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ARTICLE INFO ABSTRACT

Keywords: Two common approaches to analyze point pattern (location-only) data are mixture models and
Mixture models log-Gaussian Cox processes. The former provides a flexible model for the intensity surface
Log-Gaussian Cox process at the expense of no covariate effect estimates while the latter estimates covariate effects at
Dirichlet process the expense of computation. A bridge is built between these two methods that leverages the
Penalized least squares strengths of both approaches. Namely, Bayesian nonparametrics are first used to flexibly model

the intensity surface. The posterior draws of the fitted intensity surface are then transformed into
the equivalent representation under the log-Gaussian Cox process approach. Using principles of
machine learning, estimates of covariate effects are obtained. The proposed two-step approach
results in accurate estimates of parameters, with proper uncertainty quantification, which is
illustrated with real and simulated examples.

1. Introduction and Problem Background

1.1. Preliminaries

Let s; € D C RP denote the location of an event of interest (e.g. the location of a car crash or the location of a
disease incidence) and D the domain on which events can occur. A set of N events {sy,..., sy} is referred to as a
“point pattern” on the domain D. Depending on the domain, events can occur across time (D = 1), space (D = 2), or
space-time (D = 3).

Point pattern data are becoming increasingly common due to the ease at which locations can be geocoded, with
recent books such as Daley, Vere-Jones et al. (2003); Moller and Waagepetersen (2003); Snyder and Miller (2012)
giving many examples. The motivation for this research comes from the two point patterns displayed in Figure 1.
The left panel of Figure | displays locations of crashes along Interstate-5 (I-5) in Washington, USA along with an
associated kernel density estimate of the crashes. In this example, the “event” is a crash at mile point s; in the domain
corresponding to I-5 (a one dimensional spatial point pattern). The right panel of Figure 1 displays crash locations along
I-15 in Utah, USA and the associated day the crash occurred along with a two-dimensional kernel density estimate in
the background (a spatio-temporal point pattern). In this example, s; = (m;, #;)’ is the milepoint along I-15 (m;,) and the
time of the crash (#;). In both of these examples and also in most analyses of point patterns, the main statistical goal of
an analysis is to (i) estimate the rate of event occurrences at all locations in the domain (i.e. identify locations where
automobile crashes occur at a higher than expected rate given the traffic level) and (ii) estimate the effect of covariates,
if any, on the rate of event occurrence (i.e. link the rate of a crashes to various roadway characteristics such as speed
limit).

In analyzing point pattern data, the number of events N and the event locations s, ..., s are the random variables
to be modeled. One such model common in the literature is the Poisson process. In the Poisson process framework,
both the location and number of events are governed by an intensity surface, which we will denote by A(s). First,
the number of events N ~ P ( fD A(u)du) where P(-) denotes the Poisson distribution. Second, conditional on
N, the location of the N events are assumed to be independent with distribution given by the normalized intensity

A(s) = A(s)/ fD A(u)du (notationally we write s; i A(s)). The kernel density estimates displayed in Figure 1 are
estimates of these normalized intensity surfaces.
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Figure 1: Motivating point pattern datasets. (a) Locations (given by the vertical bars) of automobile crashes along I-5 in
Washington State, USA in the year 2017 along with an associated density estimate. (b) Locations and day of the year of
automobile crashes along I-15 in Utah, USA along with associated density estimate.

The popularity of the Poisson process as a model for point pattern data is due, in part, to its ability to address both
statistical goals mentioned above. First, locations where A(s) is high are locations where the rate of events is high.
And, second, covariate effects can be estimated by hierarchically modeling A(s) as a function of the covariates. For
example, researchers can set E(log(A(s))) = x’(s)B where x/(s) = (x,(s), ..., xp(s))’ is a set of covariates (or bases)
associated with location s. Hence, under the Poisson process framework, if A(s) can be estimated from the data, both
analysis goals mentioned above can be achieved.

1.2. Common Approaches

While, in theory, the Poisson process is useful for analyzing point pattern data, practically there are several
challenges in doing so. First, the continuous nature of A(s) can be problematic computationally. To avoid this issue
altogether, many analyses will discretize (partition) the domain D then count and model the number of events per
partition (see Aguero-Valverde, 2013; Barua, El-Basyouny and Islam, 2016; Gomes, Cunto and da Silva, 2017; Zeng,
Gu, Zhang, Wen, Lee and Hao, 2019, for examples). This leads to straightforward generalized linear modeling using a
Poisson or negative binomial distribution as the likelihood. While discretizing D has been used successfully to model
point pattern data, the main issue with this approach is that the choice of partition is arbitrary, with no clear guidance
on the best partition for the data. Further, by modeling the data as counts in regions rather than continuously, important
structure in A(s) within a region (partition) is lost.

Given the issues with discretizing the domain, an alternative approach to capture the continuous intensity surface are
mixture models. In the mixture model approach, A(s) = 6A(s) where A(s) is the normalized intensity (i.e. a probability
density function on D) and 6 = /D A(u)du is a scalar representing the expected number of events. The normalized

intensity A(s) is represented as a mixture where A(s) = Zszl oy, fr(s) where {w, } are mixture weights and f,(s) is a
valid density on D (e.g. truncated Gaussian). This approach, as well as Bayesian nonparametric extensions, have been
successfully adopted by, among others, Hougaard, Lee and Whitmore (1997); Kottas and Sans6 (2007); Taddy and
Kottas (2012); Zhou, Matteson, Woodard, Henderson and Micheas (2015); Jiao, Hu and Yan (2021); Zhao and Kottas
(2021); Geng, Shi and Hu (2021); Yin, Jiao, Yan and Hu (2022). The appeal of this approach is that mixtures are highly
flexible and capture complex, nonlinear, continuous structure in A(s) and are often computationally reasonable to fit.
However, the downside of the mixture approach is that there is not a clear way to include covariates in the mixture
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representation that control the associated height of the intensity. Hence, these mixture approaches often do not include
the use of covariate information.

When estimating the effect of covariates is important to the analysis, using log-Gaussian Cox processes (LGCP)
may be more appropriate. In the LGCP setup, log(A(s)) follows a Gaussian process with mean x’(s)8 and covariance
function 62p(-) where p(-) is a positive definite correlation function (e.g. Matern). Examples of analyses adopting
the LGCP approach include Mgller, Syversveen and Waagepetersen (1998); Diggle, Moraga, Rowlingson and Taylor
(2013); Serra, Saez, Mateu, Varga, Juan, Diaz-Avalos and Rue (2014); Shirota and Gelfand (2017). The LGCP approach
is able to estimate covariate effects but is computationally slow to implement. Specifically, the log-likelihood under
the LGCP approach is given by

N
log (L(A)) = — / Aw)du + Y Tog(A(s))). (1)
D

i=1

The primary issue in using this likelihood is the integral over the random intensity surface A(s) is unknown and
computationally expensive to calculate. Solutions to this issue of an intractable likelihood include Taylor and Diggle
(2014); Simpson, Illian, Lindgren, Sgrbye and Rue (2016); Johnson, Diggle and Giorgi (2019); Adams, Murray and
MacKay (2009), but these can be computationally expensive in their own right.

1.3. Research Goal and Paper Outline

As discussed above, both the mixture model approach and the LGCP approach have their advantages and
disadvantages. Yet, both are inherently tied to the Poisson process framework. In this paper, we seek to link the
two methods and thereby leverage the strengths of both approaches. That is, we seek to exploit the flexibility and
computational simplicity of the mixture model approach while utilizing the strength of LGCP to estimate associated
covariate effects from the mixture model fit. Specifically, we propose a Dirichlet process mixture (DPM) model for
the intensity surface as a flexible tool to capture nonlinearity in the continuous intensity surface. The DPM fit is then
transformed via principles of machine learning into the corresponding fit from the LGCP approach. The effectiveness
of this approach is inherent in the effective sample size of parameters of interest.

The remainder of this paper is as follows: Section 2 describes the connection between the two methods in
detail along with our machine learning approach to transform parameters from the mixture model fit to the LGCP
parameterization. Section 3 demonstrates a proof of concept via two-dimensional simulation studies. Section 4 then
applies this methodology to the two point patterns presented in this section. Finally, Section 5 draws conclusions and
highlights areas of future research.

2. Methodology

2.1. Linking Mixture Models and LGCPs

As above, let s; = (s;1,...,5;p) be the location of an event on the bounded domain D C RP. For ease of
implementation, we scale each dimension so that s;; € (0,1) foralld = 1,..., D so that D = (0, 1)P. Further,
let A(s) = 6A(s) where A(s) is the normalized intensity. This specification allows us to model the overall expected
number of counts E(/N) = 6 independently of the normalized intensity A(s).

Because A(s) is the density for the event locations, we use a Dirichlet process (DP) mixture model for A(s) so that
forj=1,...,D,

Sij | Hij»> Tij iidB(l/‘ijsTij), )
iy 162G, 3)
G ~ DP(Gy, a). 4

Here B(u, 7) is the beta distribution parameterized by the mean y and precision parameter 7 so that E(s;;) = u;, and
V(s;g) = ig(1 = pig)/(1 + 7;4), and G is a random measure from the DP with centering measure G, and precision
parameter a. This roughly follows the model presented in Kottas and Sans6 (2007). A priori, we choose the centering
measure for y and 7 to have an independent structure as follows:

Go=U0,1) X IG(2, k), (&)
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where U'(a, b) represents the uniform distribution and ZG(a, b) represents the inverse-gamma distribution with shape
a and rate b.

Because any realization of a DP is almost surely discrete, for each iteration of an MCMC sampling algorithm (see
Algorithm 8 of Neal, 2000), the DP mixture model results in

K D

ACs;) = Z Wy HB(Sid | Hica> Ta) | - ©)

k=1 d=1

The inherent advantages of the DPM model are twofold. First, the model simultaneously estimates the number of
components (K) in addition to the mixture component parameters {wy, f;4. Tx4 } resulting in a flexible, continuous
model specification for the intensity. And, second, each of the parameters in this model with the exception of { 4, 4, 714}
are known to be conjugate resulting in a straightforward sampling algorithm. The parameters { 4,4, 7, } can be updated
using simple Metropolis-Hastings type algorithms.

While the DPM model for A(s) excels in terms of flexibility and straightforward computation, the inherent
disadvantage to this DPM model is that it does not easily lend itself to including covariates that explain the height
of A(s). Nevertheless, estimating the effect of covariates is a key analysis goal for the motivating point pattern data
shown above in Figure 1. To solve this issue, consider the LGCP approach mentioned above which sets,

log (A(s)) = x(s)B + w(s), @)

where w(s) is a spatial random effect that is modeled by a Gaussian process (GP) with mean 0 and covariance function
62p(s;, s ;)- Under this LGCP approach, the coefficients g directly correspond to the effects of covariates on the intensity
surface. However, under the LGCP approach, the likelihood in (1) is computationally intractable for large datasets (see
Teng, Nathoo and Johnson, 2017, for discussion).

From above, the strength of the LGCP approach is the weakness of the mixture model approach and vice versa.
Hence, we propose jointly using the two methods so as to utilize the strength of both approaches. First, due to the
computational issues associated with GPs, we define the spatial random effect to be w(s) = b’(s)0 where b’(s) is a set
of spatial bases (Heaton, Datta, Finley, Furrer, Guinness, Guhaniyogi, Gerber, Gramacy, Hammerling, Katzfuss et al.,
2019) with associated coefficients 0. This basis function approach is used to primarily help with the computational
bottleneck of GPs. Next, we link the two approaches via

K
log l Z lwk H B(sig | Hias de)]] ~ x'(s)B + b'(5)0, ®)

d=1

where the left-hand-side of (8) is log(A(s)) under the DPM specification and the right-hand-side is log(A(s)) under
the LGCP specification. Under this link, the goal is to estimate the appropriate (', 0’) from the LGCP specification
that matches the resulting DPM model fit. We do so in the following manner.

Let s;‘, s sz denote a set of L well-dispersed locations on D. Further, let m(s) = (m(s), ... ,mg(s)) where
D
my(s) =8 [ [ Bsia | Hea> Tra)-
d=1

and ® = (w,...,wg)" so that log(A(s)) under the DPM approach can be represented as log(A(s)) = log(m'(s)®).
Further, let y = (B’,0") and h(s) = (x'(s),b’(s))’ so that log(A(s)) under the LGCP approach can be represented as
log(A(s)) = h'(s)y. Each iteration of the fitting algorithm for the DP approach gives {m’ (s; )co};:1 from which we
can define

!V—argmqutf log (m'(s¥)w) , W' (s?)y) +¢E(CIIWII1+(1—C)IIWI|§)), ©)

where £(-) is an error (loss) function while || - ||; and || - ||, denote the £ and £, norms, respectively, & > 0 is a
penalization term and { € [0, 1] is a mixing parameter. The link in Equation (9) is an elastic net penalty wherein # and
0 can be estimated from the mixture model fit {m’ (s;)w}ézl.
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The above estimation procedure for r is essentially a machine learning fit of the covariates and bases h(s) to
the fitted intensity log(A(s)). Implementing this estimation procedure requires a choice of error function £(-), along
with an appropriate choice of penalization parameter £ and mixing parameter {. In terms of the error function, the
most common choice is to let £(a, b) = (a — b)? but certainly absolute loss could be considered. Generally, however,
the researcher will choose £(-) based on prior knowledge. To choose (&, {)’, we advocate a cross-validation approach
wherein {m’ (sg)a)}ﬁz | 1s split into test- and training-sets to determine an appropriate choice of (¢, {).

2.2. Parameter Estimation

Unknown parameters in the above approach are those associated with the DPM model. In this work, we take a
Bayesian approach as this naturally leads to some uncertainty quantification for the estimated parameters y rather than
a simple point estimate. Under this Bayesian paradigm, we assume priors for unknown parameters and estimate them
via Markov chain Monte Carlo (MCMC) sampling in the following manner.

The unknown parameters include the mixture parameters { 4,4, 7,4}, the DP precision parameter a, the hyperpa-
rameter for the inverse gamma prior for 7;; (denoted as k in (5)) and the expected number of events 6. First, we a
priori assume that 6 follows an (improper) gamma distribution with shape parameter 0 and rate parameter 0. While
this is not a proper prior, it does correspond to a “uniform” prior on the positive reals. Under this prior specification,
the full posterior conditional distribution for 6 is simply a gamma distribution with shape » and rate 1.

We rely on Algorithm 8 of Neal (2000) to estimate the parameters of the DPM model and the reader can find details
in this reference. Broadly speaking, our MCMC algorithm first iterates through each observation by removing it from
its current cluster allocation and reassigning it either to an existing cluster (i.e., an existing mixture component) or
to a new mixture component according to their associated Polya urn probabilities. Having removed and reassigned
each observation to a mixture component, the mixture parameters {,;,, 74} are updated via a standard Metropolis
algorithm, although the adaptive Metropolis algorithm of Haario, Saksman and Tamminen (2001) could also be
used. Finally, we place a Gamma(l, 1/1600) prior on x and a Gamma(3, 1/10) prior on a. Posterior sampling of
Kk is straightforward because its posterior is conditionally conjugate. We obtain posterior draws from a using the
augmentation method found in Escobar and West (1995). These (conjugate) priors were chosen because they are very
diffuse, but it bears noting that the particular choice of prior hyperparameters is minimally influential because there
are many “layers” of parameters above them in the hierarchical model specification.

At the end of each iteration of the MCMC algorithm, we have associated draws of the intensity surface log(A(s))
via Equation (6) where the mixture weights w,, are the proportion of observations assigned to mixture component k.
To then estimate y = (', 0’)’ we use an equally spaced grid of L points across D as the target variable log(m’(s,) )
in the minimization in (9). The tuning parameters ¢ and £ are chosen by cross-validation; we used and recommend the
train function in R’s caret package.

An outline of the full model fitting algorithm is given as Algorithm (1). Importantly, Algorithm (1) results in draws
of y giving a measure of uncertainty associated with these parameters. However, the draws of y are draws from the
posterior distribution of the elastic net estimate in (9). This is not equivalent to the posterior distribution of f and
0 from the LGCP approach. That is, our resulting draws of f and 0 from Algorithm (1) are draws of the elastic net
estimates. Hence, we do not expect that the uncertainty reflected in these draws matches the uncertainty that would
be reflected if the LGCP approach were used. Rather, the uncertainty in these draws more directly corresponds to the
uncertainty in the maximum a posteriori estimates of these parameters.

3. Proof of Concept via Simulation

In this section we conduct a proof of concept that the above two step approach can result in viable estimates
of model parameters. Specifically, our goal in this section is to ensure that the parameter estimates obtained via the
two-step approach above can recover the associated parameters. As such, for this simulation study, we let s = (s, 5,)
where 5; € (0,1) for d = 1, 2. To simulate event locations, we define the true intensity surface as

log(A(s)) = K (s)y, (10)

as in the LGCP approach. To ensure that this simulation study is realistic and we can recover model parameters similar
to what we do in our application, we use the posterior mean of the covariate effects (i.e. §) in the two dimensional
example of Section 4 to define the true intensity surface. However, we decreased the intercept term in order to decrease
the overall intensity surface, reducing the size of the simulated datasets and allowing for faster computation while
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Algorithm 1 Fitting algorithm.

1: Initialize 8, { iy, Trqg }r.4» @ and k along with an initial clustering of the events ¢, ..., cy where ¢; € {1, ..., K}
such that ¢; = k implies that y;y = p 4 and 7;; = 7.4 in Equation (2).
2: Choose sT, ,s’z

3: Determine spatial bases b’(s)

4: fortinl,...,T do

5: Update 6 by drawing from its complete conditional distribution

6: foriinl,..., N do

7 Reallocate observation i to cluster k € {1, ..., K + 1} with probability proportional to

e Lo, BCsi | s Tha) ifk<K+1

Prob(c; = k) D .
I {“Hd=1 B(s; | mgsnas Tk+na) ifk=K+1

where ny is the number of observations currently allocated to cluster k and y(g 4 1y4> T(k+1)s are drawn from the
base measure Gj. As described in Neal (2000), if observation i is the only observation in its cluster, cluster K + 1
to which it may be assigned should have the u and = parameters of the cluster it came from.

8: Set K as the number of unique clusters
: end for
10: forkinl,...,K do
11: fordinl,...,Ddo
12: Update (p;4., 74) via adaptive Metropolis
13: end for
14: end for
15: Update a and x by drawing from their complete conditional distributions
16: For each s;, evaluate m’(s;) .
17: Using cross-validation, determine & and ¢
18: Estimate and retain y as solution to (9)
19: end for

preserving the essential structure in the two-dimensional example of Section 4. We sampled points according to the
assumed true intensity surface by a double application of the inverse CDF method, for every point first sampling one
coordinate according to its marginal CDF, and then the second coordinate according to the relevant conditional CDF.
The true intensity surface is given as the top left panel in Figure 2.

Using the above methods, we simulated 46 point pattern datasets and fit each of these datasets using a nonhomoge-
nous Poisson process as well as the above two-step approach in Section 2 and Algorithm 1. For the nonhomogenous
Poisson process approach, we follow Mortensen, Heaton and Wilhelmi (2018) and assume a piecewise constant
intensity surface where

R
As) =Y 4, 1{s €R,}, (11)

r=1
log(4,) = k' (s)y, (12)
where R, ..., Ry is a partition of the domain D into disjoint regions R,. This piecewise constant approach is,

essentially, a discretized form of a LGCP and allows us to easily deal with the likelihood in (1) because the integral
is constant over each region R,. In this nonhomogenous Poisson process model, the model parameters consist only of
y so we rely on the adaptive Metropolis algorithm of Haario et al. (2001) to draw these parameters from the posterior
distribution.

As shown by Figure 2, all methods seem to reliably recapture the true intensity surface, which itself reflects the
crash patterns observed on I-15, with most “crashes" concentrated in the Salt Lake City area (approximately scaled
milepoint 0.75). It is difficult to distinguish between the model fits based solely on their intensity surfaces, but there
are some important differences in diagnostics of model fit. Notably, from the top right panel of Figure 2, the DP
intensity estimate smooths the time effect. This is likely due to the mixture model representation under the DP (which
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Figure 2: Assumed true intensity surface, with Dirichlet process and elastic net intensity surface estimates computed from
the 36t dataset generated from the true intensity surface, compared to NHPP fit generated from same data

is inherently smooth) while the NHPP approach relies on basis functions to smooth out the estimate of the intensity
surface.

Beyond the qualitative comparison in Figure 2, we also compare the elastic net estimates with the NHPP estimates
of the coefficients f§ in Table 1 in terms of root mean square error (RMSE), continuous rank probability score (CRPS;
Gneiting and Raftery 2007) and effective sample size. Broadly speaking, the RMSE of the elastic net method is slightly
better than that of the NHPP. This is to be expected as the elastic net essentially trades bias for variance to attain a better
RMSE. On the other hand, the CRPS scores of the elastic net estimators are slightly worse than the NHPP estimators.
This is also to be expected in that under the two-step approach we obtain, via invariance of posterior draws, the posterior
of (9) (which is a minimum). This is different than the NHPP model which results the posterior distribution of 8. Hence,
we expect the CRPS score for the NHPP model to be slightly better because it accurately quantifies the uncertainty in
p rather than the uncertainty in the solution to (9).

Finally, it is worth noting the substantially better effective sample size for the two-step method over the NHPP
model. Notably, this is because the two-step approach is effectively conjugate while the NHPP approach relies on
adaptive tuning of a proposal distribution within a Metropolis accept-reject step. In our analysis, both approaches
took roughly the same amount of time to sample an intensity surface. While the NHPP gives coefficient estimates
immediately, extracting coefficient estimates from the DPM approach is fairly computationally intensive. However,
the task can be easily parallelized, and on a per effective sample size basis, the method presented in the paper is faster
than the NHPP.

4. Applications

In this section, we analyze the two vehicle crash examples discussed in Section 1 and displayed in Figure 1.
Specifically, Section 4.1 analyzes a one-dimensional point pattern data of crashes along I-5 in Washington State while
Section 4.2 considers a two-dimensional, space-time point pattern of crashes along I-15 in Utah.
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Table 1
Diagnostics of model fit for NHPP vs proposed model, averaged over all 46 datasets
Non-homogenous Poisson process Proposed method
Variable Avg. RMSE Avg. CRPS Eff. Samp. Size Avg. RMSE Avg. CRPS  Eff. Samp. Size
Bo 4.44 0.77 721.48 4.18 0.82 5267.60
b 6.61 1.00 447.78 3.42 0.65 7955.03
b, 9.40 1.20 567.97 5.24 0.96 6358.61
b 7.61 0.83 165.36 7.30 0.87 7332.17
A 8.98 0.87 44432 2.93 0.63 7079.99
Ps 9.83 0.90 491.56 7.53 0.88 6482.20
B 8.29 0.79 193.06 7.13 0.82 7296.99
b, 9.07 0.88 603.09 7.85 0.94 4219.95
Ps 8.95 0.92 683.90 8.71 0.84 4012.20
Bo 8.70 0.90 1229.88 17.16 1.18 6407.70
Bro 11.57 1.00 1489.09 3.76 0.64 7010.27
b 8.84 0.88 1419.60 6.18 0.95 4739.74
B 7.88 0.82 1094.71 3.95 0.69 5686.59
B3 9.68 0.96 1242.88 7.13 0.87 7072.46
Bia 8.98 0.92 649.32 3.72 0.69 322.35
Bis 10.71 0.94 453.07 15.46 0.95 2327.51

Effective sample size is expressed per 10,000 draws.

4.1. Crashes along I-5 in Washington State

The primary goal of this analysis is to identify road characteristics that are associated with elevated crash intensity.
For this analysis, s; = s; € (0, 1) corresponds to the (scaled) milepoint of crash i along I-5 in Washington State. The
road characteristics of interest are area classification (urban vs. rural), surface type (asphalt vs. pavement), terrain (level
vs. rolling), shoulder width/type (asphalt, concrete, pavement, wall, unspecified), median width (distance between
opposing traffic directions), number of lanes, and average annual daily traffic (AADT). For ease of interpretation, we
scaled AADT to be measured per 10000 cars. For spatial bases (b'(s)), we use 40 Gaussian bases where the knot
locations are spaced evenly along the (0, 1) domain. To avoid spatial confounding (Reich, Hodges and Zadnik, 2006),
we orthogonalize the spatial bases with respect to the road characteristics.

We ran the two-step method in Section 2 for 10,000 iterations using the first 5,000 as burn-in. We use L = 10,000
locations along (0, 1) to obtain y via the elastic net penalty and square error loss. At each iteration we used the train
function in R’s caret package to choose optimal & and ¢ penalty values.

The resulting posterior means for the Dirichlet process intensity surface and elastic net coefficient estimates give us
the intensity estimates for a fine grid of 10,000 points along our domain shown in Figure 3. Both methods appropriately
identify large spikes in crash intensity around Seattle and Tacoma as well as smaller spikes around other populated
areas. However, areas of especially high intensity are emphasized more by the Dirichlet process model while the elastic
net seems to smooth over the larger peaks. This is to be expected because the elastic net intensity includes spatial bases
for smoothing the surface.

Posterior summaries of y are shown in Table 2. Importantly, because the elastic net is used for each iteration,
we obtain a measure of significance for each variable as the percent of negative, zero or positive coefficients. For
reference, the baseline road segment is a rural setting, asphalt surface, level terrain, and no specified shoulder types.
Road characteristics such as AADT, urban settings, and rolling terrain increase crash intensity while number of lanes
and shoulder width decrease crash intensity. Further, structured left shoulder types (i.e. curb, wall) seem to decrease
crash intensity which could stem from added protection from cross traffic collisions. Interestingly, structured right
shoulder types seem to have the opposite effect and increase crash intensity. We hypothesize that open right shoulder
types lead to added space to maneuver or park for emergency situations.

4.2. Crashes along I-15 in Utah across time

The method presented in 2 is sufficiently general that it can be used to model point patterns on any bounded
rectangular domain. In the case of I-15 in Utah, we have data on crashes across milepoint and also across time. Hence,
for this analysis, each crash location s; € (0,1) X (0, 1) consists of a (scaled) milepoint and a (scaled) crash time.
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Figure 3: Dirichlet process and elastic net intensity surface estimates for |-5 crash data.
Table 2

Posterior summary of y for the I-5 example. The baseline category is a rural road with asphalt surface, level terrain, and
no specified shoulder type. The interval endpoints reported are for a central 95% credible interval.

Variable Mean Lower Cred. Upper Cred. Prop. Negative Prop. Zero  Prop. Positive
Intercept 7.2 7 7.3 0 0 1
AADT 0.17 0.16 0.17 0 0 1
Urban 0.29 0.22 0.34 0 0 1
Portland Concrete Surface 0.19 0.13 0.23 0 0 1
Rolling Terrain 0.16 0.09 0.24 0 0 1
Left Shoulder Width —0.02 —0.03 —0.01 > 0.99 < 0.01 0
Median Width 0 0 0 0.89 0.05 0.06
# of Lanes -0.09 -0.11 —-0.08 1 0 0
Left Shoulder Type: Asphalt —-0.06 -0.15 0 0.92 0.06 0.02
Left Shoulder Type: Portland Concrete 0 —-0.04 0 0.23 0.77 0
Left Shoulder Type: Curb —-0.37 —0.45 -0.28 1 0 0
Left Shoulder Type: Wall -0.26 —-0.32 —-0.19 1 0 0
Right Shoulder Type: Asphalt 0.01 —-0.03 0.12 0.07 0.73 0.2
Right Shoulder Type: Portland Concrete 0.32 0.26 0.43 0 0 1
Right Shoulder Type: Curb 0.21 0.13 0.34 0 0 1
Right Shoulder Type: Wall 0.22 0.15 0.33 0 0 1

Proportions may not add to 1 due to rounding.

The available road characteristics include information on average annual daily traffic (AADT), number of single-unit
trucks (SUTRK), combo-unit trucks (CUTRK), speed limit, number and width of lanes, shoulder width, and median
type (concrete barrier, depressed median, separate grades, or unprotected). We included 121 spatial bases, with the
knots spaced evenly on an 11 X 11 grid in (0, 1)?. As in the previous analysis, we orthogonalized the spatial bases with
respect to the matrix of road characteristics to avoid confounding. Figure 4 displays a posterior mean intensity surface
from the Dirichlet process (left), a posterior mean of the intensity surface from the elastic net fit shown (center) and
the fit of a competing non-homogeneous Poisson process (right).
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Figure 4: Dirichlet process and elastic net intensity surface estimates for I-15 data, compared to NHPP fit

The flexibility of the Dirichlet process intensity surface allows it to capture many compelling phenomena
contributing to crash patterns. Most basically, the model reflects that car crashes are concentrated around the Salt
Lake City area (approximately scaled milepoint 0.75) but there are narrower regions of particularly elevated risk.
Further, the DP identifies that the crash intensity surface falls precipitously around March 2020 (onset of the COVID-
19 pandemic) and then gradually recovers to pre-pandemic levels. Most interestingly, the DP estimate also identifies
irregular “bumps" running across space but not time. These dates correspond to heavy snowstorms in Utah, and that
the Dirichlet process intensity surface is able to capture their effect illustrates its flexibility (and hence the advantage
of its use).

The intensity surface induced by the elastic net is not nearly so flexible as the Dirichlet process intensity surface,
since it is restricted to the use of space-time basis functions. The elastic net intensity surface preserved that most crashes
occur in the greater Salt Lake City area, but there shrunk the drop in intensity near March 2020. In general, even though
121 spatial bases were included, time appears to have very little impact on the intensity surface, and heavy snowstorms
have no influence at all. Even so, the R? of estimating the Dirichlet process intensity by the elastic net intensity heights
(on the log scale, where they were both computed and where inference is made) is roughly 0.72, suggesting that the
elastic net fit is capturing the most important features in the Dirichlet process intensity.

In this analysis, we had substantially more information on traffic levels and roadway characteristics than in the
I-5 example and our estimates of these effects are given as Table 3. From Table 3, the intensity surface is affected
by AADT and the relative abundance of single- and combo-unit trucks. We note that the other effects correspond
well with intuition and the results of the I-5 analysis which are, broadly speaking, that characteristics associated with
heavily trafficked urban areas are associated with greater crash intensities and vice versa. The Gelman-Rubin diagnostic
(Gelman and Rubin, 1992) applied to our draws of y gives potential scale reduction factor upper bounds close to 1
for most vector elements. Only 4 (out of 136) had an upper bound greater than 1.2, which indicates that the chains are
converging properly.
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Table 3
Posterior summary of y for the two-dimensional I-15 example. The baseline category is a painted median. The interval
endpoints reported are for a central 95% credible interval.

Variable Mean Lower Cred. Upper Cred. Prop. Negative Prop. Zero  Prop. Positive
Intercept 11.24 9.66 12.78 0 0 1
AADT in 2020 0.05 —-0.02 0.12 0.06 0.07 0.86
Single-unit truck pct. in 2020 -2.22 -3.74 -0.61 >0.99 <0.01 <0.01
Combo-unit truck pct. in 2020 -15.73 -21.48 —10.06 1 0 0
AADT in 2019 0.02 -0.03 0.08 0.13 0.13 0.74
Single-unit truck pct. in 2019 0.15 -1.76 1.46 0.57 <0.01 0.42
Combo-unit truck pct. in 2019 9.53 3.80 15.24 < 0.01 < 0.01 > 0.99
Speed limit —-0.03 —-0.05 —-0.01 >0.99 0 < 0.01
Number of lanes 0.18 0.12 0.23 0 0 1
Lane width -0.01 —-0.09 0.07 0.64 < 0.01 0.36
Right shoulder width 0.03 0.01 0.05 <0.01 0 > 0.99
Left shoulder width —-0.03 —-0.05 -0.01 > 0.99 < 0.01 <0.01
Median type: Depressed median 0.28 0.16 0.40 0 0 1
Median type: Separate grades 0.96 0.54 1.52 0 0 1
Median type: Unprotected -0.43 -0.56 -0.30 1 0 0

Proportions may not add to 1 due to rounding.

5. Conclusions

In this analysis we have described a method for linking a flexible mixture model approach to the analysis of point
patterns with a log-Gaussian Cox process approach to obtain estimates of covariate effects using machine learning. We
have demonstrated the viability of this approach via simulation studies and analyses of real automobile crash datasets.
Overall, the approach allows accurate estimation of covariate effects at the cost of a slightly decreased ability to assess
uncertainty in these parameters. However, by drawing on both a mixture and a LGCP approach, we are able to leverage
the strengths of both.

While the DP was used here due to its flexibility, it came at a high computational cost. We found this flexibility to
be useful, in that it detected features in the intensity surface of the I-15 example that were shrunk out using either the
elastic net or NHPP approaches. However, for very large datasets, the DP may be computationally infeasible and users
may need to resort to a finite mixture model, which may lack flexibility. Where it can be applied, though, the intensity
surfaces generated by the DP are sufficiently flexible to model nearly any spatial process faithfully. The performance
of the entire modeling framework presented here is constrained by the second step rather than the first.

Given our sampled intensity surfaces, we opted to use the elastic net to obtain interpretable estimates of model
parameters. This approach works well in the absence of any high-order covariate interactions or nonlinearities in
covariate effects. However, the procedure proposed here consists of two entirely separable steps, and covariates only
come into play in the second. More complex machine learning algorithms such as the random forest or neural networks
could also be used to estimate non-linear effects in the place of the elastic net used here. If these other algorithms are
used, more complex relationships between the covariates and the intensity estimates could be modeled, but at the cost
of interpretablity. The choice of which machine learning algorithm to use, then, depends on the needs of the analysis.
We plan to explore the use of other machine learning algorithms in similar applications in future research.

As mentioned, one of the downsides of this approach is that the resulting uncertainty is the uncertainty in the
machine learning estimates of model parameters which, in this case, correspond to a minimizer of a penalized square
error loss. As we saw in the simulations, this is not equivalent to the uncertainty associated with the parameter but
rather is more closely related to the uncertainty associated with its maximum a posteriori estimate. An interesting line
of research would seek to adjust this uncertainty to more closely resemble the uncertainty in the parameter itself.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 2053188. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

MJ Heaton et al.: Preprint submitted to Elsevier Page 11 of 12



Efficient Learning from Point Pattern Data

References

Adams, R.P.,, Murray, 1., MacKay, D.J., 2009. Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities,
in: Proceedings of the 26th annual international conference on machine learning, pp. 9-16.

Aguero-Valverde, J., 2013. Full Bayes Poisson gamma, Poisson lognormal, and zero inflated random effects models: Comparing the precision of
crash frequency estimates. Accident Analysis & Prevention 50, 289-297.

Barua, S., El-Basyouny, K., Islam, M.T., 2016. Multivariate random parameters collision count data models with spatial heterogeneity. Analytic
Methods in Accident Research 9, 1-15.

Daley, D.J., Vere-Jones, D., et al., 2003. An introduction to the theory of point processes: volume I: elementary theory and methods. Springer.

Diggle, P.J., Moraga, P., Rowlingson, B., Taylor, B.M., 2013. Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical
paradigm. Statistical Science 28, 542-563.

Escobar, M.D., West, M., 1995. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90,
577-588.

Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Statistical science 7, 457-472.

Geng, J., Shi, W., Hu, G., 2021. Bayesian nonparametric nonhomogeneous poisson process with applications to USGS earthquake data. Spatial
Statistics 41, 100495.

Gneiting, T., Raftery, A.E., 2007. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102,
359-378.

Gomes, M.J.T.L., Cunto, F., da Silva, A.R., 2017. Geographically weighted negative binomial regression applied to zonal level safety performance
models. Accident Analysis & Prevention 106, 254-261.

Haario, H., Saksman, E., Tamminen, J., 2001. An adaptive Metropolis algorithm. Bernoulli , 223-242.

Heaton, M.J., Datta, A., Finley, A.O., Furrer, R., Guinness, J., Guhaniyogi, R., Gerber, F., Gramacy, R.B., Hammerling, D., Katzfuss, M., et al.,
2019. A case study competition among methods for analyzing large spatial data. Journal of Agricultural, Biological and Environmental Statistics
24,398-425.

Hougaard, P., Lee, M.L.T., Whitmore, G., 1997. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
Biometrics , 1225-1238.

Jiao, J., Hu, G., Yan, J., 2021. Heterogeneity pursuit for spatial point pattern with application to tree locations: A Bayesian semiparametric recourse.
Environmetrics 32, e2694.

Johnson, O., Diggle, P., Giorgi, E., 2019. A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count
data. Statistics in medicine 38, 4871-4887.

Kottas, A., Sansd, B., 2007. Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. Journal
of Statistical Planning and Inference 137, 3151-3163.

Mgller, J., Syversveen, A.R., Waagepetersen, R.P., 1998. Log Gaussian Cox processes. Scandinavian journal of statistics 25, 451-482.

Moller, J., Waagepetersen, R.P., 2003. Statistical inference and simulation for spatial point processes. CRC press.

Mortensen, J.W., Heaton, M.J., Wilhelmi, O.V., 2018. Urban heat risk mapping using multiple point patterns in Houston, Texas. Journal of the
Royal Statistical Society Series C: Applied Statistics 67, 83-102.

Neal, R.M., 2000. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics 9,
249-265.

Reich, B.J., Hodges, J.S., Zadnik, V., 2006. Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics
62, 1197-1206.

Serra, L., Saez, M., Mateu, J., Varga, D., Juan, P., Diaz-Avalos, C., Rue, H., 2014. Spatio-temporal log-Gaussian Cox processes for modelling
wildfire occurrence: the case of Catalonia, 1994-2008. Environmental and ecological statistics 21, 531-563.

Shirota, S., Gelfand, A.E., 2017. Space and circular time log Gaussian Cox processes with application to crime event data. The Annals of Applied
Statistics , 481-503.

Simpson, D., Illian, J.B., Lindgren, F., Sgrbye, S.H., Rue, H., 2016. Going off grid: Computationally efficient inference for log-Gaussian Cox
processes. Biometrika 103, 49-70.

Snyder, D.L., Miller, M.I., 2012. Random point processes in time and space. Springer Science & Business Media.

Taddy, M.A., Kottas, A., 2012. Mixture Modeling for Marked Poisson Processes. Bayesian Analysis 7, 335 —362. URL: https://doi.org/10.
1214/12-BA711,doi:10.1214/12-BA711.

Taylor, B.M., Diggle, P.J., 2014. Inla or mcmc? a tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. Journal
of Statistical Computation and Simulation 84, 2266-2284.

Teng, M., Nathoo, F., Johnson, T.D., 2017. Bayesian computation for log-Gaussian Cox processes: A comparative analysis of methods. Journal of
statistical computation and simulation 87, 2227-2252.

Yin, F., Jiao, J., Yan, J., Hu, G., 2022. Bayesian nonparametric learning for point processes with spatial homogeneity: A spatial analysis of nba shot
locations, in: International Conference on Machine Learning, PMLR. pp. 25523-25551.

Zeng, Q., Gu, W., Zhang, X., Wen, H., Lee, J., Hao, W., 2019. Analyzing freeway crash severity using a Bayesian spatial generalized ordered logit
model with conditional autoregressive priors. Accident Analysis & Prevention 127, 87-95.

Zhao, C., Kottas, A., 2021. Modelling for Poisson process intensities over irregular spatial domains. arXiv preprint arXiv:2106.04654 .

Zhou, Z., Matteson, D.S., Woodard, D.B., Henderson, S.G., Micheas, A.C., 2015. A spatio-temporal point process model for ambulance demand.
Journal of the American Statistical Association 110, 6-15.

MJ Heaton et al.: Preprint submitted to Elsevier Page 12 of 12


https://doi.org/10.1214/12-BA711
https://doi.org/10.1214/12-BA711
http://dx.doi.org/10.1214/12-BA711

