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Abstract. The relativistic Vlasov-Maxwell-Landau (r-VML) system and the rela-
tivistic Landau (r-LAN) equation are fundamental models that describe the dynamics
of an electron gas. In this paper, we introduce a novel weighted energy method and
establish the validity of the Hilbert expansion for the one-species r-VML system and
r-LAN equation. As the Knudsen number shrinks to zero, we rigorously demonstrate
the relativistic Euler-Maxwell limit and relativistic Euler limit, respectively. This suc-
cessfully resolves the long-standing open problem regarding the hydrodynamic limits of
Landau-type equations.

1. Introduction.

1.1. Relativistic Vlasov-Mazwell-Landau system. The relativistic Vlasov-Maxwell-
Landau (r-VML) system is a fundamental and complete model describing the dynam-
ics of a dilute collisional ionized plasma appearing in nuclear fusion and the interior of
stars, etc. Correspondingly, the relativistic Euler-Maxwell system, the foundation of the
two-fluid theory in plasma physics, describes the dynamics of two compressible ion and
electron fluids interacting with their own self-consistent electromagnetic field. It is also
the origin of many celebrated dispersive PDE such as NLS, KP, KdV, Zakharov, etc., as
various scaling limits and approximations.
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Since the ion mass is far larger than the electron mass in a plasma, the dynamics of
ions is negligible for simplification sometimes. In this special case, the plasma can be
approximately described by the one-species r-VML system in the mesoscopic level and
treated as a single fluid in the macroscopic level. It has been a long-term open question
if the general relativistic Euler-Maxwell system can be derived rigorously from its kinetic
counter-part, the r-VML system, as the Knudsen number approaches zero.

In this paper, we are able to answer this question in the affirmative. Consider the
r-VML system for F'(t,z,p) € R (see [90]):

8tF+cﬁ-V$F—%(E+ﬁ><B)-VpF:C[F,F], (1.1)

coupled with the Maxwell system for (E(t,z), B(t,z)) € R® x R3:

OFE —cV,x B= 47Te/ pFdp,
R3
0B+ ¢V, x E=0,

VI'E:—47re(ﬁ—/Rstp),
V,-B=0.

Here F'(t,x,p) is the number density function for electrons at time ¢ > 0, position
z = (71,22,73) € R?® and momentum p = (p1,p2,p3) € R3. p® = /m2c? + |p|? is the
energy of an electron and p = 5. The constants —e and m are the electrons’ charge and
rest mass, respectively. c is the speed of light, 7 is the uniform number density of ions,
and (E(t,z), B(t,z)) are the electromagnetic fields.

Denote the four-momentums p* = (po,p) and ¢t = (qo,q). We use the Einstein
convention that repeated up-down indices be summed and we raise and lower indices
using the Minkowski metric g, := diag(—1,1,1,1). The Lorentz inner product is then
given by

3
Pau = =" + Y pias- (1.3)
i=1

The collision operator C on the R.H.S. of (1.1), which registers binary collisions between
particles, takes the following form:

Clg,h] == 2%62 In(A\)V, - {/Rg ®(p,q) [Vpg(p)h(q) - Q(P)th(Q)}dQ} ; (1.4)

where the collision kernel ®(p, q) is a 3 X 3 non-negative matrix

P(p,q) = (@) <@> A(p.9)S(p, q) (1.5)

p° q°
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with
@“%J2—1)_§,
S@&%—(miﬂp%)—oﬂs 1 —zP-de@P-9

1
m2c?

1 o 1
Alp,q) == i (0"4,) <7n404

1
<m202 (P"q) + 1> (p@q+qop).

Here In()\) denotes the Coulomb logarithm. From [90] and [32], for our purposes, we may
simply regard In(A) as a fixed constant independent of other parameters.
It is well-known that ®(p, q) satisfies

E:@”p, (% “) E:@”p, (J m)——& (1.6)

REMARK 1.1. Notice that as ¢ — oo, using Taylor expansion based on the order of

C—l

2 2
0, Ip| - 20 1 o 1 5, _ 229 1Llp—q|
P Rme <1+ 3m 62) , plgu=—mcct — §|p\ — 5|q‘ +p-g=mc (-1— > a2 )

Here the notation ~ denotes the leading-order terms in the expansion. Hence, we have

m3c3

Alp.q) = Wa

and

Therefore, we know

1 P—q)®p—q
o= (- 00000
p—dl p—dl
which reduces to the non-relativistic Landau collision operator (see [40]).

In order to introduce the quantity for the convenience of the hydrodynamic limit, we
may follow the path in [8,86,87] to rescale the system (1.1). Define the reference time ¢,
length z and momentum p. Redefining the variables

(1.7)

yields
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214 Z. OUYANG, L. WU, axDp Q. XIAO

and

%&E —cV, xB= gp‘%we/ pFdp,
L - R3
%&B + eV, X E =0,

(1.9)
V. E= —£47Te(ﬁ —p° Jgs de),
V. -B=0.
Assume that the reference spatial density is p. Then we redefine the unknowns
F—>L_3, E—)E, B—>£ (1.10)
PP PL Pz
to arrive at
%8tF+cﬁ-VmF—%%(E+ﬁxB) -va:f)—fc F, F], (1.11)
and redefine 7 — np
%&E — ¢V, x B = 4re /R pFdp,
%8,5B+0Vx X E=0, (112
V.- E = —4me (ﬁ — Jra de),
Vz-B=0.
The hydrodynamic limit corresponds to the scaling
z—0, t—=0, p~1, p— oo, (1.13)
satisfying
% ~1, pz®~1. (1.14)

Here the notation ~ denotes the same level of magnitude up to some physical constants.
This indicates that the coefficient in front of the collision term

xz 1
%:;%m. (1.15)

Then we define the Knudsen number &,
— 0. (1.16)

Physically, ¢ is proportional to the relative mean free path (see [87]). Then it suffices for
us to consider the system for F¢(¢,z,p) € R:

1
OFC + cp -V F° — %(EE +5x B°) -V, F* = _C[F",F], (1.17)
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HILBERT EXPANSION FOR COULOMB COLLISIONAL KINETIC MODELS 215
coupled with the Maxwell system for (E°(t,z), BS(t,z)) € R® x R%:
OyE® —cV, x B = 471'6/ pFedp,

R3
8,8 + ¢V, x B¢ =0,

(1.18)
v, E° = —47Te(ﬁ—/ Fsdp>,
R3
V.- -B®=0.
The collision operator C satisfies the orthogonality property:
1
/ p | Clg, h](p) p dp =0, (1.19)
R3 0

which, combined with (1.17) and (1.18), yields the conservation laws

d

— // Fe(t,z,p) dpdx = 0,

dt J Jraxrs

4 // pFe(t,z,p)dpdz + L (Es(t x) X BE(t x)) dzy =0
dt R3 xR3 T 4 R3 ’ ’ ’

d 0 e 1 € 2 € 2 _
Sl L e as o[ (1ECoR 4 1500R) ) o

Corresponding to (1.17)—(1.18), at the hydrodynamic level, the electron gas obeys the
relativistic Euler-Maxwell system for (n(t, z),u(t,z),T(t,x)) € R x R® x R:

lat (nuo) + V- (nu) =0,
—0y ((e + P)uou) +V, - ((e +Plu® u) + AV, P+ cen(u’E +u x B) =0,
Eat (e(u0)2 + P\u|2) + V- ((e + P)uou) +cen(u- E) =0,

(1.20)
coupled with the Maxwell system for (E(t,z), B(t,z)) € R® x R3:
HE — ¢V, x B = dme 2,
OB+ eV, xE—0,
v 5= re(m- "), e
c

Vs B =0,

where n is the electrons’ number density, v = (u1,ug2,us), u® = /|ul2 + 2, and T is
the temperature. In particular, e(¢,z) is the total energy (including the rest energy and
internal energy) and P(t,x) is the pressure given by

nmc® kg

P:= 5 = EPT’ (1.22)
i gt Rt - TR (1.23)
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where p := nm is the mass density, 7 := mc?(kgT)~"! is a dimensionless variable, kg

is Boltzmann’s constant, K;(vy) for j = 0,1,2,... are the modified second-order Bessel
functions: ‘
(27)5! 1 /OO —A(y2 2\j—1/2 :
Ki(y) = 2 — e ANN2 =422, > 0). 1.24
W= [ =) (2 0) (124)
The system (1.21) has been well-studied in the irrotational context. Denote Faraday’s
tensor
0 —CilEl —CilEQ —CilEg
iy ¢ By 0 —B3 By
FH = 1.2
7 C_lEQ Bg 0 —B1 ( 5)
C_1E3 —Bs B, 0

Let h be the specific enthalpy defined by h'(x) = Piz) with h > 0. Then we say the
solution to (1.20) and (1.21) is irrotational if

eﬁjk = — (9]‘ (hnuk) + Ok (hnuj) . (126)
THEOREM 1.1 (Theorem 2.2 of [48]). Assume that the initial datum
(n(0,2), (0, ), T(0, %), E(0, ), B(O, )

satisfies (1.26) and is sufficiently close to the equilibrium (ﬁ, 0,7,0, O) for some constants
7> 0 and T. Then there exists a unique global solution

(n(t.2),ult,2), T(t,2), E(t,2), B(t,))

to the one-fluid relativistic Euler-Maxwell system (1.20) and (1.21) that satisfies (1.26)
for any ¢t > 0 and
Silolp ) || (n(t) - ﬁa u(t)v T(t) - Ta E(t)’ B(t))
t€|0,00

+ sup sup ((1 +t)P V2 (n(t) =, u(t), T(t) —T,E(t),B(t))HLx) < &,
t€[0,00) |p|<N

| e (1.27)

where N, € N is a sufficiently large constant, N > 3 is a constant, 8y = % and g is a
sufficiently small positive constant.

In this article, we rigorously prove that solutions of the r-VML system (1.17)—(1.18)
converge to solutions of the relativistic Euler-Maxwell system (1.20)—(1.21) globally in
time, as the Knudsen number ¢ tends to zero.

THEOREM 1.2. Assume that (n(t,x), u(t,z), T(t,x), E(t,x), B(t,z)) is the global solu-

kT
responding local Maxwellian. Then there exists an g > 0 such that for any 0 < ¢ < ¢,
k>3,and 0 <t <7 with £ = e~'/3, the asymptotic expansion (2.3) holds. Moreover, if
F=(0,z,p) > 0, and

tion constructed in Theorem 1.1 and M(t, z, p) = Tk e T, =5 eXp { uhp, } is the cor-

M-y ©)| (B = B)O) e + (B = B)(O)]| e = O), (1:28)

H2L2
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HILBERT EXPANSION FOR COULOMB COLLISIONAL KINETIC MODELS 217
then F¢(¢,z,p) > 0 and

ti sup {[M4 (=M @)+ 1= B0l + (5 = B0} =0
(1.29)

1.2. Relativistic Landau equation. When the effects of electromagnetic fields are neg-
ligible, the relativistic Landau (r-LAN) equation provides a much easier yet still accurate
description of the dynamics of a fast moving dilute plasma when the grazing collisions
between particles are predominant in the collisions.

Let F¢ = F<(t,x,p) be the number density function for particles at the phase-space
position (z,p) = (w1, 72,3, p1,p2,p3) € R3 x R, at time t € Ry. Then F¢ satisfies the
r-LAN equation

O FF + cp- Vo F© = éc [Fe, F], (1.30)
where p = p%, p? = \/m2c2 + |p|? is the energy of the particle, constants ¢, m are the
speed of light and the rest mass of a particle, respectively. 0 < ¢ < 1 is the Knudsen
number.

Similar to (1.4), the collision operator C yields the conservation laws

// Fé(t,z,p)dpde = — // pUFe(t,z,p) dpdx = 0,
R3 xRR3 R3 xRR3

— pFe(t,z,p)dpdz =0

dt //RSXR3 ( )

Corresponding to (1.30), at the hydrodynamic level, the plasma obeys the relativistic
Euler equations for (n(t,z),u(t,z), T(t,z)) € R x R? x R:

l(‘3t(nu0) + V- (nu) =0,
“o{ (e + P)utu} + 9, - {(ce+P)(u@u) } + VP =0, (1.31)
o (e+P) («)” = EJuf* Py + Vo - { (e + P)ulu} =0,

where n is the particle number density, u = (uy, us, uz), u® = /|u|? + c2. Here, P and e
are defined as in (1.22) and (1.23) (see [88]).

THEOREM 1.3 (Theorem 1 of [88]). Under proper regularity conditions, if the initial data
(n(O), u(0), T(O)) is sufficiently close to an equilibrium state (m,0,7): for N > 3

[(n =7, u, T = T)(0)|| p <0 <1, (1.32)

s
then there exists a unique solution (n,u,T) to (1.31) for ¢ € [0,#] with # > & ~! for some
constant ¢ > 0 satisfying
sup {|Via(nu,T)|} < 1. (1.33)
0<t<f,z€R3,0<L<N—2
In this article, we rigorously prove that solutions of the relativistic Landau equation
(1.30) converge to solutions of the relativistic Euler equations (1.31) locally in time, as
the Knudsen number ¢ tends to zero.
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THEOREM 1.4. Assume that (n(t,z),u(t, ), T(t,z)) is the solution constructed in Theo-
rem 1.3 and M(t, 2, p) = i crorrc; &7 eXP { l,:;p:,i‘ } is the corresponding local Maxwellian.
Then there exists an €y > 0 such that for any 0 < e < g, k > 3, and 0 < t < ¢y with some
to depending on (n(t7 x),u(t,x), T(t, x)) but independent of &, the asymptotic expansion
(2.39) holds. Moreover, if F¢(0,x,p) > 0, and

1 e .
HM 5 (FF — M) (O)HHG%L% — 0(e), (1.34)
then Fe(t,z,p) > 0 and
li HM—l FS— M) (t H —0. 1.
;nup{ HE M), | -0 (1.35)

1.3. Background and literature. As a key ingredient to attack the well-known Hilbert’s
sixth problem, the rigorous derivation of fluid equations (Euler equations or Navier-Stokes
equations, etc.) from the kinetic equations (Boltzmann equation, Landau equation, etc.)
has attracted a lot of attention since the early twentieth century. The fundamental
problem is to justify the asymptotic limits of kinetic solutions as the Knudsen number
(which measures the relative mean free path) or the Strouhal number (which measures
the relative time-varying speed) shrinks to zero.

There are mainly two genres to study hydrodynamic limits: kinetic-based approach
or fluid-based approach. We refer to [63,67] for more details.

The kinetic-based approach purely relies on the solution theory (well-posedness, reg-
ularity, etc.) of the kinetic equations and does not assume any a priori properties of
the fluid limits. On one hand, in the context of the renormalized solution and en-
tropy method, there are successful applications of this approach to the incompress-
ible Euler/Navier-Stokes limit. We refer to Bardos-Golse [6], Golse-Saint-Raymond
[36, 37], Saint-Raymond [83], Masmoudi-Saint-Raymond [78], Arsénio-Saint-Raymond
[5], Bardos-Golse-Levermore [7-9], Lions-Masmoudi [74] and Masmoudi [77]. Interested
readers may refer to the books by Saint-Raymond [84] and by Golse [35], and the ref-
erences therein provide a nice summary of the progress. On the other hand, in the
context of classical solutions, we refer to Nishida [79], Bardos-Ukai [10], Briant [11],
Briant-Merino-Aceituno-Mouhot [12].

The fluid-based approach does assume a priori that we have a well-prepared fluid
system with a unique smooth solution. And then we will justify that the kinetic solution
converges to this fluid solution. In some sense, this is essentially “fluid-to-kinetic” limit
and we avoid the complications of possible fluid ill-posedness, like blow up or shock wave.
This approach typically provides hydrodynamic limits in the stronger sense and utilizes
the so-called Hilbert expansion techniques. In this paper, we will focus on the fluid-based
approach and discuss the progress in detail.

The Hilbert expansion dates back to 1912 by Hilbert [55], who proposed an asymptotic
expansion of the distribution function solving the Boltzmann equation with respect to
the Knudsen number and formally derived the limiting compressible Euler equations.
The similar formal expansion can be naturally extended to treat the Landau equation,
and collisional kinetic equations coupled with Poisson equation or Maxwell system.
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The first rigorous justification of the compressible Euler limit of the Boltzmann equa-
tion was due to Caflisch [13]. Later, with the L? — L° framework introduced in Guo
[44], Guo-Jang-Jiang [51] improved Caflisch’s result and removed the assumption on
the initial data FR(0,2z,v) = 0. This framework was extended to treat the Vlasov-
Poisson-Boltzmann (VPB) system in Guo-Jang [50] and the relativistic Boltzmann (r-
BOL) equation in Speck-Strain [88]. Recently, this framework was further developed
to the investigation of the relativistic Vlasov-Maxwellian-Boltzmann (r-VMB) system in
Guo-Xiao [54] and the Boltzmann equation with boundary conditions in half-space in
Guo-Huang-Wang [46], Jiang-Luo-Tang [64,65]. We also refer to Grad [38], Ukai-Asano
[93], De Masi-Esposito-Lebowitz [14], and the recent work Jang-Kim [62] and Kim-La
[68] for the incompressible Euler limit.

For the convergence of the Boltzmann equation to the basic waves of the Euler equa-
tions: the shock waves, rarefaction waves and contact discontinuity, the interested readers
may refer to Huang-Wang-Yang [57-59], Xin-Zeng [103] and Yu [107].

As for the incompressible Navier-Stokes limit of the Boltzmann equation, there are
too many references and we only list some closely related works. The early development
tracks back to De Masi-Esposito-Lebowitz [14] in 2D. Then Guo [43] justified the diffusive
limit in the periodic domain via the non-linear energy method. This result was extended
to the whole space in Liu-Zhao [75], to more general initial data with initial layer in
Jiang-Xiong [66], and to the Vlasov-Maxwell-Boltzmann (VMB) system in Jang [61].
See also the recent work Gallagher-Tristani [33]. We also mention the very recent work
Duan-Yang-Yu [24] for the compressible Euler-Maxwell limit of the one-species VMB
system.

For stationary Boltzmann equation and other settings, we refer to Di Meo-Esposito
[16], Arkeryd-Esposito-Marra-Nouri [4], Esposito-Lebowitz-Marra [30], Esposito-Guo-
Marra [29], Esposito-Guo-Kim-Marra [28], Wu [96], Wu-Ouyang [97-99].

Despite the fruitful progress in the hydrodynamic limits of the Boltzmann-type equa-
tions, there are very limited works in this direction for Landau-type equations. For
Landau equation, we refer to Guo [43] for the incompressible Navier-Stokes limit, Duan-
Yang-Yu [22, 25] for the rarefaction wave limit and compressible Euler limit, and the
recent work Rachid [82]. As far as we are aware of, our paper is the first result to justify
the Hilbert expansion for r-LAN equation and r-VML system.

As for the well-posedness issue for fixed Knudsen number and Strouhal number, there
are a huge number of literature. We list some closely related to this article. For the
r-VML system, we refer to Strain-Guo [90], Yu [106], Yang-Yu [105], Liu-Zhao [76] and
Xiao [100]. For the r-LAN equation, we refer to Hsiao-Yu [56] and Yang-Yu [104]. We
also mention Guo-Strain [53] and some works in the non-relativistic framework: Villani
[94], Guo [40,42,45], Strain [89], Duan-Strain [21], Duan [18], Duan-Lei-Yang-Zhao [19],
Guo-Hwang-Jang-Ouyang [47], Duan-Liu-Sakamoto-Strain [20] for Landau equation and
Dong-Guo-Ouyang [17] for Vlasov-Poisson-Landau (VPL) system.

Finally, we record some significant progress on the compressible fluid system. Sideris
[85] justified the classical result on the compressible Euler equation that the solution
might blow up even if the initial datum is small and irrotational. However, as a key ob-
servation, the electric field or the electromagnetic fields might help stabilize the system.
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Based on the Klein-Gordon effect, Guo [39] and Germain-Masmoudi [34] constructed
global classical solutions to the one-fluid Euler-Poisson system and Euler-Maxwell system,
respectively. Using the combination of normal-form method and vector-field method to
capture the so-called “null structure”, Guo-Tonescu-Pausader [49] justified the global well-
posedness of 3D two-fluid Euler-Maxwell system, and the similar results were extended
to treat 3D Euler-Poisson system, and 3D one-fluid/two-fluid relativistic Euler-Maxwell
system in Guo-Ionescu-Pausader [48], which plays a key role in our proof of the hydrody-
namic limits (as in Theorem 1.1). The 2D case was justified in Deng-Ionescu-Pausader
[15]. More recently, the one-fluid Euler-Maxwell system in 3D with non-vanishing vor-
ticity was studied in Tonescu-Lie [60].

2. Formulation and discussion. Without loss of generality, from now on, we will
take the constants ¢ = e =m = kg=271n(\) = 1.

2.1. Hilbert expansion for the relativistic Vlasov-Mazwell-Landau system. In this sub-
section, we will provide the Hilbert expansion of the r-VML system (1.17) and (1.18),
and introduce necessary notations.

We consider the Hilbert expansion with respect to small Knudsen number € and k£ > 2:

2k—1 2k—1 2k—1
Fe=F + Z e"F, +e"F5, EF=FE + Z e"E, +e"E%, B°=B+ Z e"B,, + "B,
n=1 n=1 n=1

(2.1)

To determine the coefficients F, (¢, z,p), E,(t,x), B,(t,x) for 0 < n < 2k — 1, we plug
the formal expansions (2.1) into equations (1.17)—(1.18) and equate the coefficients on
both sides in front of different powers of the parameter € to obtain:

e~ 1-Order:
C[F,F] =0. (2.2)
£*-Order:
HF +p-VoF — (E+px B)-V,F = C[F\,F| +C[F,F], (2.3)
and

6tE—Vm><B:47r/ pFdp,
R3
8tB+Vz><E:0,

(2.4)
V. E= 47T<ﬁ—/ de),
RS
Vv, B=0.
e"-Order (1 <n <2k-—1):
0 Fp+p-VoFy— (By+pxBy) VoF — (E+pxB)-V,F, (2.5)
= Z C|E, Fj] + Z (EBi +p x B;) -V, Fj,
1+j=n+1 i+j=n
4,720 i,j>1
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and

OE, — V., x By, = 47 / HE,dp,
R3
8By, + V4 x B, =0,

(2.6)
Vz . En = —4r Fndp7
R3
V.- By =0.
Remainder equation: The remainder (F§, E%, BS) satisfies
OFi+p-VioFg— (Ef+px Bg) - VoF — (E+px B)-V,Ff (2.7)

- é {c[FaF] +c[r ]}

+2;=Z—11€i{(Ei+ﬁ><Bi) VpFq+ (BR+5x BR) Vo +¢°8,

and
O,E5 — Vi x By = dn / PFEdp,
R3
0,5 + Vy x E5 =0,
WPt r (2.8)
V. E5 = —dn / Fidp,
]R3
V. B5 =0,
where
s= Y evmeln Rl re|R Bl Y (B4 x B VLB
it+5>2k+1 i+ >2k
2<4,j<2k—1 1<i,j<2k—1
(2.9)

From (2.3), we conclude that F' should be local Maxwellians:

n utp,
= 2.1
TR (7) ‘”‘p{ T } (2.10)

F(t,z,p) =M

where (n,u,T) is part of the solution to the relativistic Euler-Maxwell system (1.20).
The other coefficients F,, (¢, z,p), Fn(t,2), By(t,z) for 0 <n < 2k — 1 can be derived in
an inductive way (see Appendix A).

To prove Theorem 1.2, our main task is to solve (2.7)—(2.8). Define f§ as

F§ := M f5. (2.11)
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(2.7) and (2.8) can be rewritten as

{atﬂa-vz—(E+;axB)-vp}f§+“%pM%~E; (2.12)
~ AME (Bt px BR) + LI

= fiMH{oi+p- Vo — (B+5 x B) -V, pME + T [/, f]

+ ; g1 {I‘ [M_%Fi,fﬁ} +T [f]%aM_%Fi}}‘i‘gk(E% +px B%) Vo fs
~etap (1= u) (Ero+a < B2)
+2:g=—115i{(Ei+ﬁxBi) 'foze%‘f‘(EzE%-i-ﬁxB;) -M—%vai}
_2k—1 z’{(E4+A><B»)-L( 05 )fg}+ kg
i:lE ip i) or\WPTY)IR g

and
OES — Vg x B = 47r/3 M= f5dp,
0B, + Vg x E5 =0, )
V. B =—ir [ M frdp
V., B =0. ‘

(2.13)

Here S = M2 S. The linearized collision operator L[f] and non-linear collision operator
I'[f, g] are defined as follows:

el =Mt {emi M)+ e[Movtp] | = —ar) - K1) (2.14)
and
I(f.g) =Mt [mb Mgl (2.15)
Note that the null space of the linearized operator L is given by
N = span {M,p;M* (1 < < 3),p"M? }. (2.16)
Denote P as the orthogonal projection from Lf) onto NV:
P[f] = (af - %cf)M% + by pM? + cppM3, (2.17)

where af, by and cy are coefficients which will be written as a,b,c when there is no
confusion, and

pri= / Mdp=na®,  poi= / PMdp = e(w®)? + Plul’.  (2.18)
R3 R3
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2.1.1. Notation and convention. Throughout the paper, C denotes a generic positive
constant which may change line by line. The notation A < B implies that there exists
a positive constant C such that A < CB holds uniformly over the range of parameters.
The notation A ~ B means %A < B < CA for some constant C > 1.

Let (-,-) denote the L? inner product in p € R? and (-,-) the L? inner product in
(z,p) € R® x R3:

(f,9)= [ fgdp, (2.19)

(f.9) = //Rms fgdpdz. (2.20)

Let ||, denote the L? norm in p € R3 and || - || the L? norm in (z,p) € R3 x R :

fl3.= (L), AP =(h). (2.21)

Note that for quantities related to £ or B which do not depend on p, we also use || - || to
denote the L? norm in z € R3. Similarly, for s = 0, 1,2, we define the Sobolev norms

I£13 = Z |02 f[*dpda, (2.22)
3 s

where 0y = 09109205 with a = (a1,a2,a3) and |a| = a1 + az + a3. For M given in

(2.10), we denote (n,u,T) (t,xz) as part of a solution to the relativistic Euler-Maxwell
system (1.20)—(1.21), which was constructed in [48], and define the following 3 x 3 matrix-
type collision frequency:

o(p) = /R ®M(q) dg.

To measure the dissipation of the linearized relativistic Landau collision operator, we
define the inner product:

Z/ %10y, [y, g dp + Z 4T2/ “plpf (2.23)

7,7=1 3,j=1

Denote the corresponding ¢ norms:

=D 1= [ 1@ e (2.24)

Similarly, for s = 0, 1,2, we define the Sobolev o norms

1l = 3 / 05 /2. (2.25)

|ee|=0

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



224 Z. OUYANG, L. WU, axDp Q. XIAO

REMARK 2.1. Notice that all eigenvalues of ¢/ (p) are positive and depend on p.
Moreover, according to [73], the eigenvalues converge to positive constants as |p| — oc.
Then, for the | - |, norm defined above, we have

1 1
7 e +IVeflpe SIflo S 7 F e +1Vaflpe - (2.26)

Define the weight functions
0

¢ _ (1 0\2(Ne—) N 0<0<2 2.27
w' = (p’) eXp{51n(e+t)Tc}’ = (2.27)

where N, and T, are constants satisfying N. > 3 and

1. > sup T(t,x). (2.28)
te[0,e—1/3],z€R3

It should be pointed out that the weight functions in (2.27) are designed to make sure
that
(w)’M7 S e (") <

((wf)2 + (w0)2) (2.29)

for some small constant ¢y > 0.
Correspondingly, define the weighted norms

e = [l W g = > lw!ag ], (2.30)
|a]=0
1 e o =10 F s Iy, = > [lw!02 7], - (2:31)
|| =0
Denote
1 w’ 1

W(t) = exp <51n(e —i—t)Tc) YO =~ =R o %Y

Z(t) = sup {|V%;l(n,u,T)| + |nyz(E,B)‘ + |szu|} .

r€R3,0<4<2

2.1.2. Key proposition. Theorem 1.2 follows naturally from Proposition 2.1.

PROPOSITION 2.1. Let F<(0,z,p) > 0. Assume that (n(t,z),u(t,z),T(t,z), E(t,z),
B(t, x)) is the global solution constructed in Theorem 1.1. Then for k£ > 3 in the Hilbert
expansion (2.1) and f§ = M’%Ff% defined in (2.11), there exists an €g > 0 such that for
0<e<egpand 0 <t <7 with?=e"1/3 if

£00) <1, (2.33)
(2.12) and (2.13) admit a unique solution (ff%, E%, BIE%) satisfying F (¢, z,p) > 0 and
T
sup E(t) + / D(s)ds S E(0) + 1, (2.34)
0

0<t<t
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where
& = (12l + IR + BRI + 1T - P) S0 ) (2.35)
+ e (IVa 7l + IV BRI + Ve BRI + Vo (X = P[22 )
+ 2 (IV2SRI° + IV2 BRI + [V2BR ] +¢ | V25311 ).
and

Do (=PRI + = - PSR, + Y [VPa-P)isl] ) 2:36)
+ (<P + X = PRI + IVa (= )R,
rev||Vvaa -y

+ (2 |V2PUR" + e | =PV SR + 2 V2 A - PRI

[ed

vy |vvza-ey, )

REMARK 2.2. By (2.1), the estimates (A.7) of the coefficients F,,, E,, B,, with (1 <
n < 2k — 1) in Proposition A.1, and (2.34), we can obtain (1.29).

REMARK 2.3. In this paper, we will focus on deriving the a priori estimate (2.34) in
Proposition 2.1. Then Theorem 1.2 naturally follows from a standard iteration/fixed-
point argument. Based on the continuity argument (see [91]), from now on, we will
assume that

sup E(t) Sez, (2.37)

0<t<1

and try to derive (2.34). Here we point out that the exponent % in (2.37) can be replaced
by any small positive constant and we choose it explicitly as % simply for convenience of
computation.

REMARK 2.4. The irrotational assumption (1.26) is necessary in the global well-
posedness of Euler-Maxwell equation in [49]. Our proof does not rely on the irrotational
assumption. Actually, as long as the fluid equation is well-posed and the solution enjoys
proper time decay, our method should be able to justify the convergence.

2.2. Hilbert expansion for the relativistic Landau equation. In this subsection, we will
derive the Hilbert expansion of the r-LAN equation (1.30), and introduce necessary
notations.

We consider the Hilbert expansion for small Knudsen number &,

2k—1
Fe(t,z,p) == F + Z e"F,(t, x,p) + " F5(t,z,p), (2.38)

n=1

for some k > 2. To determine the coefficients F,(t,z,p), we plug (2.38) into (1.30)
and equate the coefficients on both sides of equation in front of different powers of the
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parameter ¢ to obtain:
el: CIF,F]=0,
' O F +p-V,F=C[F\,F]+C[F, F],

...... (2.39)
e OF, +p-V.F,= Y CIF,Fj,
i+j=n+1
4,>0
el 9 Fap 1 + P VelFoy 1 = Z C[F;, F;].
it+j=2k
i,j>2
The remainder term F'; satisfies the following equation:
1
OFf + - VoFf — —{CIFR, F) + CIF. Fi)} (2.40)
2k—1
— et1C[Fg, Fl + Y &7 {CIR, FR) + CIFR, il + 5,
i=1
where
Si= Y YRR, Fy] (2.41)
itj>2k+1
2<i,j<2k—1

From the first equation in (2.39), we can obtain that F' should be a local Maxwellian:

n utp,
F(t,z,p) = M(t,z,p) := K0 eXp{ 7 (s (2.42)

where (n,u,T)(t, ) is a solution to the relativistic Euler equations (1.31).
We define f§ as

Fi(t,2,p) = M2 (t,2,p) [R(t, 7, ). (243)
Then the remainder equation (2.40) can be rewritten as
. 1

O fe+D-Vafp+ gﬁ[ff{] (2.44)

2k—1
. 1 1
= I SR+ Y DM AR, f] + Tf7 MR}

i=1

~M"%(9M? +j- V,M?) ff, + S,

where § := M~3§.
2.2.1. Notation and convention. The notation here is mostly similar to that in Section
2.1.1. Define the weights

0

t— (p0)2(Ne=0) __r </1<2 2.4
v (") eXp(E)ln(e—f—t)Tc)’ 0<f=2, (2.45)
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where N, > 3 is a constant and T, is a constant satisfying

T.> sup T(t2), (2.46)
t€[0,to],z€R3

where t( satisfies (2.49).
For the classical solution (n(t,z),u(t,z),T(t,x)) to the relativistic Euler equations
(1.31), denote W and Y as in (2.32) and

AR

14+ T)u
sup {}Vtx(n,u,T)}%} y
0<t<tg,r€R3

Z = sup {‘Vf’m(n,u,T)‘}.
0<t<to,z€R?,1<<3

2.2.2. Key proposition. Theorem 1.4 follows naturally from the Proposition 2.2.

PROPOSITION 2.2. Let F¢(0,z,p) > 0, and let F = M as in (2.42). Assume
(n(t7 x),u(t,z), T(t, x)) is a sufficiently small solution to the relativistic Euler equations
(1.31) satisfying

Z K1, (2.47)
and

Z < 00, (2.48)
where tg > 0 fulfills

! (2.49)

;27
10T.(e + to) (In(e + to))

for T, defined in (2.46). Then the Hilbert expansion (2.38) with Fj,,1 < n < 2k — 1,
defined in (B.1) holds for k£ > 3, and for the remainder f§ = M*%Ff2 satisfying (2.44),
there exists a constant €9 > 0 such that for 0 < e < ¢gg and 0 <t < £, if

£(0) 31, (2.50)

then there exists a solution F©(¢,z,p) > 0 to (1.30) satisfying

sup E(t) + /t D(s)ds < £(0) + 2 +3, (2.51)
0<t<tg 0
where
&~ (a7 + 1@ =P)F3lI% ) (2.52)

+e(IVaf7lP + IV = PSR )

+ 2 (921l + 2 |92 42l )
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and
D~ (7 1@ =P)JRIIE + e 1@ =PRI, + Y VIO~ P)IfE]
+ (2 IVLPURIP + Vo (X = PSRN + Vo= P) S50,
vev|vivaa-p| )
+ (2 [ V2RI + = VA= PRI + 2 [V - PRI
+53YH\/EV§f,3 i)

REMARK 2.5. Theorem 1.3 and the additional assumption (2.49) actually dictate that
for 0 <t <ty

io ) (2.53)

led

1
7Z < §Y and Z < 1. (2.54)

This will play a key role in the energy estimates, since the solution to Euler equations
does not have time decay.

REMARK 2.6. In this paper, we will focus on deriving the a priori estimate (2.51).
Then Proposition 2.2 naturally follows from a standard iteration/fixed-point argument.
Based on the continuity argument (see [91]), for the energy estimates in Section 8, we
will assume that

sup E(t) e 7, (2.55)
0<t<to
and try to derive (2.51). Then in Section 8.4, we will in turn verify the validity of (2.55)
with the help of (2.51).

2.3. Technical overview. In this paper, we will develop a new time-dependent energy
method to study the Hilbert expansion of the Landau-type equation in the relativis-
tic framework, which combines our preprints [80, 81]. This is inspired by Caflisch’s
pioneering work [13]. It is well known that in the study of the Hilbert expansion of
the Boltzmann/Landau-type equation, the main task is to solve the remainder term
Fg = M: fi, and one of the most challenging difficulties is from the linear term with
one power moment growth

M (t2,0) filt 2, p) {01 + 5 Vo pME (2, ) (2.56)
in the relativistic frame, or the linear term with cubic velocity growth
M4 (t,2,0) fi(t 2, 0) {0+ 0 - Vo fME (8, 2,0) (2.57)

in the non-relativistic one.

To tame the velocity growth, Caflisch decomposed the remainder FF(t,z,v) into low-
and high-velocity parts, which satisfy a coupled system and can be separately estimated
via a weighted energy method.

This approach motivates us to design a time-dependent weight function

0

w(t,z) = exp {m } (2.58)
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Then this exponential momentum function generates an additional dissipation term to
control the moment growth terms in (2.56)

1d

W R0 fs = q O(wff)?. (2.59)

£ 2 1
(wfR)” + 5(e + t)[In(e + t)PTcp

Correspondingly, the troublesome term in (2.56) is roughly

0
wt M fr{on+p- V. jMb < {|vt,z<n,u,T>| %}pwwﬁm (2.60)
As long as
(1+ T)u 1
{Vt,x(’f%U,T” 2 } < ST DmE T OPT. (2.61)

holds for ¢,2 under consideration, we can suppress the momentum growth in (2.56).
Therefore, if |V;,(n,u,T)| is sufficiently small for all z € R3, (2.61) holds locally in
time; if |Vy z(n,u,T)| further enjoys suitably fast time decay, (2.61) holds globally in
time.

Since 1980s, time-dependent exponential weight functions have been widely used in
the study of the collisional kinetic equations. In 1986, Ukai [92] introduced a weight
function w(t,v) ~ exp {(a — kt)(1 + |[v]?)} with o,k > 0,¢ € [0, 2ax™!] to study the
local well-posedness of the cutoff Boltzmann equation. Later, this technique was extended
by AMUXY [1-3] for constructing local solutions to the non-cutoff Boltzmann equation
in Sobolev spaces. In these works, the weight function provides an extra gain of velocity
weight at the expense of the loss of the decay in the time-dependent Maxwellian.

In the exploration of global classical solutions to the one-species VPB system for
cutoff hard potentials and moderately soft potentials, to control the large velocity growth
in the non-linear term due to the Coulomb force, Duan-Yang-Zhao [26,27] introduced
A(L+|v]?)

(1+1)?
constants. By introducing a new time weighted energy framework, Xiao-Xiong-Zhao
[101,102] removed the so-called neutral condition assumption on the initial datum in
previous work [27], and extended this well-posedness result to the very soft potentials
case. We point out that the non-linear energy method and macro-micro decomposition
technique employed in [101,102] play an essential role in the proof of the main results
of this paper. Recently, such techniques were further applied in constructing global
classical solutions to the cutoff VMB system, non-cutoff VMB system, and VML system
[18,19,31,72,95].

More recently, a new weight function w(t,v) ~ exp{(ql — ¢ fot q3(s) ds) (1 + |v|)2},

another type of weight function w(t,v) ~ exp{ }, where A, are small positive

with constants q1,g2 > 0 and g3 being a dissipation energy functional, was used in
Duan-Yang-Yu [23] to justify the asymptotic convergence in Landau equation.
Technically, the introduction of weight function w in (2.58) brings multi-level compli-
cations. In order to handle the non-linear term I', we have to control L*> norm of f§,
which in turn requires spatial regularity up to H2. The more derivatives hit M, the more
p° will be generated. Hence, we have to carefully design a hierarchy of weighted func-
tions w’ to control all kinds of interactions and non-linear terms in the energy-dissipation
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structure. In particular, T, satisfies (2.28) and (2.46) so that

2p0 Hay
P +p m

Sn(e+ )T, = 2T

<0,

due to the smallness of u. This yields that for some constant ¢ > 0
w¥*M? < e_copo,

which helps to control the cross terms with both w/M2 and polynomial growth in p°.
Nevertheless, this hierarchy of weighted energy method produces new difficulties, es-
pecially from the linear collision operator term ¢! £[f§] and the macroscopic part P[f§].
On the one hand, the linear collision operator term e ' £[f§] and P[f§] do not com-
mute with the spatial derivative operator V,, and thus we have to bound the commutator
[£,V.]. This difficulty was also present in the third author’s previous work with Guo
[54]. In the derivative estimate, we have

<§vxc[f;,], fo§> = <§c[vxa ~P)[f7l]. (- P)vx[f%1>

- (F16.V1@- PV 57) (2:62)

é CZ
> 2|V (-SRI, - S 1@ PRI - C21 Rl -

Noting that only 5_1H(I - P)[f}%]”i is included in the no-weight energy estimate, this
implies that we have to pay the cost of % for the derivative estimate ||sz§||2. This is

the very reason to include €||wa§H2 and &2 HV%fﬁHQ in E(t).
On the other hand, in the weighted energy estimate

(Lelfl w021 = ( Le[0- PR 02X~ PR + WOPPIR ) (269

0
> e -yl - S - eyl - el

- PRI - < IPLAI,

[STNO)

> % lut - PRl - 2

)

while |P[f5] |? cannot be controlled by the dissipation terms in D. Noting that due to
the Maxwellian in the macroscopic part P[f}], we naturally have HwOP[ff{]H S R
and thus the weight function only takes effect for the microscopic part (I — P)[f].
Therefore, we may first apply the microscopic projection (I — P) onto the f§ equation
(2.44), and directly estimate w®(I—P)[f5] and w'V,(I—P)[f5]. Then the trouble term
Ce™! ||P[f§]\|2 in (2.63) would not appear.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



HILBERT EXPANSION FOR COULOMB COLLISIONAL KINETIC MODELS 231

However, this (I — P) projection in turn generates another commutator [P,p- V],
which may be controlled as

1@ =P)[fRI2 + el Va sl (2.64)

M | =

(IP.5- V] /7). (T = P)IfR]) S

The term e Hmef%H2 cannot be controlled by the dissipation term e[| (I-P)[V, f§] ||i inD.

Similar to (2.64), in the weighted first-order derivative estimate, linear term &> HV%f;W
arises. This reveals that the (I — P) projection argument requires estimate of one more
derivative (e.g. in order to bound w®(I—P)[f%], we need the control of |V, f|), and thus
the microscopic projection cannot be applied to the highest-order derivatives. Hence, we
have to directly perform the weighted energy estimate for V2 f&, which in turn calls for
g3 ’|(w2)2Vif§H2 in £(t) and leads to the trouble term &2 || V2P[f5]|| again.

To control the worrisome linear terms ¢||V,P[f§]|| and £% || V2P[f5]||, we need to cap-
ture the macroscopic structure of the remainder equations (2.12) and (2.44). The macro-
scopic dissipation estimates for e[|V, P[f5]|| and €2 || V2P| f5]|| are given in Section 6 and
Section 8.3. Motivated by [43], we give the proof combining the local conservation laws
and the macroscopic equations. We write the macroscopic quantities (2.17), and obtain
the conservation law equations for a®, %, c¢®. Although these equations are very compli-
cated, we only need to focus on main terms corresponding to the global Maxwellian case
as in [76] and [90] without the electromagnetic field.

For the r-VML system, we discovered a new phenomenon related to the dissipation
of the electromagnetic field. Through an intricate analysis of the macroscopic variables
V. P[f5]]I?, we conclude that af, E5 and V,af, V,ES, V,B5 belong to the dissipation
D. In the near-global-Maxwellian case (see [18,105]), these dissipation terms are stronger
than the energy £. However, in our near-local-Maxwellian case, due to the Hilbert

expansion, these dissipation terms are much weaker. Actually, we show that
112 € (|2 2 12 € (|12 e 12
e(a 1 + IERI?) + 22 (Ve | + IV ERI® + Vo BRl* ) <€, (2.65)

which can be absorbed by & after integration w.r.t. time ¢ for ¢t € [0,~1/3].

In addition, motivated by [41] and [47], we justify the positivity of the solution F*©.
We first perform a careful analysis of the construction of the initial data and prove that
F#(0) > 0. Then by analyzing the elliptic structure of the relativistic Landau operator,
we show the validity of maximum principle and conclude that F=(t) > 0 for all ¢ > 0.

Compared with the L2-L> framework as in [51,52,54], our new method has several
advantages. Firstly, we don’t require an explicit lower bound of the temperature T":

Ty < max T(t,x) < 2Ty (2.66)
T

for some constant Th; > 0. This extra restriction on 7' is a technical requirement in the
L?-L> method, and seems artificial from the physical viewpoint. Secondly, our method
works for more general settings, including both the Landau-type and cutoff/non-cutoff
Boltzmann-type equations in the relativistic frame. The L?~L> framework heavily relies
on the analysis of the characteristic, which fails for the presence of the diffusion effect.
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Finally, we briefly discuss the possible applications of our new method. First, we are
hopeful to apply this method to the relativistic non-cutoff Boltzmann equation. Due to
the absence of momentum derivative estimate and weak dissipation of £, the estimation of
non-linear terms related to the electromagnetic field would be critical. Then we can make
use of our time-dependent exponential weight function and ideas in [101,102]. Second, it
is also very interesting to extend our method to deal with the bounded domain problem.
Recently, Duan-Liu-Sakamoto-Strain [20] proved the global existence of mild solutions to
the non-relativistic Landau equation and non-cutoff Boltzmann equation for z € T2 or
x € (=1,1) x T? with boundary conditions. Further investigation of the corresponding
Hilbert expansion should be a good future direction.

As a follow-up, recently the third author and collaborators have extended the tech-
niques in this article to treat the non-relativistic Euler and Euler-Maxwell limits in
[70,71].

This paper is organized as follows: in Section 3, we will present some preliminary
lemmas regarding the linear and non-linear relativistic Landau operators; in Sections
4-6, we will prove the a priori estimate for the no-weight and weighted estimates as well
as the macroscopic estimates of the r-VML system; in Section 7, we justify Proposition
2.1; finally, in Section 8, we consider the r-LAN equation and prove Proposition 2.2.

3. Preliminaries. In this part, we will write down explicit forms of the operators
A, K and T' and further prove the coercive estimate of the linear collision operator £
and trilinear estimates about I'" for both the r-LAN equation and the r-VML system.
Weighted energy estimates for these collision operators will also be established.

LEMMA 3.1. For the local Maxwellian M, it holds that

’M—%atlv{% + ’M‘%VEM% <z, (3.1)

1 1 _1 1 £41
Ve (M tamt )|+ |vE (MbeaME)| < 5 ()2 ez (3.2)
Proof. Direct computation and the assumption (2.61) can justify this. ([l

LEMMA 3.2. For the operators A, L and I', we have

AL} = 0y (090, ) — T (1 — ) (55 — ) + 0, (09 (%5 — ) ), (33)
wp; — u; - 1 1 —u0G; + u,
ki1 = (0 = ) [ otpantt oinet ) (Z55 5 1) - 0, @) da
(3.4)
and

rif) = (2~ S [ 99,00 @) (0, 50)0(0) - £0)2,9(0) ) o, (29
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Proof. This corresponds to [90, Lemma 6]. We first prove (3.3). From the definition
of the operator A and (1.6), we have

Alf] =M= (p)0, / 9 (p,0) (9, [M? f]())M(g) — [M* /] ()2, M(g)] ) dg  (3.6)
M3, [ 00 an eMe) ((-E + SR 1)+ 0,109 ) d
MA@, [ M oM@ (1) +3,100) )

~ 3, (o 0 (10040, 100 ) ) - ) (0, 50+ )

zg . 1 i A
= Oy, (0 apjf) gz (Wi = ) (W°h; = w;) f + 550y, (U 7 (u’p; — uj))f-
Similarly, for (3.4), we can obtain that

KIf) = M~} ()0, /wpq (0, M(p) M2 ](g) - M(p)2y, [MP f](9)) dg (37)
ulp; —u;  ulg; —uy
M ()3, / o M naip) ( (-2 L) ) 0, 7(0)) d

- M), / 8 )M M) (—2 ) - 0, 0))

= ( )/Rg ® (p, g)M> (p)M? (q) (%Wf( ) = 3qu(q)>d

For (3.5), we use (16 ) again to have

L[f, 9] = M2 (p)0y, / ®(p, g 7[M%f](p)[M%g](Q) (38)

~[M2 /] (p)0y, [M? £](9)] ) dg
=M% (p)d,, / @Y (p,q)M= (p)M %(q)(apjf(p)g(q)—f(p)aqjg(q))dq

05. _ o 05, _ o).
@1g(o) (2 4 Lt g

1

8/<I>Jp, Mz (p)M:

=

Nl

=M% (p)d, /Rs B (p, q)M? (p)M

uoﬁ —
= _ - ij
(Il

REMARK 3.1. From Lemma 3.2, we know that when taking x; derivatives on £ and
T", although there will be p or ¢ popped out from M and M%, they can be absorbed by
M or Mz,

(@) (9, F(P)9(a) = £(2)D4,9(0))da

lvl»—‘

M (g )(%f (P)g(a) - f (p)aq]-g(Q))dq-
LEMMA 3.3. The linearized collision operator £ is self-adjoint in L?. It satisfies
(LL11.5) 2 1T =P)[A (3.9)
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Proof. Using Lemma 3.2, compared with [90, Lemma 6], for any large constant R, it
holds that

(LLf1.0) 2 1@ =P)[f1IZ, (3.10)

where the norm |- |5 is defined as
3 g L | g
=Y [ o 00, fap+ Y 1 [ o9 (0= ) (0 — w)lsdp. (310
i,j=1 ,5=1

Now we show the equivalence of the norm |- |, and | - | under the smallness assumption
of u. By the simple inequality

(A—B)? > %AQ - B? (3.12)
we have
~ 1 2 . 5.0
ijzl ol (uoﬁi — ui) (Uoﬁj — uj) > ijzl 5(UO) oI pip; — ijZ:1 o, (3.13)

Combining (3.11) and (3.13), we use the smallness assumption of u to obtain

3 3 2 3
ij (uO iiA A 1 y
=D /Rsoﬂamfapjfdm > ST)Q /Rsafpimfﬁdp— > _4T2/Rsa:uiuj|f|2dp

i,j=1 i,j=1 i,j=1

1 C 2 2 2
> §|f|§ - ﬁ”uu%‘;fm fl72 2 Vo flpe + 1 fl2e 2 1F15

On the other hand, from (2.26), we have |f|, < |fls- (3.9) follows from (3.10) and the
above inequality. O

LEMMA 3.4. The non-linear collision operator I satisfies

| (CLf. g1+ Tlg: f1. 1) | < (112 l9lo + 19122 1f15) [T =P)[R]], - (3.14)
Moreover, for |a| < 2, we have
(OZT(f, 91 + 07T g, £1, 07 h)| (3.15)
SO gz Mgl ggien + gl gz 11 gggen ) [ = PYB R, + Xjagz1 (L + 1) %0 2]l 11 |
+ Xjai21 (L + ) %Z0 (11l g2 19l i1 + Ngll gz 11| gygor-2 ) 105, -
Here and below yq denotes the characteristic function on the set Q.

Proof. The proof of (3.14) is similar to [90, Theorem 4], so we omit it here. Compared

with [90, Theorem 4], we need the smallness of ||ul| Lg=, to handle the term —% in
(3.5).
Denote
u¥p; — i 1
Coulhial = (0~ 5 [ @u g0z M) (0, 101s(0) ~ 100,000 )
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For (3.15), we use (3.14) and (1.27) to have

(OZTLf, gl + 97T g, f1,07h) (3.16)
< Z ‘ [09r f, 00~ ]—i—F[@glg,@g_“lf],aghﬂ

a1 <a

+ 3 Njaus0 [(Tagl020 £,02702g] £ T, [0 g, 02102 ], 02R))
a1 tax<a

S [0 slus ozl + 10l 027, ) (T Pz

a1 <a

+ D) Xasl>0 /Rg (102 flp |05 72 g| + 102 g2 [05 72 |, ) 102 hl,
artaz<a

Now we estimate the first term in (3.16). Note that by the algebra estimate for
H2(R3),

S [ o sl ozl + 10l oz 1) (3.7

a1 <a

2 2 2
S Nl + gl 1120

and by (1.27),

[(XT=P)[0;h]l, <[07(T=P)[A]l, + Xja1 |[[P, 071 [, (3.18)
S 107 (X =P)[Al], + Xjaz1 2 [IP[R]] f1o1-2

S 107 (X =P)[A]], + Xjaj>1(1+ £) %0 || 1| g1 -

Then we combine (3.17) and (3.18) to have the upper bound of the first term in (3.16)

S [0 051, + 05l 5511, ) 1 o

a1 <la

SO W gz gl e + Mgl gz £ gppe ) LI = PYBZAI, + Xjagz1 (L + ) F0 [1All r1ai-1 |-

Similarly, for the second term in (3.16), we can obtain

S oo [ (10 s |02, 4105l 027 1) g,

ajtaz<a

Xalz1 (1 + 722 (11l g2 gl ggo-s + gl gz 11l gger— ) 10501,
We collect the above two estimates in (3.16) to derive (3.15). O

LEMMA 3.5. For the weight functions defined in (2.27), it holds that

(W2L[f], £) 2 |2 = C |2
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Proof. We split £ as —A and —K and use the expression of A in (3.3) to integrate by
parts w.r.t. p to have

o"

(LA W21) = = @il0"0,). (w1) + (2 (5 = ) (00 = ) (w2 )
(3.19)

_ % (81- (aij (uoﬁj — uj))f7 (w")Qf) _ (K[f], (wZ)Qf)
= (070, f, (w")?0,f) + (Z; (u*p; — u;) (u®p; — ;) f, (we)zf)

_ % (81- (aij (u’p; — Uj))f’ (“’Z)zf)

= (090, £, 0:((w)*) f) = (KIf), (w*)* ).

Now we estimate the terms in the R.H.S. of the second equal sign in (3.19). From
[90, Lemma 5], we know

Vo )] s ") 7", (3.20)

for any integer k > 0. Then for any large constant R, we have

%}(a( ;= w)) w7 5 5 [ (“;) 71 dp (3.21)
g [ e g [ B < O

Noting that

1
|f|L2+ | f|L2'

[\)

0 ((w')?) = 4(N;0_ 9 pwt)? + ﬁ%(w%z, (3.22)
we use Cauchy’s inequality to have
(o0 £, 03l (w")?1f)| (3.23)
<cf O (19,17 +11) -+ I menw—(iVM(a%mﬂfF)%( v0,50,1) " d }
<

c 1 ’
< Calfi2+ Stz + 2 / (w')20790,£8; f dp
R 2 R3

2 02 ija A p2
v wh2epp f ) dp.
9572 In(e + 1) /Rs( Vo pip; |7 dp
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For the term (K[f], (w*)f), we integrate with respect to p and use (3.4) and (3.22) to

have
(3.24)

% (IVaf @] + 77 (@)
([ peaorm@an)’ ([ (9@ + i) o)
< ([ wrMoan) ([ (90607 + 1r67) aa)°

([ poolrM@ap) i1

[N

Here we used (2.29) to deduce that

/ (w)*M(p)dp 1. (3.25)
RS

As in [90, Lemma 2], we can obtain

[, @ealPM@drs [ (+lp—a ME@dr <1, (3.26)
Then we can further bound |(IC[ f)| by | f|%.
Collecting the above estimates in ( 9), we use (2.28), (2.46) and (3.13) to get

(LIF), (w')2f) (3.27)

%( 2“af,af) Crlf2 = (1 + s, ) 1)t

2 N2 _id A A )
n Hpp d

((w"0"70,5.04f) = Calf12 = € (3 + Il )

N | =

U
25)0722 /( Z)zawplpﬂﬂzdp

2 1w fl5 = Crlfl7

by choosing R large enough. |
LEMMA 3.6. For the weight functions defined in (2.27), it holds that
(VL gl (")) S (Jw’f] o gl + gl o [0 ], ) [wB], - (3.28)
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Moreover, for |a| < 2, we have
[(02T1,9] + 95T g, £1, (w205 )| (3:29)
SO g Nl + gl 1 gy ) ||t |

+ Xatz1(1+ 1) %Z0 (1f a2 Il gpors + lgllizz 1l ggero ) [wllozn

o

Proof. From (3.5), we integrate by parts with respect to p and use (3.22) to get
|(T[f, 9], (w*)?h)| (3.30)

~|( [ 2. 00t @) (0, Fhate) = 110,900 )aa, (3~ Lo ) )
R3
g 1 h
S [[L 0 w0MH@ 3, F0)9(0) - £0)2,, 9] (W (] + 10, h1) dpd
By Holder’s inequality, we can use (3.28) to further estimate (3.30) as

UL/ 9], (w)?R)| < 1@(p, )M2 (0) 1oz (10 By, fluzlglez + w0 Fliz|0y, 0112 ) 1w bl

(3.31)
S (10 1o lgl e + [0 1] 2 lglo ) Bl

Now we turn to derive (3.29). As in (3.16), we use (3.30) to have
(2Tf. ), (w202 )| (3:32)
< 3 [(riosr oe gl opo g, w20z )

a;<a
D Naalso [(TaalO5t £, 057 72g], 02710 f], (wle 202 )|

artaz<a
S 3 [ o a] oz al, + gl 51| ) ooz,
3 Naapso [ ([wlloge ] Jormerosg] +l0mgls [w oz ) [wlazn],

ar+az<a

Now we estimate the first term in (3.32). Note that there is no weight for norms of g¢
in (3.30) and the weighted norms may cost more € as in (2.35). We will always try best
to not raise the derivative of f in our estimates. By the algebra estimate for H?(R2), we
have

2
wlelge=er | ) (3.33)

2
2 /R ([wloz | Jor=orgl? + 105 gf7

a1 <a

2 2 2 2
SN Wz Ngllger + gl 1F 11 -
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Then the upper bound of the first term in (3.32) is

Z /]R3 (’wla\aglf’L2 |02~ g| 410519l ‘w‘a‘ag_alf’a) ’wlalagh

a1 <a
‘a‘

<Ol Mol gor + g 151, ) el
Similarly, for the second term in (3.32), we can obtain

o

S oo [ ([0 1]  Jozmreug], 02, [wlaz e ] ) ullogh
R3 L2 o o
ajtaz<a
S Xaiz1 L+ 820 (11l zrz 90 g1+ + 19l g2 11| 11 ) |[w!*1 05 R
w o w,o o
We collect the above two estimates in (3.32) to derive (3.29). O

4. No-weight energy estimates. In the following two sections, we will focus on the
a priori estimates on the remainders ( fa:, ER, B%). Compared with the corresponding
estimates in the existing results Strain-Guo [90] and Yang-Yu [105], ours faces new diffi-
culties due to the key structural differences: the replacement of a global Maxwellian by a
local Maxwellian and the appearance of the singularity coefficient ¢! of the relativistic
Landau collision operator. Now we derive the L? energy estimates for the remainders.

4.1. Basic L? estimates. We first perform the simplest L? energy estimate for the
remainders. In this part, the main difficulty is to estimate the term Y & [8,5 +p-

Vg — (E +p x B) : V,,]M% with momentum growth and the term {T" [MféFl,foJ +
r [ff%, M’%Fl} } with time growth according to (A.7). In order to control the momentum

growth term, we will divide Rf) into two regions depending on ¢ and estimate them
separately. The key point is to transform the corresponding estimate in the unbounded
region to the weighted norm ||(I — P)[fﬁ]”i}o with a small coefficient . While for the

o

estimate of the time growth term I [M*%Fl,ff?} +T {fﬁ,M*%Fl}, weuse 1 = ¢ x &

€

and absorb the time growth by ¢, as shown in the Seventh Term on the R.H.S. of
(4.3) for more details.

PROPOSITION 4.1. For the remainders (ff%, E%, B%), it holds that

d 4nT .

Slasn o ret] e+ D@ 11 ) VE,

2
1
BRI + 1B ) + 21T~ PRI (1)

Proof. From (2.13), we have

| ~

(NERI + 1Bz ) = 4x (pM f5, B3) (4.2)

DN | =
[oW

t
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We take the L? inner product of (2.12) with %L f% and use (3.9), (4.2) to have

— /r

47T e e 4 €
e H + 1 ER|* + ||BR|2) + - I@ =P (43)

1 4nT
‘< “falo+p- Ve - (B+px B)- V}Mz,%f§>‘

(Lo [ i)

4
.(E§+ﬁxB§),u—Zf§>‘ +[e"-

+

N | —

NI

—uM

n 1 <P 5 f5. 4“TfR>\

gt <F [M*%Fi, f,%} +T [f}%, M*%Fz} ; 47T0TfR>

S

(]
N

-1

_|_
N\g

+ [" ( (up—u) - (ER+prR)fR,%>‘

o
S

V)
e

-1

) 47T
+ El<(Ei+]3><Bi)'fo15z+(E153+ﬁxB%)'M_%vp W 7T0 fR>‘

1
()|

.
Il

V)
e
Ju

+ <(Ei+;3><Bi).(uOﬁ_u)fE,i—gf§> + |e

1

(2

Now we estimate each term on the R.H.S. of (4.3).
First term on the R.H.S. of (4.3): Note that

M {8, +p-V,— (E+pxB) V,} M2
are the first-order polynomials of p. Then, for a given sufficiently small positive constant

K, we have

fR>’ (4.4)
S( 1B oo + 1Bl oo ) 1£5 ] + Ve (nu, T)|| L~ H\/ﬁﬁ%
SZ(H\/;EP[fE] +/Rs/po<€1,€p0|(I_P)[f’3H2+/Rg /po>51ﬁpO(I_P)[ﬁ‘]2)

SA+ )% fRI +o(We X =PRI +e 1T =PRI,

Here we have used (1.27) and e(w®)? = e(p®)? = p° for p° > &1
REMARK 4.1. The decay estimate Z < (14 ¢)~% is crucial here.
Second and third terms on the R.H.S. of (4.3): From (1.27) again, we have

;<{(at+p \) [T]}fR,47rfR>’ <—u1v[% (ER+px B;),i—gf,§>
SV, u Tl 172N + Nl 1720 (1ER] + 1B51)

<o IT=P)[FEN2 + 1+ 07 (171 + BRI + B2 ).

’<M‘%f§[8t+ﬁ-vm—(E+;ﬁ><B)~V] VER
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Fourth term on the R.H.S. of (4.3): We use (3.15) in Lemma 3.4 to bound it by
C* 1 fale (1@ =PI, + IPLE, ) 1T = P)LAEIN,

SIT=P)SRIG +eIPUEIG < I@=PIRIE +e /7017

Fifth term on the R.H.S. of (4.3): Similarly, considering that F; decay fast in p
by (A.7) in Proposition A.1 and t <7 =~ /3 we have

“ 1 4nT
S e <r (M7EF, f7| 4T [ f7.M7E R ,Wf§>‘
i=1
<2klei-1(HM-%Fi 12l + [ IMERL | gRn) - Pzl
~ — L?L% o o Lo o
2k—1
S S A+ Il 1= P)E, S oD 1A= PRI + (1 + 02 17211
i=1

So(Ve X =PRI +e(1+ 0% [PLRNE S o (X —=P)SRIE + 25 /77

Since || f§\|2 enjoys no time-integrability according to the a priori assumption (2.37), we
need the assumption ¢t < 7 = e~ /3 to assure that foteédt = 1. This is the very reason
why the life-span of Hilbert expansion for the r-VML system is ¢ ~1/3. We can also see
that the index 1/3 in the life-span ¢ = £71/3 should be optimal.

Sixth term on the R.H.S. of (4.3): According to the assumption (2.37), its upper
bound is

2 2
e (1 Exlze + B3l ) IF2I° S e 12117

Seventh term on the R.H.S. of (4.3): We use (A.7) in Proposition A.1 to obtain

2k—1
i R . _1 47T
> e <(Ei+p x B;) - Vpof5+ (B +px Bg) - M %v,,Fi,—;TO fR>|
i=1
2k—1
. AT
= 30 e (R B MRV R T )
i=1
2k—1
i _1
sY e |moivm| (BRI 18RI 177
i=1 roP
2k—1
A % 2 2 2
<Y S+ (IR + IR + 1B5)°)
i=1

2 2 2 2 2 2 2
Se+ O (IR + IERI + IBRIT) < e (1217 + I1ERI™ + 1BRI™)-
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Eighth and ninth terms on the R.H.S. of (4.3): Similarly, we estimate the last
two terms as

2k—1

Z ei<(Ei+ﬁ><Bi) . (uoﬁ_u)fﬁ,i—gf§>‘

i=1

2k—1 2k—

. 2 2 2
S (1B~ + 1Bl ) 17217 S Z L+ 17207 S B N1 £l

1=

—

fort <t=¢"13 and

<S f%>‘§o(1)51||(I—P)[f1%]lli+062’““ T D) g2k

i+j>2k+1
2<4,j<2k—1
(4.5)
+C > e+ £
i+j>2k
1<4,5<2k—1

<o(D)e™ [T =P)FRIS + O (1 + )2 4 Ce*(1+ 0 || £l

Summary: We collect these estimates in (4.3) to obtain (4.1). O

4.2. First-order derivatives estimates. In this part, we continue to perform the L?
energy estimates for the first-order derivatives of the remainders (f%, E%, B%). To this
end, we first apply 0%(1 < |a| < 2) to (2.12) to have

UO 1
o ({00459, - (840 xB)- v, } 11l ) + o2 (ot ) (4.6)
- 8“( . (B +px B,a)) + —agi[f’%]

——or (M {045 Vo (B ik B) T IME) 40T )
2k—1

+ Z 1o (r —iFi,fg] 4T {fﬁ,M‘%Fl} ) +skag<(E; +px BY) ~fo§>

—akaa(2T(uﬁ u) - (Eq + pXB%)ff%)
2%—1

+> ai8§<(Ei+;[) X By) - Vyff+ (E% +p x BE) -M%vai>
i=1

2k—1
1

- > o <(Ei +5 % Bi) - 5 (u'p — u) f;) +e97S
=1

Due to the appearance of the local Maxwellian M, the linear collision operator term
e~ 1L[f5] and P[f5] do not commute with the spatial derivative operator V,. Moreover,

in the term 0% (Méfﬁ{& +p-Vy— (E +p X B) . VP}M5>, more p” are generated.
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Therefore, in the derivative estimates of the remainders ( fa, Eg, B%)7 we need to pay

special attentions to the collision terms and the momentum growth term.

PROPOSITION 4.2. For the remainders (ff%, E%, B}%), it holds that

2
d /| [arT_ .
5|:E<H 20 V:J(:fR
S [+ 070+ e¥] €+ 20 (L= PYJRIIZ + D + 2421 4 1)+

+ M1 4 1) VE.

Proof. From (2.13), we have

L (o, + 10,5517 ) = 4 (0, (M £).0, 5. s

Here and below we use 0, to denote 0,,,1 < i < 3, for simplicity. Note that
1£,0:1[f7) = £10:17) - 0 (£LR)) = £] (1= P)o.S5]] - 0. (| @ - P)F)))
= —L[ [P, 2,1 1f7]] + [£.0.] [T - P)I3].

Hence, naturally we have

(e o1, 5 onss) | <

)
VBRI + B3I ) + 190 P | @)

(el o). o)

(e o a- P o).

For the first term, we have
4T

“(e[wPoaul]. ok )| = [(e[ 1P o )] T - Py |

Note that [P,d,] only contains terms that J, hits the Maxwellian but not f5. Hence,
we have

9

([P0l T 0uh )| S o= - PO + e 2 I
S o) 0,1~ PSR + F0~ (1 + )7 | 3.

For the second term, since [£,d,] indicates that 9, only hits the Maxwellian in £ but
not on (I — P)[f%], we directly bound

- <[[£,8xﬂ @ Pl Lo, fR>\ 1 Z |- P 0.2l
B P)0, F2l12 + 0= (= P)LFI2
As in (3.18), we have
1@ = P)o. 2l > 0.1~ PYF3ll, — (146 %oz |75 (4.9)
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In total, we have

(0L l77) T 0u k) (4.10)

> < 0,55, 2o fR> <[[£ A AR fR>]
e (T~ P)[aszzﬂli — Ce 22 |(I - P)[fE]HU —CZ|Vofal’ = Z | fal?
e |0, (T = P)[fR]II2 — Coc 2 (T - P)[ /5]
— O+ )5 (IVafal® +e VI fal7).

Taking || = 1 in (4.6) and denoting 9, as 0,,,i = 1,2, 3 for convenience, we multiply
1L 0, f5, and use (4.8), (4.10) to have

2
d T 1)
%a<| Vo0 +|amE;||2+|amB§J||2> +Sl.a-PRIE @l
uo 1
g‘ am<7p1v1) for 8fR>‘+4w’<(ﬁ(8mM§)f§),8wElg>’
¥ <8m<{(E+:ﬁ><B)'Vp}[f§]) Trofi)]
+ <az< —afR{at+p V.- (E+pxB) -V }[MD 4”T8 fR>
+ly (@i va) | 5] amiosil?)
# o (wnt (B4 B3) ) ELog3) |+ e ((r il o)
i 1 1 47TT
+1 —1<azr [M-aFi,f§}+6xr [f;;,M—fFi}, BfR>’
=1
Lk <3<M(ER +ﬁxBi—c)f§> Ty, fR>|
we (0. ((Br 0 x B5) - 9,0) o)

.

2
o.
+ C2o [ A= PRI + (1 + 0 (IVFI + =7 1521%)].

Now we estimate each term on the R.H.S. of (4.11).

2k—1
) 1 4T
+) e <8x((Ei+;3 X B;) -V fg + (ER +p x By) -szpFi>, ) fR>|
1=1
2k—1 0.4
i A up—u) .o 4 T
1=1
+ e <axs, 4”Ta fR>’
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First three terms on the R.H.S. of (4.11): The three terms can be bounded by

(1652 (11270 + 1= PSR ).

Fourth term on the R.H.S. of (4.11): For this term, we should note that more p°
will be generated when 9, hits Mz or M~2. Using w® > (pY)3, and noticing that for
p’ > 71, we have e(w')? > g(p°)? 2 p°. Then, for « sufficiently small, we have

‘<8w<M_%f,§{8t+ﬁ-Vw— (E+5xB)-V,} [MD Py fR>‘
SZ(p°0u 5, 0ufi) + 2| ((

2(||vo.eum|

fo0.0) | < 2| Vidouri|

(@)
S T

0 _ €112
+ / 3 /p .- P )
rz(|vimei + [ [ o ia-pise)
20T + o) 10,1~ PYSRIIE + < 10,0~ PRI + Z 1751
I G

So(L)e ™ [10: (T =PRI + e IVo (X =P)fRI5
+20 | = P)[f7llg0 o + L+ 67 | f7ll 7 -

Fifth and sixth terms on the R.H.S. of (4.11): They can be bounded by

2 (101517 + (1Bl + 1Bl ) 100721 )
< O+ (110 f5* + 1 BRIz + BRI )-

Seventh term on the R.H.S. of (4.11): Using (3.15) in Lemma 3.4, we have

1 (0T f7) 5 015 )|

AP TPl + 225 il 5, 19,52,

S2* 117Ny NA=P)VafRll, +2 21 ol V2 F7,

<=2 (1A =Pl + 15l ) (10— PSRN, + Z U751 )
+EZ( @ =PIl + 1671 ) (1= P)Vasill, + IV Fil)

SN =PRI + 1+ %2 (172 + e [ Vafal? )
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Eighth term on the R.H.S. of (4.11): Similarly, considering that F; decay fast in
p, we know
2k—1 AxT
i— _1 _1
St <axr IM~EF, 3] + 0.0 |/ M7ER ,Wamf§>|
i=1

So(e T = P2, FRI2 + (1 + )2 | f2lI%s
+ 20+ D) (121 + 1@ =P)EIL ) (17l + 19:0- P, )
So(V)e ™ 0. (L=P)[F3IIZ + 2o [ 1T = ISR +=F /2050 +e 1A

Other terms on the R.H.S. of (4.11): Similar to the corresponding estimates in
Proposition 4.1, these terms can be controlled by

o(Ve™ (T =P)fEll7; + C7 1+~ || 7)1
2 2 2 2

+ 3 (IBR I3 + B3l +IV2F217)

+ L+ )2 L R (1L 4)2 |V fall-

Summary: By collecting all the above estimates in (4.11), we multiply the resulting
inequality by e to derive (4.7). O

4.3. Second-order derivatives estimates. In this subsection, we proceed to the L? esti-
mate of V2 ( fa, Eg, B%) . Although the form of second-order derivatives estimates of the

remainders (f5,, E%, By) is more complicated, they are quite similar to the corresponding
first-order derivatives estimates in Section 4.2.

PROPOSITION 4.3. For the remainders (f5, E5, B%), it holds that

d (47T
2 2 pe
c dt(H u0 Volk

S[A+ 07 b |45 X = PSR, + D+ e2H3(1 4 1412 4 4214 )P VE.

2
5
+ || V2B + vaB;}HQ) +- Ve - P)[f;]”i} (4.12)

Proof. From (2.13), we have

1d 2 2 o L

53 ([02BRI" + |02B5|” ) = ax (02 (M2 17). 02E% ). (4.13)
Here and below we denote 92 as Oy, 0r,; with 4,7 = 1,2, 3 for convenience. Using a similar
derivation of (4.10), we can obtain

(LR TR (414)
>et (clobsa) o atin) -t (e o2 U, o2 )|
>0t 02— P)If7)|2 — %20 A - P)If7II5

— (L) (|| V2 fel* + e IRl )
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Taking |a| = 2 in (4.6),
(4.14) to obtain

2
1d (47T 5 ..
5&(” 0 8sz

Z <82 |a|< ) 97 ER, 47TT32fR>
<

AL 92 f5,, and further use (4.13),

)
+lozEal + JoBal? ) + S 2 - RIS (a9

| S (p(o2 v )ae £, 027

|a]<2
+ ‘<8§ ((E +px B)- foﬁ) 4”T82fR>’
+ ‘<a§ (M—%fg{at +p-Ve— (E+pxB) .vp} [M} ) 4“TanR>‘
1 ) T _
+5 ‘<(at+p~vr) [E] ,47r|8£fR|2>‘
w|( (umtt (o B2) ). T 0k )|+ et (020 1 3. T 02 )

2k—1 AxT
Zgi—1<a§r {M_%Fi,fﬁ}—i—ail‘ [f;;,M—%Fi}, i anR>’
=1

0

p — 47T
st (O (BR e x BRVR ). g 0hk )
47T

+e <8 ((ER+pXBR) pf]%) al 82fR>‘

~ % 2 ~ £ £ ~ € -1 4nT 2
+ e (2| (Bi+Dx Bi) -Vyfa+ (ER+px By) - M 2V, F |, —0:f

i=1

2%—1 0.-
(B O ). 4WT‘92fR>‘

i=1

— AnT

vet (o5 Lo )|+ oo - P,

+ O+ (V2 1Rl e IR,

Now we estimate each term on the R.H.S. of (4.15).
First three terms on the R.H.S. of (4.15): The three terms can be bounded by

C(1+ 1)z (15l + 1 Bal + V2T - PRI, ).
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Fourth term on the R.H.S. of (4.15): Noting that e(w?)? > ¢(p°)? > p° for
p° 2 e~ ! we use similar arguments in (4.4) to have

‘<6§ (M%fg{at +p-Vo— (E+pxB) -v,,} [M%} ) 47TT82fR>‘
SZ(PIFR]+ 00210: F5) + %10 5. 102 5]
<z(||vraza- e ) + 2082020 o + Z 00151,
So(V)e™ 02X = PRI, + 50 [ V2X = PSR + 1+~ | V2FR]
+ 2o (llwo(@ = P)SRIIZ + len Va (L= PSS ) + (L+ 07 |1 f2l5

Fifth and sixth terms on the R.H.S. of (4.15): The upper bound of the two
terms is

CZ(02FaI1 + BRI + 1BalG: ) S 0+ 0% (022" + 1 B&l: + BRI ).

Seventh term on the R.H.S. of (4.15): Using a similar estimation as the seventh
term on the R.H.S. of (4.11), we have

< T (i £, 4“Ta2fR>\

S [ (1087 Vil 10205 o S5, + 10075, 00T ) (1= PEE S,
z€R3

S T I Rl 1Rz ([T =PSRN, + T 2N Rl 1Ry 10215,

<ot Il (102@ =PSRN, + 2 167l ) + 22 1f7lly 10247],

SEo @ = PRIl + |1+ 67 +e| 1Al

Eighth term on the R.H.S. of (4.15): Similar to the seventh term, it can be
bounded by

o()e (X =P)2fR + (1 + 1) | fall%
+2(1 +t>(||f§||H1 1= P) Sl ) (15l + 2@ = PSR, )
So(Ve |02 = P)[f3]||2 +Zoe 1T = PYfE) I3 + <8 1£5 050 +Zo ¥ [1f5l150 -

Other terms on the R.H.S. of (4.15): As in Proposition 4.2, we have the following
upper bound of these terms:

o(1)= ™ 0 (T = PYSRGy + C7H (1467 | filn
+ 2 (|92 1217 + 1 Bl + 1Bzl )
+ O+ t)" 2 4 O (14 1) || V2 f3|-

Summary: We collect the above estimates in (4.15), and multiply the resulting
inequality by €2 to derive (4.12). O
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5. Weighted energy estimates. In this section, we are devoted to the weighted
energy estimates of the remainder term ff. This is the essential part of our energy
method. The key point is to use the additional dissipation term generated by our special
exponential weight function and the smallness of £y to control the momentum growth
term (2.56).

5.1. Weighted estimate. Due to the exponential decay of momentum for P [ff], we
only need to proceed to weighted estimates for (I — P)[ff]. Therefore, we first apply
microscopic projection (I —P) onto (2.12) to have

{00 +0- Vo~ (E+Dx B)-V,} (I-P)[f3] (5.1)

—u%% . .
~ (1= P)|(Ef + 5 Bg) - %MME} N [’[gR]
= _Mi%(I_P) [fR] {875 +p-Vy— (E—I—ﬁ X B) -VP}M% -l-Ek*lF[f%,f%]
2k—1
+D e (F [M_%Fivffz} +T [f%,M‘%FiD +e"(Eq 49 x By) - Vo(I-P) [
i=1

2k—1

—5k%(u0ﬁ—u) - (ER+P x Bg)(I—P) [f] + ; e (Ei+px Bi) - V,(I-P)[fz]
2k—1

+ ei(I—P)((E§+ﬁx B3) .M—%vai)
2zk=—11 . 1 .

-2c [(Ei +5x Bi) - 55 (u”h — u)(I-P) [ffz]} + M= P)[S] + [P, 75] f,

where [P, 75] = Prg — 75P denotes the commutator of two operators P and 75:

5 =0, +p -V, — (E+pxB)-V,
+M {8 +p-V,— (E+pxB)-V,} M3

1
+&* (% —u) - (Ef +5 % By) — (Bi + % Bg) -V,

_i’“z_jgi{(mwg (% i)}

In Proposition 5.1, we will derive the weighted estimate for the remainder f5. The
most important estimate is to control the momentum growth as in (5.6). Another es-
timate of which we should take care is (5.7), where ¢||V,P [f§]||? appears and will be
further estimated in Section 6. Other estimates are similar to the basic estimate of the
remainders (f§, E%, B%) in Subsection 4.1 or have been estimated in Lemmas 3.5 and
3.6.
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ProposITION 5.1. For the remainders (ff%, E}%,B%), it holds that

d ]
S IA=P)FRNG + 2 1= PRI, +Y [V —P)If]
ST NT=PYFRIE + € IVeFRI® + ¥ IFRIP + (€ +D) + 441 (14 1)+,

Proof. Noting

2
U

(5.2)

)0

(w’)* (M= P)[f] - 0 {(T - P)[fR]} = %@Iwo(l = P)[fRI[* + p°Y (w®)*|(T - P)[fR],
(5.3)

we take the L? inner product of (5.1) with (w®)?(I — P)[fg] and use Lemma 3.5 to have

TS SIS Te 8 21073 LA IV B85 1677 R XY
<ENa=PRIE + [{ (B +5x B) - V(X -P) 77, (w* 20~ P) ]|
—up+u_ 1
# (@ P(Brpx BR) - TR M - )
+ <M*%{8t +p-Vo— (E+pxB)-V,)} [M%} |w@—P) [f;]]2>‘
+ [e* T 7 fR]L (@) @ = P)[fR]))]
2k—1
|2 (O MR JR) 4T MR ()X P)[f§]>‘
k (uoﬁ_u) € N € 0 e112
te <T : (ER+P>< BR)a‘w I-P)[fz]| >‘
+ (B + 5 x B) - Vala ()@= P) [f7])|
2k—1
+ Z e ((Bi+px B;) - Vp(I-P)[fz], (w’)*X—P)[fz])
2k—1
|2 e (=P [(BR +5 x BR) - MV, B, (@)1 - P) [f§]>‘
Ea u’p —u 2
- ;ei<<(Ei+ﬁ><Bi). TQ’T ),\wO(I—P)[fEH >
+[e" (@ =P)[S], ()X~ P)[fR])| + ([P, 78] [f7], (w*)*(X = P) [fR])].
Second and third terms on the R.H.S. of (5.4): They are bounded by
oD [T =P)[f&lllno , + Ce(IIERI” + 1BRI?)-
Fourth term on the R.H.S. of (5.4): By the smallness of gy, it holds that
Z<E(1+0)P <y, (5.5)
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Then, (2.61) holds true uniformly and we have
(M0 +5- V. = (B+5x B) -, } [ME] [ @=P)[FR)])]  (56)
<z(|vira-e|, +1a-P)isE.,)
<3 [VEa-es[, +caola- ey,
Fifth term on the R.H.S. of (5.4): From (3.29) in Lemma 3.6, it can be controlled
by

(Al 12 oo+ 178Nz 17D 0 ) N = PSRy
e (1= P)Fallo g + IPUA oo )
+ (1= P) Rz + PRz ) I =P Szl o
SV X = P)Ifl 200+ 1T = PSR, +2° Il + 22 127

Sixth term on the R.H.S. of (5.4): Similarly, we use (2.29), (3.28) and (A.7) in
Proposition A.1 to obtain that for t <t =e~1/3,

2k—1

> e (0 MR £7] 4T £ MR )2 - PSR

i=1

2k—1
<3 e lutn e,

&l o 1T =PRI,
- :
So(Me™ [T = P)[falll%0 , + (1 + )2 [ f7ll20.,
S0 (T =P)[f7ll50 , + 27 IF2N17
Last term on the R.H.S. of (5.4): For this term, we have
([P, 78] [f7] . (w*)*(T = P) [f3])] (5.7)
S e NA=P)SRNE + e (IBRI® + 1 BRI + 12l )-

Note that €||V,P[fg][|? is included in £. In order to make it time-integrable, we will
derive its dissipativeness in Section 6.
Other terms on the R.H.S. of (5.4): Similarly, these terms can be bounded by

oV (X = P)SRIZ0., + O (IS7IP + BRI + BRI ) + Ce*+1(1 + 1442,

Summary: We collect the above estimates in (5.4) to derive (5.2). O
5.2. Weighted first-order derivatives estimates. In this subsection, we proceed to the

weighted L? estimate of V,f5. Note that in the term 0, (M_%ff%{at +p Vg —

(E +p X B) . V,,}M%>7 (p°)? can be generated. To solve this kind of problem, the

algebraic part of our weight function is designed to depend on the order of derivatives.
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PRropPOSITION 5.2. For the remainders (ff%, E}%,B%), it holds that

e (% V=@ =PRI + g IV (1= PSR o + Y [ VIV (= P)f]

wl()5.8)
(@07 4 ed)e+ 2|V AR + V.- P)FRNI2 + D + 21 4 )42,
Proof. From Lemma 3.5 and (4.9), we have

“HoLIT =PRI, (W) 0. (T - P)[[
25_1 (£102(I=P)[fR]], (w)?0:(L - P)[fR

~HKIE, 021 (T=P)[fR], (w')?0: (L — P)[fF])]
0= 10: (X =P[R5 o — Ce™ 10X = PSR — CZ0e ™ 1T = P) (SRl

(5.9)

Apply 0, to (5.1) and take the L? inner product of the resulting equation with (w*)2d, (I—
P)[f%]. Then, by similar arguments as in (5.3), we use (5.9) to have

o= PRI + 2 100~ PRI, + Y VP00~ (5.10)
<0 (o (X~ PRI +20 |0~ P)FRIIZ0 , )

((E+5%B)- T =P [75] ). (w2001 ) [f;]>\

+|(a
a 2R ) | won - P A7)

< ,
+ < ,
<ax ((1 —P)[faIM 2{0 +p- Vo — (E+px B)-V,} [M%] ),(wl)Za,c(I - P) [f§]>‘
k
—1

(- P[5+ 5 B7)-

+ PN 0T [ f2] (w!)20:(T - P)[f5])]

2k

HX e <aw (M2 F fR] + 0uT [£7 M7 2 B (w))?0,(1 - P)[F7])

<

0. (B +5x B7) - 9, - PV 7)) 1)23x(I—P)[f?ﬂ>‘

- (BR +p x BR)X—P)[fF] ) , (wh)?9, (I~ P) [f§]>’

00 ((Be 45 x BY) vpaP)[fﬁ])(wlﬁazaP)[f§1>'

(Ei +5 x B;) ST (I P)[ffa])v(wl)Qaz(IP)[f§]>‘

P)[S], (w!)?0(1 = P)[fR])| + (0= [P, 78] fF, (w")?0: (1 — P)[fR])| .

(
0. (1= P)[(B5 + 5 x BR) - M A9,] ) w01 - P) [f131>'
(«

+ g <
i=1

< (o
+ek |<61 (I-—
Now we estimate each term on the R.H.S. of (5.10).
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Second term on the R.H.S. of (5.10): It can be bounded by
C(IVaEllyre + Ve Bl ) (10T = PYSRIZ: + 1T = P)FEI0., )
<0 (0.0~ PRI + 10~ PRI, )-
Third term on the R.H.S. of (5.10): It can be controlled by
CeH 10.(L= PRI + Ce (1 BRllGn + 1BRI%: ).

Fourth term on the R.H.S. of (5.10): Similar to (5.6), we bound it by

oz |[vira.a-eyisl, +CzIa- P,

<3 |vro.a-pis

Fifth term on the R.H.S. of (5.10): Similar to the estimation of the fifth term on
the R.H.S. of (5.4), we have

(¥ 10,T(f, 7], (w')?0,(T = P)[f7])]
S (e [t £l gy + 1Rz 0 £l s ) 190 (X = PSRN
S( o fall gy + 1Rl ) 1920 = PYfRL
So(D)e™ 01— P)FRll%s , + € [ filli +<* IfR I
S0 0.1 = P) &)l +° 1A= P20
+ [T =P)fRlll5e + I fRlore + 2 1 Rl -

L+ 0 = PSR,

Sixth term on the R.H.S. of (5.10): Similarly, for ¢ € [0,7/3], we use (3.28) and
(A.7) in Proposition A.1 to bound it by

2k—1
Y T A O =P Sl 7 s (5.11)
1=1
2k—1 ) )
SoMe 10X = P)fllar o +C D A+ 0% | f7ll
=1

- 1
So(e™ I(X=P)[f&ll7rs . + 3 IFal% -
Other terms on the R.H.S. of (5.10): Similarly, these terms can be controlled by
_ 2 2 2 2
o™ X =PIl | + C€( IER [z + [ BRI + ”f}E%HH2> + O (14 )2,

Summary: We collect the above estimates in (5.10) and multiply them by € to obtain
(5.8). |
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5.3. Weighted second-order derivatives estimates. In this subsection, we proceed to
the weighted L? estimate of V2 f§. Since V2 f§ is the highest-order derivative, we can’t
apply microscopic projection to the equation of ff as in the previous two subsections.

PROPOSITION 5.3. For the remainders (ff%, E%, B%), it holds that

e (% V2RI + Y | VPV2fa w -

)
2|2 Pl )

<2 V2R + € (€ + D) + X1+ 1) 1h42,
Proof. We first use Lemma 3.5 to obtain
e (ORLIfR], (w?)*02fR)

€

—1< 02 f7), (w203 fr) — e H[([£,02] [fR], (w*)?82 fR)|

2P, — Croe A PRIl — O 17l

g

Now we take |a| =2 in (4.6) and multiply the equation by (w?)292 f% to get

2dt

< |(o(m¥ (m  p x 3) pT‘ ) whezes)

+

+

0
oz sal + v |[vitasa||, + 2 lora - Pyisl,

(2((5+ 9% B) - 9,2), 0220213

(2(mtsifosn v, - (i m)- v} [MH] ). ot )|

+ e LI [fR, SR) (w?)?02 fR)|

2%k—1
o <a§r [M*%Fi,fﬁ} T [f,a,M*%Fi} ,(w2)23§f§>
i—1
k 2 (uoﬁ_u) € ~ € € 2\2 92 pe
+e o; T'(ER+pXBR)fR (W) 03 fR
wet [(02((Br o+ BR) - Vufh ) (0?0207 )|
21
#3028+ 3) Wt (w2)233f1%>‘
=1
21 )
#3002 ((Brt o x BR) - MOEV ). (0?08 )
=1
k-1 (u®p ) p— )
+ g <3§<(Ei+]5 x B;) - fR) (w 2)2‘9§f15%>
i=1
+e" [(978, (w*)?02 f7)| + CEoe™ " [|(T— P)[fzez]”izgm +Ce Rl -

Now we treat the terms in the R.H.S. of (5.14).
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First term on the R.H.S. of (5.14): By (2.29), it can be bounded by
2 12 €12
(15l + RN + 1Bzl ).
Second terms on the R.H.S. of (5.14): Its upper bound is
ZNfall , S O +07%% (0= PRI, + 17215 ).

Third term on the R.H.S. of (5.14): Similar to (4.4), it can be bounded by

z||Virars

Y 092 € 2 —Bo= 1112 €12

<5 |[Vitersa| , +ca+ o e (0= PG, + 17l )-

Fourth term on the R.H.S. of (5.14): We use (2.29) and (3.29) in Lemma 3.6 to
have

2 o
2 +Z | frllaz

(" 102D (£, f3], (w?) 202 f5)|
S (Wl I Tl + 17y Tl ) 102,
S(H 02l s + 1Rz ) (9203

SIT=P) SRl | + IRl -

Fifth term on the R.H.S. of (5.14): Similarly, we use (2.29), (3.28) and (A.7) in
Proposition A.1 to obtain that for t <% =e~1/3,

2k—1

>7 (020 [MTEE fR] + 02 [ £ MTER L (w?)?02f7,)
=1
2k—1 9
i— 1 & —1 € 5
sy 1(Hw2M ey, Wil + [l 2R |fR|H5> w251

SA+0) 175z S oW 1@ =P)fallGe  +e 5 1/l
Other terms on the R.H.S. of (5.14): Similarly, these terms can be controlled by
o(V)e  I(T=P)[fRllFs  +Ce " /7l %e
+ Ce(I1BRIG: + 1 BalGe ) + Ce (1 +1)+2,

Summary: We collect the above estimates in (5.14) and multiply the resulting in-
equality by €3 to derive (5.12). O

6. Macroscopic estimates and electromagnetic dissipation. In this section,
we study the macroscopic estimates of ff and electromagnetic dissipation. With these
estimates and the estimates obtained in the previous two Sections, we can finally close
the whole energy estimate.
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6.1. Macroscopic estimates. To capture the dissipation of the macroscopic part of f§
which can be seen as a perturbation around a local Maxwellian, as in (2.17), we write

P[f7] as

P[f5] = ( € %cf)M% b pM?E + "M (6.1)

where p; and ps are defined in (2.18).

PROPOSITION 6.1. There are two functionals £%¢ for ¢ = 1, 2 satisfying

eree S|Vt sal IViszll (6.2)
such that
d
- = (e + ) + e (IVPURNP + oI + || (V2 - E5)[|*) (6.3)
+ 2 ([ V2P + IVae | + (Vo (Ve - BR)[*)
S e A=P)SRIS + IV (= P)fRII3 +< || V2A-P)[f3][ +&5 (€ + D)

+ Ek+1(1 + t)2k+1.

Proof. Motivated by [43, Lemma 6.1], we will prove this proposition by two key ingre-
dients: local conservation laws and the macroscopic equations of f5. For convenience,
we write (2.12) as

€

0SB Vofh+ MY B+ L) = (6.0
where
Esz(E+ﬁxB>-fo§+%M%~(E%—!—ﬁxBf%) (6.5)
~M {045 Vo~ (B4 px B) -V, )ME + T [f £
2k—1
+ > ST MR £ 4T [f MR+ et (BR 45 x BR) - Vil
_ gki(uoﬁ_ u) . (El§ +phx B%)f,%

+ e {(Bi+px Bi) - Vyfi+ (Br+0x By) - M ¥V, F

I
[ V]
M5
= |
§

z—:i{(Ei—kf)xBi) 21T<u p—u)fR}+6k§.

Local conservation laws: Firstly, we derive the local conservation laws of a®, 6%, ¢
Note that

€

P2 _ e(u®)? + Plul?

6.6
p 5 (6.6)
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Projecting (6.4) onto the null space N, similar to the derivation of (A.3), (A.4) and
(A.5), we can obtain

nud;a® + PV, - b° (6.7)
== [a%,b%, ¢F] — V, / PM=(I—P)[f5]dp + / M:7%" dp,
nu’ K3 () eu? nu’ 3(7)
78bE+PVw a® — —c° Vo€ +nu'E 6.8
() (=) i 68

:Eg[aa,bs,cs] —Vw-/ ﬁpM%(I—P)[fﬁ]dp—i—/ pM%E dp,
RS2 R3
w0

n(u®)?[3K3(7) + vKa2(7)] - nu’Ks(7)
)+ K (7) Kt R0

e(u®)?0; (aE S

n

V.5 (6.9)
—Safat b, + [ M d,
R3

where Z; [ae, b*, 05] for j = 1,2,3 denotes a combination of linear terms of a%, b°, ¢ with
coefficients V; ,(n,u,T'), and derivatives of a°,b°, ¢ with coefficient u. Since they are
small perturbations and thus will not affect the estimates, we will ignore the details for
clarity.

Noting that

e el ) () e

we can further write the above system as
nuldyaf + 2V, - b (6.11)
Y

zil[aib&cf]—vz/ ﬁM%<I—P>[f§]dp+/ Mz 7" dp,
R3 R3

4
+ ?) 0:b° + vaae + %VmcE + nuOE}% (6.12)
a®,b°, f —Vx-/ ppME (I - P)[f5] d;DﬂL/B;DIVI%EE dp,

Ki(y) 3Ki(v) )
nl— - — +14+ — 8cs+—Vx-bE 6.13
( K3(v) 7 EKa(7) )T (619
=3 [aE,bE,CE] —I—/ pOM%EE dp
]RS

— 0 28 +%> (—vx-/RS;aM%(I—P)[fg]dp+A3M%E€dp).

This system fully describes the evolution of a®, b° and c°.
Macroscopic equations: Secondly, we turn to the macroscopic equations of fF.
Splitting f§ as the macroscopic part P[ff;] and the microscopic (I—-P)[f§] part in (6.4),
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we have
{8,5 (aE — %cs) +p - 0:b° —l—pO@tcE}M%
1
0
+p- {vw(aa - 2’? ) + Vb - p+ pOVacf }Mé + “?pM% L E5, =
where

€= = 0+ V) [(X= P)IfRI] - SL177)

(€ +h57

h® :-—{(a —p—c>+p b+ p°c }(@—l—ﬁ-vx)M%—FEs.

f1

For fixed t, x, we compare the coefficients in front of
1 1 L Pin 1l DiPjo 1 ..
{MQ,piM2,pOM2,p—éM2,ﬁM2}, 1§Za]§3a
on both sides of (6.14) and get the following macroscopic equations:
8ia — L20,¢5 = 5 + he + at(@)cs,
P1 P1
Ob; + 0;c” = Ly, + hy,
Opc® =0 + he,

0
8iac — P28,c° + “—Egi =05+ hE, + ai(pi)ca
P1 p1

0;b; = 05, + h3;,
0;b5 + 0;b; = €55 + h;. i#J.
Here (7, hg, €y, his €2, hes 0oy, hg,s €5 B, and €75, hi; take the form

(£5,¢) and (n%,0),

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

where ( is linear combinations of vectors in (6.15). Combing (6.16) and (6.17) yields

Bras = (5 + hE + %(@g + hi) n at(@)cs.

P1

For m = 0, 1, we have the following estimates:

IV hall + IV RGN+ IV RE + IV RS + IV RG + ([ V3R]

1
SZ(IB&Nm + 1Bl ) + (2+2%) 12l
2k—1

_ 1 L
+ Z El 1 (HM QF‘ZHW;H,OCL?) Hf]E%HHgL + H|M o Wm‘oo ||f]€%||Hm)
=1 z
2k—1
+ Z (HfRHHm + HERHHm + HBRHH,,,) (1 _|_t)2k+1

S IA= PRy + 17l )
— 2
+ [+ 7% + 3| (IRl + 1Ball m ) + 51+ 0%,
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for t € [0,67'/3]. For brevity, we only give the estimate of |V a?|| and ||a®||. The
estimates w.r.t. b° and ¢ in (6.3) can be derived similarly as in [43, Lemma 6.1]. From
(6.18), we have

—Aa® + %ACE - %OVE -Ef (6.21)
== i}al(fiz + h;) = Va - [Cavr(%)} — Vz(u%) - E%.

On the other hand, by (2.13), we have

V. Ef=—4r [ M2 fadp (6.22)
R3

= —4mna® — 4nna®(u® — 1) — 4 (e + P)uu - b°
= —4mha® — 4dn(n —n)a® — dmna (v’ — 1) — dr(e + P)ulu - b°.

Collecting (6.22) in (6.21), we have

—Aa® + — A —I——a Z@ 65 —l—hs 5[as,b5,c€], (6.23)
where
— € 1€ € e(uo—l) € —\ € €(,,0
Zs[a®, b7, ] :—TAC —4m(n —n)a® — 4mna®(u’ — 1)
0
_ 0, .1 _ 15 U N n
d(e + Pyulu - b5 — V, [ A (pl)]+v( ) EE,.
Note that

‘ <%Aca,m5> ] - ‘ <%vmca,vm(m€)> ‘ < o(1) |Vaaf|® + C | Vacs] .

We multiply (6.23) by ma® and integrate the resulting equalities to have

4
V7o
3

(€5, m0a®) —i—Z(hm,naa +‘<E5[a87bs,ca]7ﬁa€>‘+C\|Vzc8“2.
i=1

2

+n (6.24)

b vie]

HMw
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For the first term in (6.24), we have
((qi>m0a%) (6.25)
= <( (015 9:) [(T= P15 — Z£1F3) cm),naias>

=((-o[@=P)fR)]. Cui) .00 )
(=9 V- PR - 20 Gor) 000

<= S{([a-Psl] ) 70t ) + ([~ PSR o) TDR0O7)

+0(1) V20 + O IV (T~ PYFRIIZ +<2 X~ RIS ).
By (6.19) and (6.20), we have
(6.26)

(([a-Ps7l]. cur) FDi0a%),
S N0raf ) + 1T = P) 33

<|(o([@=P)isR)]. Cui) 0w | <
SeTHIA- PSRN+ ¥ 7Rl + [+ 0% + 3] (1BRIG: + BRI )

A

Ek(l + t)2k+1'
Therefore,
(6.27)

(€2, m0;a%)

—Zdt<([1 P)S3I] Coi) 10ha®) + 0(1) [ V2| + C=4 V(T - PY( 5]

+Cle 2= P)IFRIIZ + = I £l
[+ + 3| (IBRIG: + IBRIG: ) + 51 +0%+1].

'Mw

For the second and third terms in (6.24), we use (6.20) to have
(6.28)

3
> (e m0a%) So(1) [Vaa®|* + =% (X =PRI + 17
i=1
[(L+07% + 3] (IBRI® + BRI ) + <"1+ 1)+,

and
0,6, ¢, ) | S o) IVLPLRNP + O +6) % (IF1° + 1Bzl (6.29)
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Collecting the estimates (6.27), (6.28) and (6.29) in (6.24), we obtain

2
% H\/%ang — \/?ae (6.30)
d 1
< - S {(@=P)If7) Car) 010 + O3 V(1= PSR
+ O (U= PRI + < 171
+ [+ 8] (UERIG + 18RI ) + 0+ 0% ).
U

6.2. FElectromagnetic dissipation. In this subsection, we derive the dissipation of the
electromagnetic field (E%, BR).

PRrROPOSITION 6.2. It holds that, for i = 0,1

uO 1 e
\) vaER

3
- Zsi“% (Vo= P)f7),Gos ), ViBR, )+ C 1 (X = PSR
j=1

2
(6.31)

+ Ol [V + e (8 + D) + (14 2]

Proof. For brevity, we only prove (6.31) for ¢ = 0 since the case i = 1 can be proved
in the same way. From (6.18), we have

5 2
/u €

For the first term in (6.32), we use (2.13) to have

3

3
SZ az’ERz Z

i=1

<3i€__8c ER1>‘ Z|<hm,ERZ . (6.32)

<€¢6117E18%,i>
=((~ 0@ =P)If5l, i), Ers) + <( b Va(l-P)f] - éﬁ[f;1,<ai),Eai>
< - S {([a- sl cur) Bra) + { (- PSR Cor ) 01,

+o(1) | B3 +c(||v (- P)SRIIZ +< 21X PRI )
<= S{([a-P)R) cor) Ba) + (192 BRI + 17207

+o(1) | B3 +c(||v (=) +<2 1@ =PRI )-
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For the second and third terms in (6.32), we bound them as follows:

3

>

i=1

Z [(hes ER )| S o) IR + =5 (1T = P)[fRIIZ + I £51°)

<aia8 - Z—aER>\ < o(1) | B2l + C VLI,

+ [(1 )5 e (BRI + BRI ) + (1 + 02+,

We collect the above estimates in (6.32) to obtain

.
e s—i%<(<I—P>[f;1,<ai),E;,i> (6.3
+C(IVa@=P)RIE + 21— PSS )
+C( VBRI + e IFAI + V. PRI
+C[ (467 + | (IBRI + BRI ) + 1+ 6)2+1].
This verifies (6.31) for i = 0. 0

PROPOSITION 6.3. It holds that

d
—52 VB3| <e 2d (E%,Vq x BE) 4+ &2 |V B + Ce%€. (6.34)
Proof. From (2.13), we have
Ve x BS||? = (0,E5%, Vy x BS) + <—4w/ PM? f5dp, V, x B,g> (6.35)
R3
d
< 37 (Br: Vo X BR) = (B, Vo x 9 Bg) + C IRl Vs > B
d € € € e 12 e 2
< S (B Vi x BR) + (Bf Ve x (Ve x BR)) + o) [V x BRI +C 17l
Noting
(E5,V. x (Vo x B3)) = |V, x Bg|?, (6.36)
we have
1
LIV x BRIP < C (55, Vo x Bi) 4 Ve x BRIP+CIfRIE. (637)
Noting V - B, = 0, this further implies (6.34). O

REMARK 6.1. By proper linear combination of (6.3), (6.31) and (6.34), we can obtain
the macroscopic dissipation and the electromagnetic filed dissipation together. However,
the dissipation of the electromagnetic field is too weak to be necessarily included in D.
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7. Proof of Proposition 2.1.

Proof of energy estimates. We multiply (6.3) by a sufficiently small constant k4
and collect the resulting inequality, (4.1), (4.7) and (4.12) to obtain that for some small
positive constant 41,

47T
- H\/ —Vifs

+ 812 |VLPfRI + 82 | V2P (s3]
+ o1 (7N @T= PRI + V(L= P)[FRIE + = [ V2 X - P[]

Sla+n o ret]esedD e 2 4 a4 VE

e ) = (e + ey |
(7.1)

Multiplying (7.1) by a large constant Cy and adding it to the sum of (5.2), (5.8), and
(5.12), we have

%5 + gD < [(1 +t)Po 4 6%]5 3D+ 21+ )2 LR (1 1)2VE,  (7.2)

where D is given in (2.36), and

e-a g

=0

4T

2
TV S +]|V;E§H2+]|V;B§||2)—m(ss’"“ 525;1%)]

2
£ (1= PRI + 2 IV - PRI + [ 92— Pz, )-
Note that
2
sepee +e2epee S 3 Vi Rl IVESR] S & F (IR + e IVaF217 + 62 | V2521
i=1
by (6.2). This verifies (2.35). Then for sufficiently small constant € > 0, we use (7.2) to
have

d
a5+DA<J {(14_,5)7&0 +eb +€2k+1(1+t)4k+2}5_‘_€2k+1(1+t)4k+2+€k(1+t)2k

Then for k > 3, we apply Gronwall’s inequality to the above inequality to have

supS /D ds <5()

s€[0,¢]

for t = ¢~'/3. This verifies (2.34) and (2.37).
Proof of positivity. First we show that there exists Fg(0, z,p) such that F<(0,z,p)
> 0. The procedure is motivated by the analysis in [43, Lemma A.2]. We first estimate

the microscopic part of the coefficients (I — P) [M_%Fi], 1<i<2k—1. By (2.3) and
the definition of £ in (2.14), we have

L {(I—P) [M—%Flﬂ — M} [atMer.sz— (E+p>< B) ~VPM].
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Then, we use Lemma 3.3 to have
‘(I—P) [M*%Flﬂ < |Valn,u, T)| + |E| + |BI. (7.3)
By similar arguments in the proof of Lemma 3.5, we can obtain that for any x < 1,
(M*Hz: {(1 - P) [M*%Flﬂ ,1-P) [M*%FID
. 2 2
> ‘M*f(l —P) [M iR ‘ - ‘(1 —P) [M i ’ +|EP +|BP).

This together with similar estimation in (7.3) implies

K 1 2 1 2
‘M_i(I—P) [M‘?Fl} —C‘(I—P) [M‘iFl} (7.4)
_E _1 2 2 2 2
<o) M1~ P) [MEE] |+ C(|9200,0, 1) + |BP +BP).
Now we combine (7.3) and (7.4) to have
M1 -P) M| S (9.0 T)] + B+ Bl
Similarly, we can obtain that
3 ]vy (M5(1-Pp) [M—%Flm < |Valn,u, T)| + |E| + |B|.
0<;j<2 7
By the Sobolev imbedding, this implies
(I1-P) [M*%Fl} SM%[ x(n,u,T)|+|E|+|B|]. (7.5)

By induction, we can use equations (A.3), (A.4) and (A.5) in Appendix A to obtain

(1 P) [M 3 F| SM#[([Vi(n,0,T)| + Vi E| + V5 B|) (7.6)
£ Y (195 abe)| + [V 1B |+ [V ),
1<) <i—1
for all Kk < 1 and 2 < ¢ < 2k — 1. Note that here aj,b;,c;, the coefficients of the
macroscopic part of P( ), are defined in (A.1). Then we use (7.6) to have
Fy(0,2,p) SMF[(|Vh(n,0,T)] + [ViB| + [V B|) + |(aibie)|  (77)

+ 0 (IVE 7 agbg, )| + VB |+ [V By ) .
1<j5<i
Now we choose F5(0,z, p) in the following form
2k—1

Fi(0.2.9) =M7(0,2,0)| 3 (|Vh(n,w.T)| + [V By | + V27 By ) (7.8)
j=1
2k—1 ’ 2k—12k—1—1
+ z (assbie)| + 3 D0 ([Viasbi )| + [Vi Bl + V5Bl )]

=1 j=1
with 0 < 7 < 1. We choose s < 1 such that

k(1 —k)+ T < K. (7.9)
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From (7.7), we have

2k—1 2k—1
> £'Fi(0,x,p) s&M“(o,z,p)[ > (Vi (n,u, T)(0,2)] + |V§;1(Ej,Bj)(o,x>|)
i=1 j=1

(7.10)

2k—1 2k—12k—1—1

#3 labied |+ 30 D0 (Vb bie)| + 947 (5B
i=1 i=1 j=1
SCO€MH(07%P)

for some uniform constant Cy > 1. We discuss the positivity of Fi5(0, z,p) in two domains
in Ri X Rg:

A= {(;v,p) : M(0,2,p) > COEM”(O,:E,p)},
B = {(x,p) : M(0,z,p) < C'OEM”(O,:E,p)}.

In the domain A, by the expression of the Hilbert expansion (2.1), we have F'5,(0, z,p) > 0.
In the domain B, for the chosen s, we use (7.9) to have

e*M7 (0, x,p) > CEFIFHIMT(0, 2, p)
> CoeM*( =%)(0, 2, p)M7 (0, z, p)
Z COEMK(Ou :Evp)
This implies that the remainder term is the dominant term in (2.1) and F¢(0,z,p) > 0

for € small enough. Therefore we have F<(0,x,p) > 0 for all (z,p).
Based on the proof of [90, Lemma 9, Page 307-308], we may rearrange equation (1.17)

as
OF" + - VoI — (B 4+ x I ) T, F* ()
1 ..
_1 ( [ v q)Fs@dq) Oy, Oy, F°
]R3

3

1 g 1 -
+ - (/ 0p, @ (p, Q)FE(Q)dQ) Op, F° — = (/ @ (p, q)aquE(q)dQ> Op, F*
€ R3 £ R3

1 -
Ly, ( [ v q)aqjmq)dq) Fe.
E R3

Then clearly, there is an elliptic structure on the R.H.S. of (7.11). Therefore, using the
maximum principle (see the proof of [90, Lemma 9, Page 308] and [69, Theorem 1.1,
Page 201]), we have
min {F‘S} = min {FOE} > 0.

z,p

t,x,p
Then for sufficiently smooth ¢, as long as the initial data F© > 0, we naturally have
F® > 0. For general F¢, a standard mollification and approximation argument leads to

the desired result.
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8. Relativistic Landau equation.

8.1. No-weight energy estimates. In this section, we derive the no-weight energy esti-
mates. Since the estimates can be derived via arguments similar to the r-VML case, we
omit most of the details of the proof and only point out main differences.

Corresponding to Proposition 4.1, we have

PROPOSITION 8.1. For the remainder f§, it holds that

d
SNSRI+ 8 A= P)SR2 S (e + 2)€ + D+ %45, (5.1)

Proof. The whole proof can be done in a similar and much simpler way as in Propo-
sition 4.1. We only proceed to the following two estimates:

’ (8.2)

M3 (9,M? +5-V,M?) f5, £2 )| < 2 |[Vpors
(v ( )i f2)| 5 7 |

sz(Iveeal« [ [ ola-pal [ la-pir)
sz(IPuale +eoma-pl+ [ [ la-pP)

SZIGEI + o a-PislE 2 [ [ la-pis)l”
pO>e~ 1k

SZI &I+ oW X = PRI + Ze |X =PRI,
by Lemma 3.1, and
(S 5] = | (S, (= P)[F3])] S o0 (T~ P[5I + €245,

by (B.3) in Appendix B. a
For derivatives of ff, we can obtain the following estimates.

PROPOSITION 8.2. For the remainder f§, it holds that

d
(3 IVl + e 10 PV )

(8.3)
S (e + 2)€ +o(D)e™t (T = P)[f7][2 + D + *+2,
and
d 2L - 21|
EQ(EHVifRH +e 15H(I—P)[VifR]Hg> (8.4)

S (e+2)E+0(1) (T P)[fE]I 7 +eD + 2.
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8.2. Weighted energy estimates. In this subsection, we will derive the weighted energy
estimates of f€.

8.2.1. Weighted basic energy estimate. We take microscopic projection onto (i.e. apply
operator I — P on both sides of) (2.44) to have

0.((L=P)FR) + - V. (T~ P)[F]) + 2£[(T— P)[f] (35)
2k—

"I, fr] + Z { _EFi,fﬁ]—l—I’[fE,M_%Fi}}
M

~ M (oM +p- VM) (L= P)[fR]) + (X - P)[S] + [P, 7] [£],
where
[P,7]=Pr—P=1-P)r—7I-P) (8.6)
denotes a commutator of operators P and 7 which is given by
T=0,+p Vo+ M (ath+p VMa) (8.7)
PROPOSITION 8.3. For the remainder fF, it holds that
SRR+ N~ PRI, + ¥ | VA - Py,
SelVafgl® +e @ =PSRN +2(E +D) + 73,

(8.8)

s(% IV, (T = PSRN + 7 6 IValX= PSRl , + Y ||V2P V. T - P)If3 i
(8.9)

< V215l + (IVL (T = P)[f3]1% + £(€ + D) + 2+,

and

d 2
53(5 V212l + 8 V2 A= PSS, + Y | VAPVE SR wQ) (8.10)
<e? ||V§f§||2 +e(€ + D) + 6,

8.3. Macroscopic dissipation. In this subsection, we study the macroscopic structure
of (2.44).
As in (2.17), denote

Pfg] == M%{{aa(t,x) - mcs(t,x)} +p-b°(t,x) —i—poca(t,x)} eN.

P1 (tv x)
PROPOSITION 8.4. There are two functionals £ for ¢ = 1, 2 satisfying
eree SV RNV falL (8.11)
such that
d
- 2 (eeree v efepee) + (VPRI + 2 [V2PURIS)  (812)

ST I@ =PSRN +IVe@ =PRI + (€ + D) + ¥,
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Proof. As in Proposition 6.1, it can be proved via local conservation laws and the
macroscopic equations of f5,. Write (2.44) as

) R IR
Ouff+ - Volr+ LR =T, (8.13)
where
_ 2k—1 ) . .
= fal+ Y e rMO R, 7] + TR MR
=1

—M%(9M? + - V,M?) f5, + 5.

Local conservation laws: Similar to the derivation of (6.11), (6.12) and (6.13), we
can obtain

nu’dyas + %vz b =54 [a%, 05, ¢ — V.- [ pMEI(I—P)[fgldp+ [ MR dp,
R3 R3

(8.14)
Ki(v) 4) n
n + 2o + 2v,ac 8.15
<7Kz(v) 2 )T Ty (8.15)
=S ] - Ve [ aMAA- PSRl + [ MR
R3 R3
Ki(v) 3 Ki(y) 3> n
n(— - — +14+ =)0+ =V, b° 8.16
< K3(v) 7 Ka(y) Rl (8.16)
= E3[a%,b°, ] +/ p"M2%° dp
R3

—uf (2—84%) (—Vm-/RSﬁM%(I—P)[f;]dp—l—/RgM%EEdp).

Macroscopic equations: Secondly, we turn to the macroscopic equations of fg.
Splitting f% as the macroscopic part P[f%] and the microscopic (I — P)[f5] part in
(8.13), we have

(Bt (aa — @05) +p-0b° —l—poatcE)M%

P (8.17)
+5-{Va(a" - %cs) £ Vab o+ POV PME = e
where
€ 1= —(0+ 5 92) [(T- PR - ZLIS3), (8.18)
h = — {(a — Z—ECE) +p-b° +p0c€} (0, +p- Vo )M2 + 7. (8.19)
1
For fixed t, z, we compare the coefficients in front of
{M%,piM%,pOM%, %M%, ]%M%, i—iM%, Z%M%} . 1<i <3 (8.20)
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on both sides of (8.17) and get the following macroscopic equations:

Bra — %8,505 =5+ B+ 8t(g—2)c5, (8.21)
1 1

8tbf + 81-05 = fzz + th
et = €+ IE,
dias — 2ot =5, 4 b, + cai(@)cs,
P1 P1
Db = €5, + 5,

0;b5 + 0;b7 = €35 + hy;, i J.
Here (7, hy, € hs €0, hes €54 0G0 €55 by, and £, hS; take the form of
(¢5,¢) and (A7, (),
where ( is linear combinations of

. ) 2 .
{M%,piM%,pOM%,p—éM%,p—éM%,}%M%,pz—%M%}. (8.22)
P 0T T p P

For m = 0,1, we have the following estimates:

IV Rl + IV R+ IV RE + Ve hell + IV hG |+ ([ Vihg || (8.23)

1 3

Se? || frllgm
2k—1
_1

£ X (IM ey

1=1

SIVEA=P) SR e + 1SRl g + Z 1SRl gy + €

s !Vif}%H) SRR

+ HM_%|FZ|U

Wln,oo ‘

For brevity, we only give the estimate of ||V,b|| in (8.12) since other estimates can be
derived similarly. From the last two equalities in (6.16), we have

3
—AbS — 0,V b == > 0i(L5; + h;) (1+645). (8.24)
i=1

We multiply b5 and integrate over R? to get

3
IV 7+ Ve 0°1% =D (65 + h5) (1 + 8), 03b5) (8.25)
=1
3
=3 () (= @+ 9[- PR - 2l 6). 005 )
3
+ 3 (L4 8y) (15, Gig), 0:05) -
=1
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For the first term related to (I — P)[f5], we have

P Vo [(I-P)[fz]] — éﬁ[f%],Cij),aib§>

IN

<( — (0 +9- Vo) [A-P)[fR]] - é 71, Gis ) 8ibj> 520
= (- ala-P)si).cs).om) +
{
]

(-
A= pisl e )0ms) + ([0 - PR, vouts
+o(1) [Vab* >+ C(IVa(X = PRI+ 1A= PSR ).

By (6.12) and (6.20) with terms related to the electromagnetic field be zero, we have

(([@=P)lil) ) 00005 ) = = (0 [T =PRI G5 ) 085 ) (5.27)

o(1) (IVaa||* + IVac®|*) + Vo @ = P)fRI7 + 15N + 54

Then we use (8.23) again to obtain

1
5 Vb1 + [V - 07 (8.28)

d
<L (A=) G ). 05) + oD (17l + 9,517
O
8.4. Proof of Proposition 2.2.

Proof of energy estimates. Multiplying (6.3) by a small constant ko and adding
it to the sum of (8.1), (8.3) and (8.4), we obtain that for some small constant dy > 0,

G (VR 4 IVafal? 4 2 TP = (e v 2gp) ) (20
+52(g||v PfzlI” + <2 || V2PLsE])
05 (< IT = PYFRIE + IV (T PRI + < |V2@ - PRI )

S(e+2)E +eD + 2.

Multiplying (8.29) by a large constant Cy and adding it to the sum of (8.8), (8.9), and
(8.10), we have

d
o (5 — Ky (55{”“ + 525;”“)) + ;D S (e+2)E +eD + 23, (8.30)
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where D is given in (2.53), and

2 2
| AT,
5—01{25’ Vo Vidh
=0

+Y (1@ =PRI +2 V2= PSR + V2= Pl ).

— Ky (Eg{nac i 625571(10)]

Note that
2
sepee +e2epee S 3 Vi Rl IVESR] S e (IR + e 1925217 + 2 | V272
i=1

by (8.11). This verifies (2.52). When ¢ is sufficiently small, we know ¢ < Z. Thus, we
have

d

EtDszE+ g2k+3, (8.31)

By Gronwall’s inequality, for ¢ < ¢y, we have
t t
E(t) +/ D(s)ds S eZtg(O) + €2k+3/ eZ(t—s)dS g eZtg(O) + Z_1€2k+3. (832)
0 0
Due to (2.49), we know Zty < 1. Hence, we have
t G
E(t) + / D(s)ds < E(0) + 2k T3, t <to. (8.33)
0

This verifies the validity of (2.51) and (2.55).
Proof of positivity. It is analogous to the corresponding part in the proof of Propo-
sition 2.1. We omit the proof for brevity.

Appendix A. Expansion of the relativistic Vlasov-Maxwell-Landau system.
In this part, we list our result about the construction and regularity estimates of the
coefficients in the Hilbert expansion (2.1). For any integer n € [1,2k — 1], we decompose
M*%Fn as the sum of macroscopic and microscopic parts:

M- iR, =P [M*%Fn} L (I-P) [M*%Fn} (A1)
= (an(t,x) +b,(t,z) - p+ cn(t,x)pO)M% +(I-P) {M_%Fn} .

PROPOSITION A.l. For any integer n € [0,2k — 2], assume that (F;, E;, B;) have been
constructed for all 0 < ¢ < n. Then the microscopic part (I — P) [M_% n+1} can be
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written as:

(I1- P)(M FnH)—ﬁ_l{—M_%(atFn—kﬁ'Van—l S [C(FLFy)  (A2)

i+j=n+1
3,521
+C(FLF)]+ ) (Ei—i—ﬁ % Bi) .vaj)}
i+j=n
4,720

And api1(t, @), bpy1(t, ), cnp1(t, @), Enp1(t,z), Byhyi1(t, z) satisfy the following sys-
tem:
O (a1 + (¢ + PYu®(u- bgr) + (e(u®)? + Plu®)ent)
+Va - (nuani1 + (e + P)u(u-byy1) + Pbyyr + (e + P)ulucy 1) (A.3)

4V, [ pMP(I-P) [M‘% nﬂ} dp =0,
R3

o (e Phujans + (6K () + Y2 () (- ) + (1),

YK ()

4 (5K 4 1K) () 4 Kol |

+ Vg - ((2 + P)ujuany1 + (6K3(7) +vKa(y))u; ((U bnt1) +u Cn+1)>

YKo (7)

nKs(7y) s
VK2 (7) (ubni1,; + an+1)> (A4)

nKs(7y) 0
+ 0 (VKz(V) (u Dnia Fu C”“)

+ oy (nuapi1 + (¢ + Pu(u- bt + (e(u)? + Plul®)ens)

+ azj (PanJrl) + Vz : (

+ ((nuan+1 4 (¢ + P)u(u-bpsy) + Phpsy + (¢ + P)uouan) x B) ‘
J

+ <”uOEn+1,j + (nu X Bn+1) >
J

+ > By (mulay+ (e + P)ul(u-by) + (e(u)? + Pluf*)e;)

k+l=n+1
k,>1

+ Z ((nuaz-l- (e+Pu (u-bl)+Pbl—|—(e+P)u0ucl>XBk)‘

k-+l=n+1 J
Ed>1

$Ve [ BEMII-P) MR dp+(/RSﬁxBM%<I—P> (M4, dp)

+ 3 (/RgprkM%(I—P) [M"Fl] dp)‘—O,

k+l=n-+1 J
k,>1

J
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for j =1,2,3 with b, y1 = (bng1,1:bn41,2,0n41,3), Eng1 = (Eng1,1: Engi,2, Engi,3),

u0)2 ul?Va n(u - bpy1)
00 (2 + PluP)ans + "

+ m ((3K3(’Y) + ’YKQ(’Y))(uO)Q + 3K3(’Y)U|2)uocn+1}

+ Vo - ((e 4+ P)uluan1)

(5K (7) + 7K2(1)(0)? + Ka()lul?)

# 9, { S (O 4 2Kl b) + MUK 0) by (A5)

YEK>(7) YEK>()

+ m ((5[(3(7) + ')/Kg(fy))(uo)z + K3(7)|U|2)U,Cn+1}

+ (nu -Epy1+nu-Eappr + (e + P)(u-bpy1)(u- E)
+ PE by + (e + P)u’(u - E)cnﬂ)
+ [ M- P) MR ap -

R3

+ Z (nu-Ekal+(e+P)(u-bl)(u-Ek)+PEk-bl—i-(e—i—P)uO(u-Ek)cl
k+l=n+1
ki>1

+ / M1 P) [M*%Fl} dp - Ek) +V, | pMI(I-P) [M*% n+1} dp = 0,
R3 RS

atEnJrl - vz X BnJrl
= 47 (nuani1 + Pbps1 + (e + P)u(u - byy1) + (e + P)ulucyy1)

+47r/R3 (pM%{I—P} [M—% "“D dp,

(9tBn+1 + VI X En+1 = O, (AG)
Vi Epp1 = —4m (nulayiq + (e + P)u’(u-byyr) + (e(u®)® + Plul*)ent1)
VuBpy1 =0.

Furthermorev assume an+1(07 l’), bn-‘rl(O? l’), Cn+1 (07 .I), En+1 (07 .I), BTL+1 (07 .I) € HN7
N > 1, be given initial data to the system consisted of equations (A.3), (A.4), (A.5)
and (A.6). Then the linear system is well-posed in C°([0,00); HY). Moreover, it holds

that
[Foia] S (1+6)"H M, VpFoa| S (1+1)" M-,
VeFnl S (1+ t)n+1M177 |vmvan+l| ST+ t)n+1M17>
IV2Fnal S (1+6)"M'-, IVaVpFp] S (1+6)" M-, (A7)

‘En+1| + ‘Bn+1| + ‘vxEn+1| + |van+1| + ‘vazcEn+1| + |V§Bn+1| 5 (1 + t)nJrl-
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Proof. The whole proof follows from analogous arguments as in [54, Appendix 3]. We
omit the details for brevity. |

Appendix B. Expansion of the relativistic Landau equation. In this part, we
list our result about the construction and regularity estimates of the coefficients in the
Hilbert expansion (2.1). The proof can be done in a similar way as that in [54, Appendix
3], so we only record the results. For any integer n € [1,2k — 1], we decompose M-:F,
as the sum of macroscopic and microscopic parts:

F,
M3

=P [M R +(1-P) M HF] (B.1)
= (an(t,x) +bu(t,z) - p+ cn(t,z)pO)M% +(I-P) [M*%Fn} )

PROPOSITION B.1. For any integer n € [0, 2k — 2], assume that F; have been constructed
for all 0 <4 <n. Then the microscopic part (I —P) {M_% n+1} can be written as:

(I-P) [M*% n+1] — Lt [ M3 (@Fn +5-VeF— Y CIF, Fj])]
i+j=n+1
i>1

And any1(t, ), bpg1(t, ), cny1(t, ) satisty (A.4), (A.4) and (A.5) by deleting all terms
related to the electromagnetic field. Furthermore, assume a,+1(0,2z), b,y1(0,2),
cni1(0,2) € HYN with N > 1 are given initial data to the corresponding linear sys-
tem. Then this linear system is well-posed in C°([0,0); H). Moreover, it holds that
for sufficiently large N

(B.2)

|Fn+1| SMlia |van+l| SMlia
|V:an+1‘ ,S M177 |vxvan+1| 5 le, (BS)
|ViFn+1‘ § Ml_v |v92cvan+1| 5 Ml_-
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