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Abstract
Consider the limit ¢ — 0 of the steady Boltzmann problem

v-ViF =¢"005.3 3|,,.0=Muv @)Y - nldv’, (0.1)

v'-n>0

where M, (xg, v) 1= m exp ( 2T| |(M))) for xg € 02 is the wall Maxwellian in the

diffuse-reflection boundary condition. We normalize
Ty =1+0(VTylr>).
v

In the case of |VTy,| = Of(e), the Hilbert expansion confirms § =~ (271)_%6_7 +

v 112
8(27‘[)_%6 ‘J (,01 + T ‘”l ) where (Zn)_%e_% is a global Maxwellian and (p1, T1)

satisfies the celebrated Founer law
AT =0.

In the natural case of |VT,| = O(1), for any constant P > 0, the Hilbert expansion leads to

3 N N +T|v|2—3T vy v, T
~ & . RS —— = of - ——— ,
% plortur-v+i—ry W 2772

2
where u(x, v) := —28) _exp (- 2|73’lx)),and (p, u1, T)is determined by a Navier—Stokes—
@rT(x))2
Fourier system with “ghost” effect
P = pT,
plur - Veur) + Vip = Voo (11 = 2@),
- (puy) =0, ©2)

Vo (k3E) = 5PV,

with the boundary condition

T =Ty, ul’ = (ul,Llsul,L27 ul,n) 90 = (ﬂoatlTw7 IBOBLZTU)’O)' 0.3)

Q2 Q
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Here k[T] > Ois the heat conductivity, (¢, t2) are two tangential variables and  is the normal
variable, Bo = Bo[Ty] is a function of Ty, M = (qul + (Vyup)' — %(Vx -ul)l)
and 1@ = % (KI(V%T — IATT) + %(VXT QV, T — %|VXT|21)> for some smooth
function A[T'] > 0, the viscosity coefficient, and positive constants K| and K. Tangential
temperature variation creates non-zero first-order velocity u# at the boundary (0.3), which
plays a surprising “ghost” effect [26, 27] in determining zeroth-order density and temperature
field (p, T) in (0.2). Such a ghost effect cannot be predicted by the classical fluid theory,
while it has been an intriguing outstanding mathematical problem to justify (0.2) from (0.1)

due to fundamental analytical challenges. The goal of this paper is to construct § in the form
of

§eev) =t ud i+ 6 ) i (o) +entR (0.4)

for interior solutions fi, f> and boundary layer f]B , where .y, is  computed for 7 = T,
and derive equation for the remainder R with some constant & > 1. To prove the validity of
the expansion suitable bounds on R are needed, which are provided in the companion paper
(Esposito 2023).
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1 Introduction

The diffusive hydrodynamic limit of the Boltzmann equation in the low Mach number regime
is described by the incompressible Navier—Stokes—Fourier equations under the extra assump-
tion that the initial density and temperature profiles differ from constants at most for terms
of the order of the Knudsen number. Such behavior has been proved in several papers and an
overview is provided in [23] and [13], to which we refer for a partial list of references on the
subject. We also stress that a similar result can be obtained starting from the compressible
Navier—Stokes equations, which converge, in the low Mach number limit, to the solutions of
the incompressible Navier—Stokes equations [18].

When the density and temperature do not satisfy the above mentioned assumptions, the
limiting behavior of the Boltzmann equation deviates from the Navier—Stokes—Fourier equa-
tions. Such a discrepancy, called “ghost effect” [27], shows up in the macroscopic equations
with the presence of some extra terms reminiscent of the limiting procedure such as some heat
flow induced by the vanishingly small velocity field. Thus they are genuine kinetic effects
which would be never detected in the standard hydrodynamic equations. Y. Sone has given
the suggestive name of “ghost effects” to such phenomena. The meaning of the name is that
the velocity field u; acts like a ghost since it appears at order ¢ in the expansion and still
affects p and T at order 1. In [22] the local well-posedness of the time dependent equations
is proven.

In this paper we confine our analysis to the stationary Boltzmann equation for a rarefied gas
in a bounded domain with diffuse-reflection boundary data describing a non-homogeneous
wall temperature with a gradient of order 1. In this situation the gradient of temperature along
the boundary wall produces a flow called in literature thermal creep. For relevant physical
background and discussion, we refer to [24].

@ Springer



Ghost Effect from Boltzmann Theory

We give a formal derivation of such new equations when the Mach number, proportional
to the Knudsen number ¢, goes to 0, and prove their well-posedness. In the companion paper
[12] we study the much more involved problem of the rigorous proof of such a derivation.
Here we construct the formal solution by a truncated expansion in € plus a remainder, both
in the interior and in a boundary layer of size ¢. In view of the control of the remainder,
we carefully prepare the expansion by truncating at the second order in ¢ in the bulk and
at the first order in the boundary layer. Then a matching procedure allows to determine the
boundary conditions for the limiting equations.

The explicit form of the equations for (p, uy, T, p) is given in (0.2). The main difference
between these equations and the incompressible ones is that V, - u; is not anymore zero but is
related to the gradient of the temperature. This is the analog of the constraint V, -u; = 0inthe
incompressible Navier—Stokes equations and is compensated by the Lagrangian multiplier
p in the equation for u ;. Moreover, in the equation for u; there are the usual Navier—Stokes
terms involving | and also a term 7(®) depending on the first and second gradient of the
temperature. In particular, the “thermal stress” 7(® is a new contribution different from the
standard fluid theories. It is exactly this term that cannot be obtained from the compressible
Navier—Stokes equation. The relevance of these equations, as also noted by Bobylev [5], is
that they cannot be derived from the compressible Navier—Stokes equations. Let us notice
that the particular solution corresponding to homogeneous initial condition for density and
temperature is also solution of the incompressible Navier—Stokes equations.

We give also the proof of the existence of the solution to (0.2) under the assumption of small
temperature gradient. The main difficulty in getting a rigorous proof of the hydrodynamic
limit is the control of the remainder. This is achieved in [12].

Before stating the main results, we briefly introduce the history of the study of the ghost
effect. Sone [25] and [ 19, 20] pointed out the new thermal effects in stationary situations. In[11],
the equations from the Boltzmann equations in the time dependent case were formally derived,
but without computing the transport coefficients. These equations were then discussed by
Bobylev [5], who analyzed the behavior of the solutions in particular situations. He also
showed that the thermodynamic entropy decreases in time. Finally, Sone and the Kyoto group
exploited many other kinds of ghost effects in many papers [28, 29], both analytically and
numerically and gave computations of the transport coefficients for the hard sphere case and
for Maxwellian molecules. A detailed analysis can be found in [26] and [27] and references
therein. Rigorous results in deriving the equations where obtained only in one-dimensional
stationary cases [7, 8] and [1]. There are no rigorous results in the time dependent case, not
even on the torus, but for [16] where the Korteweg theory is derived from the one-dimensional
Boltzmann equation on the infinite line. We also refer to [15, 17] and the references therein.

1.1 Formulation of the Problem

We consider the stationary Boltzmann equation in a bounded three-dimensional C? domain
Q 3 x = (x1,x2, x3) with velocity v = (vy, v2, v13) € R3. The density function F(x, v)
satisfies

{v-vxszle[S,%] in Q x R?, (1.1)

S(xo, v) = P, [T] for xo € 92 and v - n(xp) < 0.

Here Q is the hard-sphere collision operator

1
QOlF,G] = 5/ / g(o, lu—v]) (Fu)G(vs) — F(W)G(v)) dowdu,
R3 JS2
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withu, ;== u+w((v—u)-w), v := v —w((v—1Uu) - w), and the hard-sphere collision kernel
q(w, |u—v|) :=qolow - (v — u)| for a positive constant gg.
In the diffuse-reflection boundary condition

By [§] := My (xo, v) Fxo, VYV - nlxo)|dv/,

v -n(xp)>0

n(xg) is the unit outward normal vector at x(, and the Knudsen number ¢ satisfies 0 < ¢ < 1.
The wall Maxwellian

M0, = 5 exp - 'v'2>
wiX0, ¥ 277 (Typ (x0))? °xp 2Ty (x0)

for any T, (xp) > O satisfies

[ Mutso ol oo = 1
v-n(xg)>0

The boundary condition in (1.1) implies that the total max flux across the boundary is zero.

1.2 Notation and Convention

Based on the flow direction, we can divide the boundary y := {(xp, v) : xo € dQ, v € R3)

into the incoming boundary y_, the outgoing boundary y., and the grazing set yp based on

the sign of v - n(xp). In particular, the boundary condition of (1.1) is only given on y_.
Denote the bulk and boundary norms

1l = (// If(x,v)lrdvdx>r, iy, = (/ If(x,v)lrlv'nldvdx>r
QxR3 Y+

Define the weighted L norms for Ty; > 0,0 < o < % and ¥ > 0 (see (4.7))

i
£z, = esssup <<v>%‘~’zw |f(x, v)|),

(x,v)eQxR3

| flLoe

v+.0.0

2
1= ess sup (( YWe 031y | f(x, v)|)

(x,v)€y+

Denote the v-norm

£l == (// v(x, v)|f(x, v)|2dvdx) ’
QxR3

Let || - |ly«p denote the usual Sobolev norm for x € Q and | - |y, for x € 0. Let
Il - llwk.pra denote WP norm for x € € and L7 norm for v € R3. The similar notation also
applies when we replace L? by Lgoﬂ or Lq

Define the quantities (where L is deﬁned in (2.2))

o = (v —ST)/u eRY, o =r"[d]eR},
2
% = <v®v—u1>,ﬁ eR¥, B =r7"[3] e RS,

_ 1 _
1:=/ (o ® o) dv, /\:=—/ B Bij fori # j. (1.2)
R3 T R3
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Ghost Effect from Boltzmann Theory

Throughout this paper, C > 0 denotes a constant that only depends on the domain €2,
but does not depend on the data or ¢. It is referred as universal and can change from one
inequality to another. When we write C(z), it means a certain positive constant depending
on the quantity z. We write a < b to denote a < Cb and a 2 b to denote a > Cb.

In this paper, we will use o(1) to denote a sufficiently small constant independent of the
data. Also, let o7 be a small constant depending on Ty, satisfying

or =0(1) >0 as |VT,|yse — 0. (1.3)

In principle, while or is determined by VT, a priori, we are free to choose o(1) depending
on the estimate.

1.3 Main Theorem

Throughout this paper, we assume that
IVTy w3 = o(1). (1.4)

Theorem 1.1 Under the assumption (1.4), for any given P > 0, there exists a unique solution
(p,ur, T;p) (where p has zero average) to the ghost-effect (0.2) and (0.3) satisfying for any
s € [2,00)

lutllwss + Ipllwzs + 1T = Llyes S or.

Also, we can construct f1, f» and le as in (2.31), (2.32), (2.48) such that

I fillwss e, + /1] or,

S—l,s oo 5
W Ts Lg,n?

< o7
qu—l. I ’
58 So ~

If2llw2s L2, +1f2
and for some Ko > 0andany 0 <r <3

r B
Kona fl
€ r
al|

HeK(mle H
LOO
0.0

o0
Lg.z?

2 Asymptotic Analysis

In this section we construct a solution to (1.1) by a truncated expansion in ¢ and determine
the ghost effect equation in terms of the first terms of the expansion.
We seek a solution in the form

Fx,v)=f+ 8 +8aM%R
= pu+pd (sfi+25) + i (8f13> + e uIR,
where f is the interior solution
FO) 1= @ v) + w2 () (/10 0) + 2o, ). @1
and fB is the boundary layer term

1
P00 = o, v) (2 /8 ()
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Here R(x, v) is the remainder, u(x, v) denotes a local Maxwellian which will be specified
below and 44, (x0, v) = w(xp, v) the boundary Maxwellian. The parameter « > 1, will be
equal to 1 in the companion paper [12].
We start to determine the first terms of the expansion. Inserting (2.1) into (1.1), at the
lowest order of &, we have
Order O: — Q[u, u] =0.

This equation guarantees that u is a local Maxwellian. Denote

2
u(x,v) = &) 3eXP<— v )
QT (x))? 2T(x)

where p(x) > 0 and T (x) > 0 will be determined later in terms of the solutions of the ghost
equations. Notice that this local Maxwellian does not contain the velocity field since we are
assuming the Mach number of order ¢.

Linearized Boltzmann Operator Define the symmetrized version of Q

O*[F.G] == // gD

X (F(uy)G(vy) + F(v)G(uy) — F()G(v) — F(v)G(u)) dwdu.

Clearly, Q[F, F] = Q*[F, F]. Denote the linearized Boltzmann operator £

LUf1 = =202 Q" [ f | = v f = KL, 22)

where for some kernels k(u, v) (see [10, 14]),

V(v)=/ /q(w, [u —v)u)doduy,
R3 J§2
K110 = [ [ .l obut o (o s + it f00) dods

i) / / 40, lu — v (@) f (w)dewdu,
]R3 Sz

Note that £ is self-adjoint in L%(R3). Also, the null space A/ of L is a five-dimensional
space spanned by the orthogonal basis

1

2 {1, v, (jv* - 37)}.

Denote N+ the orthogonal complement of A in L2(R%), and £~ : Nt — N1 the
quasi-inverse of L. Define the kernel operator P as the orthogonal projection onto the null
space N of £, and the non-kernel operator I — P. Also, denote the nonlinear Boltzmann
operator I" as

TLf, gl :=p 20" [M%f,lt%g] e Nt
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2.1 Derivation of Interior Solution
Further inserting (2.1) into (1.1), we have
Order1: v-V,u—20* [M,M%f]] —0, 2.3)
Ordere:  v-Vy (nifi) —20"[wnifo] = 0" [P fnin]=0. @4
Inspired by the continuation of the expansion, we also require an additional condition that
Ordere?: 17 (v Y, (u%fz)) Loopt. (2.5)
Note that we stop the bulk expansion at order £2, so we do not need the orthogonality with
/ﬁ and |v|2/ﬁ.
2.1.1 Equation (2.3)

Lemma 2.1 Egquation (2.3) is equivalent to

ViP =V (pT)=0 (2.6)
and for some py(x), uy(x), T1(x),
v, T t(p1  ur-v  Ti(v]* =37)
- —of - 7= . 2.7
S 272 +u ( + T + 272 2.7)

Proof Equation (2.3) can be rewritten as

1
w2 (v Vep) = L[ f1]. (2.8)
Then, by the orthogonality of £ to V, to satisfy (2.8) we must have

/Rz (v-Vyu)ydv =0, v/R}v(v-qu)dv =0, /]R{* |v|2 (v-Vyu)dv =0. 2.9)

Note that
V.o VXT(|v|2—3T>>
=)

v~VXM=M<v' 272

(2.10)

Then the first and third conditions in (2.9) are satisfied by oddness. The second condition
in (2.9) can be rewritten in the component form for i € {1, 2, 3} and summation over j €
{1,2,3}

djp  3;T(v|*-3T) |v|2 djp  3;T(v|*>=3T)

2 8T 39;T
a2 T 5F
=8 (Tdjp + pd;T) = 8;;0;(pT) = 0.

djp
=(Sij (pT +5 T
P

Hence, (2.11) is actually (2.6).
Since TV, p + pV, T = 0, we deduce % = —%. Thus, inserting this into (2.10), we

have

lvf* = 5T

V- Ve =p (v ViT) 277

(2.12)
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Considering (2.8) and (2.12), we know

LU =~ - 22
1= 272
and (2.7) holds. ]
2.1.2 Equation (2.4)
Lemma 2.2 Equation (2.4) is equivalent to
Vi - (pu1) =0, (2.13)
VP = Vi (Tp1+ pT1) =0, (2.14)
v, T
SP(Vy-uy) =V, - KW , (2.15)
and for some p2(x), uz(x), Tr(x),
2
PR S 1 ] | P2 uz-v  To(lv|”=3T)
f=— w0 Ve () [+ 27T f1]]+u2<p+ ).

(2.16)

Proof Since the Q* terms in (2.4) are orthogonal to N, we must have

/R} (u-vx (M%ﬂ))dv:o, /RBU(U-VX <M%fl>)dv=0, /R3 ]2 <v-Vx (;ﬁfl))dvzo.

2.17)

Using (2.7), the first condition in (2.17) can be rewritten as

1V, T o1 ui-v  Ti(jv? —3T)
Vv, [ — 24/ - d — dv | =0.
* ( /st 272 v+/ v“<p ot e v

(2.18)
Since 7 is orthogonal to N, the first term in (2.18) vanishes. Due to oddness, the p; and T
terms in (2.18) vanish. Hence, we are left with (2.13).
Similarly, the second condition in (2.17) can be rewritten as

pi | ui-v | Ti(v* —37)
Vx.(_/l;v@)v,ug{ 2T2dv+f v®v,u<;+ T + 272 dv ) =0.

(2.19)
Due to the oddness of .7, the first term in (2.19) vanishes. For the same reason, the u; term
in (2.19) also vanishes. Thus we are left with (2.14).
Finally, the third condition in (2.17) can be rewritten as

2 1 Pl 1V T1(|v|2—3T) _
Vx-<—/l%3v|v| u2of - 2T2dv+/ v|v|u<p+ T + 277 =0.

(2.20)

Using the orthogonality of .« to N/, we know

/ [2p? e - / oo - il
vlv = ,
s UV H 2T2 2T2 o727

where « is defined in (1.2).
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Due to oddness, the p; and T terms in (2.20) vanish, so the u; term in (2.20) can be

computed
2 Ul
[ vivP
R3

V T
Vo 7K
which is equivalent to (2.15).
Equation (2.4) can be rewritten as

vdv =5pTu; =5Pu;y.

)-o

Hence, (2.20) becomes

Ve (1 ) = TLAL il = —LLA)
and thus (2.16) holds. ]
2.1.3 Equation (2.5)

Lemma 2.3 We have the identity

1 Up v\ — —
/.,%’F[(ul-v)/ﬂ,d]z—/ 35( )M—i—T/ B, - B). 2.21)
R3 R3 2 R3

Proof We follow the idea in [4]. Denote the translated quantities

p(x) ( lv — sup|?
3 €X —
QrT(x))? 2T (x)

_1 1
s (x, v) 1= ) Lilf1=—2us > Q" [Ms,/tszf]

and
Ay =AW —su), o =L"[d], By=RBO—su1), Bs=L, %l

Note that translation will not change the orthogonality, i.e. for any s € R

R3 R3

Taking s derivative, we know
d

— % oy =0,
ds
which is equivalent to
d%; .| — —dc;t — 1| de
L | Bs—— | o B L =0. 2.22
/Rs ds ¢ [ s] + R ds rs] + AA@ i ds ( )
For the first term in (2.22), due to oddness and orthogonality, we can directly verify that
d% — — qup -
lim/ Lo [ ] = / 7] (”‘ ”) . (2.23)
s—0 Jr3 ds R3 2T
For the second term in (2.22), we have
dll_ _ dll — dc
/ BiLy! s‘[m]=—/ By— ]
R? R3 d
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Notice that for any g(v)
dz, .d -1 1
“[g] = -2 lim — (Ms o [m, s g])
v

lim
s—0 ds
= 2 [0t [t ot [ ]
o7 ¥ W28 |+ R
_1 Up-v 1
bor [ T ute]
+u20% |1 o 8
S Ll =207 0" [ g |+ £ e
o7 L8 w T Henlg 7 8l
Hence, we have
_dct dc
lim | Z,——[os]=—lim | B—[%] (2.24)
s—0 Jr3 ds s—0 Jr3 ds
uip-v 1 uip-v
z,af]— @c[ ,;z%]
H /];3 2T

ui-v\— 1

—— | »(- T+2 | B *[— :

/1;3 ( 2T) + /Rz wo T ”
uip-v\— uip-v 1 — /Uy v

:/ %( >w+2/ %r[ Mz,d]—/ %( )w.
R3 2T R3 T R3 2T

For the third term in (2.22), we have

, — 1| de ,
lim B L = lim Bs
s—0 JRr3 ds s—0 JR3 ds

Inserting (2.23), (2.24) and (2.25) into (2.22), we have

— /Uy - v ujyp-v\ —
7 o 2 7 +2 %F[
/]133 (2T> +/]1-§3 (ZT) +/]R3
Ul - v\ — —
)w—zf Bu, - ) = 0.
R3

— /Uy - v
—/ ,@(—);zwr/ ,@(
R3 2T R3 2T

Hence, we know that
up-v 1 up-vy— —

@r[ 2,42%]:—/ @( )gi /%’ D).

/]1;3 T * R3 2T + R3 (Hl )

This verifies (2.21).
Lemma 2.4 We have the identity
v ur-v o Ti(P=3T)\ 1 (p1  ur-v  Ti(jv]>=3T)
r 2 | — | —
[“ (p+ T T o e O R Ve
2
pi up-v  Ti(lv|* —3T)
=—L — . 2.26
|:l/~ ( ) t——t T2 (2.26)

dgs—/ #(50) 2/ Buy - B)
N R3 2T R3 " ’
(2.25)

up-v 1
2,42{]
T Hn

Proof The proof can be found in [3, (60)]. A different derivation can be achieved by consid-
ering the expansion with respect to € in Q[ur, nwr] = 0 where
pr = e (_ W)
QrTF)2 2TF
(0 +ep1 + &2p2)

(27 (Ty + eT) +£2T»))

lv — (euy + &%uz)|?
2Ty +eTy +€2Tr) )
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Lemma 2.5 Equation (2.5) is equivalent to

P 2
—— V- (—§|u1|21 +2(u; ®u1)> +Vp+ V- (z“) - 1(2)) —0,

T
T(]) :=/ @{M (U_qul .v)}’
R3 T
o 1 1 o
2) ._ 2 -1 1
T .—/1;3<%{U'VXT'W}+A3<@{M ZU‘VX<MZW)'VXT’

+/ BU | o VaT of VaT
3 Tor?2tToar? |

where

Nl—=

Proof Equation (2.5) is equivalent to

/R3 v (v Y, (M%fz)) dv = 0. .27
Using (2.16), (2.27) can be rewritten as
o (- vt [ o5 )]+ v et

p2 uz-v  Ta(l]* —37)
— =0. 2.28
+A~g3v®v,u<p+ 7t 77 (2.28)

First Term in (2.28) For the first term in (2.28), by orthogonality, since £~! is self-adjoint,
using (2.7), we have

_/Rz”@’v“%ﬂ_l [M—% (v~Vx (M%fl))] (2.29)

_1 1 T pr ur-v  Ti(lv> =37)
=— | @lu vV, (-pra- a :
/n@ {M ’ X( : 2T2+M(p+ r T

Due to oddness, the p; and 77 terms in (2.29) vanish. Hence, the first term in (2.28) is
actually

V. T . ~ ~
_/ gglu—%v.vx (—M%»QW L v)}:—r(l)—i-t(z)—i-g,
R3

272 T
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D=

~. Vi T p _1 ujp-v

gim [t (v- 5 Jwrw) - [ #futovan ()
_/ B T (uy - v) _/ 2t VT (1 |2—5T)( )
= - " v 72 up-v - " v 273 v up-v

v, T ! v, T o =
= 77 R3,@~{(u1-v)vu }_2T3. R}ﬁ-{%(ul-v)}.

Second Term of (2.28) For the second term of (2.28), we have
1 —
/v®vmr1 [r[fl,flnzf g [r[fl,flnzf AL fi] (2.30)
R3 R3 R3
v, T V. T
=| BU|-—o =, —oF -
R3 2T2 2T2
ViT 1 (p1 | ur-v  Tifv> —3T)
2| @r|—o - Luz (=
+/Rs [ 2T2’u<p+T+ 272
(o ur-v  Ti(jvf> —37) p1  ur-v  Ti(jv* —3T)
BT pz (= , — .
+/R3 [“ <,o+T+ 272 WA\, T T e
For the first term in (2.30), denote
v.T VXT}

7@ ::/ BT | —o - ,—of
R3 272 272

1@ =70 4 7@,

Bl

D=

Then denote

For the second term in (2.30), using identity (2.21), we obtain

_ ViT 1 (p1  ui-v  Ti(jv|*> —37)
=2 | @r|—w 22 2 (2L
g /Rs [ 2z M (,0 Tt Tp

VoT 1 jup-v vV, T 1
—/ BT | ot - ,Mz( ) - f %’I‘[%,MZ(uyv)]
R3 T2 T T3 R3

v, T — v, T —
= . B (uy -v) — . B (uy - AB).
2T3 R3 T2 R3
Then we have
c+c=0.

For the third term in (2.30), direct computation using (2.26) and oddness reveals that

1 (p1 ur-v  Ti(v|* —3T) 1 (o1 ur-v . Ti(jv]? =37)
| ar|p (24 + ur (24 +
/Rs [“ (p T 272 K\ 7t 272
—_ 1 (uy - v)? 2P, 2P
= | Zc|c|u = .
/]1‘@ |: |:,u e ]] 3T|u1| + T (1 ®uy)

Third Term of (2.28) For the third term of (2.28), due to oddness, u, terms vanish, and thus

we have 5
ur-v  Tr(lv|- —3T
/3v®m<@+ v Tl )>=(T,02+,0T2)1.
R

0 T 272

@ Springer



Ghost Effect from Boltzmann Theory

2.1.4 Ghost-Effect Equations

Collecting all above and rearranging the terms, we have

R .C) exp(_ P )
(nT@)? 2T (x)

and

Ji=—o

v, T | up-v  Ti(v]? =3T
Vi —Hﬂ(&-i— 1 1(Jv] ))7

272 T + 272

)

—e [ (0o Vi (2 )]+ 27N LA A
) <m+ wo T2(|v|2—3T)),
Jo

2
th T 272

where (0,0, T), (o1, u1, T1) and (p2, u2, T) satisfy

— Order 1 equation:
ViP =V, (pT) =0.

— Order ¢ system:

Vi - (pup) =0,
ViP1 =Vy(Tp1+ pT1) =0,

V. T
Vx- KW :SP(VX'MI).

— Order &2 system:
Pl Ve + Vip = V- (t0 = @),

Here uy = (ug,1, ug2, ui,3),

P:=pT, Pir:=Tpi+pT, p:=Tpr+ pT2,

Fi=v- (WP =5T)p?, o =L )= [v (P - 5T)M%] ,

k1l := o Q@ o/dv,
R3

and

2
W= (qul + (Vyup)' — 3V -u1>1> :

22 1 K> 1
@ = - (K1 (va - gAXT1> + (VXT Q VT — §|VXT|21)>

for smooth functions A[T] > 0, and positive constants K1 and K [5, 20, 26].

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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We observe that (2.33), (2.34), (2.35) and (2.36) are a set of equations sufficient to deter-
mine (p, u1, T, V,p) uniquely once suitable boundary conditions are specified:

VP = V,(pT) =0,
pQuy - Viu) +Vip =V, - (‘L'(l) - 1(2)) ,

Vi - (puy) =0,
V. T
Vx' KW :SP(qul).

Notice that p enters in the equations only through its gradient so we are free to choose a
definite value by imposing fQ p=0.
Also, we are left with an additional requirement:

ViP, =V, (Tp, + pT}) = 0. (2.38)

The higher-order terms of the expansion will be discussed in Section 3.

2.2 Normal Chart Near Boundary

In order to define the boundary layer correction, we need to design a coordinate system
based on the normal and tangential directions on the boundary surface. Our main goal is to
rewrite the three-dimensional transport operator v - V, in this new coordinate system. This
is basically textbook-level differential geometry, so we omit the details.

Substitution 1: Spatial Substitution: For a smooth manifold 92, there exists an orthogo-
nal curvilinear coordinates system (1, t2) such that the coordinate lines coincide with the
principal directions at any xo € 92 (at least locally).

Assume 9€2 is parameterized by r = r(ty, t2). Let | - | denote the length. Hence, 9,1
and 9,,r represent two orthogonal tangential vectors. Denote L; = |9, x| for i = 1, 2. Then
define the two orthogonal unit tangential vectors

o o, r . 0,T
Sl = L’ G2 = L,

Also, the outward unit normal vector is

0, T X 0,1

ni=——=—=¢| X .
[0, X O, 1|

Obviously, (¢1, 62, n) forms a new orthogonal frame. Hence, consider the corresponding
new coordinate system (t1, (3, n), where n denotes the normal distance to boundary surface
092, 1.e.

X =r—nn.

Note that n = O means x € 92 and n > O means x € Q2 (before reaching the other side of
0€2). Using this new coordinate system and denoting «; the principal curvatures, the transport
operator becomes

om  Li(kin—1)3y  La(kon—1) 3t
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Substitution 2: Velocity Substitution: Define the orthogonal velocity substitution for v :=
(vy, vy, vy ) as

—V N =y,
—V -Gl = Vp,
—V - G2 1= Uy

Then the transport operator becomes

. 9 1 , 9 5 Lo (0 9
Ve Vy=vp— — —— | vy — — v — | — — = VU —
T TR —a\"0u,  "ou, ) Ri—n\ Vv, "Vouy,

1 <R18L1L1r~alzr R20,,,,T - 0, 2) 0
U¢U1// 71} —_—
LiLy \ Li(Ry—n) Ly(Ry — dvg
1 < Oy, X - Oy T R10,,,1 - 8“1‘ 2) 3
R VpVy + —— Uy | —
LiL, Ly(Ry —m) Li(Ry —n) dvy
Rivy d Ryvy d
Ll(R1 — n) 8L1 L2(R2 — n) 3L2

where R; = Ki_l represent the radii of principal curvature.

Substitution 3: Scaling Substitution: Finally, we define the scaled variable n = £, which

. . 9
implies 5~ = < 3'7 Then the transport operator becomes

v 1 9 1 2 0 a 1 2 ad a
V- = -Vy— = — — Uy — | — —— — VpUy ——
T e "871 Ry —en ¢3v n¢3v¢ Ry —en wav "1//81)(/,

1 R0, r - 0,r R70,,,1 - 01 02 d
Vg Uy Vy | 5
LiLy \ Li(R; —en) La(Ry — em)

1 0o X - Oy T R10,,,r - 01 02 0
+ 2 VpUy T —— Uy
LiL Ly(Ry —¢€n) Li(Ry —¢n) 8v¢,

( R1v¢ i R2U¢ i)
Li(Ry —en)duy  La(Ry —en) du

3v¢

2.3 Milne Problem with Tangential Dependence
To construct the Hilbert expansion in a general domain, it is important to study the Milne
problem depending on the tangential variable (i1, (). Notice that, in the new variables,
Mw = My (L1, 2, 0). Set
_1 1
Lylf]==2py° Q" |:/fLw» ,uﬁjfj| =vyf — Kulf]

Let ®(n, t1, t2, v) be solution to the Milne problem
0o
Un% + vy ® — Kyy[P] =0, (2.39)
with in-flow boundary condition at n = 0

D0, t1,t2,0) = for v, > 0, (2.40)

VT
272
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and the zero mass-flux condition

1
/R{} Upltin (U, 12, ©) (0, 11, 12, 0)do = 0. (2.41)

Theorem 2.6 Assume that V. T € W5*°(dQ) for some k € N and 1T, < 1. Then there
exists

L B yB.y  TB(w?-3T,
Do (L1, 12, 0) = Doty L2, V) 1= 1s) oy + (o 5 w) eN, (242)
Pw Ty 2T;

for py = PTw_] and some (pB (11, 1), uB (11, 1), TB (1, 1)) such that

1
/M Uy (0) P oo (0)db = 0,

and a unique solution ®(n, 11, L2, v) to (2.39) such that d:=d— o satisfies

P~ ~
vy o+ vu® — Ky [®] =0,
~ N
d)(ov l1, L2, U) = (D(Oa L1, L2, tl) - q>00(tla L2, U) for U77 > 07 (2'43)
1

Jgs vnttar (11, 12, ©)P(0, 11, 12, 0)do = O

and for some Ko > 0 andany 0 <r <k

[@ocl + |57B| S 19:T g, 244)
0,9
K 5 K =
He onvnancpuLg% " He 0"”"3”'@”% S IVl e, (2.45)
Kon 5 Kon 5 -~
e 8“4’®HL;, + e avaLz% S IVaT e, (2.46)
r
K = K Y j
He OﬂaflcpHLm n He 0"3{2¢H SIVaTlig, + )| VT|
0.0 j=1 Q
r
+3 8/2VXT’ . (2.47)
= Lia

Proof Based on [2] and [30], we have the well-posedness of (2.39). Also, estimates (2.44),

(2.45) and (2.46) follow. Hence, we will focus on (2.47). Let W := g—?j’ fori = 1,2. Then
W satisfies

W W — Kyt = — 2w 4 K g,
vpy— 4+ v — = — R
n 877 w w ati ,@li
W (0 0) 9 o Val —M)“’( v) fi 0
s U1, L2, = -7 . — L1, L2, or v, >0,
e a; 272 a7 '7
1
1 E),u,j ~
2 w
f vy (W)W, t1, 12, 0)db = —/ vy ——— (11, 12, ©)P(0, 1, 12, v)dv.
R3 R3 ati

1
Multiplying |v|?1t2, on both sides of (2.43) and integrating over R? yield

1 ~ 1 ~
/vnlnlzué(n,tz,U)‘P(O,Ll,tz,tl)db=f uplo ) (t1, 12, ©)D(00, 11, 12, 0)do = 0,
R3 R3
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which, combined with the zero mass-flux of 5, further implies

o -
/vnﬂ(tl,tz,b)®(0,L],Lz,n)db:0.
R3 at;

Hence, W still satisfies the zero mass-flux condition. Also, notice that

eKon _aﬂa') + 0Ky [D]
81,- az,»

S | ;xj |La°°Q~
LOO
0.0

Therefore, based on [2], there exists a unique Wy, € A such that

[Wool + [eXonw — Woo)HLooﬂ SIVeTlige + 19, Vo Tz,
0,

In particular, since ® — 0as n — oo, we must have W, = 0. Hence, (2.47) is verified
for r = 1. The r > 1 cases follow inductively. O

Let x(v) € C*°(R) and ¥ (y) = 1 — x(¥) be smooth cut-off functions satisfying

1 iyl <1,
X(y)‘{o ity > 2,

In view of the later regularity estimates (see the companion paper [12]), we define a cutoff
boundary layer le :

L, 0, 0,0 = xE v xEen®, u, v, v). (2.48)

We can verify that le satisfies

afB
UﬂTrII +walB - Ky [f]B]
_ x(en) ~ — ~ =
= v, x (e vy) S xEm (X (e ) Ku[®] — Kulx (e~ v, @]),
with V.7
le(O, l1, L2, 0) = Y(silv,,) (—,;z% ﬁ — O (L1, L2, n)) for v, > 0.

Due to the cutoff ¥, le cannot preserve the zero mass-flux condition, i.e.

/R3 v”’u’é’(”’Lz’U)le(O,ll,Lz,U)dU

- /R3 vnué(“’ 2, U)Y(g_lvn)a’((), {1, t2, v)do

- ./R3 U”Mé)(tl’ 12, 0)x (e v, @0, 11, 1, v)do < ore. (2.49)
The zero mass-flux condition will be restored with the help of f> in (3.11).
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2.4 Analysis of Boundary Matching

Considering the boundary condition in (1.1) and the expansion (0.4), we require the matching

condition for xo € 9Q and v -n < 0:

Mw}v~n<0 = Mw/ PV - n|dv’,

v -n>0

b (£ 4 55 |y = M [

v'-n>0

1
i (fi+ FE) IV nldv’ + 0(@),
In order to guarantee (2.50), we deduce that

T (x0) = Tw(x0).
This determines the boundary conditions for T'.

In order to guarantee (2.51), due to (2.49), it suffices to require thatat n = 0

1 1
wis (fi + @ = o), =My 1o (fi + @ — Do) |0’ - nldv’.

v'-n>0
Lemma 2.7 With the boundary condition (2.40) for (2.39), and for xy € Q2
ui(xo) = u®, Ti(x) = T7,

(2.53) is valid.

Proof Using (2.31) and (2.42), we have for xo € 02

V. T 1 (o1 ur-v . Ti(jv]? = 37)
®— Do = o - P(2L
fit o oz T <p+ T T e
B B B 2
1L(p u?-v  TP(v|* —3Ty)
®—put (2=
I (p + =+ 7

With (2.54), we have

V. T B
f1+d>—q>oo=<cp+g¢. X2>+M%<E_L>.
2T P P

Since direct computation reveals that

B B
u (ﬂ —p—) =Mw/ ut (ﬂ—p—) v - nldv/,
14 1% v-n<0 v'-n>0 1Y 1Y

in order to verify (2.53), it suffices to require

v, T ViT\ /
b+ o - 5 =M, O+ o - 5 [v" - n|dv'.
2T vn<0 v'-n>0 2T

When (2.40) is valid, we know that

b+ o VaT
272

=0.

v-n<0

Also, due to (2.41) and orthogonality of <7, we have

1 , , 1 VT ’ ’
My, n2d -n)dv' = My, n2 |\ o - " -n)dv =0,
R3 R3 2T2
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which, combined with (2.56), yields

272
Then clearly (2.55) is true. ]

v, T
My, w2 <CD+,SZ7- ad >|v’-n|dv/:0.
v'-n>0

3 Construction of Expansion

In this section, we will present the detailed construction of ghost-effect solution, fi, f» and
le based on the analysis in Section 2.4. Since the boundary conditions are tangled together,
we divide the construction into several stages.

3.1 Construction of Boundary Layer f‘f-Stage I
Since (2.40) involves V, T, which is not fully provided by T;,, we will have to split the
tangential and normal parts of the boundary layer
L= fllil + flliz + fll?na O =P, + P, + Dy
Define .
@, = (8, T) H?,
where H® fori = 1, 2 solves the Milne problem
HD

v, + L, [HD] =0,
7 o -G 3.1
HO©0,0) = =251 forv, >0, G-D

lim, 0o HO (9, 0) = HY € N,
with the zero mass-flux condition

1 .
/ vpiti (0YHD = 0.
R3

Denote '
(bl,',OO = (8li Tw)Hgg-

Since we lack the information of &, at this stage, we are not able to determine the boundary

condition 77 = T8 yet. However, we can fully determine the boundary condition 1 = u?.
Denote u; = (u1,,,U1,,, u1,,) for the two tangential components (i1, #1,,) and one
normal component u; ,. Due to (2.41), we have

uy n(x0) =0. (3.2)

. : 1
Due to oddness, the projection of H® and H(OQ on v, only has contribution on (v-¢;) M% .

Hence, from (2.54), we deduce

Ml,tl(XO) = ,Bl[Tw]atlTwa ul,lz(-xo) = ﬂZ[Tw]atszv

where §; are functions depending on T;,. Due to isotropy, we know that 8 = B, and we
denote it By. Hence, we arrive at

Ui,y (x0) = ,BO[Tw]atl Ty, Ui, (x0) = ﬂO[Tw]atsz' (3.3)
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Lemma 3.1 Under the assumption (1.4), for any s > 1, the boundary data of u| satisfies
lu1lyso < or.

Proof Taking ¢; derivatives for i = 1,2 on both sides of (3.1), using (1.4) and (2.44), we
conclude that
|u],L1 |W3~°° + |u1,L2|W3~°° S] orT.

Then using (3.2), we obtain the desired estimates. O

Remark 3.2 Note that the boundary condition of u; only depends on T, and VT, directly
without referring to 7" in the bulk.

3.2 Well-Posedness of Ghost-Effect Equation

Based on our analysis above, the ghost-effect equation (0.2) will be accompanied with the
boundary conditions (2.52), (3.2) and (3.3).

T (x0) = T, ul.tl(XO) = ,BO[Tw]atlTws Ml,tz(XO) = ﬂO[Tw]atsz, ul,n(XO) =0.
3.4

Theorem 3.3 Under the assumption (1.4), for any given P > 0, there exists a unique solution
(p,ur, T;p) (p has zero average) to the ghost-effect (0.2) with the boundary condition (3.4)
satisfying for any s € [2, 00)

luillwss + lIpllwes + 1T — Llyas S or.

Proof
Simplified Equations Denote u := pu 1. From the first and third equations in (0.2)

_ uy
Vil = Vi (pur) = PVx - () = 0.
we have
v Vol 3.9
U = . . .
X 1 231 T
From the second equation in (0.2) and (3.5), we have
5 5
—g?»[l]Axul + Vip = 3 A[1] = A[T]) Axuy (3.6)
AT 1 KT 1
S v 7] Ki[T]1( V2T — A, T1) + 2lT] V. T ® V,T — —|V,T|*1
P 3 T 3
. 2 v, T P
+ViA[T] - | Vaur + (Veup) — g(Vx cu)1l ) +A[TIVy (ug - il A - Vyuy.

Hence, we know

5 _ 5 _ .5 —
—3p A+ Vap = —3—P(A[1] — AMTT) A+ 3—PA[T]AX((T — D)

22T S| K>[T] 1 2
—Vx'< 5 (Kl[T]<VxT—§AxT1)+ T (VXT®VXT—§IVXT| 1)))

+VA[T]- (vx (P7'Ta) + (Vo (P~ ' T)) — %(vx : (P_]Tﬁ))1>

+MTIV (P -V T) =5 -V, (P7'T).
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Furthermore, from the fourth equations in (0.2)

v Ly VT L e ATy V(K)VT
U = — | K R — —_— _) s
= sp T\ o sparz—" Tsp i \or2) e

we have
L K AT =P 7. WT lv(—K)VT
o - 7. _ . ]
5P2T2 " i 5P *\272 *
Then we know
A, = 1077 @-V,T) 22 o (KT g 7 (3.7
— u - —_ . . .
* k[T] * k[T] *\ 212 i

Setup of Contraction Mapping Collecting (3.5), (3.6) and (3.7), this is a system for the pair
(, T). Then we can design a mapping W35 x W*S — W35 x W*s : (4, T) — (u, T)

— 5 MIAd + Vip = Z),

V., u=0,
AT = Z3,
where
Zym - (A[1] = ALTT) AT+ ix[T]Ax((f — D)
3P 3p
AT ~ ~ 1~ K> ~ ~ ~ 1~
—V, - ( 1[> I (KI[T] (va - gAxT1>+?2[T] (VXT ® VXT—§|VXT|21>>>

+VAT]- <VX(P_1T'LT) + (Vo (P7'TRH)) — % (V. - (P7'TR)) 1)
ATV, (P10 -V T) — - Vo (PT'TH),
— ~ ~
107 (@-v,T) My, (@) -V, T
k[T] k[T] 212

Z3 =

Boundedness and Contraction Based on [9] and [6, Theorem IV.5.8], noticing the compati-

bility condition
/ ﬁ-n:/(Vx-ﬁ)zo,
a0 Q

lallws.s + lIplwas S NZillwes + 10l 51

we know that

Based on standard elliptic estimates [21], we have
IT = Ulwas S NZ3llwas +1T1 41
Under the assumption
@1 llwss + 1T — 1lwas < 207,

we directly obtain

1Zillwrs S or (Ellwss + VT llyss) o
1 Zsllw2s S or (lEllwss + V2T [lyss) -
Hence, we know that

I lwas + Ipllwzs + 1T = Uiyas S or (1@llwss + 1V T llwss) + IV Twlwsee < 207
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Hence, this mapping is bounded.
By a similar argument, for (fi[k], T[k]) — (ﬁ[k], T”‘]) with kK = 1, 2, we can show that

151, o1

S (s + 19 Fllyss) (| - 72 e v, - v, 72 a)

s

wW3.s wW2.s Wé.s

which yields
-5}
W3,.\'

Sor ([ =7 ., + [7 - v T ).
W3.s W3.s

1 _ 12 (1 _ 721
ot =] =

Hence, this is a contraction mapping.
In summary, we know that there exists a unique solution to (0.2) satisfying

l@lwss + lpllwes + 1T — Llwss S or,

and further
lutllwss + Ipllwas + 1T = iyas S or.

]
Remark 3.4 Based on the first equation in (2.37), we have
p=PT ' ewhs.
Then we have
P|Q2| = / p(x)T (x)dx = 1// |v|2u(x, v)dvdx. 3.8)
Q 3 JJaxrs

3.3 Construction of Boundary Layer fIB-Stage I

Now we can define the full boundary layer. Define
&, = (@, TIH™,

where H solves the Milne problem

AH ™
Uy an +Lu [H(n)] =0,
H™ (0, v) = _Zn for 0
)= or v, > 0,

lim, 0o H™ (. 0) = HY € N,
with the zero mass-flux condition

1
/R . vyt (0)YH™ = 0.

Denote
D00 1= (3, TYHL.

Here 0, T comes from the ghost-effect equation (0.2) and is well-defined due to Theorem 3.3.
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Finally, we have the full boundary layer from (2.48):

f1B(Tla v) =Y(5_1U7])X(877) (CDL] (n,0) + ‘DLZ(W, 0) + ®,(n,0) — D00 — P00 — q)n,oo)
=% (e v x(en) (B (7, 0) + Dy (0, ©) + By (7, V) -

Since the cutoff in le is only defined in the normal direction, we can deduce tangential
regularity estimates from Theorem 2.6:

Theorem 3.5 Under the assumption (1.4), we can construct le such that fori =1, 2, some
Ko>0andany0 <r <3

r¢B
eKOn8 fl

Koy ¢B
lle™" i1l +
fi odr

< or. 3.9)

~

From (2.54) and (2.42), this fully determines the boundary condition of 7:
Ti(xo) = T*.

3.4 Construction of (01, Ty)

Theorem 3.6 Under the assumption (1.4), we can construct (p1, Ty) such that for any s €
(2, 00)
fillworgs, + Uil gy S o7
Proof The boundary condition in (2.54) and Theorem 3.5 imply that
[T w3.s § oT.
Then we can freely define a Sobolev extension for 77 such that
171l et S o7

We choose the constant
P =0.

Then we can deduce that
1
[ e (u%fl +udfP +eu%fz(x,v>> dxdv (3.10)
QxR3

. /Q (3p1 ()T (x) +3T1(x)p(x) + 3602 ()T (x) + 3ep () T2 (x) ) dx

1
+// )2 us fEdxdy
QxR3

= / Bp1 ()T (x) + 3T1(x)p(x))dx + f/ ol B dxdy
Q QxR3

1 1
:/ 3P dx +// s fEdxdv = // )2 us fEdxdo,
Q QxR3 QxR3

where we have used [, p = [ (T p2 + pT>) = 0.
Then based on (2.38), we have

p1 =—T"'(pT),
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and thus
ol et Sor.

Note that p; is not necessarily equal to pZ on 9. However, (2.53) can still hold due to
(2.50).
Hence, we have shown that

I fillwss e, + Lfi] S lotllwss 4+ luiliwss + 1Tillwss + 1T lwss S or-

1
3—< 5700
W "5 Lg,ﬂ

Remark 3.7 We assume that the remainder R satisfies

// 12 R(x, v)dxdv = 0.
QxR3
Hence, combining (3.8), (3.10) and (0.4), we know

// IUIZS(x, v)dvdx = // Ivlzu,(x, v)dvdx
QxR3 QxR3

1
= 3P|§2|+8/f lo? s fEdxdo.
QxR3

3.5 Construction of (03, Uz, T)

Theorem 3.8 Under the assumption (1.4), we can construct (p2, uz, T») such that for any
s € [2,00)

<

1 or.
2-1 500 ~

W s SLQ.I9

||f2||w2vag°ﬂ + [ /2l

Proof Denote 1
Y, ) =—ctp! /z vy ta () ££(0, v)dv.
]R;

Due to (2.49), we have |Y| < or. Then we define uy via up = V. where v solves

—Axvf:—mrl/ Y, 0)ds  in €,
Q2

W _
on

Due to classical elliptic theory, we know that this equation is well-posed. In particular, due
to (3.9), we know Y € W3°(3Q). Then we have v € W** and thus up € W3 satisfying

Y on 0%2.

luzllyss < or.
From Theorem 3.3 and the third equation in (2.37), we know that
Tpr+ pTh € WS,
We are free to take pp = 0 in €2, and thus 7> is determined and satisfies
T2l e S or
Hence, we have shown that

I 2llw2s Lo, + 112l S U fillwseee, +llo2llwzs + lluallyzs + 1 T2llwes S or-

1
2—5.S700
W5 Lgﬁ

[m}
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Remark 3.9 Such choice of u, implies that on the boundary 92
u-n=1Y.

Hence, we know
1
/x (€2f2 + sle> pw-n) =e>Pus - n) + .s/z vp it (0) f£(0,0)do =0, (3.11)
R R

and thus 1
1 L
f (lﬂ +efit+elfot 8le> pw(v-n) =0.
R3

.- 1
We restore the zero mass-flux condition of 2 + & f] + &2 f> 4+ ¢ le .

4 Remainder Equation

For sake of completeness, in this section we will present the remainder equation for R and
report the main result in [12].

Now we begin to derive the remainder equation for R in (0.4), or equivalently the nonlinear
Boltzmann equation (1.1). Denote

Q[Fv F] = anin[Fv F]— Qloss[F, F]

::/ / q(w, [u—v|)F(u) F(vy)dwdu
R3 JS?
—F(v)[ / q(w, |lu—v|)Fu)dwdu =v(F)F.
R3 J§?
Denote § = §a + 8‘1“% R, where

1
Fo=n+ui(efi+6 )+ udefp).

We can split § = §+ — §— where §+ = max{F, 0} and §_ = max{—3F, 0} denote the
positive and negative parts, and the similar notation also applies to §, and R.

In order to study (1.1), we first consider an auxiliary equation (which is equivalent to (1.1)
when § > 0)

v-ViF+e ! (QuosslB. 81— QuainlF+. §+1) =3 / /Q - e (Quoss[§. §1— QgainlF+. §+1) .

4.1
with diffuse-reflection boundary condition

S(xo, v) = My (x0, v) T (xo, V)V - n(xg)|dv”  forxg € 92 and v - n(xg) < 0.
v -n(xp)>0
Here 3 = 3(v) > 0 is a smooth function with support contained in {|v| < 1} such that

J axr3d = L.
The auxiliary system (4.1) is equivalent to

vV — e 05,81 = —& ' (QuainlF. F1 — Quainl+. F+1)
+3 /f ! (QlOSS[Ss Sl = Qgainl§+, S-Q—]),
QxR3
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and due to orthogonality of Q, is further equivalent to
v- Vi — e 018, 81 = —¢ 7' (QuinlF, F1 — Quainl -+, §+])
+3 // e (anin[37 §1— QgainlF+, 34»]) . 42
QxR3
Remark 4.1 The extra terms
—e~! (anin[sa 1 — QgainlF+, S+]) +3 // s e! (anin[gs 1 = QgainlF+, 3'+]) .
QxR
on the right hand side of (4.2) plays a significant role in justifying the positivity of § (see
[12]). Clearly, when § > 0, i.e. § = §+, the above extra terms vanish and the auxiliary
equation (4.2) reduces to (1.1).
Inserting § = §a + s“/ﬁ R:=u+ %a + S“M%R into (4.2), we have
1 -1 1
vV, (MZR) e WILR] 4.3)
_ —1 * | > 1 o Ak 1 1
=5 +¢& (207 |Ta, u2R| + Q" |u2R, u2R
—e™ (¢! Qguin | + €“u IR, B+ 6“2 R
1 [ o L o L i
—& anin (ga‘l'ﬁ' MZR)+,<33+8 ,LLZR)+ )

1 1
+e % (871anin [Sa+8°‘,u7R,Sa+g"‘MfR]
QxR3

_—1 . o %R o %R ]
& anm Saten 4 Sa+&%u . s

where
S = =% Vi Fa+ 6O [Fa, Tl “4.4)

Hence, we know that the equation for the remainder R is

vV, (M%R)Jre—lu%,c[k]zu%s in Q x R3, “5)
R(xp, v) = Py[R](x0, v) + h(xo,v) forxg € 92 and v - n(xg) < 0. .
where
Py [R](x0, v) 1= my (X0, v) 13 (xo, V)R (xo, V)V - n(xo)ldv,
v -n(xp)>0
with 1
my (X0, v) := Mwl“';ia
satisfying the normalization condition
3 /7 ’ / P
Wi (X0, V) = My (x0, V) Hw(x0, V)|V - n(xp)|dv’ = ———my (xo, v).

o'n(30)>0 (27 T (x0)) ?

The source term S includes the nonlinear terms and the terms of the expansion coming
from higher orders and / is a correction on the boundary condition.
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Lemma 4.2 We have
Ly -1z
h=¢" (Py [M_Z&] K 250)
1
_ e (mw f i () )V - nldy’ leu.n<o)
v'-n>0

1 ~ 3 &
_elma (mw/ Méx(é‘ilvn)cmv/ . l’l|dv/ - Ml%)X(silvﬂ)(D|u-n<0> :
v -n>0

Proof From (0.4), we know
|~ |~
hi=e (P 18R] - 2R,
Then due to (2.53) and (2.54), we know

e (PV [/f%(gfl + 8f13)] —uTHefi+ 8le))
1

= (P [ (A + B — e @) |~ (4B - x e uF))

v‘n<0> ’

1

1 ~ 1 ~
=—' (mw/ o x (e v @ - nldv' — g x (67 vy @
v'-n>0

Then the result follows by adding the f> contribution.

Lemma 4.3 We have
_1 -1 -1 « [= 1 . 1 1
Si=pu S +e u2 (2Q [Sa,qu]+8 0 [MZR,WR])
1 1 1
—s7u (67! Quan [+ 0T R Fy + iR |
_ 1 ] _
(8a+e“niR) . (Sute"niR) )
. + +_
1 1 1
+870{5/¢L77 // (Singain [ga+5aﬂ§Rv Sa‘i'sa:uiR:I
QxR3

e a1 o L T
& anm Sa+e"n?2R . Sat+e M2R+ ,

-1
—& anin

where . is defined in (4.4). The detailed expression is

S=—L'[R]+5,

where

1 1 1
LYR] = 2" 'u 20" [;ﬂ(sfl), w2 R] = —2T'[f1, R],
So+S1+ 8+ 83+ S84+ S5 + Se,

|
Il
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for
So =267 T Q" [ (e fo). 13 R] = 26T o, R,

1 1 _1 1
* [ué(sle),mR] =2r [u Tnp fE, R],

0
Sy = Ze_lu_%Q
0" [13R, ;3R] =e* 'R, RI,
I 1 ad 0] 1
Sh = l—a —5 2 Y 2 rB
Ee A R1—8n<¢3 RAEI )(wal
+817a — Vv i u,%fB
2—87] 7 Wav vl
R190 K] R»0, 0 ad 1
—81_0‘#_5 ( 1 mr T vpvy + 20T - 0, T i>7<'u”3’ 13)
L1L2 Li(Ry —en) Ly(Ry —em) vy

e, 1 1 <R23[2[2r~6“r R10,,,r - 3,1 2) d ( 1 B)
Uy + vy | ——
LiLy \ Ly(Ry —¢n) Li(R; —en)

dav
| Riv d Ryv 3 1
elma (#7 N $7> (Méfls>
Li(Ri —en) 9 Lo(Ry —€m) dup
i ax (e Lo
+87aM77UnY(871U11) Xa(nn) (Ml,qu))

+eu” u%x(sn)(x(e ") K[®] — Kol (e o) @),

oo o )= o )

e —1 s 5 2—a, —L % 1 1
Ss =& "u"20% pn fz,sz +2e7uT 207 | U2 fo, u2 1

ol—

1

—q L 1 1 o 1 1 1
+2e7 2 0% [sz,uz%le]vLZel “uTzQ* [M&)le,szl]
1 1 1 1 1
+el™ 2 0% [ufule, Mzile} +e "z Q" [M — s Hz%}f1Bi|
_ 3« 22—« 2—a -1 % B
= &7 T'f2, 21 +27 T f2, il + 27T | fa, 0™ 2
11 _ 11 11
+2¢'7°T [u_zuéff,ﬂ}rel “r [M 2 P zuéle}

_ _1 _1 1
+e7°T [M T( = ), 1 Zuéle],

and

&
|
|
™
=
Nl—=

—1 ) o L o 1
& anm Sa+e"uzR, 3, +euzR

—&™" Qgain [(Sa + 8"‘M%R>+ . (Sa + S“M%R)J)

—a. —1L -1 a i o, %
+& T3 2// . (8 Qgain I:ga“‘g MR, Ja+¢€ /,L2Rj|
QxR
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—&" Qain [(& + SO‘M%R)JF, (Sa + EaM%R)+:|) )

Proof This follows directly from (4.3). ]

We decompose

R =P[R+ (1= P)[R] := u? (v) (Pr(X) +v - br(x) + (Jv]* = 5T)cr(x)) + A — P)[R],
We further define the orthogonal split
(I—P)[R] = o/ -dr(x) + A1 —P)[R],
where (I — P)[R] is the orthogonal complement to .« - dg (x) in V' L with respectto (-, )z =
G, LD, Le. _ _ _
(o, I=P)RD) = («,I-P)R]) =0.

In summary, we decompose the remainder as (4.6),

R=(p+b-v+c(vf?—5T)) u? +d- o + (A —P)R]. (4.6)

We can further define the Hodge decomposition d = V& + e with & solving the Poisson
equation
Vi (kVy§) = Vi - (kd) in$2,
{ £E=0 on 9%2.

We reformulate the remainder equation with a global Maxwellian in order to obtain L*°
estimates. Considering ||V, T || < o7 for o7 defined in (1.3), choose a constant T such that

Ty <minT <maxT < 2Ty and max7T — Ty = or. 4.7
xXEQ Q xeQ

xXe

Define a global Maxwellian

(~37)
M= ———sexp|—5——|.
Q)3T 2T

We can rewrite (4.5) as

v-ViRy +e ' Ly[R] = Sy in Q x R3,
Ry (x0, v) = Pyl Rym1(x0, v) + hp(xo,v) forxg € 0Qand v - n(xg) < 0,
_1 _1 _1
where Ry = i, M%R, Sy = /Llel,%S, hy = ,uleﬁh and for my, =
1

I _1
/’LMZME(XOv V) (xg, V) = Mw/'LM2

1

_1 1
Lu[Ru] = =2u,7 Q [M, MZZWRM] =vy Ry — KylRuml,

1
PulRu1(x0, v) := my w(x0, v) Wi Ry (xo, V)|V - n(xp)|dv'.
v -n(xp)>0
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Denote the working space X via the norm

_ _1 _ _1 _
IRIx =& IIpll2+e 2lbll2+lell2 +e gl 2 +e 2 1El g2 + e el 2 (4.8)
+e A= PRI 2 + 1Pl 6 + bllzs + llell e + & €N 6 + 1€ | was

+llell o + 1@ = PRIl e + [P, (Rl + e 2(1 = PIRI|z,

1 _1 1 1
+piA=POIRY| , +e 2 IVakl 3 + e IRullLy, + o7 Ruls,, -

Y+

In the companion paper [12], we prove the following:

Theorem 4.1 Assume that 2 is a bounded C> domain and (1.4) holds. Then for any given
P > 0, there exists g > 0 such that for any ¢ € (0, &), there exists a nonnegative solution
§ to the equation (0.1) represented by (0.4) with o = 1 satisfying

/Qp(x)dx =0 4.9)

and
IRlx < or, (4.10)

where the X norm is defined in (4.8). Such a solution is unique among all solutions satisfying
(4.9) and (4.10). This further yields that in the expansion (0.4), it +eu(uy - v) is the leading-
order terms in the sense of

<e

415 -

2
Lx.v

and

[ST[o%

<e¢
L2

’

H/ [ —u—ep(uy-v)v
R3

where (p, uy, T) is determined by the ghost-effect equations (0.2) and (0.3).
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