓
† pð Þŷ↓ pð Þ

h i
and an inhomoge-

neous contribution Ĥ in pð Þ ¼ ħwin pð Þ
2 ŷ†

↑ pð Þŷ↑ pð Þ �
h

ŷ↓
† pð Þŷ↓ pð Þ� with win pð Þ ¼ 2kp=m.
We can adiabatically eliminate the cavity fields

using second-order perturbation theory (Fig.

1B), and in the perturbative limit Dd Tj wz j ≫ffiffiffiffi
N

p
ad

ffiffiffiffi
k1

p
Ddþik=2

��� ��� g204Da
, we obtain an effective atomic-only

momentum-exchange Hamiltonian

Ĥmx ¼∬
ħk

�ħk
½ħcþŷ†

↑ pð Þŷ↓ pð Þŷ†
↓ qð Þŷ↑ qð Þ þ

ħc�ŷ
†
↓ pð Þŷ↑ pð Þŷ†

↑ qð Þŷ↓ qð Þ�dp dq ð1Þ

with the totalHamiltonian Ĥ ¼ Ĥmx þ ∫
ħk

�ħkĤin

pð Þdpþ ∫ħk�ħkĤ z pð Þ dp. The momentum exchange
couplings are given by

cT ¼
g20
4Da

� �2 jadj2k1
D2
d þ k2=4

Dd T wz

ðDd T wzÞ2 þ k2=4

ð2Þ
where we have included finite cavity damp-
ing through appropriate Lindblad operators
(37).To map this to a pseudospin model, we
define ladder operators ĵþ pð Þ ¼ ŷ↑

† pð Þŷ↓ pð Þ;
ĵ� pð Þ ¼ ŷ

↓
† pð Þŷ↑ pð Þand spinprojection operators

ĵ x pð Þ ¼ 1
2 ĵþ pð Þ þ ĵ� pð Þ
h i

, ĵy pð Þ¼ 1
2i ĵþ pð Þ�ĵ� pð Þ
h i

, and

ĵz pð Þ ¼ 1
2 ŷ†

↑ pð Þŷ↑ pð Þ � ŷ↓
† pð Þŷ↓ pð Þ

h i
. Integrating

over all momentum states, we can then define
collective operators Ĵ a ¼ ∫ħk�ħk

ĵa pð Þdp, where
a ∈ x; y; z;þ;�½ �. The momentum-exchange
Hamiltonian Ĥmx is then equivalent to an
effective spin-exchange Hamiltonian Ĥ sx ¼
cþĴ þĴ � þ c�Ĵ �Ĵ þ . This can be viewed as a
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Fig. 1. Momentum exchange interaction. (A) A momentum-exchange

interaction is realized between atoms in different momentum states p0 T ħkð ÞẐ
by exchange of photons via a standing-wave optical cavity, illustrated for two
particular atoms in red and blue. The dressing laser (light blue arrow) is injected
into the cavity. (B) The energy versus momentum diagrams illustrate the steps of
the momentum exchange between the example red and blue atoms. Adiabatic
elimination of the virtual intermediate state leads to an effective momentum-
exchange Hamiltonian involving only the atoms. (C) Space-time diagram of the
matter-wave interferometer. Bragg pulses are applied to manipulate atoms in
superpositions of momentum states, causing the wave packets to separate in
time with subsequent pulses reoverlapping the wave packets. When the wave

packets overlap with each other, their interference forms a density grating along

Ẑ. (D) As the atomic density grating moves, its spatial overlap with the standing-
wave cavity mode (light blue on the left) varies, with three snapshots in time
(purple, green, and orange) shown on the right. (E) Frequency diagram of the
optical atomic transition frequency wa (black solid line), bare cavity frequency wc

with no atoms in the cavity (black solid Lorentzian), and the atom-dressed cavity
resonance frequency (dashed purple, green, orange Lorentzians) for the corres-
ponding snapshots in time from (D). The average dressing laser detuning Dd is
shown. The cavity is frequency modulated at wz, leading to sidebands on the dressing
laser at Twz (lower sideband shown as wiggly black line) that with the dressing
laser couple the momentum states p0 T ħk to realize the momentum exchange.
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collective XX-Heisenberg or Richardson-Gau-
din integrablemodel where the nonlocal spin-
spin couplings c compete with an inhomo-
geneous axial field—a model often used in
quantum magnetism and superconductivity
through the spin Anderson mapping (30–32).
The standing-wave cavity mode’s spatial in-
tensity variation cos2kZ produces additional
terms Ĵþ

2 and Ĵ�
2 that we can neglect because

these terms are not resonant or equivalently do
not conserve energy (37, 39).

One-axis twisting dynamics

The exchange Hamiltonian can be rewritten as
Ĥ sx ≈ c Ĵ

2 � Ĵz
2

� �
with c ¼ cþ þ c� , ignoring

single-particle terms. At themean-field level, the
one-axis twisting Hamiltonian cĴz

2 ≈ 2chĴ ziĴ z

induces a rotation of the collective Bloch vector
about the z direction at a constant frequency,
2chĴ zi, that depends on the initial momentum

population difference hĴ zi, which is conserved
by the Hamiltonian Ĥ sx . In the equivalent
matter-wave picture, the azimuthal phase,
Df ¼ 2chĴ zitx, accumulated when the ex-
change interaction is applied for a time tx ,
appears as a shift of the spatial interference
fringe between the two wave packets (Fig. 2F).
To observe this phase shift, we run amatter-

wave interferometer sequence (Fig. 2C) begin-
ning with a Bragg p=4-pulse lasting 15 ms that
prepares the atomswith population difference
hĴ zi
N=2 ≈−0.7. Afterwaiting adelay time td ¼ 25ms,
we apply the dressing laser to create the ex-
change interaction for tx ¼ 25 ms. To reover-
lap the wave packets or equivalently undo
the inhomogeneity from Ĥ in, we then apply
a Bragg p-pulse and apply the dressing laser
again before applying a final Bragg p=2-pulse
with varying phase f . The final p=2 -pulse
maps the phase shift Df into a change in hĴ zi.

Wemeasure the population in eachmomentum
state by using velocity-sensitive Raman p-pulses
and cavity-assisted quantum nondemolition
measurements (12, 37).We repeat the experiment
while scanning the phase of the final p=2-pulse.
The phase shift Df is then determined from the
phase of the observed fringe hĴ zi versus f.
The momentum-exchange coupling of Eq. 2

predicts a triple-dispersive structure as the
detuning of the dressing laserDd varies. We
observe this predicted structure in Fig. 2D by
measuring the induced phase shift Df as we
vary the dressing laser detuning Dd from the
dressed cavity resonance. In these data, the inci-
dent dressing laser power (350 photons/ms) is
held fixed. The two outer dispersive features
arise as the two sideband frequencies at Twz

pass through resonance with the cavity as
shown in the corresponding insets. The dis-
persive feature near Dd ¼ 0 arises from the
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Fig. 2. Modulation sidebands and one-axis twisting dynamics. (A) When a
modulation sideband generated by the moving atomic density grating is tuned to
resonance with the cavity (top inset), the light escapes the cavity and population
is collectively or superradiantly transferred (bottom inset) between the two
momentum states at p0Tħk (solid points and lines). After breaking the phase-
matching condition, we observe no superradiant transfer of population (open
circles and dashed lines). (B) The system is well phase matched when the wave
numbers of the Bragg laser (that generates the density grating) and the dressing
laser (that drives the momentum-exchange interaction) closely match each other
(on the left). A difference in wave number (kBragg ≠ kd) will lead to a spatially
varying phase that eliminates the superradiance (on the right). (C) Matter-wave
interferometer sequence and space-time diagram for observing all-to-all Ising or

one-axis twisting dynamics. The interferometer fringe amplitude and phase
shift Df are measured by scanning the phase of the final rotation ϕ. (D) The
observed phase shift Df of the interferometer fringe versus the dressing laser’s
detuning from the dressed cavity resonance, displaying the predicted (line)
functional form of c from Eq. 2. The insets illustrate the relative alignment of the
modulation sideband to the cavity resonance for three characteristic detunings.
(E) The measured interferometer phase shift scales linearly with the initial spin projection
Jz ¼ hĴzi, while holding Dd fixed. The orange data points and fitted line are for
c=2p ¼ þ2:1 Hz, and the green data points and fitted line are for c=2p ¼ �2:5 Hz).
(F) Visualizations of the phase shift Df in both the pseudospin picture (Bloch
spheres) and in the atomic density grating picture for three characteristic
points in (E).
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carrier passing through resonance with the
cavity. At Dd ¼ 0, the exchange interaction
parameters are cþ≈� c� , leading to a can-
cellation of the total exchange interaction (c≈0).

The phase shift Df is expected to scale
linearly with hĴ zi. We observe this by replacing
the initialp=4-pulse with variable-length pulses
to vary hĴ ziwhile holding Dd fixed instead. For

the orange data in Fig. 2E, the frequency of the
relevant sideband is higher than the cavity
resonance frequency, leading to a measured
c=2p ¼ þ2:1Hz. For the green data, we retune
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Fig. 3. Decoherence and energy gap protection. (A) The measured OAT
phase shift goes to zero if the momentum-exchange interaction is applied after a
delay time td (see pulse sequence in top panel). After the atomic wave packets
separate for various delay times, the measured OAT phase shift for both positive
and negative c are shown in solid points with the simulations in solid lines. For
comparison, the dashed lines are the simulated result with a pure OAT Ĵz

2

Hamiltonian instead of the full momentum-exchange Hamiltonian. (B) Illustration of
the wave packet separation and pseudospin representation at characteristic points

in (A). As the wave packets separate, the atomic density grating disappears and
the modulation sidebands that create the momentum-exchange interaction are no
longer generated. Corresponding pseudospin Bloch spheres are shown. (C) Using the
sequence in the top panel, the bottom panel shows the contrasts of the interferometer
fringe measured at the end of the exchange interaction period with c ¼ 0 (black
symbols), c=2p ¼ 6 Hz (red symbols). The ratio between the two (inset) displays
significant gap protection of coherence owing to the momentum-exchange’s Ĵ

2

contribution. The simulated results (solid lines) show good agreement with the data.
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Fig. 4. Binding wave packets together. (A) We run a sequence similar to that
of Fig. 3C except with an additional 40-ms delay after wave packet overlap before
application of the dressing laser for a variable time tx. We see that as the
interaction strength is increased relative to the RMS inhomogeneous broadening
sin ¼ 2p� 2 kHz, there is a transition in the dynamics for Nc=sin > 0:9. Notably,
there are also clear oscillations that were only hinted at in Fig. 3C. The lines are
theory predictions. (B) The theory predictions with residual superradiance on
(solid) and turned off (dashed) are shown with three example points in the
oscillations labeled; the prediction with no interactions is shown in gray. (C) The
total length of the pseudospin Bloch vector J

→

oscillates in time because the
individual Bloch vectors oscillate as shown for J

→

p>0 and J
→

p<0 in green and

orange, respectively, with cN=sin ¼ 2:8. (D) (Left) In a co-moving frame, the
wave packets oscillate in time about their average position in space (blue and red
wave packets and centers, solid lines; noninteracting system, dashed lines).
The momentum-space wave packets (right) also oscillate but with a p=2 phase
shift in time relative to the position space wave packets, as would be the case for
a harmonic oscillator. (E) The interferometer contrast as a function of imbalance
in the time from nominal perfect reoverlap of the wave packets with no
momentum-exchange (red data and fit), momentum-exchange applied right
after first p=2 at intermediate power (blue data and theory) and high power
(brown data and theory), and momentum-exchange applied when wave
packets are separated (green data and fit).
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the detuning Dd so that the relevant sideband
frequency is lower than the cavity resonance
frequency, leading to a measured c=2p ¼
�2:5 Hz. We observe a linear phase shift Df
for c > 0 and c < 0 with opposite slopes, as
expected.
We observe that the size of the phase shift

Df decreases if the wave packets are allowed
to separate for a time td before applying the
dressing laser for time tx ¼ 25 ms to induce
themomentum-exchange interaction.F3 Figure 3A
(top) shows the pulse sequence used to mea-
sure this decay of the phase shift (bottom)
for both positive and negative c (orange and
green points). For comparison, the solid lines
indicate the predicted phase shifts for the full
momentum-exchangeHamiltonian,whereas the
dashed lines indicate the predicted phase shift
for anOATHamiltonian�cĴz

2. Thewavepacket
separation or equivalently the inhomogeneity
Ĥ in would not affect a pure OAT Hamiltonian
as was the case in (12), whereas the phase shift
is decreased by dephasing for exchange inter-
action as was observed in a spin system (3).
The wave packet separation leads to dephasing
or shortening of the Bloch vector as visualized
in Fig. 3B. As the wave packets separate, the
corresponding collective Bloch vectors are
shortenedwhile the projectionhĴ zi is conserved.
Gap protection: Binding wave
packets together

The additional nonlinear term Ĵ
2
in the

momentum-exchange Hamiltonian gives rise
to a many-body energy gap between states of
higher symmetry (large J) and lower symmetry
(smaller J) (3, 27). To explore howmatter-wave
coherence is protected by the gap, we run a
Mach-Zehnder interferometer as shown in
Fig. 3C (top), in which we apply the dressing
laser for a time tx starting at the point of
maximum reoverlap of the wave packets (with
T ¼ 70 ms). The coherence at the end of the
dressing laser application is estimated from the
amplitude of the interferometer fringe by
using an appropriately timed p-pulse and a
final p=2-pulse shown. To account for the
atomic loss resulting from free-space scatter-
ing and superradiance into higher-momentum
states, the contrast is calculated by normalizing
the fitted fringe amplitude to the residual pop-
ulation in the two momentum states p0 T ħk.
The actual coherence of the system is higher
owing to the finite possibility of underestimat-
ing the number of atoms that underwent free-
space scattering. In Fig. 3C, the experiment is
performed with the dressing laser off (c ¼ 0,
black points and fitted black curve) and the
dressing laser on (c=2p ¼ 6Hz, red points and
red theory curve); for the latter, we observe that
appreciable fringe contrast extends out to 600 ms.
The inset of Fig. 3C shows that themomentum-
exchange enhances the contrast by as much as
a factor of 10(2).

In Fig. 3C, the coherence undergoes a slight
rise before ultimately falling. This behavior can
be accentuated by allowing the wave packets to
undergo a small amount of separation for 40 ms
before applying the momentum-exchange inter-
actions for a duration tx . With T ¼ 70 ms, the
observed interferometer contrast versus tx
(F4 Fig. 4A) ismeasured at different dressing laser
powers to obtain different ratios of cN to the
RMS inhomogeneity from Ĥ in expressed as a
frequencysin. We observe a sharp transition in
the dynamical behavior between cN=sin = 0.9
and 1.7 with the emergence of oscillations of
the contrast that extend to long times as cN
increases. The oscillations become faster and
have larger amplitudes at shorter times as cN
increases. This behavior is reasonably consist-
ent with the overlayed theory simulations
(colored traces in Fig. 4A) that include finite
superradiance and where only sin is fit from
the data with cN ¼ 0.
The extension of coherence to longer times

and the observed oscillations can be under-
stood as the momentum-exchange interaction
causing the wave packets to become bound to
each other such that they no longer freely
separate. In Fig. 4B, we show the simulated
variation of the contrast versus time without
superradiance, highlighting three example
points that we explain using the simulated tra-
jectories in Fig. 4C for the collective pseudospin
Bloch vectors evaluated for p > 0 or p< 0
with J

→

p>0 ¼ ∫ħk0 j
→
pð Þdp and J

→

p<0 ¼ ∫0�ħk j
→
pð Þdp

where j
→
pð Þ ¼ ĵ x pð Þx̂ þ ĵ y pð Þŷ þ ĵ z pð Þẑ. In

Fig. 4D, we also show the simulated results
without superradiance for the individual wave
packets in bothmomentumand position space.
In the pseudospin picture, the momentum-
exchange causes the displayed vectors J

→

p>0

and J
→

p<0 to undergo orbits that oscillate
symmetrically above and below the equator
such that the total Bloch vector length oscil-
lates in time. In the wave packet picture, with
no interactions, the wave packet centers would
follow the diverging dashed lines. With inter-
actions, the wave packets oscillate in position
with respect to each other, while also oscillat-
ing in their momentum p, as though the wave
packets are now connected by a spring with
characteristic frequency set by the exchange
interaction strength cN in the limit that
cN ≫ sin and for small wave packet separation.
If the wave packets are allowed to initially
separate before the spring-like coupling is turned
on, then the amplitude of the oscillations of the
wavepacket separations (andhence the contrast)
will be larger, as was observed in Fig. 4A.
To further explore this idea of wave packets

becoming bound to each other, we run a
Mach-Zehndermatter-wave interferometerwith
the echo times imbalanced by DT as shown in
Fig. 4E (top), with fixed T=1.05 ms. If the
exchange interaction is not applied (Fig. 4E,
red points and fit), then the fringe contrast is

maximized when the echo time imbalance is
DT ¼ 0 because this is when the wave packets
have maximal reoverlap. If the momentum
exchange interaction is applied just after the
first splitting pulse, we see that the point of
maximum contrast is shifted to DT ¼ �55 ms
(blue points and simulation), and becomes non-
Gaussian (brown points and simulation) at even
higher dressing laser power. We rule out single-
particle effects thatmight also shift themaximal
reoverlap time by repeating the experiment, but
with the dressing laser applied 1 ms after the
first splitting pulse when the wave packets are
not overlapped (greenpoints and fit), which also
suppresses collective superradiance, leading to
the higher observed contrast. The fact that the
delay ismodified by 55 ms rather than tx ¼ 25ms
(as one might naïvely expect should one think
of thewave packet separation as being frozen
in place during the exchange interaction) arises
from a 25-ms delay between the end of the p=2-
pulse and the beginning of the interaction, as
well as the harmonic-oscillator–like nature of
the coupling of the wave packets.
To emphasize how unusual it is that the

wave packets bind to each other, consider a
gedankenexperiment in which a single pho-
ton combined with a coherent state of light
drives the two-photon Bragg transition with
total momentum transfer to the atomic cloud
2ħk . Given that one cannot tell which atom
underwent the two-photon transition, the ini-
tial state should be symmetrized with respect
to which atom absorbed the single photon,
analogous to a Dicke or W state (37). With-
out exchange interactions, at long times one
would observe a single atom eventually emerge
from the cloud with velocity vrec ¼ 2ħkð Þ=m
while all other atoms remain at their initial
momentum. By contrast, with the momentum-
exchange interaction, one would never observe
a single atom emergewith velocityvrec. Instead,
the whole cloud of N atoms would collectively
recoil with velocity vrec=N (37).
This collective recoil is analogous toMössbauer

spectroscopy (or Lamb-Dicke spectroscopy) in
which atoms embedded in a crystal cause the
whole crystal to recoil when the atoms absorb
light. In our case, the collective recoil mecha-
nism, enabled by strong exchange interactions,
suppresses Doppler dephasing or line broaden-
ing. However, unlike in Mössbauer spectros-
copy, the collective nature of the recoil does not
suppress the photon recoil shift, which here
defines the transition frequency wz between
the two momentum states.

Discussion and outlook

The collective recoilmechanism observed here
allows for the sensing of accelerations aZ such
as that caused by gravity (37), given that the
phase difference that accrues between the
two momentum states depends on wz , which
chirps as wz→2k p0=mþ aZtð Þ. Equivalently,
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the atoms act as a phasememory of the optical
Bragg pulses with which they interact (40).
This opens interesting paths for enhancing
quantum memory lifetime (41), for Doppler-
broadening–free spectroscopy, and for matter-
wave interferometers that do not rely on
spin-echo–like sequences and therefore would
also allow measurements of velocities rather
than accelerations.
Finally, themomentum-exchangeHamiltonian

that we demonstrated here is equivalent to
the model Hamiltonian often used to describe
Bardeen–Cooper–Schrieffer (BCS) s-wave super-
conductors. From this perspective, the observed
oscillations can be identified with Higgs oscil-
lations following a quench of the exchange
interaction strength (30, 42–44). This would
enable quantum simulation of BCS super-
fluidity and also sets the stage for quantum
simulation that goes beyond two-level systems
by encoding degrees of freedom in the larger
ladder of momentum states (45, 46) as well as
internal states (47–52). The large number of
synthetic dimensions, in combination with the
long-range cavity-mediated interactions, open
new opportunities for the emulation of self-
generated spin-orbit coupling (53, 54), pair
production (2, 55–61), topological superfluidity
(62), and dynamical gauge fields (63–67). Lastly,
the generation of sideband tones may open a
path to transduce excitations between matter
waves and mesoscopic opto-mechanical sys-
tems (25, 26) or back-action–evadingmeasure-
ments ofmatter waves as proposed for spins (68).
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