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ABSTRACT. We consider the 3D stationary Boltzmann equation in convex do-
mains with diffuse-reflection boundary condition. We rigorously derive the
steady incompressible Navier-Stokes-Fourier system and justify the asymptotic
convergence as the Knudsen number e shrinks to zero. The proof is based on
an intricate analysis of boundary layers with geometric correction and focuses
on technical difficulties caused by the singularity in collision kernel k(v,v’) and
the perturbed remainder estimates.

1. Introduction.

1.1. Problem Presentation. We consider the stationary Boltzmann equation in
a three-dimensional smooth convex domain 3 z = (z1, z2, x3) with velocity v =
(v1,v2,v3) € R3. The density function §(z,v) satisfies

ev - V.3 = Q[F5, 3] in Qx R3,

1
5 (zo,v) = Pe[§)|(zo,v) for zo € 9Q and v-n(xg) <0, o

where n(zg) is the unit outward normal vector at zp and the Knudsen number
0 < € <« 1 characterizes the average distance a particle might travel between two
collisions. We intend to study the behavior of §° as e — 0.

Throughout this paper, we assume that @ is the symmetrized hard-sphere colli-
sion operator (see [13, Chapter 1]), and §° satisfies the diffuse-reflection boundary
condition

P8 (z0,v) = (w0, v) / . § (20, 1) [u - n(z0)| du. 2)

It describes that the particles are absorbed by the boundary and then re-emitted
based on a boundary Maxwellian

o o) e PB(T0) o — (o)
HE(@0,0) 277(95(:50))2 p( 205 (o) >’ ®)
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where the wall density, velocity and temperature (pf, uf, 85) is an e-perturbation of
(1,0, 1), which corresponds to the standard Maxwellian

pv) = o exp 5 )
In detail, we write

pp(xo) :=1+¢eppa1(zo), ug(xo) :=eup1(zo), 6;(z0): =14 eby1(x0), (5)

and thus we may further expand pj into a power series with respect to e,

wi(xo,v) := p(v) + u? (v) ( Z ST e v)) (6)
k=1

In particular, the first-order perturbation has the form

[N

pa (o, v) :=p2(v) (Pb,l(xo) + up,1(0) - v + Op,1(20) 4 27 3)' (7)

We assume that both uj and p satisfies the normalization condition
[ waolonoldo= [ p)len()ldo=1 ()
v-n(xg)>0 v-n(xg)>0

In addition, we require that the particles are only reflected on 92 without in-flow
or out-flow, i.e.

[ witan o) (o n@)de = [ p()(v-n(ao))do = 9)
R3

R3

Based on (8), (9) and (6), comparing the order of €, we know
/ uk(mo,v)u% (v) |v-n(xo)|dv=0 for k>1, (10)
R3
/ uk(mo,v)/ﬁ (v) |v-n(xo)|dv=0 for k>1. (11)
v-n(ro)sS0

In particular for k = 1, we know up, 1 -n = 0. In fluid mechanics, this corresponds
to the non-penetration boundary condition.
We further assume that the perturbation is small, i.e.

& _

<v>”e9”'2”"1“‘ < Coe, (12)
MQ

for any 0 < p < i and 3 < ¥ < ¥y with some given large ¥y, and constant Cy > 0

is sufficiently small.

Note that if §° is a solution to (1), then for any constant M € R, §° + My is
also a solution. To guarantee uniqueness, we require the normalization condition

//QX]Rs § (2, v)dvdr = //wa p(v)dvde = V27 |9 . (13)
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1.2. Perturbation equation. Considering (13), the solution §° to (1) can be
expressed as a perturbation of the standard Maxwellian

§F (2,0) = p(v) + p2 (0) f* (@, ), (14)

with the normalization condition
// £e(z,0)p? (v)dodz = 0. (15)

QxR3

Here f¢(z,v) satisfies the perturbation equation

ev- Vo f*+ L[f] =T[5 f] in QxR y
fe(xo,v) = Pe[f](xg,v) for xg€ N and v-n(xp) <0, (16)
where
L) = =207 2Q[u p2 7], TS, f7=p72Qu 5, p2 f7],  (17)
and
PE[fe](zo,v) izui(xo,v)lf%(v)/ p? (W) f* (o) [u - n(wo) | du (18
u-n(xzo)>0

_1
+ 173 ) (1 0, v) — (v) ).
Hence, in order to study §°, it suffices to consider f€.

1.3. Linearized Boltzmann operator. To clarify, we specify the hard-sphere
collision operator @ in (1) and (17)

/Rs/ w, lu—u|) F( )G (v) + G(u)F(v,) (19)

)G(v) = Gu)F(v) ) dwda,
with
wo=utw((v—u - w), v =0 —w((v—u) w), (20)
and the hard-sphere collision kernel
q(w, [u—v[) :=go|w - (v—u)], (21)

for a positive constant go. Based on [13, Section 3.2-3.5], the linearized Boltzmann
operator £ can be rewritten

Llf] = =272 Q[ 2 f] == v(v) f — K[f], (22)
where
_ / / 0w, |1 — v])a(a) deodlu (23)
R3 Js2
_ 2 1N M o2
= q0<<2|v|+v>/o e " dz+e ),
K[fl(v) = K[ f](v) — K1[f](v) = k(u v) f(u)du, (24)
Ki[fl(v) = // w|u—v| ) = [ ) f)a, (25

/ o= o 00 (e (o) )+ ) f0) s (26)
8
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:/ k2(“’7v)f(u)duv
R3
for kernels
k(u,v) = ka(u,0) — ki (u,0), (27)
1 1
i(u,0) = mgo [u— vlexp (= S uf* = 5 ol ), (28)
2mqo 1 o L(u[* —[o*)?
k = - o= - |- 2
) = ey (ot - L (29)

L is self-adjoint in L2(R3) and the null space N is a five-dimensional space spanned
by the orthonormal basis
2
-3
H%{LU, [v] 5 } (30)

We denote A/ the orthogonal complement of A/ in L2(R?). In addition, denote
L1 : Nt — N+ the quasi-inverse of L.

1.4. Main result. Let ( -, - ) be the standard L? inner product for v € R3. Define
the LP and L*> norms in R?:

@l = ([ feora)’s el =eswlfeal. 6

Furthermore, we define the L? and L® norms in 2 x R3:

= ([ orae)’s Il = essw [f@ol. @2

(z,v)€QxR3

Define the weighted L? norms:

1 1
[f(@)], = [v2f(@)|y, SN, = |v2 £, (33)
Denote the Japanese bracket:
1
() = (1+v]*)? (34)
Define the weighted L* norm for p,9 > 0:
@), =esssup ( ()7 e ()] ), (35)
vER3
2
1fllscog = esssup ()" e |f(a,0)]). (36)
(z,v)EQXR3

In (1) and (16), based on the flow direction, we can divide the boundary ~ :=
{(:co,v) Ty € 00,0 € ]RS} into the in-flow boundary «_, the out-flow boundary
Y4, and the grazing set ~q:

v = {(z0,v) : o € 0N, v-n(xo) <0}, (37)
Y4 = {(z0,v) : o € O, v-n(zo) >0}, (38)
Yo = {(mo,v) 2 xg €09, v-n(xy) = O}. (39)

In particular, the boundary condition is only given on ~_.



INSF LIMIT OF 3D BOLTZMANN EQUATION 351

Define dy = |v - n|dwdwv on « for the surface measure w. Define the LP and L™
norms on the boundary:

£l = (//7 |f (z,0)[? dv) § [£1ly,00 = esssup [ f(z,v)]. (40)

(zv)ey
Also, define the weighted L°° norm for g, > 0:

111 00,00 = ?ss sup ( <v>19 oelvl? |f(g;,y)|), (41)

z,v)Ey

The similar notation also applies to v4.

We plan to construct a Boltzmann solution from the incompressible Navier-
Stokes-Fourier (INSF) system. The well-posedness and regularity of INSF is classi-
cal and we may refer to [5, 6] for the following result:

Theorem 1.1. For any integer k > 1 and real number s € [2,00), if the boundary
data

ful ot 1] 1 <1, (42)
then the steady Navier-Stokes-Fourier system in the smooth bounded domain Q C R3
u-Veu—71Azu+Vep =0,
Vg -u=0, (43)
UV — A0 =0,
with constants y1 > 0 and v2 > 0, admits a unique solution (u,p,8) satisfying
[ullwr.s + lPllwr-1e + 10llye.. < 1. (44)
Now we are ready to state our main theorem:

Theorem 1.2. For given u satisfying (8), (9), (6) and (12), there exists a unique
solution §°(z,v) = ug(v) + 12 (v) f2(z,v) to the stationary Boltzmann equation (1)
with (13) in the form of

fe= (el + 2R+ % Fy) + (e.F1 + 2.%) + R (45)

Here the leading-order interior solution Fy is defined as
F1:M%<p+u~v+9‘vlz7_3), (46)
in which (p,u,0) satisfies (43), with the boundary data
p(xo) = poi(wo) + M(zo), u(wo) =up1(wo), 0O(xo) =0bp1(x0).  (47)
M (z0) is a function chosen such that the Boussinesq relation
Va(p+6) =0, (48)

and the normalization condition (15) hold. The higher-order interior solutions
Fy, F3 are defined in (62)(64), and the boundary layers F1, %o are defined in
(73)(74). The remainder R satisfies for any 0 < o < 1 and 3 <9 <

193 <Ssed? (49)

V+4,00,0,9 ~

+ 2]l

00,0
forany 0 < < 1.
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Remark 1.3. §° is the solution to (1) both in the weak (L?) and mild (weighted
L*°) sense. We refer to [19] for discussion of the Boltzmann solution in the bounded
domain.

Remark 1.4. From Theorem 1.2, we know f¢ ~ eI} is of order O(¢). The difference
fe—eFi=o0(c) as e = 0.

Remark 1.5. The case pp1(z0) = 0, up,1(x0) = 0 and 6y 1(xo) # 01is typically called
the non-isothermal model, which represents a system that only has heat transfer
through the boundary but has no particle exchange and no work done between
the environment and the system. Based on Theorem 1.2, its hydrodynamic limit
is a steady Navier-Stokes-Fourier system with non-slip boundary condition. This
provides a rigorous derivation of this important fluid model.

Remark 1.6. The convexity of the domain plays a significant role in the boundary
layer analysis. In smooth non-convex domains, we can show the well-posedness of
the e-Milne problem with geometric correction following the idea in [36]. However,
the regularity proof cannot go through since the arguments to bound I; in Section
3.4 and II5 in Section 3.5 will break down due to different shape of characteristics
[43].

Remark 1.7. Our analysis of boundary layer using mild formulation relies on the
hard-sphere collision kernel Q. As [19] pointed out, such method can be extended
to treat hard potential with Grad’s angular cutoff. However, it may not be directly
applied to soft potential or non-cutoff case.

1.5. History and motivation. Hydrodynamic limits are central to connecting
the kinetic theory and fluid mechanics. It provides rigorous derivation of fluid
equations (like Euler equations or Navier-Stokes equations, etc.) from the kinetic
equations (like Boltzmann equations, Landau equations, etc.). As an integrated step
to tackle the well-known Hilbert’s Sixth Problem, since early 20th century, this type
of problems have been extensively studied in many different settings: stationary or
evolutionary, linear or nonlinear, strong solution or weak solution, etc.

The early result by Hilbert [25] dates back to 1916, using the so-called Hilbert’s
expansion, i.e. an asymptotic series of the density function §° as a power series of
the Knudsen number ¢.

The general theory of initial-boundary-value problems for hydrodynamic limits
was first developed by Grad [16], and then extended by Sone [29, 30, 31] and Sone-
Aoki [34], for both the evolutionary and stationary equations. The classical books
by Sone [32, 33] provide a comprehensive summary of previous results and give
a complete analysis of such approaches. However, the results in [32, 33] are only
formal and lack rigorous justifications.

So far, the mainstream study of hydrodynamic limits can be put into two cate-
gories: renormalized solution and mild/strong solution.

The renomalized solution, introduced by DiPerna-Lions [9] to justify the global
well-posedness of the Boltzmann equation, has shown to be a powerful tool to study
the kinetic equation with general data. It has been proved that the hydrodynamic
limits of renormalized solution is the Leray solution for fluid equation. Due to the
huge number, it is almost impossible to give a complete list of all the related pub-
lications. Reader may refer to Golse-Saint-Raymond [14, 15], Saint-Raymond [27],
Masmoudi-Saint-Raymond [26], Bardos-Golse-Levermore [1, 2, 3, 4]. It is also worth
noting that the book by Saint-Raymond [28] and the references therein provide a
nice summary of the progress in this direction.
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Unfortunately, as [11] pointed out, this approach of renormalized solution does
not work for stationary hydrodynamic limit problems due to the lack of L' and
entropy estimates. Hence, it is necessary to develop a different theory based on
mild/strong solutions and energy estimates. For this direction, reader may refer to
Masi-Esposito-Lebowitz [8], Esposito-Lebowitz-Marra [12], Guo [18], Guo-Jang [20],
Guo-Jang-Jiang [21, 22], Esposito-Guo-Kim-Marra [11] and the references therein.

For stationary Boltzmann equation where the state of gas is close to a uniform
state at rest, the expansion of the perturbation f¢ = O(e) consists of two parts:
the interior solution fZ = > =, e* F,, which is based on a hierarchy of linearized
Boltzmann equations and satisfies a steady Navier-Stokes-Fourier system, and the
boundary layer fg = Y77, ek 7., which is based on a half-space kinetic equation
and decays rapidly when it is away from the boundary.

Note that boundary layer plays a significant role in proving the asymptotic con-
vergence in the L* sense. If instead we consider LP convergence for 1 < p < oo
which is technically easier, then the boundary layer .%; is of order e7 due to rescal-
ing, which is negligible compared with F; as ¢ — 0. As far as we are aware of, at
this stage the best result regarding hydrodynamic limits of mild/strong solutions for
the 3D stationary problem in bounded domains is [11], which justifies the LP con-
vergence without boundary layer analysis. As for the 2D problem, the best result
is [38], which justifies the L* convergence with a detailed discussion of boundary
layers.

In this paper, we will fill the last piece and focus on the most difficult case, the 3D
problem with L> convergence. This paper is the first half of our monograph [41] on
the incompressible Navier-Stokes-Fourier limit of kinetic equations (the second half
[42] focuses on the evolutionary problems). As far as we are aware of, our theorem
is the first result to rigorously justify the hydrodynamic limits of 3D stationary
Boltzmann equation with boundary layer effects in L°°.

1.6. Ideas and methodology. The geometric effects in boundary layer analysis
has been observed for a long time (see [12]). Inspired by [7], a new formulation of
boundary layer based on the Milne problem with geometric correction was proposed
in [40] to study a simple kinetic model — neutron transport equations, in a 2D plate
domain. The key component of the proof is the L>° well-posedness and decay of the
boundary layer equation. Furthermore, through a careful discussion of the W1
regularity and quasi-W?2°°° regularity, such results were extended in [23, 24, 37, 39]
to treat more general 2D /3D domains and boundary conditions.

Neutron transport equation is a linear equation with homogeneous collision ker-
nels. In contrast, Boltzmann equation poses more technical complications due to
the higher dimension of null space and more singular collision kernels. For 2D
boundary layers, the L> well-posedness and decay were discussed in [35] and the
W12 regularity estimates were proved in [38]. However, such results are completely
absent for 3D domains.

As [11, Section 1] and [38, Section 2.2] reveal, 3D problems and L convergence
have several key difficulties: boundary geometry is more complicated; remainder
estimates is not strong enough to close the proof; the matching between interior
solution and boundary layer is unclear.

Among all these, the most serious issue is that 3D collision kernel k(v, v’) contains
the singularity ﬁ Such singularity is absent in 2D, in which we can freely
manipulate the integrals involving k. For example, in 2D we may use Holder’s
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inequality to bound

/R2 kv, v")g(v)dv" S IE) gl (50)

with p > 1 and ¢ ~ 1 (such techniques are also utilized in analyzing the neutron
transport equation). However, such approach naturally fails in 3D since kP might
not be integrable. The consequence is devastating. The preliminary lemmas in
[38, Section 2.1] showing the W regularity will not work any more. Hence, the
key arguments [38, (5.81),(5.82),(5.95)] cannot be adapted to the singular kernel k.
This kind of issues are so common in the regularity proof, so we have to reconsider
all the details.

In this paper, our major upshots focus on tackling the challenging technical
difficulties in justifying regularity of 3D boundary layers. The basic idea is to
introduce an intricate characteristic analysis to capture the interaction of spacial
and velocity derivatives, and analyze the singularity generated by the weighted non-
local operators. We need several important preliminary results: 3.7, 3.8 and Lemma
3.9. Roughly speaking, we carefully analyze all kinds of the integrals involving k
and V,k to tame the singularity. Then we implement these lemmas in different
regions of the characteristics. Certainly, our argument also works in 2D, but is
more subtle than that in [38, Section 5.

In addition, as a minor contribution, we modify the remainder estimate in [11]
and [38] to include the boundary layer terms and close the proof. In a non-rigorous
fashion, for the remainder equation

ev-V,R+ LIR] = S +T[R, H] + TR, R], (51)

we intend to justify R ~ o(¢~2%9) in terms of S ~ o(1) and H ~ o(¢). In 2D, based
on the L?™ — L™ framework and L*> nonlinear estimate, we arrive at

1 1
1Rllso,,e S 2 15N + 5 I1H o - (52)

For S part, due to rescaling in boundary layers in L', which offers another ¢, this
is sufficient to close the proof. However, as one of the key steps in the remainder
estimate, the embedding theorem is much worse in 3D than in 2D. For example,
the result as [38, (4.14)] is only true when 1 < m < 3. This restricts our choice of
m ~ 3 and thus in 3D we only have the bound

1 1
1Rlloc0,0 S g 15115 + 5 1H e - (53)

Now S part is still controllable. However, there is no clear mechanism to improve
the bounds of H, so we get stuck if following the above argument.

To overcome this difficulty, we have to dig into more details of the proof of
remainder estimates. In our modified L?™ — L framework, the main strategy is
to combine

~

1 1 1
PLEe S 2 180g + CIP[R Hlle - and 1Rl p,, S 5 IPR]llge - (54)

Our key idea is to regard T'[R, H] as a perturbation of the linear term and absorb
it into the left-hand side estimate at the L° level rather than at the L> level. This
requires a detailed proof of the nonlinear bound ||T[R, H]|| ;> < ||R||2 || H| ;- and
the interaction of P[R] and (I — P)[R]. A similar argument is also provided for the
boundary terms.



INSF LIMIT OF 3D BOLTZMANN EQUATION 355

Finally, it is worthwhile to mention that we give detailed derivation of boundary
layer equations in 3D quasi-spherical coordinates and provide a full description of
the matching procedure, which are absent in previous works.

Throughout this paper, C' > 0 denotes a constant that only depends on the
domain €2, but does not depend on the data or . It is referred as universal and can
change from one inequality to another. When we write C(z), it means a certain
positive constant depending on the quantity z. We write a < b to denote a < Chb.

This paper is organized as follows: in Section 2, we perform the asymptotic
expansion and matching procedure; Section 3 focuses on the well-posedness and
regularity of the boundary layer equation, i.e. the e-Milne problem with geometric
correction; in Section 4, we study the remainder estimates in both non-perturbed
and perturbed cases, and finally prove the main theorem.

2. Asymptotic expansion.

2.1. Interior expansion. We define the interior expansion

3
fo(x,v) = Zeka(x,v). (55)
k=1
Plugging it into the equation (16) and comparing the order of €, we obtain
L[F1] =0, (56)
L[F2) = —v -V F + TR, A, (57)
[,[Fg] = —U'VmFQ—FZF[Fl,FQ]. (58)

The analysis of Fj, solvability is standard and well-known. As [32, Chapter 4
and [33, Chapter 3] reveal

Flzu%{p+u~v+0(‘v|2773)}, (59)
where (p, u, 0) satisfies the Navier-Stokes-Fourier system
u-Veu—y1Az;u~+ Vep =0,
Ve u=0, (60)
UV — A0 =0,
for constants 1 > 0 and 2 > 0 and the Boussinesq relation
Vu(p+6) =0. (61)
Similarly,
Fy=pt {,02 +ug-v+ HQ(W%S)} + 3 {pu ~v+ (pd + \u|2)(|“‘2773)} (62)
+ L7 =0V F + D[R, B

where (p2,ug, 02) satisfies the fluid system
(63)
Va (P —(p2 + 62+ pe)) =0,
ur - Vaus + (pu + uz) - Vaur — 718zus + Vap = —72Va - Apf — 14V - (61 (Veu + (Vou)T)),
Vi uz =—u-Vgp,
u - Vg0 + (pu + u2) Vel —u-Vep=m (vzu + (ku)T)z + Az (7292 + ’)’5‘92)7
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for constants 73,74, v5. Since we do not expand the interior solution beyond Fj, we
cannot fully determine F3 and it suffices to take

Fy=L7"—v-V,F+2lF, F)]. (64)

2.2. Boundary layer expansion. In order to define boundary layer, we need to
design a coordinate system based on the normal and tangential directions on the
boundary surface.

For smooth manifold 0f2, there exists an orthogonal curvilinear coordinates sys-
tem (t1,¢2) such that the coordinate lines locally coincide with the principal direc-
tions at xg.

Assume 09 is parameterized by r = r(¢1,t2). Let |-| denote the length and 0;
denote the derivative with respect to ¢; for ¢ = 1,2. Hence, 017 and Osr represent
two orthogonal tangential vectors. Denote P; = |9;r| for i = 1,2. Then define the
two orthogonal unit tangential vectors

617“ 827"
= — = —_— 65
S1 P, y G2 P, ( )
Also, the outward unit normal vector is
o011 X Oar
= = ¢ X G 66
n ‘ 911 x 82r| G1 X 62 ( )

Obviously, (¢1,¢2,n) forms a new orthogonal frame. Hence, consider the corre-
sponding new coordinate system (1,2, M), where 9 denotes the normal distance
to boundary surface 912, i.e.

x=r—Nn. (67)

Through a length computation, we arrive at

v Ve = ) s T B =) 00 B —1) 913’ (68)

where k1 and ko are two principal curvatures.
Next, define the orthogonal velocity substitution for v := (vy, ve, vy) as

—U N = Uy,
—v -6 = v, (69)
—V - G 1= Uy

Then the transport operator in (68) becomes
(70)
S S (O DNLC A W S OF S
TN R —p ¢8vn K ¢8v¢ Ro—p \ ¥ du, " wavw
_ 1 8117‘-827" Vovy + 8127“-827“ ’l)2 i
P1P2 P1(I£1m — 1) e Pz(lizm — 1) ¥ 8%

_ 1 8221"'817” Vs + 8127‘-817" U2 i
P1P2 Pg(m‘ﬁ—l) ad Pl(fﬂm—l) ¢ 8’011,

v-V

_ vo 9 w0
Pl(lil — l’ﬁ) (97'1 Pz(/@‘ﬂ — 1) 87’2 ’

where R = ’%1 and Ry = /712 represent the radius of principal curvature.
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Finally, we define the scaled variable n = % Then the equation (16) is trans-

formed into

(71)
vafef c v2af67vvafs - c vzafefvv of
"on Ry —en ¢8v,7 K ¢8v¢ Ry —en w@vn K w8v¢
_ 3 811’/’ . 827‘ P 812’/‘ : 827“ 1}2 6f€
PPy \ Pi(erin—1) ¢ Py(ekon — 1) ¥ O0vg
_ € (9227’ . 817‘ T 8127’ . 817" 1}2 6f6
PPy \ Py(ekan —1) T Py(ekin—1) ¢ Ovy,
— U7¢af6 ’inafs €] — € gl ;3 3
€<P1(<€I€17’]— 1) duy + Py(ekon — 1) iy LT =TI ] in QxR
£2(0, t1,t2,0) = Pe[f¢](0, t1,t2,0) for v, > 0.

We define the boundary layer expansion:

2
fgl(nat’hL?vb) = nggk(n7L17L27n)? (72)
k=1

where %) can be defined by comparing the order of e via plugging (72) into the
equation (71). Thus, in a neighborhood of the boundary, we have

(73)
07 = (297 %),;(283‘\17 a%) sl
v on Ry —en (Ud) Jvy, Unve g Rs —en Uy £ Un Uy v, + L[F1] =0,
(74)
07 ¢ 20F2 o072\ € 0 0F a%) o
o I Ri—en (% dvy e vy ) Ro —en (Uw vy Unte vy, TER] =2
where
(75)
1 onr - Oar O1a1 - Oar 0.F,
Z = 2UFy, F INEZIRZ Vv 02
[F1, F1] + D[, Fa] + PP, <P1(€f€177—1) pUyp + Po(eran —1) b v,
1 8 T- 8 T a r. 8 r 8? v 69
n b2 1 Vo + 12 il vi L " 1
P1P2 P2(5/€277 - 1) P1(€I€1'f] — 1) a’()d) P1(5/<&177 — 1) 8L1

(76)
+ Uy 891
Py(ekon — 1) Oug

2.3. Boundary condition expansion. The bridge between the interior solution
and boundary layer is the boundary condition. Define

Plfen ) =pb [ s n)de )

-

Plugging the combined expansion from (55) and (72) into the boundary condition
(16) and (18), and comparing the order of €, we obtain
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Fy + % = PlF1L + %] + pa(zo,v), (78)
(79)
Fo+ T = P[Fy + Fa] + ul(mo,v)/ 1 W)(FL+ 1) Ju - n(wo)| du + pa(wo, v).
u-n(xzg)>0

2.4. Matching procedure. Based on the analysis in Section 2.1, if

p1(xo) = pp,1(x0) + My (o), ui(zo) = up,1(z0),  01(x0) = Op1(z0), (80)

where M (x0) is chosen such that the Boussinesq relation (61) and the normalization
condition (based on (15))

/ /Q Pl (0)duds = 0. (81)

hold. By standard fluid estimates, for sufficiently smooth p;, we have Fy, € W
for any k € N and 2 < s < co. Also, since we have F; = P[F1] + p1, we may take
%1 = 0 which means the leading-order boundary layer vanishes.

Then we go to the next order Fy and %,. Note that key observation that Fb
defined through (63) cannot satisfy the boundary condition (79) alone, and thus we
have to introduce the non-vanishing boundary layer .%,.

Let ., satisfy the e-Milne problem with geometric correction

(82)

0.5 e ( rs 85/72) e ( 5 0.7 0.7

—-— VY —— — UpU¢p —— VY, — UpUy ——
¢8vn K ¢8v¢ ¢8vn K w@vw

_ L[F2] =0,
ot = )+ 1#2]

B Ro —E&n
=g2(0,[/17[/2,n) = h(Ll,LQ,,U) — B(L1,L2,U) for vy > 0,
F2(L,11,02,,0) = F2(L, 01, L2,, Z]0]),

where the length of boundary layer L := =% and Ry, Vp, V] = (—Vp, Vg, V),
with the in-flow boundary data

h(t1,12,0) = Mipi(w0,v) + p2(xo,v) — (B — P[B]), (83)
for

B =yt {pu v+ (o0 + |u|2)('”‘27*3)} F L[~ v VLR +T[FL R (84)

Using (10), considering B given in Section 2.1 and using symmetry, we may
directly check that

| r @, 20) oy do (85)
vy >0

=— / B(wg) (v - n(zo))dv + / P[B](z0) (v - n(xo))dv
v-n(zo)<0

vn(zg)<0
=— / B(xg) (v - n(zo))dv = 0.
R3

Here the last equality holds due to orthogonality of A" and N't, and up 1 -n = 0.
Based on Theorem 3.1, there exists a unique h(t1, t2,0) € N such that (82) is well-
posed and the solution decays exponentially fast. Then we further prescribe the
boundary conditions for (pa, ug, 62)

it { palwo) + ua(wo) - v+ 0a(0) (U572 b = hur, 2, 9) + Ma(wo)ue (v). (36)
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Here xg corresponds to (t1,¢2) and v corresponds to v, based on substitution in
Section 2.2. Here, the constant Ms(xo) is chosen to enforce the Boussinesq relation

p — (p2 + 02 + p161) = constant, (87)

and the normalization condition
/ / (Fy + %) (2, v)p (v)dvda = 0, (88)
QxR3

where p is the pressure solved from (60). Then using the zero mass-flux condition
/R ) P w) (- m)du = 0, (89)

and (10) for p1, pa, we obtain
P [} {pa(wo) + ua(wo) - v+ Oa(wo) (M72) } + 7o) = Maud,  (90)

which further yields (79) holds.

Due to Theorem 3.16, we know that (pa,usg,62) € WH(9€), and thus by stan-
dard fluid estimates, we have (pa,us,62) € W* for any 2 < s < oo and thus
Fy € W25L%. Further, we have F3 € W25L.

3. Analysis of boundary layers.

3.1. Well-posedness and decay. In this section, we will study the well-posedness
and decay of the e-Milne problem with geometric correction. We will only record

the main results without the proofs since it is rather similar to those in [38].
0|23

Note the null space N of the operator L is spanned by u% {1, Uy Vgps Vo, | 5 }

Given the boundary data h(v) and source term S(7, v) satisfying for some constant
K >0

<1

Pl S 1, [[e"7S] o 5, S 1. (91)

9,0 ™

we intend to find iz(n) € N such that the e-Milne problem with geometric correction
for G(n,v) in the domain (n,v) € [0, L] x R3 as

(92)
96 ¢ 200G 09GN _ ¢ 206 99 _
n on Ri—en (% Ovy Unte 6v¢) Ry —en (W’ Ovy Untw 81)14,) + £l =5,
G(0,v) = h(v) — h(v) for v, >0,
G(L,v) =G(L,Z[v]),
with the zero mass-flux condition
/ v,G(0,0)do =0, (93)
R3
is well-posed, and G decays to zero as n — oo. Here Z[v] = (—vy,ve,vy) and

L =¢2. For simplicity, we temporarily ignore the dependence of 1,2, but our
estimates are uniform in these variables. Also, the estimates and decaying rate
should be uniform in €.
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Theorem 3.1 (Well-Posedness and decay). Assume (91) holds. Then there exists
a unique h(v) € N and 0 < Ko < K such that there exists a unique solution G(n,v)
to the equation (92) satisfying for o > 0 and 9 > 3,

le®onG]| 5, S L. (94)

00,%,0 ™~

3.2. Preliminaries for regularity estimates. Now we begin to study the regu-
larity of the solution G to (92). From now on, denote the boundary data p := h— h.
Besides (91), we further require

|vbp|oo’q9,g 5 17 ||eKnanSH + HeKnVUSH < 1. (95)

00,9,0 00,%,0 ™~
Let G;(n) = T for i = 1,2. Denote the potential function Wi(n) =
In (RE'E") and W(n) := Wi(n) + Wa(n). It is easy to check that
dWZ - g -
dn  Ri—en

~Gy, Wi(0) = 0. (96)

Define a weight function

Ry —en\? Ry —en\?
o= (- (B - (B2 )

It is easy to see that the closer a point (7;vy,v4,vy) is to the grazing set
(n; vy, Vg, vy) = (0;0,v¢,vy), the smaller ¢ is. In particular, at the grazing set,
€(0;0,ve,vy) = 0. In particular, direct computation justifies the following commu-
tativity property.

Nl

Lemma 3.2. Let ¢ be defined as in (97). We have

vn% S— viﬁ - vnv(z,ﬁ S viﬁ - v,ﬂjwﬁ =0. (98)
dn Ry —en Ovy, 0vg Ry —enm vy, Ovy

Remark 3.3. This lemma indicates the commutativity of ( and the e-Milne oper-
ator, i.e.

(99)

a(¢f) € 2 0(¢f) 9(¢S) € 2 0(Cf) a(¢S)
Yn on  Ri—en <U¢ v, Un¢ Ovg ) Ry —en (Ud’ v, Unty Ovy, >

o, 8 _ ¢ 20f _OF)_ e 2 0f . OF
=¢ (U" on Ri—en (% vy, UnTe e Ry —en v vy, Yn' vy ) |’

Lemma 3.4. For Boltzmann collision frequency v = v(|v|), we have

dv

— | < 1. 100
i = (100
Proof. Based on [13, Chapter 3], we know
1 o] ) )
v(|o]) ~ <2|n + |v>/ e dz el (101)
0

Then for |v| > 1, we have

1 lol 1
< <1 + 2) / e ds + <|n + > eIl <1, (102)
o>/ Jo [o|

d|ol
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For |v| < 1, the key difficulty is the fractional term. Taylor expansion implies

Lol —22 1o~ (—DF skl = (—1)F ok
W/o e dzwmkz:omlvl =k§mlnl <10 (103)

Hence, the desired result naturally follows. O

Lemma 3.5 (Lemma 3 of [19]). Let 0 < p < i and ¥ > 0. Then for 6 > 0
sufficiently small and any v € R3, we have

1 s 4 lu2=1v1?
|k(u,0)| < <|ub| + |u_n|) o sl s , (104)
and thus
0 gelvl? 1
/ =l |k (u, v)| %du < —. (105)
R3 (u)" eelul (v)

Lemma 3.6. Let 0 < p < l and ¥ > 0. We have

olv|?
/ |V ok (1, v) i © sl (106)
e
Proof. Based on [13, Chapter 3], for hard-sphere gas, k = ki + k2, where
ey (1, 0) ~ |u— | e~ 2/uF =30l (107)
1 ,l|u,n|2,1M
N (108)

Following the similar argument as in Lemma 3.5, we have

<n>19 e@|t’| 9 5 5
ok )| S < (1 o) Tkl )
u u
Here, the key is to bound |V,k(u, v)|. Substituting u — o = u — v, we get
k1(o,0) = |o| e~ ol ~oo=3lol® (110)
2 2
1 ,L|J|271M
ko(o,0) = —e * e (111)

o]
Then we compute

Vnkl(O’,U) = |0’| (_ 20 — U)e_‘0|2 o-v— 7|o'

‘ 2

(112)
which implies
IVoki(o,0)] < |o)?e o’ =oo=zlol® 4 5| jp|eloF-oo=slo .= 1 41, (113)

Here, I; is covered by similar techniques as in the proof of Lemma 3.7, I is
covered in Lemma 3.5. We obtain

I <1, I < <1, 114
which implies
<U>19 olv|
Voki(u,0) = Sdu S 1. (115)
R3 (u)" eelul
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On the other hand, we compute

1 25 -0 _1ygp_a lle?=2ee]”
|vuk2<o,n>|=|(o—|"|zo)e HoP (116)
9 o
which implies
|\a\272a4n|2

_1 2_ 11" =
Voka(o,0)| S e #7734

2
s|2-20-v
1

T = II + 11, (117)

[o] —4io12-
o]

Still, Il; is covered by similar techniques as in the proof of Lemma 3.7, I5 is
covered in Lemma 3.5. We obtain
o

Ih<1, IL< <1, 118
which implies
9 2
b olv|
Vola(u,0) P < (119)
R3 <u> eolu
Then the desired results follow from (115) and (119). O

3.3. Mild formulation. Taking n derivative in (92) and multiplying ¢ defined in
(97) on both sides, we obtain the e-transport problem for &7 := Cg—%

(120)
7 (0,0) = per(0) for v, >0,
A (L,v) = o/ (L, Z|v]),
where the crucial non-local term
o (n,0) = ¢(1, 0) k(u, 0).o (7, u)du. (121)

R3 C(nvu)

Here we utilize Lemma 3.2 to move ¢ inside the derivative. pg and So will
be specified later. We need to derive the a priori estimate of /. Note that
is different from K[</] since the denominator ((n,u) is possibly zero. Thus, this
creates a strong singularity and becomes the major difficulty in this section.

Define the characteristics (7(s), v,(s), v (s), vy(s)) for some parameter s € R
satisfying

(122)
dn dv dvg duy,
1 = Um (T; = G1(n)v3 + Ga(n)vy, T = Crmugve, = = —Ga(n)vgy,
which leads to

(123)

vg(s) +v3(s) + Ui(s) =By, vg(s)e” V1) = By gy (s)e” V210D .=

where the conserved quantities E; are constants depending on the starting point.
We can easily check that the weight function satisfies ( = \/F; — E5 — E2. Along
the characteristics, the equation (120) can be rewritten as:

do/ —~
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Let
vy (n,0;1') := vge

On the characteristics, we should always have FE; > vg + viﬁ. Define

Wl(n')fwl(n)’ ’Uq/p(ﬁa 0;7) = vweWZ(”')’WZ’(”). (125)

o (1, 05) \/El — v (n,050) — v (n, 051, (126)
o' (n,037) := (vn(n,n;n ),v;(mn;n’),v{p(nm;n’)), (127)
R0 (n,v;1')] == ( — vy (n,051), v (0, 031"), vy, (1, 05 n’)>~ (128)

Basically, this means (1, vy, vg, vy) and (', vy, v¢, vy), (' =y, vy, vy,) are on the
same characteristics.
We write the mild solution to (120) as

o (n,0) = Kpes) + T[ + Sor], (129)

where the operators K and T are defined as follows:
Region I: v, > 0: The characteristics directly tracks back to the in-flow boundary
n=0and v, >0, i.e.

Klk](n, 0) = (o' (1,0;0) ) exp(~Hyo), (130)
nQ(n',0' (n, 031
T[Q](th’) ::/0 ( (77 v; 77) ) 7777 )dn/ (131)
Here
n v(v'(n,0;y)
H,,y = / | wdy. (132)

Region II: v, < 0 and v? +v¢+vw > v 2(n, v; L)Jrv:f(n, v; L): The characteristics
first goes a bit farther to the boundary n = L, then gets reflected and tracks back
to the in-flow boundary, i.e.

KR G1,0) :=h (v (9, 0;0) ) exp(~Hyo — Hip). (133)
L Q1,0 (n, 0;1)
T[Q}(W’) ::<A (’Ul (77 U"r]') eXp(_HL,n/ - HL,n)dn, (134)
L Q(n', Z[v'(n, v;7")]
+/ ( vy (n, 0517 ) eXp(H"’”/)dnl)'

Region III: v, < 0 and v, +v3+v7, < v (n,0; L)+v}(n, v; L): The characteristics
reaches the line v;, =0 before reaching the boundary n = L, and then directly tracks
back to the in-flow boundary, i.e.

KR (1,0) i=h (v (9, 0;0) ) exp(—Hoye o = Hye ), (135)

TIQl(n,v) ::</0n Q(Zé(l:;’(:::/;?/)) eXp(_Hn+,n’ - Hn+,n)dn/ (136)

v Qo Al (1,01
- /n vy (1, 0517)

exp(Hn’n/)dn'> .
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Here n*(n,v) defined by
Er(n,0) = vZ(n,0:07) + v (n,03m") (137)

locates the position that the characteristics touch v, = 0 line, i.e. (97,0, U;w Uib) is
on the same characteristics as (1, vy, vg,vy). Based on [38], we can directly obtain

||’C[pﬂf]||oo,19,g 5 ‘p&{|oo,19,g7 (138)
TS 00 S 7" Sur | (139)

Since we always assume that (n,v) and (n,v’) are on the same characteristics,
in the following, we will simply write v’(n’) or even v’ instead of v'(n,v;7’) when
there is no confusion. In addition, we will use ¢ or dg to represent small quantities.
They may depend on € and need to be chosen later. -

The next three subsections will be devoted to the estimate of 7[¢/]. In the
analysis below, we will repeatedly use the following packages of simple facts (PSF):

00,9,0"

1. Based on Theorem 3.1, we know HeKW’QHOO 9.0 <1.
2. Based on Lemma 3.5, for 0 < p < i and ¢ > 3, we have HeKO’7K[g]HOO 90 <
lefom 1G] 5, S L
3. Based on Lemma 3.6, we know HeK"”VvK[Q]HOO 9.0 < HeKO"QHOO 9.0 <1.
4. Since Fj is conserved along the characteristics, we have |o| = |v’| and further
(0)” 2ol = (o) el
3.4. Region I: v, > 0. Based on (130), we need to bound
S [ (0,0 (. 0i0))
I="T|d] :/ exp(—H, ,/)dn’. (140)
o up(nosn) b
Based on (123) and (96), we have
Ry — 57]’ Ry — 577/
E2(77/>U;5) — TU;7 Eg(n/,v;}) = TQU&} (141)

=

Then we can directly obtain for 0 <’ < L =¢"2,

’ N 2
((n',0") = \/(%2 +o2 +v2) - (—ngf" ) vE - (ng" ) v (142)

S |v7’7] + \/577’]1);)] +/en' |vy| S [v'),

[\v]

and
(143)
URS= % (W + 1;1\/ (R% — (B — fn’>2)v<’f * ng\/ (R3 — (R - 5’7/)2)”4”2 )

vV

ot |+ /e ol + e o] 2 Ven o]

Also, considering (123) and (96), we know for 0 <n’ <1,

Ry —en 2 Ry —en 2
r_ 2 2 2 2
vy < vy = v%+v¢+vw—v¢< 1_677/> —%( 2—577’) (144)

S 2+ el — )0} + ey — '),
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which means

n o1 n 1
7 / 1 gy<- / dy (145)
v Uh(Y) w2, /v +e(n —y)vd +e(n — y)vl

V3 + e =)ol + ey —n)e?
Define a C*° cut-off function x € C°°[0, 00) satisfying

1 for |u,| <9,
X(vy) = { 0 for |v,]> 26.

We use x instead of a sharp cut-off for the convenience of integration by parts.
In the following, we will divide the estimate of I in (140) into several cases based on
the value of v,, v, en’ and e(n—n'). Assume the dummy variable u = (1, ug, uy) =
(up, @). The similar notation also applies to v = (v,, vg, vy) = (vy, D).

Estimate of I : v, > dp: In this step, we will not resort to &7 equation (120), but
rather directly bound

(146)

2
()7 e 1| 5 ¢

9 20G 941 2 0G
o) el 221 < o elel” == | 147
) ee 55| < |+t ot &7 (147
Hence, the key is to estimate %. As in (130), we rewrite the equation (92) along
the characteristics as

G(n,v) =exp (—Hyp) (p(t)’(())) . /0’7 (K[G] +S) (77’7n/(77/))

exp (H,y ) dn’

vy (')
(148)
Taking #n derivative on both sides of (148), we have
0
a—iszl + Xo + X3+ X4 + X5 + X, (149)
where
(150)
_ Oty 0 ; " K[G)(n', 0" (1)) ,
X1 = —exp (-Hn’()) 877 (p(t) (0)) + /0 W exp (Hn/,o) d’l’} ;
dp(v’(0
X = exp () 20O, (151)
Un
(153)

1 a,U/ /
12 (! 3(77 )d77/>
vE(n')  On

X5 = exp (—Hyyo) / KGN+ 0. 00) (57, 0) O gy (154)

(155)

X4 = —exp (*Hn,o) /07’ <(K[g] +5) (77,7 U/(n/)) €Xp (HTI’70)
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1

Xo = exp(=Hy0) [ s (Vo 16]+.9) (o000 25 ) exp (10)

We need to estimate each term. Below is the package of preliminary estimates
(PPE):

1. For 1 <, we must have v;, > v, > &y, which means L<l<s,
n

2. Using substitution y = H, ,/, we know
n n/ / oo
/ V(I (771)) exp(—H, ,)dn'| < / eydy‘ -1 (156)
0 %(n ) 0
3. For ¢,s € [0, n], based on (PSF), we have
"r(v'(y)) |U|
H, | < / PO gyl < Big— s 157
‘ t, . U%(y) | | ( )
4. Direct computation reveals that
uy(n') — evy uy(m') — ewy (158)
o Ry —en’ 87] N Rg—en”
vy (1) _ % o Ry — 02 Ry — (159)
on v (n) ¢R ng—&:n
which implies
o' (n' o' ! o (v 2 2
Ps)| < cpo. ]”“”SEM, i) < 2ol < SR e
on on on vy (1) do
5. For t, s € [0, 7], note that
OH, s /t 0 (V(U'(y))>
S _ dy 161
on () (161)
L1 ov(e')) 1 ( v, (y) , L 0v(y) , 8v§p(y)>
= o, (Y + gy + oy (y dy
| 5w gl ()\o<y>| W=y Wy T,
t o
v(|o’ n(Y)
/s v’2 y o Y
Based on (157), Lemma 3.4 and (PSF), we obtain
OH, s /t v(v'(y)) ( |0> ’ /t v(|v'| () e o]
s < e+ )yl + | [ BEYUED g 162
’ n s v o )T Taw g Y (162)
2 3 3 3
e{v e(v en (v 0
< SO g 5 Oy g g O S OF
0 0 0
We estimate each X; based on (PSF) and (PPE). Using (148) and (162), we have
3
9 elol? ‘ < |9Hn0 ‘ 9 olol? ‘ < (ol (v ’ 9 olol? ’ 1
07 e x| 5| 250 [ eee] < (5 + ) [ e o

1
< %Hgllwﬂm,g S 53

Based on (160) and (95), we know

e v €

olv| < 0 qelvl? < =
0 97 3] < (=bl + 2L 07 90| £ & Dbl € 55 (160
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Also, using (91) and Lemma 3.5, we have

(o) el 5| 5 | - (\<n>%@'°'2mg1\ " \<u>%@'“s1) (165)
Un
< ;<1 ; ]<u>ﬁe@'“u1g\) Sy

On the other hand, using (160), (156) and (91), we obtain
(166)
€

9 2 e _ K
’(b} eolvl X4’ < 58<HV 1g||oo719+27g + ||S||OO,19+2,Q) (/0 exp (Hn,n/)dn’) < %.

Using (162), (156) and (91), we know
(167)

9 2 1 - ' :
‘<b> e@ln\ X5’ 5 53(”1/ 1QHOO’19+379 + ||S||oo,19+3,9) (/0 exP (_Hn’nl)dn/) § 573.

Finally, using (160), (156) and (95), we have

9 2 € K €
‘<U> eel®! XG’ S 3 <g|oo,19+2,g + ||S||oo,ﬁ+2,g> (/0 exp (_Hn,n’)dnl) S 53
0 0

Collecting all X; estimates, we have

1
3
Estimate of Io: 0 < v, < ¢y with 1 — x(u,): We naturally decompose 1 =
(1 = x(uy)) + x(uy). In this step, we focus on 1 — x(u,) part, while x(u,) part will
handled in following steps involving I3, I4, Is. Based on (146), the cut-off 1 — x/(u,)
is nonzero only when |u,| > §. We have

e [N [ S (1x(un>)k<u,n'w<n',u>du>j%exp(Hnmdn' (170)

:/077 (/}RS (1 - X(u,,))k(u,n’)g(g;;,u) du) C(n;;?t’/) exp(—Hy . )dn'.

We first handle the inner integral. Based on (92), we have

o9/ w) _ 1 (Gm/) (229000, 26000

2 g
‘<0>0e£""‘ 11’ S5t (169)

¢ ou, T B,

on’ uy

G (' u) Bg(n’,u)> (171)

/ 2YI\N -2
+ Ga(n )(uw o, Uy Uy Py

+vG(n',u) — K[G](n,u) — 5(77/&‘)) -

Hence, inserting (171) into the inner integral in (170), we have the decomposition

/ ::/]RS (1 o X(un)> k(ua t’/)g(g?;/u) du = Ji+Ja+ J3 (172)

= /R (1= () ) Cu, u’)ui (ug(n’, w) = K[G)(n',u) ~ S(ﬂ’vu)>du

n
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= [ (=) Yty ) (2 20—, S

= (0 ) Gt (4 25 g, P Y
)

Since |u,| > ¢, using Lemma 3.5, (91) and (PSF), we obtain

(173)

[0y el < <W>ﬂe9bw2jgs(1A—Xﬁm)>khuW)£;(ug(nﬂu)A—KﬁgKnﬂu)AfSUfﬂ0>du

()? e’ ”

— <
u) eelul

du

1 1
S 3 (10l + 15T,0) ' [, ko) S5

On the other hand, an integration by parts yields

2= ( - L‘%(l — () — %x'(un) - (1- x(un)))Gl(n')k(m o)G(n' wdu  (174)

Here the key difficulty of Js ; is the integral singularity due to ui We need the
n

following lemma.

Lemma 3.7. Let 0 < p < i and 9 > 0. Then for § > 0 sufficiently small and any
v € R3,

29 2

2 1 b olv|

/ =l 15 (u, )] %du <1 (175)
RS |ul (u)" eelul

Proof. From Lemma 3.5, we observe that

(176)

1 2_ 1““ -0 2 2
)e—g\u—u\ 8 Tw=ez o(lul*—|v| )

o)l L < (1 o) ol

()7 cel® ~ o]

We first handle the exponential term in (176). Let ¢ = u—1v, so u = 0 +v. Then
we have

T L —w|\ ,
—=-ju—0v —_— v 177
sl ol g e (- 1of) )
2 22
L 1‘|a+n\—\n|‘ .
=—= - = — o] — o
sl -5 —p o (lo+0f —[of)
1 5 1‘|0‘| — 20 - U‘ 5
__Lp_ 1t ~20-0)
slef’ —g = —e(lef -2
Lo -v|
== o+ 50 0= 5o e (ol ~20-0)
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For0 <p< %, the discriminant
1 2 1 1
A=(=+2 2(—=—p) =40>--<0 178
<2+Q>+(4Q) 0" =71 <0 (178)

. g-v . . . .
so the above quadratic form for |o| and ﬁ is negative definite. In particular, for
o

6 small, the perturbed form is still negative definite, i.e.

2 22
(1 5)' ? 1 - o Ju® — Jo)? (179)
Y PPN Y (N
8 8 |u—v|?
2

-0
§—<|a|2+"’ a )s—m—nf.

o]

Hence, using Holder’s inequality, (176) and (179), we may bound

a1 ? qelv|?
[ e i) S (150)
RS |l (u)” eelul

51 1

5/ (1+|u70|2) — <|un+ )e““'zdu

R3 |l u— o]

1 1 2

< [ (vl g e ra

R |l lu— o]

1 2 3 1 2 2
S(/ —elvol du) (/ (Iu—n|2+ 2)e—‘u—"l du) =1 xII.
R3 |u] R3 [u — o]

Using spherical coordinates and substitution u — ¢ = u — v, we have

1 3 1 3
15(/ 2e'“"leu) + (/ 2(3'“"le1> (181)
jul<t [uf ul>1 [uf
1. \? 2 \? 2 \?
5(/ 2du) + (/ e~ lu—vl du) S1+ (/ elel da) <1,
ul<1 Ju| Jul>1 R?

1
1 - 2
II 5(/ (|cr|2 + 2)e'”|2d0> <1 (182)
R? o]

In summary, inserting (181) and (182) into (180), we obtain the desired result.

and

O
Since |u,| > 6, using Lemma 3.7 and Lemma 3.5, we have
9 712 I 13

oy el gy, < @IIGIIOO,M,Q < 5= (183)

On the other hand, the estimate of J 5 has further complication due to deriva-
tives of k. We need the following lemma.

Lemma 3.8. Let 0 < p < i and 9 > 0. We have

(0)" eelol”

TR u< (o). (184)

|Vuk(u, 0)
R3
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Proof. This is an improved version of Lemma 3.6. Following a similar argument,
we have

9 2
b eQ|U| 9
(0) S (14 u—v?)?

Ty el ~ [Vuk(u, )] el 10) (185)
u) eeit

|Vuk(u,0)]

Here, the key is to bound |V, k(u, v)|. Substitutingu — ¢ =u—v = (0y, 04, 04),
we get (110) and (111). Also, note that V,, = V,. Then we compute

Voki(0,0) = |o] (— v — g)e 1ol moo=slol’ | |"—|e—'°‘2—“'°‘%‘”‘2, (186)
g

which implies
(187)
Voki(o,0)| S (lof* 4+ 1)e ol moomdiol g o om0l —oo=blel e py o1y,

Here, using similar techniques as in the proof of Lemma 3.7, we obtain I; < 1
and I < (b), which imply

9 2
b olv|
[ Va0 2L S o, (158)
R3 <u> eQ‘u|
On the other hand, we compute
1 20 -1 1l 2y |le?=200]”
|vak2(a,n)|=|o|<—a+n—r’z(u.y))e ol =5 (189)
o
|o|2=20-0 2
— |O-|3e_‘1102_ia’4’7
o
for tensor
1 0’35 + ai —0y04 —0n0y
T i=— | —oyoy on+ol —o40y |, (190)
o] —0n0y  —040y O+ 05
which implies
1 _1‘a|2_lm
|Voka(o,0)| S 1+W e ! CARNPIE (191)
o

ol o\ 4o L2l
+ <+ 2>e 4 1 |o|? = III +IIQ

Still, using similar techniques as in the proof of Lemma 3.7, we obtain I1; <1
and Il < <t)>27 which imply

(0)” edlel’ < ()2

[ Vuks(u,0) )7 o (192)

Then the desired results follow from (188) and (192). O
Also, using Lemma 3.7 and Lemma 3.8, we have

[(0)” T 20| S 2UGl 4 S 5 (193)
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(183) and (193) yield

‘( 1y eele'l J‘N 5= 194)

(
Combined with a similar argument for Js3, we estimate the inner integral in (170)
(

195)
o 1 5 o 9 ) i 5 o

Then for the outer integral in (170), we can use (142) and (156) to show that

n C /,UI (o
2 exp(— | <| [ 22D exp(Hn,n»dn’\ <1 (196)
0 Un(n )
Then we have

Estimate of I3: 0 < v, < dp, with x(u,), and /e |v’| > vy Based on (146)
and (170), we are left with x(u,) part, which is nonzero only When [u,| <26, ie.

[ (L St o) et nar. 09

We will further decompose this integral into Is, Iy, Is. In this step, based on
(142), /e |[¢'| > v, implies

' o) S fup| + Ve [o'] < Ve’ |9']. (199)
On the other hand, (143) implies
w2 Ven' uf. (200)

Then considering (199) and (200) and using Lemma 3.7 the inner integral in
(198)

nv g|u"2 C(ﬁ’,t") Nt (1
o) et | S () o )

(201)

S| S|l

00,9,0"

0y eele'l” /R 3 |111—|X(un)k(u, o)) (1, u)du

This bound is weaker than desired since we have not used the smallness |u,| < 24,
which means the integral is actually over a very small domain. We naturally modify
the proof of Lemma 3.7. The key step is (181). Here for either |u| <1 or |u] > 1,
the small domain of u, produces an extra smallness in integral. In precise,

) el [ VL) o) 0 e S O, (202)
s C('w) ~ ot
Here, this |¢’| will be handled by the outer integral of (198) as in (196)
gl T v(v)
/ o exp(—Hy,y)dn' < / o exp(—Hy,y)dn’ < 1. (203)
0 n 0 n
In total, we have
()7 e 1| S 01171, (204)
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Estimate of I;: 0 < v, < do, with x(u,), e/ |[v'| <w; and v} < e(n—17') 6]
I, is defined similar as (198). Based on (142), /en’ [o'| < vy implies

Cn',0") < o] + Ve 17| S vy, (205)

Hence, similar to the derivation for I in (201) and (202), using (200) and (205),
we have

(n’)ﬂe9|"'|2 ] ?(7777//’ t::))X(un)k’(u,tJ’),;zf(n’,u)du

(206)

! /
S o el T [ Ly G, o) ()| S G
~ Ve o Ju] P R RV

Hence, we must handle \/UEWT with the outer integral in (198). Based on (145),

w2 <e(n—n') 5% leads to

/

_HW:_/" v(v) o« ) —17) <_V(U) n—1 (207)

y<S— .
A 0] /e(n — ') |9 €

Therefore, we know

! "1 v(v) [n—1n
" exp(—H, ,d'</ - dn’ (208
\ Ve o, exp(—Hyp)dn' < e O n  (208)

[ (T e

/
where we use the substitution ' — 2z = T We can estimate these two terms
€

separately.
1 1

1 v(v) [n ) / 1
—exp| — — - —z]dz < —dz = 2. 209
[ gzer (- e (209)

‘1 v(v) [n ) /7 ( v(v) [n )

—exp| — — - —z)dz < exp | — — - —z]|dz 210
[ e (-5 ERE 210

=gz s |9] ?
< dt<s|—=) <1
e as (o) 5
8),

Inserting (209) and (210) into (20
bounded and thus

we know the outer integral in (198) is

()7 14| < 617 (211)

00,9,0°
Estimate of I5: 0 < v, < &, with x(u,), Ve [o'| <o), v2 >e(n—1') 0]?: I is
defined similar as (198). Using (205), we have

(212)

S

¢(n',v") ’ ’ 1};}
X (uy)k(u,0")e (n', u)du
s ((n',u) (o (1, 0, ) rs C(' 1)
Here the key difficulty is the integral singularity due to {(n’,u). We need the
following lemma.

X () e (w, 0%) 7 (1, w) du
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Lemma 3.9. For any v € R3, we have
(0)” elol?

1
k(u,0)| L&
/Rs C(m;u) o) (u)” eolul®
Proof. Based on (97), letting u = (u,, ug, uy), we directly obtain
Clpw) 2\ /3 + (e + (emud (214)

Combined with (176) and (179), we bound

1 1
— |k(u,0)| du <
L. o o s | o+ e + e

du < 1+ |In(en)] . (213)

w—vle v Fay  (215)

e =Py — 14 1T,

Jr/ 1 1
RS Ju2 + (en)u2 + (en)u? u— v
n vy iy,

Since exponential term decays much faster than polynomial term, we have
< / L
R3 \/u% + (emu + (en)ui,
5 / L e*\ufu\Qdu_’_/ 1
lul<1 \/u% + (emud + (en)ui, ul>1 \/u% + (emud + (enu,

1
,S/ (/ dun>du¢du¢ +/ ey
Juol<tfusl<t \punl <ty + (em)u? + (en)ud ju>1

1
<1 +/ </ dun> dugdusy.
Juol<tfusl<t \punl <ty + (em)ud + (en)ud

The key is to bound the inner integral for |uy| < 1,Juy| <1, 0<n<L=c¢
1

J: :/
Juy | <1 \/u?7 + (en)u, + (en)u,

eIy (216)

y—nl2
e T dy

1
2
)

du, (217)

=2In <1 + \/1 + (enu + (sn)uf/)) —2In ( (emug + (577)1@)

< \/1 + (emu + (en)ui + ‘1n ((en)uﬁ, + (en)ufpﬂ
S 1 [ (enpud )|+ [im (ned )| < 1+ mtem)| + i g ]+ [ ]
Inserting (217) into (216), we obtain

<1 +/ (14 e + o fug ] + 1 ]| ) dupdus (218)
lug |<1|ugp <1

infugll s+ [l £ 1+ e

<1+ |In(en)| +/
[uy|<1

lug|<1
On the other hand, similar to (216), we have

2
e lu—vlTgy (219)

11 5/ 2
Jlu|<1 u% + (sn)ui + (sn)uf/) [u— ]

a2
[u—v]% 4,

+/ 2¢
Juz1 a2 + (en)ud + (en)u?, v — vl
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1 1
5/ </ duﬂ) dugduy,
P ‘u¢‘§1,'l{w‘§1 Jlup|<1 \/u%+(an)ui+(sn)ui \/(u¢—v¢)2+(uw —vy)?

1 u—pl2
+/ 5 e lu—v] du
Jul>1 |u— o]

1 1
§1+/ </ dun> dugduy, .
|u¢,}§1,‘uw‘§1 Jup|<1 a/u% +(sn)ui+(en)ui \/(“d> —vg)? + (uy — vy)?

Inserting (217) into (219), and applying Holder’s inequality, we obtain

1 1 1 1
ugl<Liugl<t /(g — vg)2 + (g — vy)
1 1
<1+ [ln(en)| +/ o fuoll + o ioll g, g,
ugl<Lup i<t v/ (g — vg)2 + (uy — vy)

Wl

1
St e+ ([ —
[ <1, uy <1 ((u¢ - ’U¢)2 + (uw — ’Uw)Q) 4

1
3 3
X (/ <|ln [ug|| + |In |u,¢,|\) du¢du¢>
[ug <1, gy <1

Note that using polar coordinates, we have

1

/ 3 du¢du¢, 5 1, (221)

g <L luyp <1 (g — vg)2 + (g — vy)?)?

3
/ (i gl + i | ) syl < 1. (222)

[ug <1,Juy|<1
Hence, inserting (222) and (221) into (220), we get

IT <1+ |In(en)|. (223)
Inserting (218) and (223) into (215), we obtain the desired result. O

Using Lemma 3.9, we may bound

(224)
) el [ SRT o o)t  (14 ier)] ) c

Hence, we must handle v%(l + |In(en’)| ) with the outer integral in (198). Based

on (145), v2 > e(n—1') 6> implies
n ’ / o
—Hyy = —/ V,(U )dy S- o) =) (225)
' vn(y) Uy
Therefore, we know
(226)
K ’ ’ 1 ’ K ’ V(U/)(U—W/) /
= _ , < _rb)\nm=n)
/o Uy, (1 + |1n(517 )‘ ) o exp(—H, ,)dn < /o (1 + |ln(577 )’ ) exp ( o dn.
Naturally,
L+ n(er)| S (1+ ()] ) + M) (227)

Since 0 < v, < dg, direct computation reveals that
(228)
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/On (1+ () ) exp ( _ W)dn' < (1+me)) O do(1+ (@) ).

Hence, it suffices to consider

Q= /|ln exp( ()(’7 ’”)dﬂ. (229)

If 0 < n < 2, applying Holder’s inequality, we have

(230)

s ([ o) ([ 28 <

f2<n<L= 5*%, we decompose and apply Hélder’s inequality to obtain

Q5 [ e () gy (281)

n

o [ sy (- A=)
5(/0 |1n(n’)|2dn’>2 (/:exp <_ W)dn’f

+In(L) /217 exp ( V(U'>(77—77’))d77,

o (1 + [In(e)] )

In summary, we have

/Onlln(n’)lexp<—W)dn’§ B(1+mE]). @)

n

This completes the bound of outer integral of (198). Hence, we know
‘<u>ﬂeelv\215’ < \/50(1 + [Ine)| ) [E (233)

Synthesis: Collecting all estimates related to I; in (169), (197), (204), (211) and
(233), we have proved

2 € 1 € 1
(00" 1] (34 VB (1 (e ) Nl + (54 55+ 52+ 5)- 239

3.5. Region II: v, < 0 and v} + v3 +vj, > v (L) +vj7(L). Based on (133), we
decompose

N n J ,,D/ ’ )
T = | L)) o Hy o — Hy )y (235)
0 Un(77 )
Lo/ (0,0 () ;[P (0 () ,
+/n Wexp(—f‘h,n' - HL,n)dU +/n WGXP(Hn,W’)dU .

n
The integral / part can be estimated as in Region I due to exp(—Hp , —
0

L
Hp ) S exp(—H,y ), so we focus on the integral / part. Analogously, it suffices

n
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to estimate

L WW u/(n/))
I = —_— —H, p)dn. 236
| e ) (236)

Here the proof is similar to that in Region I, so we only point out the key
differences.

(142) and (143) still holds, but the key result (145) needs to be updated. For
0<n<7,

(237)

2 2
I a2 a2 — 2 2 2 _ [ Bazen 2 _ [ Re—en 2
vy =\ B g - = \/”n TGt (Rl—sn'> Yo <Rz—sn/> vy, < |on]

Then we have

’ ’

n 1 n 1 I
—/ , dyg—/ S dy=-1"" (238)
ALY n |vn] vy |

Here, note that v, < 0 but v;, > 0 defined in (126).
Estimate of I1;: v, < —dp and v;] > %0 for all o' € [0, L]: Since ' > 1, we must

have v;] < |vy], so it is unclear whether ‘v” > %0 directly from v, < . Hence, we
must put this as an additional requirement. If there exists some v% < 570, it will be
handled in II5 estimate later.

The estimate is in the same spirit as that of I;, so we only point out the package
of preliminary estimates (PPE):

1. For / > n, we have vi, < é.

n
2. Using substitution y = H,, ,+, we know

Ll/ 1oy

3. For t,s € [n, L], based on (PSF), we have

0
< ’/ eydy‘ =1 (239)

v
ool 5 2. (240)
0
4. We have
81)/ / 81}/ / av/ / 0 2 0 2
on n n v (') ™ o

5. For t, s € [, L], we obtain

H . 3 L 3 3
Mus | 200y g 2D O (242)
an 53 53 53
With the help of (PSF) and (PPE), we have
1
‘<n>19 ellol’rr | < (243)

~5 T
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Estimate of IIy: —dp < v, <0 with 1—x(u,): We decompose 1 = (1 — X(un)) +
x(up)-

L = /n L( } CC((’Z’Z)) (1_X(un))k(u,n’)d(n’,u)du)%exp(H,,,,,/)dn’. (244)

Then by a similar argument as estimating Ig, we have

[(0)7 e 11, ‘ S5+ 3 (245)

Estimate of II3: —dy < v, <0, with x(u,), and \/en’v; > U,’7: This is similar to
the estimate of I3, we have

(o) e 11| S 8.7 (246)

00,9,0°"

Estimate of I1y: —dy < v, < 0, with x(uy), and /en'vy, < v;: This step is
different. We do not need to further decompose the cases like I4 and I5. Based on
(238), we have,

_H. o, <_ V(n>(77/ _77). (247)

mn ~ vy,
Then following the same argument in estimating I5, we know

() @™ 11| S /3o (14 ()] )17 ] 0, (248)
1
Estimate of IT5: v, < —dp and v;, < =Y for some 7’ € [0, L]: Now we come back
to study the leftover in Step 1, i.e. though the characteristic starts from a point
with |v,| > 60, as it goes, we finally arrive at the region that v; < %‘)
Let ( = ,’u¢,fuw) be on the same characteristic as (n,v), i.e. this is the first

time that the characteristic enters the region v < 7" In detail, we have

leé‘?] *_RQ*EU

* , - , 249
U¢ R1 — 5’17’k s ’Uw R2 — E’I’}* Ve ( )
52 lesn 2 9 Ry —en\° 5
Taking 7 derivative in (200) we obtain
Ri—e¢ Ro—¢
M en'y i+ TV

, (251)

T (Ry—en)? (Ro—en)?
A LR

Here we do not need to compute n* explicitly. Since n < n* < L, we know
0<en<en*<eL= e%, which implies

R R
71<R1—€77 <R1—€77<R1, 72§R2—€77*<R2—€77§R2. (252)
Inserting (252) into (251), we have
on*
< 253
s (253)
Taking 1 derivative in (249) and using (253) and (252), we obtain
ov} Ry —en On* 1
| _ 1—¢En _on <
- —— S — v), 254
| = el [ o~ | S 0 (251)
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ovy, Ry —en On* 1

L B R S <
on ‘ lvyl ’(R2—€77*)2 Ry —en* ev (o). (255)

Then we have the mild formulation between n and n* as

5
G(n,0) =G (n L %,%> exp(—Hy ) (256)
" (K[G]+ S) (1,0 (n, 0317")) ,
+/n ot (7, 0:77) exp(H,y )dn'.

Similar to the estimate of 11, taking n derivative in (256) and multiplying ¢ on
both sides, we obtain

2 2 8 2
[(0)” e 115 = |(0)” o2l C(n,b)ai‘ Sl Popp)|,  (257)
where
ag 77*,_670,1);;3”:2;
P = ( a; )exp(Hn*m), (258)
* 60 * % 0H, *
P 6 (7= vt ) xp(Hy ) 2 (259)
9 ( / (K1G)+ ) (o' (n, 03 ) . )
+ o exp(Hy n)dn ).
an\ Jy vl (n, 051 o

0
Since for i’ € [n,n*], we always have v; > 50, mimicking Step 1 to estimate 11y

and using (253), we may bound

‘W9 ecl®l’ ¢ py ( < (260)

~ (53 &
The key is the estimate of Pi: considering |exp(—H,« )| S 1 and using (253),
(254) and (255), we have

2 2 8g 77*7_6*07“*71)*
(07 e Py 5 ()7 eeF'¢ ( P )

(261)

g (T/*a —%J,’U;Z,’U:Z) %
vy, an

ag (77*, _670, ’U:;, 'U:Z) an*

0
9 olv]?
o o + <7)> e ¢

< |(v)? eell¢

oG (', % v5.v;,) v
vy, on

2 (50
ot erter (i =i )| (), el ()]
2 oy 8% 00,9,0 6'% 00199

The estimate of ‘(v) eelvl® o7 (77 = ’%’”w)

*
U77

+ |(w)? e

S

is achieved as in I, I13,11,

< %". However, we have to preserve the latter two terms related

since now
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to g—g and aa—g. Hence, we have
Ve Ve

o et er| (54 VR (L) Iy + (5 +5) 202

4G I 2C] 9

Inserting (260) and (262) into (257), we obtain

+e€

(263)

2 € 1 € 1
o e 11| 5 (54 Va (14 W) )l + (574 57+ 52+ )

()l o),

Synthesis: Collecting all estimates related to II; in (243), (245), (246), (248) and
(263), we have proved

(0)” e 17| < (6 4+ /3o (1+ ()] ) )17 ]| ., + 3+i4+ 2+1 (264)
FEI T I C

v +el|lv
( av¢)"oo 9,0 H ( av"/")”ooﬁ,g

3.6. Region III: v, < 0 and v; + U¢ + v¢ < U/Q(L) + vy 2(L). Based on (135), we
decompose

+e

+e€

P n j(’]’:“’(’? )) /
T] :/0 W exp(—H,+ . — Hpt ,)dn (265)
nt ,;z;(n’ b’(n’)) nt =527~(77/ U’(n’))
+/ — " exp(—H, 4 ,» — H 4+ ,)dn’ +/ — "2 exp(H, ,)dn’.
; o (') nt.n U ; o (') nm

77+

n
The integral / part can be estimated as in Region I and the integral / part
0

n
can be estimated as in Region II, so we omit the details here. At the end of the
day, we have

(266)
9 olo|? < € 1 € 1
‘<U> e III‘N((S+\/5O(1+|IH<E)|))éz ”0019,9 <53+64+52+5

4G I 2C] 9

3.7. Estimates of normal and velocity derivatives. Collecting estimates (234),
(264), (266) in these three regions, and inserting (138) and (139) into (129), we have

17100 (8 VA (14 e >|)) 1o+ (543 + 5+ 5) (267)

(o) el (o)L, et 7S
0019@ c0,9,0

Then we choose these constants to perform absorbing argument. First we choose
0 < § < 1 sufficiently small such that C§ < ;. Then we take dy = 6%(1 + |In(e)|) 2
such that C(1+4|In(g)|)v/dy < C§ < 1, for € sufficiently small. Hence, we can absorb

+e€

+e&
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all the term related to |||, 4,
side to obtain the desired result.

Lemma 3.10. Assume (91) and (95) holds. We have

b b EEL,

We may apply the similar techniques to estimate the velocity derivatives. Taking
vy, derivative in (92) and multiplying ¢ defined in (97) on both sides, we obtain the

e-transport problem for % := ( %
n

on the right-hand side of (267) to the left-hand

(268)

+¢€

(269)

0B 2 OB 0B 2 OB 0B
Uy —— an +Gi(n )(v¢avn — U,,v¢6v¢) + G2(n) (Uw a0, — Uty = ) +vB =B+ S,

P(0,0) = pxz(v) for v, >0,
B(L,v) = —B(L,Z|v]),
where the crucial non-local term

B(n,v) = /R C(0)D0, k(1 0)G (7, w)du. (270)

Here we utilize Lemma 3.2 to move ¢ inside the derivative. pg and Sg will be
specified later. Compared with &7 defined in (121), the key difference is that B
does not contain Z directly but rather G. Hence, we no longer need the analysis in
previous sections to tackle the strong singularities. Then directly tracking along the
characteristics, by a similar but much simpler argument using Theorem 3.1, Lemma
3.6 and (91), (95), we obtain the desired result.

Lemma 3.11. Assume (91) and (95) holds. We have

1Bl o0, S 1+ IP2loo 0., + ||V Sz (271)

00,9,0°

In a similar fashion, € := Qaw and 2 = CaT can be estimated. Assume the
boundary data and source terms py, S¢, pg, Sg will be specified later.

Lemma 3.12. Assume (91) and (95) holds. We have
1% 10,0 S 1+ 1Pl o0+ v S¢
120l 00.9.0 S 1+ P2loc 0., + [V Sa

(272)
(273)

00,9,0
00,9,0°

Then we combine above a priori estimates of normal and velocity derivatives.

Theorem 3.13. Assume (91) and (95) holds. We have

S &
00,%,0

<o

S (@)l (274)

Ovy,

00,1%,0

<1 (275)

‘007199 H 8U¢ 00,9,0

Proof. Collecting the estimates for &/, £, ¢ and 2 in Lemma 3.10, Lemma 3.11,
and Lemma 3.12, we have

8’U¢

(276)
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8 _
|5 9.0 S + et loergp + 1 S|, + s(nmm,ﬂ,g + ||u@||w,g),

1Bl o9, ST+ P8l o 9,0 + [V 52| g0 (277)
1€ ]| 00,9, S+ D% 00,9, + 1V 8% | 5., (278)
12 0c,9,0 SLH P20 9,0 + [V 52| o .o (279)

Now we clear up these boundary terms and source terms. At n = 0, we know
¢ = v,. Hence, we may solve from (92) to get

0
Py = Uy ag (0,0) (280)

8p Op € ap Op
= — K|G](0,0).
R ( ¢8v %8%) Ry < wav vwa +vp = K[G](0,v)
Therefore, using Theorem 3.1, Lemma 3.5, (91) and (95), we have

|p£27|oo7197g S € |Vnp|oo’19+2)g + |p|oo719+17g + Hl/_lgHoo 9,0 S L. (281)

On the other hand, we can directly take derivative in the boundary data p to get

Ip Ip Ip
P = v, — = v, —— 282
ba Up 67)77 y DPw Uy a’U¢ y P2 Up avw ) ( )
which, using (95), yield
|p'@|oo,19,g + |p<g|oo,19,g + |p@|oo,19,g ,S |v0p|oo,19+l,g S L (283)

Directly taking 7 and v derivatives on both sides of (92) and multiplying ¢, we
obtain

dGl dG2
Ser = I (%‘% vnvqu) + dn(vd’%} vnvw@), (284)
Sgg = — leafg - vaw@, (285)
ch =G1 (2’()(25{%) — U,,%), S@ = GQ (2’01/,% - ’Un@) . (286)
dG dG
Note that fact that |G1| + |G2| < e and d—nl + d7172 < £2. We have
775t S (W 1+ 10T ). (287
I Sl 17y (19 1P ) 259
ISl S (190 + 11 ) (259)
I8l 0 S (19000 + 171 ) (200)

Inserting (283) and (289) into (278), and absorbing ¢||€|| into the left-hand

side, we get

00,9,0

Il S1+¢)| 4| (291)

00,9,0 ~ 00,9,0"
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Similarly, inserting (283) and (290) into (279), and absorbing ¢|| 2| into the

left-hand side, we get

00,9,0

121l ST+ el PBlloc.s.or (292)

Inserting (291) and (292) into (288), and further with (283) into (277), after
absorbing &2 %, 4., into the left-hand side, we have

00,19,0 ~

||‘%)||oo 9,0 Nl + ||V 142{”00,19,9' (293)
Then inserting (293) into (291) and (292), we obtain
”(g”oo 9,0 ~1+€HV 1ﬂ”oo,19,g’ H‘@Hoo 0,0 ~ 1+EHV 1’52{”0071979' (294)

Finally, inserting (293) and (294) into (287), and further with (281) into (276),
after absorbing &2||.<//| into the left-hand side, we obtain

00,9,0
17 | 5,0 S In(e)]® (295)
Hence, inserting (295) into (293) and (294), we get the desired result. O
Theorem 3.14. Assume (91) and (95) holds. For Ko > 0 sufficiently small, we
have
eoncS2] e gs ] e (200)
00,9,0 N lloco,9,0
0 0
efonyc = g ‘ + |[eforp¢ == g ’ <1 (297)
8U¢ 00,9,0 81}7/} 00,9,0

Proof. This proof is analogous to that of Theorem 3.13. In each step, we need
to multiple %07 on both sides. When K| is sufficiently small, we can close the

proof. O
Corollary 3.15. Assume (91) and (95) holds. We have
€ eKonv;@ + sHeKo%iag < In(e)[®. (298)
v v
N 1loo,9,0 M lloo,d,0

Proof. We rearrange the terms in (92) to obtain
(299)

aG oG oG

0
g (S —vG+ K[g]) - vna—n + Gl”"%au + vanvwa

(Gl% + vaw) 9
Un

Recall ¢ definition in (97), we know |v,| < ¢. Therefore, using (91) and Theorem
3.13, we know

oG
le + Ghv (300)
H ¢ d)) an 00,9,0
< 99
SIS =16+ K(G)l.. 0, Hlowegl| o+ owe s
00,9,0 00,9,0 00,9,0
SNy + 16T g Hc H el 26 H H w9 H < In)°.
00,9,0 00,9,0 00,9,0

Since G and Gz have the same sign and ¢ < |Gy| S ¢, € S |Ga| S €, we can
separate the two terms in the left-hand side of (300) to obtain

Qag Qag

+el|lvy, =—
w@vn

00,9,0

< e)l®. (301)

00,9,0
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We can perform the same analysis with an extra e°” term. Hence, our result
naturally follows. O

3.8. Estimates of tangential derivatives. Now we pull the tangential variables
t1 and ¢t dependence back and study the tangential derivatives.

Theorem 3.16. Assume (91) and (95) holds. We have

H k9| <, H xon 09

< |In(e)[®. 2
o % < |In(e)] (302)

00,9,0

00,9,0
Proof. Let W = ag for i = 1,2. Taking ¢; derivative on both sides of (92), we
know that % satlsﬁes the equation

(303)

V4 L OW o o OW o
o7 7 _ a7 o 7 —K[¥] =5
vy on +Gi(n) (v¢ oy UpUg 8%5) + Ga(n) (vw Doy U Uy 8vw) +uv ] =Sy,

1?)
—p(Ll,LQ,U) for sin¢ > 0,

V(0 01,02,0) = =
7

W(L,Ll,LQ,U) = W(L,Ll,LQ,%[U]),

where

(304)
o8 0., R: 206G oG 9., Ro 2 0G 9G
Sw = O, * Ry — enGl(n) <v¢ vy, Unvs 8v¢) + Ry —en Ga(m) (Uw vy, Untw 8vw>’
For n € [0, L], we have
0, R;
i ' < <

R —en [nax, 0,R; S 1. (305)

Therefore, noting that |v,| < ¢, using (95), Theorem 3.14 and Corollary 3.15, we
have

oS 5 0G oG
<|| =
HSWHOOJ%Q NHaLiHoo,ﬁ,g+ HGl(n) <’U¢av K ¢8U )Hooﬁg (306)

0 0
o (23 o)
00,%,0

oG 0g
o] ] ] ]
d)avn 00,9,0 1*”8”7’ 00,9,0 00,9,0 a’U¢ 00,9,0
< In(e) .
By a similar argument, we can add e®°” contribution to obtain
XS || . 5., S () (307)
Therefore, applying Theorem 3.1 to (303), we have that
8
HeKO’W/ (M, t1,12,0 Hooﬁg < ln(e)|”. (308)
O
Theorem 3.17. Assume (91) and (95) holds. We have
0 0
e ‘ SEF. [ tL ) SmEP. (309
8U¢ 00,9,0 61}1/, 00,90
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Proof. Let V 1= v45.~ g . Taking v, derivative on both sides of (92) and multiplying

Vg, We know that V satlsﬁes the equation

2%

0
V(0,t1,t2,0) = %875;(“’ t2,0) for sing¢ > 0,

V(L,L17L27U) = V(L,Ll,bz,%[n]),

where

S oG og
Sy = /]RS Vg0, K (u, 0)du + %87% + 2G1U§87vn - 2G1U77U¢87%'

Based on (95), Lemma 3.6 and Theorem 3.1, we have

H/ v¢,8 k:un 03

P«
(% Ve
Using Corollary 3.15, we get

+ ~J
2 09

00719,9

G

Hgalv < ).

< 2
s‘ o

00,%,0 0,7,0

Using Theorem 3.14, we obtaln
< 1.

~

00,79,0

o

’00,19,9 8’U¢

Hence, collecting all above, we have proved that
8
15V 06,9, < ()]

Based on the analysis in the well-posedness of Milne problem, we have

ap 8
V — -1s < |In(e)|.
|| ”oo 19,QN v¢'av 00’19’@—’—”” VH0071979N |Il( )l
By a similar argument, we can add e®°” contribution to obtain
0
ofony, 99 < n(e)|®.
¢3U ~
¢ 00,9,0
Similarly, we can show
0
ofomy, 99 < [n(e)[®.
P v ~
¢ lloo,,0
Since |v,| < ¢, Theorem 3.14 implies
0
efony 96 < In(e)[®.
Tov ~
¢ lloo,9,0
oG

(310)

% oy % %
Uyt Gi(n) (%8 ”n”qu) + Ga(n) (%a ”n“wavw) +vV =5y,

(311)

(312)

(313)

(314)

(315)

(316)

(317)

(318)

(319)

Then our result naturally follows. The By bounds can be shown in a similar

fashion.

O
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4. Hydrodynamic limit.

4.1. Linearized remainder estimates. We consider the linearized stationary
Boltzmann equation

ev - Vaof + L[f] = S(z,v) in QxR3,
f(xo,v) = Plfl(x0,v) + h(zg,v) for zp € 9N and v-n <O0.
The data S and h satisfy the compatibility condition

//QXRS S(xw)ué(v)dvdx + /7 h(m,v)lﬁ (v)dy = 0. (321)

(320)

It is easy to see if f is a solution to (320), then f + C’u% is also a solution for
arbitrary C' € R. Hence, to guarantee uniqueness, the solution should satisfy the
normalization condition

/ /Q (o) )dodz o (322)

Our analysis is based on the ideas in [10], [19], [35] and [38]. We will only record
the main results and skip the detailed proof.

We first introduce the well-known micro-macro decomposition. Define P as the
orthogonal projection onto N:

PIf] =1} (o) (as () + v bp(a) + L2es () e N (323)

When there is no confusion, we will simply write a, b, c. Definitely, ﬁ[]P’[fH =0.
Then the operator I — PP is naturally

(I=P)[f] := f = PIf], (324)
which satisfies (I — P)[f] € Nt ie. L[f] = L[(I—P)[f]].
In the following, let % < m < 3. Denote o(1) a sufficiently small constant.

Theorem 4.1. Assume (321) and (322) hold. The solution f(x,v) to the equation
(320) satisfies

NPl 2+ 2 1T =P, + [P (325)
< o= (£1l,, oo + 171l )
+ S IPISI g, + |2 @=BIS| + bl + 2 WAL,

Theorem 4.2. Assume (321) and (322) hold. The solution f(x,v) to the equation
(320) satisfies for 9 >0 and 0 < o < 1,

||fHoo,19,g + ||fH’y+,OO,Q,19 (326)
1 _1 —1
S PO g, + o pta-pis| + v sl .,

1 1
+ = Hth,,%m + SE=n 1Al 2+ 1Rl 0 -
Remark 4.3. Inserting Theorem 4.2 into Theorem 4.1, we actually have

1A= Pl 2+ 2 1T =B, + [ (327)
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1 1) _1
S SIS 2w, + < | 2@ -S| (328)
_ 1
+|v 15“00,19,9 + ”h”%,%" + - 11l o + 1Al o 00 -

4.2. Nonlinear estimates.

Lemma 4.4. The nonlinear term U defined in (17) satisfies T[f,g] € N*. Also,
f0r0§g<% and 9 >0,

ITL,gllly S (suplvg(@ly )1wf . (329)
e

[ T = TN P IR (330)

Proof. The orthogonality is shown in [13, Section 3.8]. (329) can be shown following
the idea in [17, Lemma 2.3]. From (17),

lf. gl :=p2Q[u? f, 1% g] = Cgainlfs 9] — Tiosslf: 9, (331)

where we use the energy conservation [ul” + [v]* = |u.|*> + |v.|*, and

Typainlf, 9] = a0 /IR 3 /S 2 e (- (v — ) £ (w)g(v.)dwdu, (332)

_lu?
Polfiglimao [ [ &% o (0= w) flulg(o)dod, (333)
R3 JS
with

wo=utw((v—u) - w), v i=v—w((v—u)w). (334)

For the loss term, we substitute u = v — u, so we know

_v—u)?
Tioss[f, 9] = qog(v) /3 /2 e 2 (w-u)f(v—u)dwdu. (335)
R3 JS
Hence, using Holder’s inequality, we have
[ Cnlrigl) e (336)
R

2 2
ZQS /]R3 92($av)</RS /s2 67‘07;‘ (W-u)f(x,v—u)dwdu) dov

< [ [ el a) ([ P - ow)a i@ ek,

where we utilize the fact that

/3 e lo—ul? u)® du < V2 (). (337)
On the other hand, for th(ﬂj gain term, after substituting v = v — u, we know
Pnlfiol =0 [ [ 5 @ wf0—wgl—wdodn, (339
where
up =u—wu-w), u =wl- w). (339)

Hence, using Holder’s inequality, we have

I (rgm [F.d] (x))zdv (340)
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—2 /R (/R /S ot (w-u)f(x,v—uL)g(x,v—u|)dwdu)2dv
</]R (/ ~lo=ul? [y 2 du)(/ P (s0 - us)g(a, v—u|)du>dv

/3 /3 f2 x U*ul)gz(x,v—u”)dudv
R3 JRS

Denote v’ = v —uy and v' = v — ). Consider substitution (u,v) — (u',v).
It is well-known (see the proof of [17, Lemma 2.3]) that dudv = du/dv’ and |v| <
|u'| + |v'|. Hence, we have

[ Canlra)’ao s [ (20) +020)) Plaagt e oidar s
< ( /R ) fQ(x,u')du’> ( /]R 3 V2(v’)g2(ac,v’)dv’) (342)

S vf @) 3 lvg(@)l;
Combining (336) and (341), we know

2
[ (wlr.g)*av s @) lva(a)l. (343)
-
Therefore, (329) naturally follows. Also, (330) is proved in [19, Lemma 5]. O

4.3. Perturbed linearized remainder estimates. We consider the perturbed
linearized stationary Boltzmann equation

€0 Vof + LIf] = T[f,g] + S(z,0) in Q xR,

f(zo,v) = P[f](w0,v) + (s — ) ' P[f] + h(zo,v) for z0 € 9Q and v-n < 0.

(344)
Assume that a priori
// fz,v)p? (v)dvdz = 0. (345)
QxR3
and

”g”oo,ﬁ,g = 0(1)5' (346)

The data S and h satisfy the compatibility condition
/ / Sz, v)ut (w)dvdz + | h(z, v)ut (v)dy = 0. (347)

QxR3 vy

Theorem 4.5. Assume (347) and (345) hold. The solution f(x,v) to the equation
(344) satisfies

T Ia=P)Al, .+ A= BN, + 1P, (348)
<0(1)e%5 (1711, o0 + 11l + 25 IPIS] 2o (349)

1 1 1
| ta-mysi|, + Il s < UAIL
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Proof. Since the perturbed term I'[f, g] € N'*, we apply Theorem 4.1 to (344) to
obtain

1A= Pl 2+ Z 1A= BN, + [ (350)
<o(1)e# (ISl 00 + ||f||oo) + S IPISI 2, (351)

2| ra-misi|, + 0all,_ap + 211

+2[eirirgl, + H(ui—u)u‘lp[ s+ 2 0 = PUAL
Using Lemma 4.4 and (346), we have

s, S oA, S o) IELS, + o) IET-B)AN, - (352)

Note that direct computation reveals that

IPL M2 2 IPLANL - (353)

so inserting (352) into (350), we can absorb o(1) ||P[f]||, and o(1) ||(I — P)[f]||, into
the left-hand side. On the other hand, due to (12), we know

16 = PUIL s+ = 165~ PLANL (354)
<o(e IPLAIl,_sp + oV [PUFll_ s S o< 11, oo + o) [PLFI,, o

Here, o(1) [|f|[,, o can be combined with the corresponding term on the right-
hand side of (350). Also, the bound of ||P[f]
of Theorem 4.1 (see [38])

PUIE, o < UG+ Sla-Pi+ 2| [ rs|. coso)

Inserting (355) into (350), using (354), Holder’s inequality and Theorem 4.1, we

know
IPLFl,, 2 S IR, + S0 Bl + ('//fSD (356)

< o) (1l 0+ 1710) + IPISI g + [ 2@~ PYIS])
2 bl 5+ o1) 1LY

[, o has been achieved in the proof

2

+ 1l s

V452"

Then absorbing o(1) [P[f]ll.,, , into the left-hand side, we get control of
IP[f1Il,, »- Then inserting it into (354) and further (350), we get the desired
result. O

Theorem 4.6. Assume (347) and (345) hold. The solution f(x,v) to the equation
(344) satisfies for 9 >0 and 0 < o < 1

||f||oo,19,g + ||f||’y+,oo,g,19 (357)
1 _1 _
gﬁupmu 2+ e [ BIS], + 7S,
1
Wbl Wl AL -
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Proof. Since we already have bounds for f in L?™ as Theorem 4.5, following the
proof of Theorem 4.2 (see [38]), we obtain

1 loo.o.0 + 171 co000 (358)
1 _1 -1 -1
S S Pl + o prra-pisi| + vl ,, + T,

1 1 € -1
g Wl + o IRl o DR oo g0 + [(us = ™ PLA|

3 v—,00,0,9 "

Using Lemma 4.4 and (346), we have
[0l g S Wty S 0D gy (350)
Inserting (359) into (358), we can absorb o(1)[|f| ., s, into the left-hand side.
Also, using (12), we have
15— i P sy S OIS, g (360)
Inserting (360) into (358) and absorbing o(1) || f[|.,, .. into the left-hand side,

we obtain the desired result. O

4.4. Proof of the main Theorem. Now we turn to the proof of the main result,
Theorem 1.2.
Denote the remainder

eER=c’Ri=["— (eF1+F +°F) — (eF1 +2%) = [F—Q - 2, (361)
where
Q:=c¢F + 52F2 + 5‘3F}37 9 = F + EQEQ. (362)

We write .Z :=ev -V, f + L[f] to denote the linearized Boltzmann operator.
The equation (16) is actually

ZLQ+2+R =T[Q+2+°R,Q+ 2 +£°R]. (363)
Based on the construction in Section 2.4, we obtain
Z|R) =€T'[R, R+ 2I'[R, Q + 2] + S1 + S, (364)
where
1 0117 - Oor O121 - Oor 0%
S1=—¢cv-V,Fs+ Ph <P1 (1;,{177 i 1)1;451)11, + Pg(l‘jlig?’] i 1)Ui> (’“)v; (365)
L1 ( Ooar a7 Ouar Oy U;> 0.F>
PPy \ Py(eran —1) Py(ekin—1) Ovy,
( Vg 0F4 g Uy 0F4 >
Pi(ekin—1) Oy Py(ekan —1) 012 )’
Sy = 2T [Fy, F) + 2¢T'[Fy, F3] + higher-order T' terms up to &°. (366)
The boundary condition of (16) is essentially
(367)

Q+2+ER=PlQ+ 2+ R+ (11§ — )y~ "PlQ+ 2+ 3R] + p~ 2 (1§ — ).
Based on the boundary condition expansion in Section 2.3, we have

R —PIR] = HIR] + h, (368)
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H[R](zo,v) = (15 — p)p~ ' P[R], (369)

h=e2(puf — p—ep ) "PIF + F1] + 67 (4 — p)u " PIF2 + F2] - (370)
+PIFs] — Fy+e 372 (pf — pu— ep® iy — 2p? pip).

The equation (364) and boundary condition (368) forms a system that fits into
(344):

(371)
ev-VyR+ L[R] =T[R,2(Q + 2) + e*R] + S1(z,v) + Sz(z,v) in QxR3,
R(z9,v) = P[R](x0,v) + H[R](x0,v) + h(xg,v) for zo€ IN and v-n <0.

Then we can verify (371) satisfies the assumptions (346) (since @ and 2 are
small), (347). Also, the construction in Section 2.4 implies that the solution satisfies
(345). Applying Theorem 4.6 to (371), we obtain

”RHOOJXQ T HR||’Y+7007Q779 (372)
1 _1 _
< jnmﬂnﬂ t e s+ s,
1 _1 _
+ e RISl T\” FI-PIS]|+ v Sl
3
+E§||hllw, am o Pl o 1l a0 + e (e’T[R, R]).
Based on the analysis in Section 2.4, we know
lev- Vol 2w, + ||yt (v VuBs)]| +||f1(sv.va3)||wg§e. (373)
On the other hand, using the rescaling n = =, we have
(374)
8-‘6/\2 892 28;6/\2 283\2 < 1— L 8
H” 001 || _2m H” iz || 2m ‘” 906 || _2m +”’ dvy Se el
(375)
1 0% 1 0% 3 0% 3 0% 1 3
<
el el L 2+‘V2 B0, 2+’V2 v, 2N€2 ()",
(376)
b b s
8L1 0,8,0 8L2 0,8,0 8v¢ 08,0 81}1/, 0,8,0
Collecting all terms, we have
IPISi] 2, S 7 (e)®, [ri@-Psi]| St mEP, @)
_ 8
v 15’1”007197@ < In(e)]”. (378)

Since Sy are all nonlinear terms, Lemma 4.4 implies that P[S2] = 0. Then the
leading-order term is I'[Fy, .%5]. Hence, using Lemma 4.4, we have

|=irim, 2], < sup (WE @) Iolly S 2 e, (379)
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[T [, ] S Il

8
00,0 so,0,0l172llog 9,0 S ()] (380)

In total, we have

(381)

IPIS2] | 2, =0, |2 @-PIS:)|| St @), 82, ,, S (e

2m
Tm—1
Note that all terms in h are at least of O(1). Hence, we directly bound
1Pl am ST, Rl ST, R, S L (382)

—,00,0,9 ~

Inserting (377), (381) and (382) into (372), we have

_1_z2 8 _ 3 2
IRl o .0+ 1B, o0 S €17 ()] +e 72 |RIZ, 45, (383)
By standard iteration/fixed-point argument, for £ small, we have
__z 3
1Rllso.9.0 + IR, copn St [In(e)[ (384)
Therefore, we know for % <m<3
1f* = eFill 9, S €7 In(e)| S C8)=5, (385)

for any 0 < § < 1.
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